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Abstract

The size-dependent mechanical response of a simple model microstructure is
investigated using continuum dislocation-based, Cosserat and strain-gradient
models of crystal plasticity. The governing equations and closed-form
analytical solutions for plastic slip and lattice rotation are directly compared.
The microstructure consists of a periodic succession of hard (elastic) and soft
(elastoplastic single-crystal) layers, subjected to single glide perpendicular to the
layers. In the dislocation-based approach, inhomogeneous plastic deformation
and lattice rotation are shown to develop in the soft channels, either because of
bowing of dislocations or owing to pile-up formation. The generalized continuum
non-local models are found to be able to reproduce the plastic slip and lattice
rotation distribution. In particular, a correspondence was found between the
generalized-continuum results and line tension effects; the additional or higher-
order balance equations introduced in the non-local models turn out to be the
counterparts of the equilibrium equation for bowed dislocations. The relevance
and possible physical interpretation of additional or higher-order interface
conditions responsible for the inhomogeneous distribution of plastic slip and
lattice rotations are discussed.

} 1. Introduction
In the current endeavour to connect the different scales involved in plasticity of

metals from atomistics to continuum plasticity (Forest et al. 2001b), there is a strong
research community trying to replace detailed descriptions of the collective beha-
viour of dislocations by continuum mechanical models. When the size of the inves-
tigated microstructure is of the order of magnitude of typically 1–10 mm, or below,
classical continuum crystal plasticity theory, as described by Asaro (1983), for
instance, ceases to be relevant since it is not able to reproduce the observed size
effects. In contrast, non-local or generalized-continuum plasticity models incorpor-
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ating intrinsic length scales account for the size effects, at least in a qualitative
manner (Fleck and Hutchinson 1997).

The aim of the present work is to compare directly the governing equations and
analytical solutions resulting from dislocation-based, Cosserat and strain-gradient
models of crystal plasticity. For this purpose, a two-phase single-crystal material
oriented for single slip and subjected to shear loading is investigated. A one-dimen-
sional (1D) laminate microstructure consisting of periodically alternating layers of
plastically soft and hard phases is considered. The hard phase is supposed to behave
only elastically, and the soft channel as an elastic–ideally plastic material. Classical
continuum crystal plasticity predicts homogeneous deformation and stress in each
phase, possibly with a jump of some quantities at the interface. In contrast, the
interest here is focused on the inhomogeneous distribution of plastic slip and lattice
rotations in the soft phase arising from the analysis based on dislocation mechanics,
as well as on Cosserat and strain-gradient continua. Intrinsic length scales which are
responsible for size effects in plasticity of such layered microstructures arise naturally
in the dislocation analysis. The present simple examples enlighten the importance
and physical relevance of the additional boundary or interface conditions usually
introduced in generalized plasticity models (Shu et al. 2001).

Comparisons between dislocation-based and strain-gradient models exist in the
literature, at least in two-dimensional (2D) cases. Generally, results of 2D discrete
dislocation dynamics are compared with non-local continuum models. For instance,
Bassani et al. (2001) analysed the hardening behaviour induced by a periodic dis-
tribution of hard precipitates in a crystalline matrix oriented for single slip for the
case of simple shear. For that purpose, dislocation dynamics is resorted to at the
discrete level, whereas a non-local model is used at the continuum level. Localized or
diffuse plastic deformation patterns resulting from the dislocation simulations are
compared with the predictions of the non-local model. Shu et al. (2001) studied
shearing of a single-crystal layer in detail for both single-slip and double-slip orien-
tations. Dislocations are not allowed to cross the boundaries of the layer, which
leads to inhomogeneous plastic deformation patterns. For both dislocation and
continuum models, the analysis is based on numerical simulations, which makes it
difficult to interpret clearly the continuum intrinsic length scales present in the model
in terms of the corresponding elementary dislocation processes. In the present work,
a very simple case is investigated in order to derive directly comparable closed-form
solutions.

The dislocation simulations carried out by Cleveringa et al. (1998), Bassani et al.
(2001) and Shu et al. (2001) are 2D in the sense that only straight dislocations in a
plane perpendicular to them are considered. Formation of dislocation pile-ups and
dipoles are then the most active elementary deformation and hardening mechanisms.
However, the dislocations which are constrained to glide in the small volumes or
narrow channels are generally required to bow out. Obviously, the bowing of dis-
locations cannot be taken into account in the 2D dislocation dynamics framework.
By contrast, the continuum line-tension dislocation-based model presented in } 2 is
able to account for the Orowan bowing which is frequently encountered in the plastic
deformation of various dislocation substructures (cells, subgrains, ladders, etc.),
single-crystal nickel-based superalloys, passivated thin films or microlaminates.
The model to be presented here shows that the bowing of dislocations in the narrow
channels leads to size effects. For completeness, an analysis of double-ended pile-ups
of straight dislocations that can form in the soft channels under the considered
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loading conditions is investigated in } 2.3. Pile-ups are usually regarded as an appro-
priate illustration of the dislocation accumulation at interfaces or grain boundaries.
They classically illustrate the effect of the so-called geometrically necessary disloca-
tions (Ashby 1970). As such, they have been the source of inspiration of several
strain-gradient models. Both line-tension and pile-up dislocation-based models will
be compared with the response of generalized-continuum models. A first attempt to
identify directly the line-tension dislocation-based model with a Cosserat model has
been presented by Sedláček and Forest (2000).

The Cosserat elastoplasticity model proposed in } 3 mimics the local response of
the considered material in various situations, without explicitly introducing disloca-
tion distributions. Analytical solutions under periodicity conditions are found and
compared with the above dislocation approach. In particular, the circumstances
under which the Cosserat rotation coincides with the lattice rotation are shown.
Finally, in } 4, the plastic strain-gradient models given by Aifantis (1987, 1999),
Fleck and Hutchinson (1997) and Shu and Fleck (1999) are recalled and applied
to the present simple case to compare them with the dislocation and Cosserat mod-
els. It will be shown that the interface conditions to be fulfilled in each model play a
major role in the modelling of inhomogeneous deformation patterns.

Throughout the paper, vectors and tensors are denoted by bold characters and
index notation is used in the equations. The whole analysis is carried out within the
small-strain and small-rotations framework.

} 2. Dislocation models

Firstly, the line tension model presented by Sedláček and Forest (2000) is briefly
reviewed and extended in the following two sections. Then, in } 2.3, an alternative
configuration for which an explicit expression of dislocation distribution in the
channels under shear is available, namely that of the double-ended pile-up, is briefly
presented.

The considered periodic laminate microstructure with direction of the applied
stress indicated and the coordinate system used is sketched in figure 1. Instead of
individual dislocations, a continuous field of curved glide dislocations in the soft
channel is considered. For simplicity, all quantities are assumed to be independent of
y and z. The equilibrium position of a representative bowing screw dislocation ’ðxÞ
with Burgers vector magnitude b and constant line tension T in a shear stress field
�ðxÞ is considered:

�ðxÞbþ T oxx’ðxÞ ¼ 0: ð1Þ
The second derivative of the dislocation displacement ’ðxÞ follows from the linear-
ized dislocation curvature. Strictly speaking, the linearized dislocation model is
restricted to anelasticity (bowing of dislocations in the soft phase) since it is unable
to describe fully plastic flow, that is the glide of critically bowed dislocations depos-
iting edge segments at the interfaces. To be able to deal with the plasticity, at least in
an approximate way, one can introduce the Orowan stress in the soft channel of
width s, �Or � 1:5�b=s, as a threshold stress; if the mean shear stress in the channel
reaches the value of the Orowan stress, the dislocation shape no longer changes and
the bowed-out dislocations glide in the channels, depositing edges at the interfaces.
This transition from anelasticity to plasticity, which is introduced here in an ad hoc
manner, arises naturally in the framework of the full-curvature model (Sedláček and
Forest 2000, Sedláček et al. 2003).
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The increment of plastic shear caused by the displacement ’ðxÞ of the mobile
dislocations with density %m follows from the Orowan relation

� pðxÞ ¼ %mb’ðxÞ: ð2Þ
The inhomogeneous plastic deformation is accommodated by the ‘geometrically
necessary’ content of the bowing dislocations ’ðxÞ which is described by the Nye–
Kröner dislocation density tensor a. Its only non-vanishing component � ¼ �xz can
be directly derived from the plastic shear:

�ðxÞ ¼ ox�
pðxÞ: ð3Þ

It corresponds formally to continuously distributed ‘pile-ups’ of edge dislocations
aligned with the z axis of figure 1, which is exactly the edge content of the bowing
(originally screw) mobile dislocations with the scalar density �m.

By utilizing Hooke’s law for elastic shear strain "e ¼ "exy,

�ðxÞ ¼ 2�"eðxÞ; ð4Þ

a differential equation for the elastic and plastic shear strains results:

2"eðxÞ þ �2 oxx�
pðxÞ ¼ 0; ð5Þ

with the intrinsic length scale � given approximately by the average distance between
the mobile dislocations:

� ¼
�

T

�%mb
2

�1=2

� 1

%
1=2
m

: ð6Þ

We note in passing that the ratio s=� of the channel width to the intrinsic length is
crucial for the size effect appearing during plastic deformation of narrow channels,
thin films, microlaminates, etc. (Sedláček and Forest 2000).
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Figure 1. Dislocation bowing in the soft phase. A part of the loop gliding in the xOz plane is
shown, with the curved (originally screw) section ’ðxÞ and edge segments at the soft–
hard phase interface. The resolved shear stress � and Burgers vector b are indicated.
Labels s and h are used to designate the soft and hard phase respectively.



To be able to derive equations for the lattice rotation based on equation (5),
relations for the elastic and plastic strains and rotations which will be extracted from
the stress equilibrium and strain compatibility conditions are needed.

A compatible material displacement field u ¼ ð���y; uyðxÞ; 0ÞT is considered, lead-
ing to material displacement gradient, b ¼ gradu, of the form

b ¼
0 ��� 0

oxuy 0 0

0 0 0

2
64

3
75: ð7Þ

The inhomogeneous plastic shear (2) causes a generally incompatible plastic distor-
tion

bp ¼ � ps� m ¼
0 � p 0

0 0 0

0 0 0

2
64

3
75: ð8Þ

The slip direction s and the normal m to the slip plane coincide with axes x and y
respectively (see figure 1). Finally, the elastic distortion be ¼ b� bp results in the
form

be ¼
0 �e 0

oxuy 0 0

0 0 0

2
64

3
75; ð9Þ

where �eðxÞ ¼ ��� � � pðxÞ. The symmetric part of be determines the elastic strain
which enters Hooke’s law (4):

"eðxÞ ¼
�e þ oxuy

2
: ð10Þ

The skew-symmetric part of be can be represented by the axial vector
/e ¼ ð0; 0; �e ¼ �e

zÞT of lattice rotation:

�eðxÞ ¼ �
�e � oxuy

2
: ð11Þ

To solve the boundary value problem outlined here, a homogeneous strain and a
homogeneous stress approximation are considered successively. These two cases are
treated in }} 2.1 and 2.2.

2.1. Isostrain approximation
In homogenization theory, this isostrain approximation is referred to as the

Voigt or Taylor model. In materials science, it goes by the name of the composite
model (Mughrabi 1983). Here not only compatibility of deformation is required, but
also homogeneity in material shear strain,

�eðxÞ þ � pðxÞ ¼ ���; oxuy ¼ 0; ð12Þ

where ��� is a homogeneous applied shear strain. To allow for a non-trivial solution,
one has to relax the stress equilibrium (div r ¼ 0) by allowing for internal stresses.
The inhomogeneous shear stress averaged over a period sþ h equals the applied
shear stress ��� (the so-called Albenga law):
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��� ¼ 1

sþ h

�
�hhþ

ð
hsi

�sðxÞ dx
�
: ð13Þ

The equation governing distribution of lattice rotation in the soft phase follows
immediately from equations (5), (11) and (12). Thus

�e
sðxÞ � �2 oxx�

e
sðxÞ ¼ 0: ð14Þ

Lattice rotation in the hard phase results from equations (4), (10) and (11), (12):

�e
h ¼ � �h

2�
; ð15Þ

where �h is the shear stress in the hard phase determined from equation (13).
As for boundary conditions, in the anelastic regime, that is when

ðð1=sÞ
Ð
hsi �sðxÞ dx < �OrÞ, continuity of lattice rotation is required. In the plastic

regime, when ðð1=sÞ
Ð
hsi �sðxÞ dx ¼ �OrÞ, there is a discontinuity of the lattice rotation

caused by the discontinuity of the plastic strain accommodated by the edge disloca-
tion segments at the interfaces. The magnitude of plastic strain is governed by
internal stresses, that is by kinematic hardening (cf. equation (13)). Solutions to
the above equations are of cosh type and are given explicitly by Sedláček and
Forest (2000).

Since the homogeneity of material shear strain (equation (12)), is a stronger
requirement than the compatibility of material distortion, the 1D isostrain approx-
imation overestimates the magnitude of internal stresses.

2.2. Isostress solution
In homogenization theory, the isostress approximation is referred to as the Reuss

or static model. In fact, in the present simple case, it is the exact solution of the
continuum mechanics and dislocation balance equations. Stress equilibrium
(div r ¼ 0) requires that the shear stress is constant and equal to the applied shear
stress:

�ðxÞ ¼ ���: ð16Þ
With Hooke’s law (4) in the form

"e ¼ ���

2�
; ð17Þ

equation (5) yields the following equation for the plastic shear strain:

�2 oxx�
pðxÞ ¼ � ���

�
: ð18Þ

Because the soft phase is elastic–ideally plastic and from the discussion following
equation (1), it is clear that ��� 4 �Or. To obtain a unique solution to the problem at
��� ¼ �Or (plastic regime), one has to fix the mean material strain by requiring, for
example, for the mean applied material shear strain that

���

2
¼ 1

sþ h

�
�""hhþ

ð
hsi

"sðxÞ dx
�
: ð19Þ

Without such a requirement, the amount of plastic deformation and rigid-body
rotation would remain undetermined. This is quite different from the complementary
case of the isostrain approximation (} 2.1) where the amount of plastic deformation
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has been determined by the amount of kinematic hardening and, owing to the
internal stresses, ��� > �Or has been by all means admissible. From equations (7),
(10), (17) and (19), the amount of plastic deformation can be found:ð

hsi
� pðxÞ dx ¼

�
��� � ���

�

�
ðsþ hÞ: ð20Þ

The lattice rotation can be obtained from equations (10), (11) and (17) as

�eðxÞ ¼ ���

2�
� ��� þ � pðxÞ: ð21Þ

As a consequence of equation (21), ox�
p ¼ ox�

e, and the governing equation for the
lattice rotation in the soft phase �e

s becomes

�2 oxx �
e
sðxÞ ¼ � ���

�
: ð22Þ

Accordingly, the lattice rotation and plastic slip (equation (18)) display a parabolic
profile,

�e
sðxÞ ¼ ax2 þ bxþ c; ð23Þ

with a ¼ ����=2�2�. Note that, in the isostress framework, the exact solution of the
full-curvature problem is well known; it is a circular arc. Nevertheless, we have
linearized the curvature in equation (1), to be consistent with the rest of the
paper. From symmetry reasons (periodicity),

ox�
eð0Þ ¼ 0; ð24Þ

which implies that b ¼ 0. In the anelastic regime (��� < �Or), the requirement for
continuity of lattice rotation,

�e
s

�
� s

2

�
¼ �e

h; ��� < �Or; ð25Þ

determines the constant c. Lattice rotation in the hard phase results from equation
(21):

�e
h ¼

���

2�
� ���: ð26Þ

Accordingly, the solution takes the form

�e
sðxÞ ¼

�
���

2�
� ���

�
� ���

2�

�
x2

�2
� s2

4�2

�
; ��� < �Or: ð27Þ

In the plastic regime (��� ¼ �Or), there is a discontinuity of the lattice rotation, ��e,
caused by the discontinuity of the plastic strain, �� p, which is accommodated by the
edge dislocations deposited at the interfaces. The solution is:

�e
sðxÞ ¼

�
���

2�
� ���

�
� ���

2�

�
x2

�2
� s2

4�2

�
þ��e; ��� ¼ �Or: ð28Þ

The magnitude of the discontinuity ��e is determined from equations (20) and (21):

��e ¼ sþ h

s

�
��� � ���

�

�
� ���

12�

s2

�2
: ð29Þ

We shall return to the meaning of the step in lattice rotation later in the text.
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Even though the stress equilibrium and strain compatibility are fulfilled exactly
in the 1D isostress framework, the model is not realistic enough, for it cannot
account for the internal stresses (i.e. kinematic hardening) which would arise in
2D or three-dimensional (3D) structures. In the 1D model, the internal stresses are
fully relaxed by the lattice rotations.

2.3. Pile-up model
This section presents a different model of dislocation structure that can form

under the same applied loading conditions and that leads to a 1D distribution of
plastic slip in the macroscopic limit, that is dislocation pile-ups. This model is often
advocated for the motivation of non-local theories and is recalled here, although its
ingredients are different from the models in } 2 based on line tension effects.

A configuration for which an explicit expression of dislocation distribution in the
channels under shear is available is that of the double-ended pile-up (Tanaka and
Mura 1981, Hirth and Lothe 1982), caused by the simple shearing of a single Frank–
Read source at the centre of the channel of width s (figure 2). A refinement of this
theory has been given by Friedman and Chrzan (1998) taking in particular the
extension of the source into account. For simplicity, we take h � 0 so that any
image force due to the presence of the hard phase h acting on dislocations in the
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Figure 2. Double-ended dislocation pile-up in the soft phase under simple shear.



channel can be neglected. The approach based on the continuum theory of disloca-
tions is briefly recalled here, in the case of pile-ups of edge dislocations with a
Burgers vector of magnitude b. The equilibrium of dislocations under the applied
stress ��� can be written

��� þ �d þ �c ¼ 0; ð30Þ
where �d is the stress at x due to all present dislocations and �c the (assumed con-
stant) threshold for the onset of dislocation motion. If nðxÞ denotes the number of
dislocations per unit length, the dislocation stress takes the form

�dðxÞ ¼ A

ðs=2
�s=2

nðx 0Þ
x� x 0 dx

0;

with

A ¼ �b

2pð1� �Þ : ð31Þ

A solution nðxÞ of the integral equation (30) exists under the condition of unbounded
density at two tips of the pile-up, namely x ¼ �s=2 in figure 2:

nðxÞ ¼ ��� � �c
pA

x

½ðs=2Þ2 � x2�1=2
: ð32Þ

The total number of dislocations in each pile-up is

N ¼
ðs=2
0

nðxÞ dx ¼ ��� � �c
pA

s

2
: ð33Þ

The displacement of material above the slip plane with respect to that below is given
by

uxðx; yÞ ¼ bHðyÞ
ðs=2
x

nðx 0Þ dx 0; ð34Þ

where H is the Heaviside function and the pile-ups are assumed to lie at y ¼ 0 in the
volume considered here. Differentiating the previous equation with respect to y
yields

oyuxðx; yÞ ¼ b	ðyÞ
ðs=2
x

nðx 0Þ dx 0: ð35Þ

with 	 the Dirac distribution. The corresponding amount of plastic slip is defined by

� pðxÞ ¼ 1

l

ðl=2
�l=2

oyuxðx; yÞ dy

¼ b

l

ðs=2
x

nðx 0Þ dx 0 ð36Þ

¼ b

l

��� � �c
pA

��
s

2

�2

� x2
�1=2

for � s

2
4 x4

s

2
: ð37Þ

It is assumed that the pile-ups are periodically distributed along direction y perpen-
dicular to slip plane with period l. The length l is assumed to be large enough for the
interaction between parallel pile-ups to be neglected. As a result, the distribution of
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plastic slip in the channel is the arc of an ellipse. It vanishes at the tips of the pile-ups
and takes its maximal value Nb=l at the centre. This distribution is therefore different
from the parabolic profile found in } 2.2. The mean value of the plastic slip is

��� p ¼ 2

s

ðs=2
0

�pðxÞ dx ¼ b

l

��� � �c
4A

s

2
: ð38Þ

It can be shown that the dislocation stress �d introduced in equation (30) does not
depend on x, as required by the equilibrium condition

�d ¼ �ð��� � �cÞ ¼ � 2�l

pð1� �Þs ��� p: ð39Þ

This proves that the double-ended dislocation pile-up produces a hardening compo-
nent of linear kinematic type:

X ¼ ��d ¼ C��� p;

with

C ¼ 2�l

pð1� �Þs : ð40Þ

We note that the pile-up model is formulated at a different level of approxima-
tion from the line-tension models of }} 2.1 and 2.2. In particular, a periodic distribu-
tion of pile-ups is assumed along the y direction. This enables a dislocation stress �d
to be present in the 1D model. Furthermore, each pile-up is completely embedded in
an elastic matrix, so that the stress cannot relax. If the pile-ups were distributed
continuously along the y direction, as the bowed dislocations in the previous sections
are, the stress would then relax exactly as in } 2.2 and the local internal stresses and
thus the macroscopic hardening would disappear.

} 3. Cosserat model

The two-phase material now is a heterogeneous Cosserat continuum (see appen-
dix A for the presentation of the Cosserat continuum). In } 3.1, both phases will be
assumed to have a linearized behaviour, with different moduli. In }} 3.2 and 3.3, the
soft phase exhibits elastoplastic behaviour. In contrast with } 2.1 and similarly to
} 2.2, we look here for solutions fulfilling all compatibility and equilibrium require-
ments with the only constraint that all fields must be periodic along x with period
sþ h (see figure 1).

3.1. Linear approximation
Both phases are Cosserat linear materials with constants �h; �ch; 
h and �s; �cs; 
s

(see appendix A for the definition of isotropic Cosserat elasticity). The moduli of
phase s can also be treated as secant elastoplastic moduli and the elastic and plastic
parts will not be distinguished. Phase h must be thought of as almost classical, which
means that 
h is small, but the solution is given here in the general case.

A mean shear deformation ��� is applied along the direction x. We look again for a
displacement field of the form

ux ¼ ���y; uyðxÞ; uz ¼ 0: ð41Þ

The deformation of a Cosserat material is described also by the microrotation axial
vector field:
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�x ¼ �y ¼ 0; �z ¼ �ðxÞ: ð42Þ

Thus, the Cosserat deformation and curvature tensors (equations (A 1) and (A 2))
take the forms

e ¼
0 ��� þ � 0

oxuy � � 0 0

0 0 0

2
64

3
75; j ¼

0 0 0

0 0 0

ox� 0 0

2
64

3
75: ð43Þ

The associated non-vanishing components of the force and couple-stress tensors are

�xy ¼ �ð��� þ �þ eyxÞ þ �cð��� þ �� eyxÞ; ð44Þ

�yx ¼ �ð��� þ �þ eyxÞ � �cð��� þ �� eyxÞ; ð45Þ

mzx ¼ 2
 ox�: ð46Þ

The balance equations give

ox�yx ¼ 0; ð47 aÞ

oxmzx � ð�xy � �yxÞ ¼ 0: ð47 bÞ

Taking the elasticity relations into account, these equations become

�ðox�þ oxeyxÞ � �cðox�� oxeyxÞ ¼ 0 ð48Þ


 oxx�� �cð��� þ �� eyxÞ ¼ 0: ð49Þ

Equation (48) can be rearranged to give

oxeyx ¼ ��� �c

�þ �c

ox�: ð50Þ

The equation for � follows then from equation (49):


 oxxx�� 2��c

�þ �c

ox� ¼ 0: ð51Þ

We define for each phase

!2
s ¼

2�s�cs


sð�s þ �csÞ
; !2

h ¼
2�h�ch


hð�h þ �chÞ
: ð52Þ

Each ! is the inverse of a length. The solution of equation (51) takes the form

�s ¼ as coshð!sxÞ þ ds for � s

2
< x <

s

2
; ð53Þ

�þ
h ¼ ah cosh

�
!h

�
x� sþ h

2

��
þ dh for

s

2
< x <

sþ h

2
; ð54Þ

��
h ¼ ah cosh

�
!h

�
xþ sþ h

2

��
þ dh for � ðsþ hÞ

2
< x < � s

2
: ð55Þ

To reduce the number of integration constants in equations (53)–(55), the periodicity
of � has been used, together with the following symmetry conditions:

ox�ð0Þ ¼ ox�

�
� sþ h

2

�
¼ ox�

�
sþ h

2

�
¼ 0: ð56Þ

Then, eyx can now be determined from equation (50) as follows:
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esyx ¼ ��s � �cs

�s þ �cs

�s þ es;

ehþyx ¼ ��h � �ch

�h þ �ch

�þ
h þ eh; ð57Þ

eh�yx ¼ ��h � �ch

�h þ �ch

��
h þ eh; ð58Þ

where eh and es are integration constants. Furthermore, equation (49) implies that

eyx ¼ � 


�c

oxx�þ ��� þ �; ð59Þ

eyxð0Þ ¼ � 
s

�cs

as!
2
s þ ��� þ as þ ds

¼ ��s � �cs

�s þ �cs

ðas þ dsÞ þ es; ð60Þ

eyx

�
sþ h

2

�
¼ � 
h

�ch

ah!
2
h þ ��� þ ah þ dh

¼ ��h � �ch

�h þ �ch

ðah þ dhÞ þ eh; ð61Þ

from which the values of es and eh are deduced:

es ¼ ��� þ ds
2�s

�s þ �cs

; eh ¼ ��� þ dh
2�h

�h þ �ch

: ð62Þ

For the determination of the four integration constants as; ds; ah and dh, certain
conditions at the interface must be enforced. In the Cosserat theory, the degrees
of freedom, ui and �i, are continuous if one excludes cracks and kinks. Therefore, the
corresponding traction and couple-stress vectors must also be transmitted at the
interface. Alternative conditions would be to prescribe specific values or jumps for
displacement and microrotation at the interface, as done for instance by Shu and
Fleck (1999). We note that in the dislocation-based model, the value of the step in
lattice rotation given by equation (29), follows from the condition of mean pre-
scribed glide ���. Here, this condition is automatically satisfied by the periodicity
requirement to be enforced by equation (67) below. Thus, continuity requirements
are imposed in this work in the absence of a more specific interface model. The
interface conditions require the following.

(i) Continuity of � at s=2 is given by

as cosh

�
!s

s

2

�
þ ds ¼ ah cosh

�
!h

h

2

�
þ dh: ð63Þ

(ii) Continuity of mzx at s=2 is given by


sas!s sinh

�
!s

s

2

�
¼ �
hah!h sinh

�
!h

h

2

�
: ð64Þ

(iii) Continuity of �yx at s=2 is obtained as follows. Rearranging equation (45) to
give

�yx ¼ ð�þ �cÞeyx þ ð�� �cÞð��� þ �Þ ¼ 2�ð��� þ dÞ ð65Þ
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one obtains the third equation

�sð��� þ dsÞ ¼ �hð��� þ dhÞ: ð66Þ

(iv) Periodicity of uy implies that

heyxi ¼ hoxuy � �i ¼ h��i;

where the angular brackets denote averaging over x from �ðsþ hÞ=2 to
ðsþ hÞ=2. One finds that

h�þ eyxi ¼
�

2�c

�þ �c

�þ e

�

¼
�

2�c

�þ �c

�þ ��� þ 2�

�þ �c

d

�
;

which gives the fourth equation

4�cs

�s þ �cs

as
!s

sinh

�
!s

s

2

�
þ 4�ch

�h þ �ch

ah
!h

sinh

�
!h

h

2

�

þ ���ðsþ hÞ þ 2dssþ 2d2h ¼ 0: ð67Þ

The four equations (63), (64), (66) and (67) represent a linear system of equations
for the unknowns as; ah; ds and dh. For conciseness, the final expressions are not
given explicitly. Instead, the profiles of � are plotted in figure 3 for two different
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Figure 3. Distribution of microrotation of a two-phase linear elastic Cosserat material
undergoing simple glide, using two different sets of parameters: (1) �h ¼ 10�s ¼
26 923MPa, �ch ¼ 20�cs ¼ 100 000MPa and 
h ¼ 
s=30 ¼ 100MPa l2u; (2) �h ¼
10�s ¼ 26 923MPa, �ch ¼ 20�cs ¼ 100 000MPa and 
h ¼ 
s=100 ¼ 1MPa l2u. lu is
the chosen length unit (mm, mm, etc.), sþ h ¼ 10lu and ��� ¼ 0:01.



sets of material parameters. It can be seen that, for an appropriate choice of the
material parameters ð�h > �s; �ch > �cs and 
s > 
hÞ, �h is almost constant and �s

displays a cosh profile with a characteristic length 1=!s. This profile mimics the
distribution found in } 2.1 and suggests that � can be interpreted as a lattice rotation,
provided that !s is taken to be of the order of the magnitude of �. A similar Cosserat
elasticity model has been interpreted by Sedláček and Forest (2000) as a representa-
tion of anelasticity observed in crystals. Figure 3 has to be compared with figure 2 of
the paper by Sedláček and Forest (2000) showing the bowing of screw dislocations in
the channel.

In the limiting case when 
 ! 0, it can be shown that stresses and strains are
constant in each phase, as expected for the solution of this simple glide problem for
the classical Cauchy continuum. This can also be inferred from figure 3.

It can be checked also that h�yx � �xyi ¼ 0, so that the macroscopic stress is of
course symmetric. This point indicates that we are implicitly considering the problem
of the homogenization of heterogeneous Cosserat media. This general problem has
been tackled by Forest et al. (1999, 2001a). The definition of the effective stress is

���ij ¼ h�iji:

If neither mean curvature nor relative rotation is prescribed to the unit cell, the
effective stress is symmetric.

3.2. Elastoplastic case
Deformation in the soft phase is now decomposed into its elastic and plastic

parts and the Schmid law is used as the yield criterion. The threshold shear stress �c is
taken as constant (thus no hardening is considered). In contrast, we still do not
distinguish between elastic and plastic curvature and keep a linearized relation
between couple-stresses and total curvature. In this case, the total deformation in
the cell is split into elastic and plastic parts:

e ¼ e
e þ e

p: ð68Þ

Only single slip is considered. The normal m to the slip plane is assumed to be parallel
to the y direction (figure 1) and the slip direction s is parallel to x:

e
p ¼ � ps� m ¼

0 � p 0

0 0 0

0 0 0

2
64

3
75; e

e ¼
0 eexy 0

eeyx 0 0

0 0 0

2
64

3
75;

so that eeyx ¼ eyx. The non-vanishing force stress components are

�xy ¼ �sðeexy þ eyxÞ þ �csðeexy � eyxÞ; ð69Þ

�yx ¼ �sðeyx þ eexyÞ þ �csðeyx � eexyÞ: ð70Þ

The driving force to activate plastic slip is taken as the projection � of the symmetric
part of the force stress tensor on the normal to the slip plane, and in the slip
direction. Kröner (1956) suggested using the full asymmetric force stress in the
computation of the resolved shear stress. This is not done here since the main
Cosserat effects shown in this work do not come from the asymmetry of stress but
rather from the presence of lattice curvature and the associated couple stresses.
Additional effects associated with the asymmetric character of the stress tensor
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have not yet been studied. Comments on the role of the skew-symmetric part of the
force stress tensor are given in }3.3. The yield criterion therefore gives

� ¼
�xy þ �yx

2
¼ �c ¼ �sðeexy þ eyxÞ: ð71Þ

From the first balance equation, namely ox�yx ¼ 0, and equation (71), it can be seen
that eyx and eexy are constant. The second balance equation is


s oxx�� �csðeexy � eyxÞ ¼ 0; ð72Þ

which gives

oxxx� ¼ 0: ð73Þ

Thus, � displays a parabolic profile in the cell. The wall of width h in figure 1 is taken
as an elastic Cosserat solid. The profile is the same as in } 3.1:

�s ¼ asx
2
1 þ ds for � s

2
< x <

s

2
; ð74Þ

�h ¼ ah cosh

�
!h

�
x� sþ h

2

��
þ dh for

s

2
< x <

sþ h

2
; ð75Þ

where !h is still given by equation (52). To determine the integration constants, the
following conditions must be accounted for.

(i) Continuity of � at x ¼ s=2 is given by

as
s2

4
þ ds ¼ ah cosh

�
!h

h

2

�
þ dh: ð76Þ

(ii) Continuity of �zx is given by


sass ¼ �
hah!h sinh

�
!h

h

2

�
: ð77Þ

(iii) Continuity of �yx; eyx, e
e
xy and �yx are determined in each phase:

eyx þ eexy ¼
�c
�s

; eexy � eyx ¼ 2
s

�cs

as;

�s
yx ¼ �c � 2
sas; �h

yx ¼ 2�hð��� þ dhÞ;

so that

2�hð��� þ dhÞ ¼ �c � 2
sas: ð78Þ

(iv) Periodicity of uy is found as follows. We use again the property
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heyxi ¼ hoxuy � �i ¼ h��i;

esyx ¼ �c
2�s

� 
s

�cs

as; ehyx ¼ ��h � �ch

�h þ �ch

�h þ ��� þ dh
2�h

�h þ �ch

; ð79Þ

esyx þ �s ¼
�c
2�s

� 
s

�cs

as þ a1x
2
1 þ d1;

ehyx þ �h ¼
2�ch

�h þ �ch

�h þ ��� þ 2�h

�h þ �ch

dh ð80Þ

¼ 2�ch

�h þ �ch

ah cosh

�
!h

�
x� sþ h

2

��
þ ��� þ 2dh; ð81Þ

from which the last equation for the determination of the integration con-
stants is deduced:�

�c
2�s

� 
s

�cs

as þ ds

�
sþ ass

3

12
þ 2dhhþ ���hþ 4�ch

�þ �ch

ah
!h

sinh

�
!h

h

2

�
¼ 0:

ð82Þ
The linear system (76), (77), (78) and (82) can be solved for the four unknowns

as; ds; ah; and bh; as in the previous section.
Once the microrotation �ðxÞ is known, the amount of plastic slip can be found

from

� p ¼ ��� þ �� �c
2�s

� 
sas
�cs

: ð83Þ

The resulting parabolic distribution of Cosserat microrotation and plastic strain are
given in figure 4 for two different sets of parameters. Note that, for the classical
limiting case when 
s tends to zero (and �c to infinity, see next section), the classical
relation (21) is retrieved.

3.3. Limiting case for constrained Cosserat single-crystal plasticity
At this point, a precise discussion of the links between the Cosserat microrota-

tion � and the lattice rotation �e must be given. The previous analysis of two
different situations has shown the similarity between the profiles of � and �e, as
deduced from the combination of classical continuum mechanics and equilibrium of
a dislocation line (} 2). In the continuum framework of classical crystal plasticity, in
which dislocations are not considered individually, a clear definition of lattice rota-
tion exists. For instance, in the specific case of the shear test, it is given by equation
(11). Such continuum description of lattice rotation will now be compared with the
Cosserat microrotation computed in } 3.2. By definition, the lattice rotation is related
to the skew-symmetric part of the elastic distortion:

e
e ¼

0 ��� � � p þ � 0

oxuy � � 0 0

0 0 0

2
64

3
75; ð84Þ

the corresponding axial vector being ð0; 0; ð��� � � p � oxuyÞ=2þ �ÞT.
If the skew-symmetric part of the Cosserat elastic deformation tensor vanishes,

the following relation is found:
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� ¼ �
��� � � p � oxuy

2
; ð85Þ

which is exactly that given by equation (11). Thus, the Cosserat microrotation is
found to coincide exactly with the standard definition of lattice rotation when the
Cosserat elastic deformation is symmetric. It is recalled that the skew-symmetric part
of the stress and elastic deformation are linked by the elastic modulus �c (see equa-
tions (69) and (70)). Thus the value of �c controls the difference between the Cosserat
microrotation and lattice rotation. The physical meaning of � in the case of crystal
plasticity is therefore clear only when it is close or equal to the lattice rotation. This is
the case when �c is large compared with the other moduli. The condition �c ! 1
enforces indeed the symmetry condition for the elastic deformation. The resulting
finite skew-symmetric part of the stress can be regarded as reaction stresses (similarly
to pressure in classical incompressible materials). This is a kind of constrained
Cosserat continuum for which the Cosserat microrotation follows strictly lattice
rotation, which is different from the well-known couple-stress medium, for which
the Cosserat rotation is forced to follow the material rotation, namely pure rotation
component of the overall deformation gradient (Koiter 1963).

Consider the analysis of } 3.2 in the case when �c goes to infinity. The equations
are indeed simplified and a clearer connection between material and geometric con-
stants can be derived. The characteristic length in the hard phase becomes:

1

!h

¼
�


h

2�h

�1=2

: ð86Þ
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Figure 4. Distribution of microrotation of a two-phase elastoplastic Cosserat material
undergoing simple glide, using two different sets of parameters: (1) �h ¼ �s ¼
26 923MPa, �ch ¼ 5�cs ¼ 500 000MPa, 
h ¼ 
s=10 ¼ 10MPa l2u and �c ¼ 10MPa;
(2) �h ¼ �s ¼ 26 923MPa, �ch ¼ s�cs

¼ 500 000MPa 
h ¼ 
s=30 ¼ 1MPa l2u and
�c ¼ 10MPa. sþ h ¼ lu and ��� ¼ 0:01.



In the previous system of four equations (76), (77), (78) and (82), the fourth equation
now becomes �

�c
2�s

þ ds

�
sþ ass

3

12
þ ð2dh þ �Þh� 2
s

�h

ass ¼ 0: ð87Þ

The solution can then be given in a rather concise form, at least for as which
characterizes the parabolic profile of the lattice rotation distribution:

as ¼ �6
���ðsþ hÞ � ð�c=2�hÞðsþ 2hþ s�h=�sÞ

s3 þ ð
s=�hÞð18sþ 12hþ 3s2!h cothð!hh=2ÞÞ
: ð88Þ

It can be seen that, contrary to the result of the analysis in the purely linear case of
} 3.1, both material and geometric parameters contribute to the shape of the distri-
bution � in the elastoplastic channel. It can also be noted that, when 
h ! 0, that is
!h ! 1, the coefficient as vanishes and the classical homogeneous distribution of
rotation and plastic slip is retrieved. Interestingly, when a non-zero and constant
value of 
h is assumed and when 
s ! 0, the coefficient as does not vanish but rather
reaches the limit:

as ¼ �6

�
��� � �c

�

�
sþ h

s3
; ð89Þ

where �h ¼ �s ¼ � has been assumed for simplicity. The fact that the classical homo-
geneous solution is not found in this case can be interpreted as follows. Letting 
s

vanish in the moment of momentum balance equation (72) makes this second partial
differential equation disappear, so that in principle we are left with the usual force
stress balance equation and a classical solution could be expected. However, if
equation (72) is multiplied by 1=
s and differentiated again, we are left with equation
(73) which can be assumed to hold in the limit for 
s ! 0. It amounts then to finding
a parabolic distribution of � fulfilling the classical equation (21) and continuity
conditions at the interface. Indeed, for very low values of 
s, finite-element simula-
tions provide this limit solution. Identifying the present result (89) and the corre-
sponding solution of the dislocation model (6), the link between the Cosserat model
and the intrinsic length scale is

1

�2
¼ 24

�
����

�c
� 1

�
sþ h

s
� %m; ð90Þ

which provides a reasonable but very approximate estimate of the density of mobile
dislocations. The complete solution with all available material constants is of course
more elaborate and incorporates the length scale associated with a non-vanishing 
s.
In the latter case, the complete identification of the Cosserat model with the corre-
sponding dislocation model can be made using equation (88) in order to calibrate 
s,
as a function of %m.

} 4. Comparison with strain-gradient plasticity models

Alternative non-local continuum theories are available to model size effects in
crystal plasticity, usually called strain-gradient plasticity models. In this section, the
response predicted by two of them is investigated in the simple case of shearing of
laminate microstructures. In particular, the shape of the inhomogeneous plastic slip
profiles are compared with the previous Cosserat results.
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4.1. Second gradient formulation
Based on the continuum framework introduced by Mindlin and Eshel (1968) and

Germain (1973), a strain-gradient plasticity constitutive framework has been devel-
oped by Fleck and Hutchinson (1997) and Shu and Fleck (1999). Two main models
have been proposed by these workers. The first deals with isotropic plasticity, and
the second with crystal plasticity. The main constitutive and balance equations are
recalled in appendix B in a simplified case of single slip. Moreover, the originally
viscoplastic framework is translated into a purely elastoplastic framework, for which
analytical solutions can be found in the shear test considered in this work.

As in } 3, the displacement field in a periodic two-phase laminate microstructure
subjected to mean shear deformation ��� is considered. The solution must fulfil bal-
ance and constitutive equations in each phase and interface conditions. Firstly, a
solution is obtained assuming a linear approximation for the constitutive behaviour
without distinction between elastic and plastic parts. The second solution is valid for
the nonlinear elastoplastic regime. These two solutions are to be compared with the
results of }} 3.1 and 3.2 respectively.

Using the same coordinate frame as in } 3, the solution still takes the form
ux ¼ ð���y; uyðxÞ; 0ÞT. The non-vanishing components of the strain-gradient tensor
g, as defined in appendix B, are

�xyx ¼ �yxx ¼ 1
2 oxxuy: ð91Þ

4.1.1. Linear approximation
Each phase is assumed to be a linear elastic second-grade continuum. The elastic

laws link Cauchy stress to strain, and hyperstress to strain gradient:

�xy ¼ 2�"xy ¼ �ð��� þ oxuyÞ;

myxx ¼ mxyx ¼ 2l2e��xyx ¼ �l2e oxxuy:
ð92Þ

The equilibrium equation (B 3) reduces to

ox�xy � oxxmyxx ¼ 0: ð93Þ

The combination of the latter and the previous elastic relations leads to the following
partial differential equation for uy:

oxxuy � l2e oxxxxuy ¼ 0: ð94Þ

In the present linear approximation, lattice rotation cannot be distinguished from
material rotation

� ¼
oxuy � ���

2
; ð95Þ

so that � obeys a similar partial differential equation:

ox�� l2e oxxx� ¼ 0; ð96Þ
which is identical to equation (51). In each phase the solution takes the form (53)
with

! ¼ 1

le
: ð97Þ
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The integration constants are determined from the interface and periodicity condi-
tions. If no special behaviour is attributed to the interface, the pairs ðu; tÞ and ðDu; rÞ,
defined in appendix B, must be continuous:

(i) Continuity of displacement uy and normal gradient of displacement is given
by

Duy ¼ oxuy ¼ ��� þ 2�: ð98Þ

This condition implies the continuity of � which was also required in the
Cosserat model.

(ii) Continuity of the traction vector is given by

tx ¼ ð�xy � oxmyxxÞnx ¼ 2�ið��� þ �� l2eioxx�Þ ¼ 2�ið��� þ diÞ; ð99Þ

where the index i ¼ s; h stands for the label of the phase, and di is the
constant term in the cosh solution, as in equation (53).

(iii) Continuity of the double-traction vector is given by

ry ¼ myxxnx ¼ 2�l2e ox�: ð100Þ

(iv) Periodicity of uy is given by hoxuyi ¼ 0.

It can be seen that the interface conditions (98)–(100) are identical with the
conditions (63)–(66) appearing in the Cosserat model. Thus the strain-gradient
and the Cosserat models provide the same solution in the present simple situation.

4.1.2. Elastoplastic case
Adopting the additive decomposition (B 1) of total strain and strain gradient into

elastic and plastic parts, the elastic laws become

�xy ¼ 2�"exy ¼ �ð��� þ uy;x � � pÞ; ð101Þ

myxx ¼ 2l2e�ð�yxx � � p
yxxÞ ¼ l2e�ðoxxuy � �SÞ; ð102Þ

where �S is the slip gradient variable (see appendix B). The yield condition is a
generalized Schmid law involving resolved shear stress and hyperstress:

�eq ¼ j� j þ jmj
lp

¼ �xy þ
myxx

lp
¼ �c: ð103Þ

It must be noted that a second characteristic length lp enters the yield criterion. The
yield condition combined with the unchanged balance equation (93) can then be
shown to lead to the following partial differential equations:

oxxuy � l2p oxxxxuy ¼ 0; ox�
p � l2p oxxx�

p ¼ 0: ð104Þ

Since the definition of lattice rotation (21) still holds, one is led to the following
partial differential equation for �:

ox�� l2p oxxx� ¼ 0; ð105Þ

which again gives a cosh profile but associated with the characteristic length lp. This
result is different from the parabolic profile found in the same analysis with the
Cosserat model. The reason is, however, clear: it stems from the modified yield
condition (103). A consequence of this choice is that shear stress �xy does not remain
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constant in space, contrary to all investigated cases in the previous sections. It
introduces hardening associated with strain gradient.

The strain gradient model can, however, be slightly modified to be closer to the
simple Cosserat constitutive equations used in } 3.2. We let lp go to infinity and do
not distinguish elastic and plastic parts in g:

�eq ¼ � ¼ �xy ¼ �c; myxx ¼ 2�l2e�yxx: ð106Þ

le is in fact here the characteristic length of the elastoplastic secant moduli in the
second elasticity law, since g has not been partitioned. The balance equation (93)
now yields:

oxxxxuy ¼ 0; oxxx�
p ¼ 0; oxxx� ¼ 0; ð107Þ

and a parabolic profile is retrieved.

4.2. Crystal plasticity with a gradient of internal variable
One of the earliest proposals to introduce higher-order gradients in the relevant

constitutive variables is the Aifantis model that belongs to a class of generalized
continua different from the theories used in the previous sections. The models pre-
sented and illustrated by Aifantis (1987, 1999) do not introduce additional rotational
degrees of freedom like the Cosserat theory, nor higher-order derivatives of the
displacement field. Instead, the constitutive behaviour of the material is assumed
to depend on an internal variable � p and its gradient grad � p. The free energy is a
function of temperature, elastic strain, plastic slip and its gradient. The classical
expression of work of internal forces is in fact complemented by terms related to
the internal variable and its gradient (Huang et al. 2001):

pint ¼ �ij _""ij þ � _�� p þ Bi oi _��
p; ð108Þ

where � and Bi are the thermodynamic forces associated with the internal variable
and its gradient. The principle of virtual work can be used to derive the balance
equations:

div r ¼ 0; � ¼ divB: ð109Þ

The classical balance equation is conserved, whereas the second equation can be
regarded as a definition of the introduced generalized force �. The degrees of free-
dom and associated reaction forces are therefore the pairs ðui; ti ¼ �ijnjÞ and
ð� p;B ¼ BiniÞ. The dissipation rate takes the form

D ¼ �ij _""
p
ij þ ðdivBÞ _�� p ¼ ð� þ divBÞ _�� p: ð110Þ

The latter expression leads one to propose a yield condition of the form

�eq ¼ � þ divB ¼ �c: ð111Þ

In the Aifantis model, B is assumed to be simply proportional to grad � p (quadratic
potential):

Bi ¼ c oi�
p; ð112Þ

where c is a constitutive parameter. The yield condition (111) then becomes

� ¼ �c � cr2� p; ð113Þ
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which is the well-known gradient-enhanced yield criterion, with r2 being the
Laplace operator.

This theory is now applied to the simple situation investigated in the present
article. The yield condition reduces to the simple form

� ¼ �xy ¼ �c � c oxx�
p: ð114Þ

The equilibrium equation requires constant shear stress so that we must have

oxxx�
p ¼ 0: ð115Þ

The elasticity relation (101) implies again that oxxuy ¼ ox�
p so that lattice rotation �

must fulfil the same partial differential equation:

� ¼
oxuy þ � p � ���

2
; oxxx� ¼ 0: ð116Þ

This model therefore gives the same answer for the lattice rotation and plastic slip
distribution as the Cosserat model of } 3.2, namely a parabolic distribution. The
interface conditions are dictated by the chosen degrees of freedom and associated
forces.

(i) The displacement uy and traction vector �xynx are continuous across the
interface.

(ii) Plastic slip � p and force B ¼ ðc grad � pÞn ¼ c ox�
p are continuous across

the interface.

In contrast with the Cosserat theory, plastic slip is assumed to be continuous,
whereas lattice rotation need not necessarily be continuous (this comes from the fact
that oxuy is not necessarily continuous in contrast with the strain-gradient theory).

If linear hardening is introduced in the yield condition (111), it can be shown that
a cosh distribution is obtained. However, this situation cannot be compared with
that of }} 2 and 3 since no hardening was taken into account there.

} 5. Discussion

5.1. Direct comparison between the dislocation and generalized-continuum
frameworks

A direct comparison between the dislocation models and the continuum frame-
works is difficult insofar as the dislocation models considered in this work are very
specific whereas the continuum models can be used in very general situations. The
line-tension model considers a representative bowing screw dislocation which is a
convenient and idealized situation. As for the pile-up model, it deals with periodic
arrays of edge dislocations. However, a parallel between the line-tension dislocation
model and the Cosserat, the second gradient and the Aifantis models can be drawn,
as shown in table 1. All models share the main variables plastic slip � p and lattice
rotation �e, even though the two gradient models more explicitely introduce the
gradient of plastic slip. The classical divergence equation for the stress tensor is
valid for all the theories. The generalized continuum involves an additional (or a
higher order) balance equation which reflects in a continuum way the dislocation line
tension equilibrium equation. A one-to-one identification is not possible, however,
since the continuum theories do not explicitly introduce densities of line defects. The
consequence is that the governing partial differential equations in the case of shear-
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Table 1. Comparison between the line-tension dislocation model and three generalized-continuum frameworks with application to the periodic simple
glide of a two-phase laminate microstructure in elastoplasticity: balance and constitutive equations, interface conditions and characteristic lengths.
The governing partial differential equations are given only in the case of an elastoplastic soft phase.

Main

variables

Balance

equations

Governing partial differential

equation for simple glide

Constitutive

equations

Continuity at

interface

Characteristic
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ing of the elastoplastic laminate microstructure have almost the same structure. The
gradient theories are somewhat different, in the sense that they predict that the shear
stress � does not remain equal to the critical resolved shear stress �c. In the strain-
gradient theory, the shear stress � is equal to �c �myxx=lp and to �c � c oxx�

p in the
Aifantis model. This strain-gradient-induced hardening behaviour is not introduced
nor predicted in the idealized line tension dislocation and Cosserat models. The
strain-gradient theory can be simplified to eliminate this hardening component, as
shown at the end of } 4.1.2. The similarity of the governing partial differential equa-
tion makes it possible to identify some parameters of the generalized-continuum
models with the dislocation-based quantities, especially the characteristic lengths
involved. These relations between the phenomenological moduli and the dislocation
material parameters are gathered in the last row of table 1 and reveal the physical
meaning of the moduli.

As a consequence of the choice of the primary variables, the interface conditions
are different for all generalized-continuum models. In the line-tension model, at least
in the plastic regime, plastic slip and lattice rotation are not necessarily continuous,
which corresponds to a density of edge dislocations deposited at the interface. In
contrast, the Cosserat theory assumes the continuity of lattice rotation whereas
plastic slip is continuous in the gradient of internal variable theory. The second
gradient model introduces the continuity of the normal gradient of displacement,
the physical meaning of which is more difficult to assess. These differences in inter-
face conditions make the previous identification of characteristic lengths at the level
of the governing equations insufficient. That is why we must also compare the final
solution, namely the predicted distribution of slip and lattice rotation in the con-
sidered simple glide test. As shown in } 3.3, the lattice distributions predicted by the
Cosserat and the line-tension models can be identified. The phenomenological mod-
uli are then related to dislocation material parameters but also to the geometry of the
microstructure, especially the layer thicknesses s and h. This explains why two iden-
tifications of characteristic lengths are proposed for the Cosserat model in table 1:
one for the direct comparison of the governing partial differential equations, and the
other for the final explicit solutions taking the interface conditions into account. The
same distinction could be made for the second gradient model in the elastoplastic
regime without hardening.

This identification procedure is limited to the present idealized situation and does
not ensure that the generalized-continuum theories will still be relevant under more
general loading conditions.

5.2. Inhomogeneous plastic deformation in channels
In the simple situation investigated in this work, several available non-local

models of crystal plasticity (ranging from the Cosserat, the second-grade to the
gradient of internal variable theories) predict development of an inhomogeneous
distribution of plastic slip and lattice rotation in the soft channels of the laminate
microstructure under shear. Each of the non-local models has its own advantages
and drawbacks. The Cosserat model naturally arises from almost 30-year-old
theoretical reflections on crystal plasticity (Mandel 1973) but the physical meaning
of the skew-symmetric part of the stress still remains unclear. In the strain-gradient
model recalled in appendix B, the constitutive links between slip gradient variables
�S and the gradient of slip, grad � p, remains phenomenological. This model also
gives the opportunity of incorporating effects that are not associated with geome-
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trically necessary dislocations (in particular the gradient of slip in the direction
normal to the slip plane, the physical interpretation of which remains to be
explained). Regarding the Aifantis model, the Laplace term in yield condition
(113) can in some cases be derived from the physics of dislocations (see for instance
the paper by Estrin et al. (1998) in the case of double slip).

Anyway, the use of the Cosserat, the strain-gradient or the Aifantis models
invariably leads to parabolic or cosh distributions of plastic slip and lattice rotation,
depending on specific constitutive assumptions. Each profile is characterized by a
length that is directly related to the constitutive length(s) introduced in each model.
This intrinsic length enters the elastic or the plastic part of the constitutive equations,
or both. Figure 5 summarizes and illustrates the different deformed states of a
sample of such two-phase material, according to the classical and Cosserat models.

The parabolic or cosh distributions of plastic slip and lattice rotation result also
from the line-tension dislocation-based model that incorporates the bowing of screw
dislocations in narrow channels into a simple one-dimensional continuum-mechanics
description. Loosely speaking, the anelastic regime for which dislocations move over
short distances can be associated with a cosh distribution, whereas the fully plastic
regime corresponds to a parabolic profile.

Thus it appears that the plastic slip and lattice rotation distribution
obtained within the proposed Cosserat framework accurately mimics the results of
the dislocation-based line tension models. On the generalized-continuum level,
simple linear and/or perfectly plastic constitutive equations that are usual in
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Figure 5. Deformed states of a two-phase material element under simple shear: (a) initial
state; (b) solution according to classical crystal plasticity; (c) Cosserat elasticity (see
} 3.1); (d) Cosserat elastoplasticity (see } 3.2). The solutions have been computed using
the finite-element method and each phase is divided into elements; the hard
phase shown in white, and the soft phase in grey; the mean deformations are the
same in (b)–(d).



phenomenological modelling can be used. The balance of moment of momentum
equation (47b), which does not exist in the classical continuum framework, turns out
to be the continuum counterpart of the equilibrium condition (1) for a representative
dislocation bowing in the channel.

Even a direct identification of the dislocation and Cosserat models is possible. In
particular, the wavelength � of the dislocation model (6) enables one to compute the
corresponding value of the Cosserat parameter 
s from equation (86):


s �
2�

%m
: ð117Þ

Since it depends on the density of mobile dislocations which may vary during defor-
mation, 
s should not be seen as a constant material parameter. In the case of the
parabolic profile, not only the constant 
s but also explicitly the channel width s are
the determinant parameters (see equation (89)). The identification for the isostrain
model has been proposed by Sedláček and Forest (2000). The present work focuses
on the detailed solution of the isostress periodic problem. Other models such as the
strain-gradient and the Aifantis models have been shown to reproduce the line-
tension effects as well.

Interestingly, the above-mentioned non-local theories were not originally
designed for the modelling of line-tension effects but rather hardening effects due
to so-called geometrically necessary dislocations as in the pile-up model. Admittedly,
several nonlocal models have shown their ability to account for particle or grain-size
effects that can be related to the presence of dislocation pile-ups (see the papers by
Acharya and Beaudoin (2000) and Forest et al. (2000) for the simulation of Hall–
Petch effects in polycrystals). However, one should not hastily associate strain-
gradient plasticity and dislocation pile-up effects. In fact, the distribution of plastic
slip in dislocation pile-ups in the soft phase is not correctly described by any of the
above-mentioned non-local models. Double-ended pile-ups are dislocation structures
that can also form in the laminate microstructure under the prescribed loading
conditions, for instance because of periodically distributed Frank–Read sources,
or as the result of passage of many bowed screw dislocations. It could be argued
that the pile-up model includes internal stresses and associated hardening, which has
not been taken into account in the Cosserat model. However, the strain-gradient
model used in } 4.1 incorporates hardening associated with hyperstresses and still
provides a cosh distribution. A Cosserat model including classical linear hardening
would lead in fact also to a cosh distribution. It is thought that one of the main
contributions of this paper is indeed that it shows that the main ingredients of the
current non-local crystal plasticity models are not really best suited to the description
of dislocation pile-up effects in crystals, but rather of dislocation line-tension effects.
This is surprising since the size effects arising from dislocation bowing did not belong
explicitly to the initial main motivations that have led to the development of the non-
local theories. Conversely, this fact can be regarded as an important property of the
non-local models since the line-tension effects have proved to dominate the mechan-
ical response of many engineering materials. The case of single-crystal nickel-based
superalloys is of special interest, since they display a periodic microstructure of hard
precipitates and soft channels. A description of precipitate size effects in single-
crystal superalloys based on the Cosserat theory can be found in the paper by
Forest et al. (2000). An alternative model including gradients of internal variables
has also been applied to this single-crystal material (Busso et al. 2000). Size effects
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associated with the channel width are predicted by the models. For example, it can
be checked that the solution of the elastoplastic Cosserat model tends towards the
classical model when the relative size s=h goes to infinity (the coefficient as of the
parabolic profile then vanishes according to equation (88)).

The presented results are applicable to cyclic loading conditions. Further effort
must now be concentrated on dislocation interaction and hardening, which remains
challenging since the line tension model becomes difficult to handle explicitly in the
3D case (Sedláček et al. 2003). Dislocation dynamics and finite-element simulations
are then useful tools to go towards more realistic multiple-slip situations, as initiated
by Shu and Fleck (1999) and Shu et al. (2001). The situation of double slip has been
shown to be dramatically different from the single-slip case by Shu et al. (2001), from
the dislocation dynamics point of view.

5.3. Role of interface conditions
In the present study, non-local mechanical models incorporating additional

higher-order boundary or interface conditions have been considered. It appears
clearly in the work of Shu et al. (2001) that models that keep the classical structure
of the boundary value problem unchanged, such as those of Acharya and Bassani
(2000) and Busso et al. (2000), predict homogeneous glide as the classical continuum
mechanics does for the shearing of a crystalline layer. Inhomogeneous distributions
can be obtained with a non-local model by applying higher-order boundary condi-
tions at the boundary of the sheared layer. The higher-order boundary conditions
concern the additional degrees of freedom of higher-order derivatives, introduced in
the model, and their associated forces. Similarly, in the two-phase microstructure
considered in this work, the enriched interface conditions are responsible for the
development of an inhomogeneous plastic slip pattern in the soft phase. Since neither
special constitutive properties nor direct boundary conditions have been applied to
the interface, both phases must be treated as generalized continua, and not only the
soft phase. If one considers in the Cosserat model of } 3 the limit case for which
�ch ¼ 1 and 
h ¼ 0, constant values for � are obtained in each phase with a jump.
This means that, in order to obtain a non-constant distribution, the wall cannot be
regarded as purely classical; it must be able to carry the surface couples produced in
phase s at the boundary. This can be achieved by setting a relatively low value of 
h

and a 100 times larger 
s. In that case, the distribution in the hard phase is then
almost flat with a steep rise close to the boundary, which mimics a jump of the
considered variable. The same holds for the other two non-local models handled
in } 4. An alternative method could be to consider the hard phase as a classical
material and to set directly boundary conditions at the interface (see for instance
the paper by Shu and Fleck (1999) for the interface between two crystallites). This
has not been done here because the conditions to be prescribed are not necessarily
known a priori. Instead, in the Cosserat theory, lattice rotation, the additional degree
of freedom, is continuous at the interface and so are the traction vector and the
couple-stress vector. Similarly in the second gradient theory, the normal gradient of
the displacement and the associated force must be continuous at the interface, and so
are plastic slip and associated force in the Aifantis model. These conditions are
therefore slightly different for each theory, even if the governing partial differential
equations are the same in the bulk. It is, however, difficult to assess which continuity
requirement is the most realistic from the physical point of view. The main point is
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that these continuity constraints are the origin of the non-uniform lattice rotation
field in the soft phase.

5.4. Description of internal stresses and hardening
Attention has been focused on the continuum description of plastic slip and

lattice rotation distribution, but the question of hardening is also an important
point from the macroscopic point of view. The pile-up model of } 2.3 leads to the
existence of linear hardening due to internal stresses, described by equation (40).
This kinematic hardening component can be seen as a sort of non-local hardening
law since it depends on the mean value of plastic slip and not on the local value of �.
It has the classical form used in phenomenological constitutive equations for a single
crystal under cyclic loading (Méric et al. 1991), although nonlinear kinematic hard-
ening is usually observed experimentally. It appears also that this hardening term
does not depend on the lattice curvature or the dislocation density tensor and there-
fore has no direct relation to the density of geometrically necessary dislocations (see
also Mughrabi (2001)). A size effect is expected from the dependence of the hard-
ening modulus C on the channel width s (see equation (40)).

Such a hardening term should be introduced in the continuum model of } 3.2 to
account for arising internal stresses. This can easily be done by replacing �c in
equation (71) by a term of the form �c þ C���. The form of the solution is not affected
by this term which does not depend on the position x. It is clear, however, that the
continuum Cosserat model does not account for the exact distribution of plastic
strain in a double-ended pile-up (parabolic profile instead of an elliptic profile).
The introduction of the linear hardening component then keeps a phenomenological
character.

Shu et al. (2001) identified numerically the local hardening modulus entering the
constitutive equations of the second gradient model using the mean response of the
discrete dislocation dynamics model. The hardening modulus links the equivalent
stress and plastic strain rates _��eq and _qq (see } 4.1). However, the plastic multiplier q is
a measure of cumulated plastic strain and strain gradient without distinction,
because of the use of a single coupled yield criterion (103) in the spirit of de Borst
(1991):

_qq ¼ j _�� pj þ lpj _��Sj: ð118Þ

The pile-up model indicates that hardening originates from mean plastic slip and not
from the local slip gradient. Accordingly, a distinction between both contributions
should be preferable in the continuum model. Such a distinction exists in the full
Cosserat model used by Forest et al. (2000) by considering two different plastic
multipliers; one for plastic slip, and the other for lattice curvature. This means
also that the single yield criterion (103) is replaced by two yield conditions: one
involves resolved shear stresses, and the second involves resolved couple stresses.
Coupling between both comes then from the hardening laws. It must be noticed that
this hardening law for the two-phase material must be of kinematic type for applica-
tion to cyclic plasticity.

} 6. Conclusions

Bowing of dislocations possessing line tension has been incorporated in a simple
1D continuum model of plastic deformation of laminate microstructure and used to
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calibrate non-local crystal plasticity continuum models. The 1D laminate can be
considered to be a simple model of many real mesoscale microstructures: nickel-
based superalloys, microlaminates, thin films, or dislocation substructures.

The dislocation-based as well as the generalized-continuum models lead to (size-
dependent) inhomogeneous distribution of plastic slip and lattice rotation in the soft
channels. This indicates that the non-local theories can be identified with an uncer-
tainty range unless the physical meaning of the introduced variables and moduli are
clearly specified. In particular, the present work shows the following.

(i) The non-local models may reflect the bowing of dislocations with line
tension rather than the hardening due to storage of geometrically necessary
dislocations.

(ii) The additional or higher-order balance equations introduced in the non-
local models turn out to be the counterparts of the equilibrium equation for
bowing dislocations.

(iii) The microrotation of the Cosserat model can be identified with the classical
lattice rotation, provided that the Cosserat elastic deformation is symmetric.

(iv) The intrinsic length scale can be related to the density of the bowing
dislocations; thus it is no constant material parameter.

(v) The higher-order interface conditions responsible for the inhomogeneous
distribution of plastic slip and lattice rotation can be related to the
requirement for continuity of lattice rotation for the Cosserat continuum,
or of other higher-order quantities.

Finally we should like to stress that we are aware that there are many different
sources of strain gradients in plasticity, on many different length scales. The present
results apply to the situation considered in the paper, namely bowing of dislocations
between narrowly spaced obstacles. General validity of the present results (i.e. the
explicit relations between line-tension effects and the generalized-continuum descrip-
tion) for more realistic microstructures, more general loading conditions and/or
multislip orientations is limited mainly by the fact that the (non-trivial) extension
of the dislocation-based line-tension model in three dimensions is in an embryonic
state (Sedláček et al. 2003).

The main advantage of the generalized-continuum plasticity models, compared
with the proposed continuum dislocation-based model, is that they can be more
easily extended to describe more general situations than simple shear under single
slip. In fact, 3D versions of most generalized-continuum theories are available. Then,
results obtained by, for example, finite-element computations should be compared
with 3D dislocation dynamics simulations which correctly account for the line
tension effects of curved dislocations (Kubin et al. 1992, Devincre et al. 2001).

APPENDIX A

The Cosserat continuum

The Cosserat continuum is described by a displacement field u and an indepen-
dent rotation field called microrotation and represented by an axial vector /. The
Cosserat deformation tensor is
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eij ¼ oxj ui þ 
ijk�k; ðA1Þ

with 
ijk being the sign of the permutation ði; j; kÞ of ð1; 2; 3Þ. The curvature j of the
medium is related to the rotation field, as follows:

�ij ¼ oxj�i: ðA2Þ

The stress tensors associated with the previous deformation and curvature are the
force stress tensor r and the couple-stress tensor m respectively. They must fulfil the
balance of momentum and the balance of moment of momentum equations, namely:

oxj�ij ¼ 0; oxj�ij � 
ijk�jk ¼ 0; ðA3Þ

where volume forces and couples are not considered for simplicity. The traction and
couple stress vectors are given by

ti ¼ �ijnj; ri ¼ mijnj; ðA4Þ

where n is the unit normal to the boundary.
A boundary value problem is well-posed for the Cosserat continuum if boundary

conditions are given to one element of each pair displacement–traction ðui; tiÞ and
microrotation–couple-stress vector ð�i; riÞ for all i ¼ 1; 3.

The constitutive equations for isotropic Cosserat elasticity involve six elastic
moduli, namely the two Lamé constants � and � and four additional moduli:

�ij ¼ �ekk 	ij þ 2�eði; jÞ þ 2�cefi; jg; ðA5Þ

mij ¼ ��kk 	ij þ 2
�ði; jÞ þ 2��fi; jg; ðA6Þ

where eði; jÞ and efi; jg denote the symmetric and skew-symmetric parts of e respec-
tively. In the 2D case, the constant � in equation (A 6) is not relevant. One also
usually makes the assumption that 
 ¼ � to limit the number of constants (de Borst
1991). The square root of the ratio 
=� has the dimension of length.

For a more complete description of Cosserat mechanics, the reader is referred to
the work by Forest (2001).

APPENDIX B

Second-grade continuum

The strain and its gradient are decomposed into their elastic and plastic parts:

"ij ¼ "eij þ " p
ij ; �ijk ¼ oxk"ij ¼ �eijk þ � p

ijk: ðB1Þ

The associated stresses are the classical Cauchy stress �ij and the hyperstress tensor
mijk. The following simplified form of the elastic relations has been chosen by Shu
and Fleck (1999):

�ij ¼ Cijkl"
e
kl ; mijk ¼ l2eCijpq�

e
pqk; ðB2Þ

where the usual four-rank elasticity tensor is denoted by Cijkl and le is a characteristic
length associated with the higher-order elasticity law. For the structure to be in
equilibrium, the stress tensors must fulfil the following balance equation:

oxj�ij � oxjxkmijk ¼ 0; ðB3Þ

where volume single and double forces have been excluded. Note that equilibrium is
governed by a single higher-order partial differential equation whereas two balance
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equations must be fulfilled for the Cosserat continuum. For this continuum, a
boundary value problem is well-posed provided that boundary conditions are pre-
scribed to one element in each pair ðui; tiÞ and ðDui; riÞ. The unknown displacement
is denoted by ui and Dui is the normal gradient of ui defined by

Dui ¼ ðoxj uiÞnj ðB4Þ

for a unit vector n normal to a surface. The corresponding tangent gradient operator
is

Djð:Þ ¼ oxj ð:Þ �Dð:Þnj: ðB5Þ

The traction vector t and double-traction vector r on a surface element of normal n
are respectively defined by

ti ¼ ð�ij � oxkmijkÞnj þ ðDlnlÞmijknjnk �DjðmijknkÞ; ðB6Þ

ri ¼ mijknjnk: ðB7Þ

In the case of single slip in a system ðs; mÞ (slip direction s and slip plane normal m),
the plastic strain and strain gradient are related to the amount of slip � p and the slip
gradient variable �S by

_""pij ¼ _�� psði�jÞ; _��pijk ¼ _��Ssði�jÞsk; ðB8Þ

where the parentheses around indices stand for symmetrization. Note that, in the
general theory proposed by Shu and Fleck (1999), additional slip gradient variables
�T and �M are introduced that we do not include in the simple case investigated here.
It must be noted also that in this theory the slip gradient variable �S does not
necessarily coincide with the gradient of slip �p.

The plastic yield criterion is a generalized Schmid law involving resolved shear
stresses and hyperstresses:

�eq ¼ j� j þ jmj
lp

;

with

� ¼ �ijsi�j ; m ¼ mijksi�jsk: ðB9Þ

Plastic deformation can then occur when �eq reaches the threshold �c. Shu and Fleck
(1999) proposed a viscoplastic formulation of the constitutive framework. In con-
trast, an elastoplastic formulation is used here, for the simple case of single slip.
Associative plastic flow is assumed. Thus, the normality rule is given as

_�� p ¼ _qq o��eq ¼ _qq sgn �; ðB10Þ

_��S ¼ _qq om�eq ¼ _qq

l p
sgn m; ðB11Þ

where _qq denotes the plastic multiplier in both equations.
Two characteristic lengths appear in the theory, namely le in equations (B 2) and

lp in equation (B 9).
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Sedla¤ Ček, R., Kratochvi¤ l, J., and Werner, E., 2003, Phil. Mag. A (submitted).
Shu, J. Y., and Fleck, N. A., 1999, J. Mech. Phys. Solids, 47, 297.
Shu, J. Y., Fleck, N. A., Van der Giessen, E., and Needleman, A., 2001, J. Mech. Phys.

Solids, 49, 1361.
Tanaka, K., and Mura, T., 1981, J. appl. Mech., 48, 97.

276 Plastic slip in two-phase laminate microstructures


	first

