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The effect of the dislocation density tensor is introduced into the classical crystal plasticity
framework by means of the micromorphic theory of single crystals. A computational
homogenisation strategy is presented in order to describe the global and local responses of
two-dimensional polycrystalline aggregates for grain sizes ranging from 1 to 200 microns.
The model is shown to naturally predict a size-dependent kinematic hardening behaviour
which is responsible for the observed strong size effects. The yield stress at a given
averaged plastic strain is shown to follow a power law scaling relation for grain sizes larger
than a critical one. The field of plastic deformation is also strongly affected by grain size,
whereby micron-size grains lead to the formation of intense slip bands crossing several
grains.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A long-standing problem in the modelling of polycrystal behaviour based on the knowledge of the constitutive behaviour
of single crystals is the incorporation of grain size effects. Standard homogenisation procedures have shown to be capa-
ble of efficiently taking into account the grain-to-grain interaction primarily induced by strain incompatibilities at grain
boundaries and grain morphology effects [1,2]. Continuum crystal plasticity models are available that satisfactorily describe
dislocation forest hardening associated with multiplication and dynamic recovery of dislocation populations [3]. One strong
limitation of these techniques is that the local crystal plasticity constitutive parameters at the grain scale are assumed to
be known a priori. Conversely, these material parameters can be identified from the macroscopic polycrystal response by
an inverse approach involving the homogenisation model. However, the resulting crystal plasticity model will be valid only
for the considered grain size and thus the model can hardly be used for prediction of polycrystal behaviour for a different
microstructure state, with different grain size and even morphology if grains are elongated in one direction.

Full-field models of polycrystals based on large-scale simulations of polycrystalline aggregates suffer from the same
limitations [4]. Even though the intragranular mechanical fields, e.g. the plastic strain field, fulfilling all compatibility and
equilibrium requirements are accurately computed, the simulation results are fundamentally size-independent. This means
that homothetic polycrystal volumes subjected to the same mean strain will deliver the same mean stress and local stress
field, in contradiction to the basics of physical metallurgy. Consequently, standard mean or full-field analyses of polycrystals
are unable to account for the intrinsic grain size effect exhibited by small grains in materials with a bimodal distribution of
grains [5]. Only the relative size effect is captured by such approaches.

The first attempt to restore the size-dependent character of crystal plasticity constitutive equations in the mean field
approach of polycrystal behaviour goes back to [6] where a Hall–Petch relationship was explicitly introduced in the initial
critical resolved shear stress in each grain. The limitation of this heuristic approach is that the Hall–Petch relationship
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should be an outcome of the model, not an input. Furthermore, the Hall–Petch correlation is a macroscopic relation which
has no real physical meaning when written at the scale of each individual grain.

This fact has been recognised in more recent mean field approaches that rather resort to the three-phase self-consistent
models whereby an interphase layer is introduced that accounts for the material grain boundary affected zone [7,5]. If a
fixed size is attributed to this layer, varying the grain size amounts to modifying the boundary phase volume fraction and
leads to different material responses. This strategy has been applied recently to the mechanics of nanocrystalline materi-
als [8]. The idea of such grain boundary layer comes from the formation of dislocation pile-ups at grain boundaries at the
early stages of plasticity. The existence of such a grain boundary affected zone is however not obvious and its determi-
nation requires the consideration of size-dependent intragranular plastic strain fields that are not provided by either such
mean field models or by standard size-independent large-scale finite element simulations. In this work it will be shown
that drastically different intragranular fields in terms of strain heterogeneities may develop as grain sizes decrease. It is also
worth noting that the kinematic nature of hardening induced by pile-up formations is not considered in the pattern-based
homogenisation approach, see [9].

It has been suggested in [10] that the influence of absolute grain size on the development of intragranular mechanical
fields of polycrystalline aggregates can be modelled by linking the dislocation mean free path to the distance of crystal
points to the closest grain boundary. In this way, the kinematic character of the internal stresses induced by pile-ups can
be explicitly incorporated. However, in addition to the inherent technical difficulties associated with the determination of
a suitable distance close to triple points or to free surfaces, the main limitation of this approach lies in the fact that after
some deformation significant lattice rotation gradients develop leading to the formation of subgrain boundaries that also
contribute to the overall size effects.

A more systematic and “implicit” way of triggering size-dependent internal stresses consists in relating them to the
development of plastic strain gradients. Ideal dislocation pile-ups can be described by means of the dislocation density
tensor, and the corresponding extra-hardening can be derived accordingly [11,12]. This remark suggests that the dislocation
density tensor, computed as the curl of the plastic strain, should be introduced as a new constitutive variable in addition
to the usual crystal plasticity internal state variables such as scalar dislocation densities. It is a size-dependent variable
since it has the physical dimension of a strain gradient. Finite element simulations of the size-dependent response of
polycrystalline aggregates have been presented in [13,14] by introducing extra-hardening induced by the dislocation density
tensor or, equivalently, by densities of the so-called geometrically necessary dislocations (GND). However, this approach
must be complemented by the introduction of an averaging procedure for the evaluation of plastic strain gradients in order
to avoid spurious mesh dependency inherent to such an approach [15]. This undesired effect is due to the fact that no
energy penalty exists in the formulation to limit the growth of gradients when refining the mesh. This limitation can be
addressed by the incorporation of higher order stresses corresponding to the additional energy contributions required to
penalise gradient terms.

Generalised continuum approaches therefore arise as a suitable mechanical framework for formulating enhanced crystal
plasticity models that include the dislocation density tensor as a constitutive variable. Strain gradient plasticity started with
the pioneering contribution of Aifantis [16], who introduced the Laplacian of plastic slip into the hardening rule. A second
gradient theory inspired from Mindlin [17] was then formulated by Fleck and Hutchinson [18]. The link between the dis-
location density tensor and lattice curvature according to Nye’s relations prompted several authors in [19–23] to propose a
Cosserat elasto-viscoplastic theory of single crystals whereby the Cosserat directors coincide with lattice vectors as initially
suggested by Mandel [24]. The strain gradient theory was further developed by Gurtin [25,26] and encompasses previous
models. Recent developments have shown the limitations of existing strain gradient models in the case of a two-phase
laminate microstructure under single or double slip [27]. They plead for an even more general theory than the Cosserat
approach, namely the micromorphic model inspired from Eringen [28] and extended to elasto-viscoplasticity in [29]. Strain
gradient plasticity models have been used to compute polycrystalline aggregates with a small number of grains in [30,31],
but no scaling law which accounts for grain size effects was derived.

The first objective of the present article is to propose a generalised continuum crystal plasticity model in order to predict
Hall–Petch-like effects by means of finite element simulations of polycrystalline aggregates. The second objective is to show
how intragranular deformation modes are influenced by grain size. The advantage of the numerical approach used in this
work is that grain size can be varied with fixed grain morphology and texture so that theoretical scaling laws can be derived
while isolating grain size effects from those of other variables. The drawback is that the current higher order constitutive
equations are so simple that quantitative comparison can hardly be made with experimental results at that stage.

The retained generalised continuum model is depicted in Section 2. The periodic homogenisation strategy is described
in Section 3. In Section 4 scaling laws for the overall stress are then derived as a function of overall strain and grain size.
Finally, Section 5 is devoted to the description of the plastic strain field inside the polycrystals in terms of their grain size.
The contribution ends with a discussion of the pros and cons of the proposed approach.

2. The microcurl model

The proposed model, so-called microcurl, is based on a micromorphic approach that falls in the class of the generalised
continuum theories presented in [29]. The theory is first described in terms of the balance and constitutive equations within
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the context of small deformation. A finite deformation formulation of the theory is available in [32]. Gurtin’s strain gradient
plasticity model will finally be shown to arise as a limiting case of the microcurl model [25].

2.1. Balance equations

We introduce a plastic micro-deformation variable, χ
∼

p , as a second-rank generally non-symmetric tensor. The set of

degrees of freedom of the theory is:

DOF = {
u,χ

∼
p}

(1)

The components of χ
∼

p are introduced as independent degrees of freedom. In the three-dimensional case, there are nine

such components and the micro-deformation field is generally incompatible. We assume that only the curl part of the
gradient of plastic micro-deformation plays a role in the power of internal forces, for reasons that will become apparent in
Section 2.3:

p(i) = σ∼ : Ḣ∼ + s∼ : χ̇
∼

p + M∼ : curl χ̇
∼

p (2)

where Ḣ∼ is the velocity gradient, σ∼ is the simple stress tensor, the relative stress s∼ and the double stress tensor M∼ are the
stress tensors conjugate to the plastic micro-deformation and its curl. The curl operator is defined in a Cartesian basis as:(

curlχ
∼

p)
i j = ε jklχ

p
ik,l (3)

The total power of internal forces over the domain V is then given by

P(i) =
∫
V

p(i) dV =
∫
V

(
σ∼ : Ḣ∼ + s∼ : χ̇

∼
p + M∼ : curl χ̇

∼
p)

dV

=
∫
V

(
(σi j u̇i), j + (

Mijε jklχ̇
p
ik

)
,l

)
dV +

∫
V

(−σi j, j u̇i + si jχ̇
p
i j − ε jkl Mij,lχ̇

p
ik

)
dV

= −
∫
V

σi j, j u̇i dV −
∫
V

(εkjl Mik,l − si j)χ̇
p
i j dV +

∫
∂V

σi jn j u̇i dS +
∫
∂V

ε jkl Mijnlχ̇
p
ik dS

where εi jk is the third order permutation tensor. The method of virtual power is used to derive the generalised balance of
momentum equations. Assuming no volume forces for simplicity, one finds

divσ∼ = 0, curl M∼ + s∼ = 0 (4)

The corresponding boundary conditions are:

t = σ∼ .n, m∼ = M∼ .ε∼.n (5)

where t and m∼ are the simple and double tractions at the boundary, respectively.

2.2. Constitutive equations

The gradient of the displacement field is decomposed into its elastic and plastic contributions

H∼ = u ⊗ ∇ = H∼
e + H∼

p (6)

The elastic and plastic strains are the symmetric parts of H∼
e and H∼

p , respectively. The free energy function is assumed to
have the following arguments:

ψ
(
ε∼

e, e∼
p := H∼

p − χ
∼

p, Γ∼ := curlχ
∼

p)
(7)

where ε∼
e is the elastic strain tensor, e∼

p is the relative plastic strain that measures the difference between plastic deforma-
tion and the plastic micro-variable.

The entropy inequality is written as:

p(i) − ρψ̇ � 0 (8)(
σ∼ − ρ

∂ψ

∂εe

)
: ε̇∼e −

(
s∼ + ρ

∂ψ

∂ep

)
: ė∼

p +
(

M∼ − ρ
∂ψ

∂ Γ

)
: Γ̇∼ + (σ∼ + s∼) : Ḣ∼

p � 0 (9)

∼ ∼ ∼
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The following state laws are adopted:

σ∼ = ρ
∂ψ

∂ε∼
e
, s∼ = −ρ

∂ψ

∂e∼
p
, M∼ = ρ

∂ψ

∂Γ∼
(10)

so that the residual intrinsic dissipation rate takes the form:

D = (σ∼ + s∼) : Ḣ∼
p � 0 (11)

Assuming a quadratic potential in Eq. (10), the following linear relationships are obtained:

σ∼ = Λ≈ : ε∼e, s∼ = −Hχ e∼
p, M∼ = AΓ∼ (12)

where Hχ and A are the generalised micromorphic moduli. Note that the size effects exhibited by the solutions of boundary
value problems involving such a model are related to an intrinsic length scale, typically defined as

lω =
√

A

Hχ
(13)

The flow rule can be derived from a viscoplastic potential, Ω(σ∼ + s∼), expressed in terms of the effective stress, (σ∼ + s∼), that
intervenes in the dissipation rate:

Ḣ∼
p = ∂Ω

∂(σ∼ + s∼)
(14)

For a single crystal admitting N slip systems, the kinematics of plastic deformation is dictated by the slip directions m and
the normal to the slip plane of each slip system:

Ḣ∼
p =

N∑
k=1

γ̇ kmk ⊗ nk (15)

where γ̇ k is the slip rate. The dissipation takes then the form:

D =
N∑

k=1

(
τ k + s∼ : (mk ⊗ nk))γ̇ k � 0 (16)

τ k being the resolved shear stress on slip system k. A generalised Schmid criterion is postulated in the form

f k(σ∼ ) = ∣∣τ k + s∼ : (mk ⊗ nk)∣∣ − τ k
c (17)

where τc is the critical resolved shear stress. Accordingly, a back-stress component naturally arises in the yield function:

xk := −s∼ : (mk ⊗ nk) = (curl M∼ ) : (mk ⊗ nk) = A(curl curl Γ∼ ) : (mk ⊗ nk) (18)

after taking the balance equation (4) and the linear constitutive equation (12) into account.

2.3. Internal constraint

The modulus Hχ in Eq. (12) introduces a coupling between the macro- and micro-variables. It can also be interpreted
as a penalty factor that constrains the relative plastic deformation e∼

p to remain sufficiently small. Equivalently, a high value
of the coupling modulus, Hχ , forces the plastic micro-deformation to be as close as possible to the macroscopic plastic
deformation tensor, H∼

p . In the limit, the use of a Lagrange multiplier instead of the penalty factor, Hχ , is necessary to
enforce the internal constraint that

χ
∼

p ≡ H∼
p (19)

In that case, the curl of the plastic micro-deformation coincides with the curl of plastic deformation:

curlχ
∼

p ≡ curl H∼
p =: Γ∼ (20)

which is known as the dislocation density tensor [33]. Accordingly, the proposed microcurl theory aims at introducing the
effect of the dislocation density tensor into a single crystal plasticity constitutive framework. Note that when the internal
constraint (19) is enforced, the microcurl model reduces to Gurtin’s strain gradient plasticity model [25]. This strain gradient
plasticity model will henceforth be referred to as the “curl H p” model. In Eringen’s and Mindlin’s micromorphic theory,
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the micro-deformation can be constrained to be as close as possible to the macro-deformation, represented by the usual
deformation gradient tensor. Thus, the micromorphic model reduces to Mindlin’s second gradient theory. We adopt here a
similar constraint such that the microcurl model degenerates into Gurtin’s strain gradient plasticity model. The curl of micro-
deformation, Γ∼ , coincides with the dislocation density tensor only when this constraint is enforced. This suggests that,
in the general unconstrained case, the micro-deformation χ

∼
p should not depart too much from the plastic deformation

so that the Γ∼ measure can still have the physical meaning of a dislocation density tensor. The departure of the micro-
deformation from the plastic deformation introduces a new constitutive ingredient in the model that remains however of
purely phenomenological nature.

The microcurl model also displays computational advantages compared to strain gradient plasticity models. In the latter
models, the field equations are valid only in the domains of the body that are plastically deforming. Hence, the additional
boundary conditions necessary for such a higher order theory need to be applied at the frontier between the elastic and
plastic domains. Different techniques have been designed to track such a moving boundary in a body but they are compu-
tationally very expensive, see e.g. [34]. In the micromorphic model, the plastic micro-deformation is active everywhere in
the body and boundary conditions hold for the geometrical boundaries of the body.

Note finally that, in the limiting case, the back-stress (18) arises naturally in the theory and is proportional to the second
spatial derivatives of the plastic strain. This order of derivation is in accordance with the first proposal by Aifantis who
introduced the Laplacian of plastic strain or plastic slip. In contrast, constitutive models incorporating extra-hardening pro-
portional to the densities of geometrically necessary dislocations, directly related to the dislocation density tensor, involve
the first gradient of either plastic strain [35] or plastic slip rates [36].

3. Periodic homogenisation of microcurl polycrystals

The computation of polycrystalline aggregates based on standard crystal plasticity models generally follows the rule of
classical homogenisation theory in the sense that a mean strain is prescribed to a volume element of polycrystalline mate-
rials using suitable boundary conditions such as strain-based, stress-based or periodic ones. The structure of the boundary
value problem is modified if a generalised continuum approach is used inside the considered volume element. To address
the computational homogenisation of a heterogeneous microcurl medium of interest in this work, suitable boundary condi-
tions for displacement and plastic micro-deformation must be defined. In the case of linear material behaviour, the structure
of the unit cell problem to be solved can be derived from multiscale asymptotic expansion analysis. The resulting boundary
conditions are then assumed to hold also for nonlinear material responses. Extending the asymptotic analysis performed in
[37] for heterogeneous Cosserat media, we look for the displacement field u and the plastic micro-deformation field χ

∼
p in

the polycrystal volume element such that

u(x) = E∼ · x + v(x), ∀x ∈ V (21)

with the fluctuation v being periodic at homologous points of the boundary ∂V . Under these conditions the prescribed
average strain is the symmetric second order tensor E∼ . The plastic micro-deformation χ

∼
p is periodic at homologous points

of ∂V . As a result, the mean value of the micro-deformation gradient Γ∼ vanishes.
The grain boundary conditions will be discussed next. At any interface of a microcurl continuum, there may exist some

jump conditions for the degrees of freedom of the theory and the associated reactions, namely the simple and double
traction vectors of Eq. (5). We consider in this work that such jumps do not exist. Instead, the displacement vector and
the plastic micro-deformation tensor are assumed to be continuous at grain boundaries. As a result, the simple and double
tractions (5) also are continuous. The continuity of plastic micro-deformation is then a new grain boundary condition that
does not exist in classical crystal plasticity. It will generate boundary layers at grain boundaries which are essential for the
prediction of size effects [27]. Consider now a grain boundary between a plastically deforming grain and an elastic grain
where plasticity is not triggered. The continuity condition of plastic micro-deformation implies that it should vanish at
this grain boundary, thus leading to a decrease of plastic slip associated with pile-up formation close to the grain boundary.
More generally continuity of plastic micro-deformation is enforced at grain boundaries. Also grain boundaries are assumed to
transmit simple and double tractions. Note that jump conditions or more specific interface laws may well be more realistic
or physically motivated but they would require additional considerable computational effort. We believe that continuity
conditions carry the main physical ingredient required to capture the targeted size effects in plasticity.

The simulations are limited to two–dimensional crystals under plane strain conditions, and a mean shear strain E12 is
prescribed to the volume elements. Three different volume elements are considered, made of 52, 47 and 55 grains, respec-
tively, according to a 2D Voronoi tessellation with periodic geometry, as shown in Fig. 1. The three statistical realisations
of the material’s microstructure have different grain shapes and orientations chosen randomly. Homothetic volumes con-
structed from the three previous volume elements will be considered, thus having different mean grain sizes but the same
grain morphology and crystallographic texture.

Only two planar slip systems are considered in most simulations of this work. The slip directions and normal to the
slip planes are contained within the considered plane of simulation. They are separated by the angle 2φ with φ = 35.1◦
following [38]. The more general case of FCC crystals with 12 slip systems is addressed in Section 6.
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Fig. 1. Periodic meshes of the 2D periodic aggregates used in the finite element simulations: (a) 52 grains, (b) 47 grains and (c) 55 grains. Two slip
systems are taken into account in each randomly oriented grain. Various mean grain sizes, d, ranging from tens of nanometres to hundreds of microns, are
investigated. (d) Description of the two effective slip systems for 2D planar double slip.

Table 1
Set of material parameters used to retrieve the “curl H p ” model.

μ [MPa] τc [MPa] Q [MPa] b hαα hαβ,α 
=β Hχ [MPa] A [MPa mm2] lω [μm]

27 000 0.75 7.9 10.2 1 4.4 5.0 × 107 1.0 × 10−2 1.5 × 10−2

Table 2
Set of material parameters used in the finite element simulations corresponding to the microcurl model.

μ [MPa] τc [MPa] Q [MPa] b hαα hαβ,α 
=β Hχ [MPa] A [MPa mm2] lω [μm]

27 000 0.75 7.9 10.2 1 4.4 5.0 × 104 1.0 × 10−2 4.5 × 10−1

Two sets of material parameters are considered for the simulations, see Tables 1 and 2. The values are only loosely related
to those typically encountered in FCC single crystals like aluminium and copper, with the following isotropic hardening rule:

τ r
c = τc + Q

N∑
s=1

hrs(1 − exp
(−bγ s)) (22)

where τc , Q , b and hrs are material parameters. Isotropic elasticity is used for simplicity, the shear modulus being given in
the tables and the Poisson ratio taken as ν = 0.3.

The two sets of parameters considered here differ only by the choice of higher order moduli. A high value of the
penalty parameter Hχ is taken in Table 1 so that the corresponding microcurl model almost coincides with the “curl H p”
model (see Section 2.3). The chosen parameter A is taken so that the constitutive length, lω , is equal to 15 nm. Note
that this intrinsic length is defined from the ratio of two constitutive moduli for reasons of dimensionality. The resulting
characteristic thickness of boundary layers affected by the strain gradient effects, especially close to grain boundary, will
generally be proportional to lω with a factor depending on other constitutive parameters and on the type of boundary value
problem. Such characteristic lengths have been derived from analytical solutions in some simple boundary value problems
in [27]. For polycrystals, they will emerge from the computational analysis.
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Fig. 2. Macroscopic stress–strain response of the 52-grain aggregate of Fig. 1(a) under simple shear loading–unloading conditions for three different grain
sizes. The set of material parameters used are those given in Table 2.

Fig. 3. Averaged macroscopic stress–strain response of the considered aggregates under simple shear for various mean grain sizes, d. The set of material
parameters used are those given in Table 2.

As suggested in [27], the parameter Hχ can also be regarded as a constitutive parameter characterising specific properties
of the materials. The way this parameter affects the prediction of grain size effects will be presented in the next section.
A value Hχ = 50 000 MPa and a constitutive length lω = 450 nm are considered in Table 2 after following an identification
procedure explained in Section 4.

4. Scaling laws

4.1. Evidence of size-dependent kinematic hardening

Fig. 2 gives the mean shear stress as a function of mean shear strain for three different grain sizes, resulting from a
finite element simulation of the 52-grain aggregate of Fig. 1(a) computed with the set of material parameters of Table 2.
It shows the shear loading stage up to 0.025 mean shear strain followed by an unloading stage to 0.01. The stress–strain
curves clearly exhibit an overall kinematic hardening effect induced by the local contributions of the back-stress, Eq. (18).
The kinematic hardening vanishes for large grains and increases as the grain size decreases.

The effective quasi-linear hardening induced by strain gradient effects is also visible in Fig. 3 which shows monotonic
shear loading curves for grain sizes ranging from 0.4 μm to 100 μm. For large grain sizes, almost flat curves are obtained,
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Fig. 4. Effect of the mean grain size, d, on the macroscopic flow stress Σ12|1% at 1% mean plastic strain. The results are obtained with the three aggregates
of Fig. 1 subjected to simple shear for the material parameters given in Table 2. The error bars give the results’ standard deviation.

which corresponds to perfect plasticity since no classical hardening was introduced. It follows that the predicted strain
hardening is of pure size-dependent nature. The effective linear kinematic hardening modulus is controlled by the higher
order modulus A of the linear constitutive equation linking the gradient of the micro-deformation to the double stress
tensor, see Eq. (12).

4.2. Size dependence of the overall shear stress at a given mean plastic strain

From the overall shear curves of Fig. 3, the shear stress value Σ12|p0 was recorded at a given level of mean plastic
microstrain χ

ps
12 = p0 where χ

ps
12 is defined as:

χ
ps
12 = (

χ
p
12 + χ

p
21

)
/2 (23)

In Fig. 4, the mean shear stress Σ12|p0 is plotted as a function of grain size. It can be seen that the shear stresses converge
toward a fixed value Σ0 for large grain sizes. This limit depends only on the value of the critical resolved shear stress
entering the Schmid law and on the specific geometry and orientations of the considered polycrystalline aggregates. It is
therefore possible to draw a Hall–Petch diagram which is a log–log plot of Σ12|p0 − Σ0 vs. the grain size d. Such a plot
is given in Fig. 4 for p0 = 0.01. The continuous line gives the mean value of the shear stress level for the three cases of
the microstructure considered in Fig. 1 and with the set of parameters of Table 2. Error bars are also provided showing the
scatter of the results which is rather large due to the small number of grains in each microstructure and the small number
of aggregates. The diagram of Fig. 4 clearly shows two regimes in the relation between stress level and grain size. For grain
sizes smaller than 1 μm, no dependence of the overall stress on grain size is observed. However, for grain sizes larger than
1 μm, a power law relationship is found in the form

Σ12|p0 − Σ0 ∝ dm (24)

with an exponent m of the order of −0.9 for the mean curve in Fig. 4. It can therefore be stated that the microcurl model
is able to account for grain size effects with a saturation for very small grain sizes.

The Hall–Petch diagrams corresponding to both sets of parameters of Tables 1 and 2 are compared in Fig. 5 for the
52-grain aggregate case of Fig. 1(a). The high coupling modulus Hχ in Table 1 is such that the plastic micro-deformation
locally does not depart from the plastic deformation H∼

p by more than 0.5%, which draws the model close to Gurtin’s strain
gradient plasticity model predictions. In contrast, differences of 3% can exist locally when a smaller value of Hχ is used,
as in Table 2. As a result, Fig. 5’s Hall–Petch predictions differ in the sense that the saturation level is higher for the strain
gradient plasticity model, and that saturation starts at smaller grain sizes. The power law exponent m is slightly higher for
the strain gradient plasticity model even though it is still of the order of m = −1, which should be compared to the value
m = −0.8 for the response of the 52-grain aggregate using the material parameters of Table 2. Note that the parameter Hχ

in Table 2 was chosen such that the saturation of the size effect occurs at approximately 1 μm.
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Fig. 5. Effect of the mean grain size, d, on the macroscopic flow stress Σ12|1% at 1% mean plastic strain χ
ps
12 . The results are obtained for the 52-grain

aggregate of Fig. 1(a) under simple shear using the material parameters corresponding to (a) the “curl H p ” case given in Table 1, and (b) those given in
Table 2.

5. Fields

The dislocation density tensor Γ∼ does not only impact the overall polycrystal behaviour but also the way plastic defor-
mation develops inside the grains. An example of the spreading of plastic deformation in a polycrystal depending on the
grain sizes is shown in Fig. 6 for the 52-grain aggregate of Fig. 1(a). These contour plots show the field of equivalent plastic
deformation p defined as

ṗ :=
√

2

3
Ḣ∼

p : Ḣ∼
p

(25)

At the onset of plastic deformation, plasticity starts in the same grains and at the same locations in 100-μm grains as in
1-μm grains, as shown in Fig. 6(a) and (b). This is due to the fact that the same critical resolved shear stress is adopted
for both grain sizes, which corresponds to the same initial dislocation density. In contrast, at higher mean plastic strain
levels, the strongly different values of the plastic micro-deformation gradients lead to significantly different plastic strain
fields. Two main features are evidenced in Fig. 6(c) to (f). First, a tendency to strain localisation in bands is observed for
small grain sizes. The plastic strain bands cross several grains whereas plastic strain is more diffuse at larger grain sizes,
something which had already been seen in the simulations presented in [39,40]. Secondly, a consequence of this localisation
is that some small grains are significantly less deformed than others, particularly the larger ones.

These features are also visible on the plastic deformation maps of Fig. 7 for the same aggregate but different grain sizes.
This figure also shows the field of the norm of the dislocation density tensor:

‖Γ∼ ‖ :=
√

Γ∼ : Γ∼ (26)

This scalar quantity indicates the presence of GNDs and has the physical dimension of lattice curvature mm−1. In large
grains, GNDs are mainly located close to grain boundaries. At smaller grain sizes, the GND densities become significantly
higher and spread over larger zones of the grains. Pile-up-like structures close to grain boundaries are clearly visible in the
10-μm grains.

The fact that strain gradient plasticity models may be prone to strain localisation when plasticity is confined in small
regions was evidenced in [41] where intense slip bands were simulated in a perfectly plastic single crystal matrix around a
hard particle. The matrix was modelled as a microcurl material. The reason for such a behaviour is that intense slip bands
that exhibit a strong gradient of plastic slip perpendicular to the slip plane are not associated with GND formation. In
contrast, regions of high lattice curvature or kink bands lead to an energy increase which is here quadratic with respect
to Γ∼ according to (12). This explains why, at a small scale, intense slip bands will be preferred to strongly curved regions
and pile-ups. This is confirmed by the observation of the equivalent plastic deformation contour plots of Fig. 8 for the three
aggregates considered in this work and for a grain size d = 4 μm. The orientation of the slip plane traces are indicated
inside each grain. Here, the zones of intense plastic deformation are systematically found to be parallel to such slip plane
traces, thus indicating the formation of slip bands during deformation.
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Fig. 6. (a)–(f) Contour plots of the accumulated plastic strain p for two grain sizes, d = 100 and 4 μm, and for three different mean values of the plastic
strain: 〈χ ps

12 〉 ≈ 0, 〈χ ps
12 〉 = 0.01 and 〈χ12

ps 〉 = 0.02, obtained with the 55-grain aggregate of Fig. 1(c) under simple shear and with the material parameters
given in Table 2. (g) Macroscopic stress–strain response of the corresponding aggregate, with the letters indicating the different loading steps corresponding
to the (a)–(f) contour plots.

6. Discussion

It is generally observed that strain gradient plasticity models provide a size-dependent hardening behaviour of poly-
crystals rather than a size-dependent initial yield stress [14,30]. Indeed in Fig. 3, the same initial yield stress can be read
from the curves for all grain sizes whereas the hardening modulus is found to be strongly grain size-dependent. Since the
overall shear curves result from the homogenisation of the polycrystalline unit cell of interest, we have defined a yield
stress at 1% overall plastic strain which enabled us to plot Hall–Petch diagrams for the computed polycrystals. It should be
emphasised that, even though the first plastic events start simultaneously for all homothetic polycrystals, the engineering
yield stress at 0.2% will differ due to the fact that strain gradient effects strongly affect the microplasticity regime, as dis-
cussed in Section 5. Based on the proposed model, the microplasticity regime and the following hardening stage display the
same size-dependent behaviour. This is due to the fact that a linear higher order constitutive equation has been chosen, see
Eq. (12). A nonlinear constitutive law exhibiting saturation for higher values of the dislocation density tensors, would lead
to a more pronounced size-dependent apparent initial yield stress followed by similar subsequent hardening behaviour. An
analogous idea has been put forward in [42], whereby the effect of geometrically necessary dislocations may affect the local
behaviour at the very beginning of microplasticity thus raising the yield strength. The authors in [42] propose a free energy
function that depends on the norm of the dislocation density tensor leading to a singular derivative at zero initial density.
This choice is different from the quadratic potential (12) retained in the present work. Future work must be dedicated to
the development of more realistic higher order constitutive equations to better distinguish yield strength and hardening
effects in strain gradient models.

In the present model, the dislocation density tensor is regarded as a state variable entering the free energy density
function and does not directly contribute to the dissipation. More general nonlinear higher order constitutive equations
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Fig. 7. Grain size effect on the accumulated plastic strain p (top figures) and on the norm of the dislocation density tensor ‖Γ∼ ‖ (bottom figures). These

contour plots are obtained with the 55-grain aggregate for the same mean value of 〈χ ps
12 〉 = 0.01, and from the set of material parameters given in Table 2.

The colour scale for the plastic strain field of the top figures is the same as that of Fig. 6 on the right. The colour scale at the bottom is that for the
dislocation density tensor fields.

Fig. 8. Strain localisation patterns for a grain size d = 4 μm and for the three microstructures considered in Fig. 1. These contour plots are given for the
same mean value of plastic strain 〈χ ps

12 〉 = 0.01, and for the set of material parameters given in Table 2. The pairs of slip plane traces are indicated inside
each grain.

should incorporate a split of the strain gradient effect into separated energetic and dissipative contributions, as suggested
in [29,26]. There are several ways of doing so: by splitting the stresses into its reversible and viscous parts as in [26], or
by partitioning the strain measures as in [29]. However, additional parameters need to be introduced, which requires new
identification strategies.

Single crystals with two slip systems are expected to be rather stiff compared to actual FCC crystals with twelve slip
systems. To address the question as to the size effects persist when many slip systems are available to accommodate strain
incompatibilities in the polycrystals, finite element simulations of plane strain shear loading on the same 2D microstructures
have been performed, considering twelve slip systems at each material point, and a random orientation in each grain. The
same material parameters were used as in Table 2, assuming an isotropic interaction matrix. The results are shown in Fig. 9,
in terms of the overall shear at 1% overall plastic strain for different grain sizes. It can be seen that a size effect is still
predicted. However the extra-stress at smaller grain sizes is significantly smaller than seen in Fig. 3. Also the unloading stage
is purely elastic in contrast to Fig. 4. The kinematic hardening effect is weakened by an increasing number of potentially
active slip systems. It seems that the high number of slip systems provides ways of avoiding high back-stress components.
Thus, this framework is well-suited to materials with limited activated slip systems or in cases where the plastic deformation
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Fig. 9. Macroscopic stress–strain response of a 52-grain FCC crystal aggregate of Fig. 1(a) under simple shear and for FCC 12 slip systems potentially active.

is highly constrained. The question arises of the coupling between the different slip systems with respect to the computation
of back-stresses. In the presence of multiple slip, the formula (18) has been kept which provides only an indirect coupling
via the double stress tensor, the curl of which being projected on each slip system. It may well be necessary to consider the
presence of an interaction matrix linking the various kinematic hardening components.

One essential feature of the presented microcurl model is the existence of a size-dependent kinematic hardening arising
at each material point of the grains and leading to the observed overall kinematic hardening. This size-dependent hardening
contribution comes in addition to more standard isotropic and kinematic hardening components contained in usual dislo-
cation density-based crystal plasticity models. Explicit expressions of such back-stress components induced by dislocation
pile-ups can be derived from dislocation theory and inserted into the constitutive model, as proposed in [43–45]. However
they are limited to single slip situations in the absence of interaction with other dislocation populations. Such limitations
motivate the need for the use of higher order constitutive formulations, such as that represented by Eq. (12). A linear rela-
tion like (12) is compatible with the dislocation model of single slip non-interacting pile-ups even though it is used here in
the most general context.

7. Conclusions

The micromorphic crystal plasticity model proposed in this work represents an efficient compromise between sophisti-
cated constitutive models incorporating the effect of so-called geometrically necessary dislocations, and phenomenological
models allowing realistic finite element simulations of the mechanical behaviour of polycrystals. The curl of the micro-
morphic plastic deformation is used as a constitutive variable instead of the individual geometrically necessary dislocation
densities. In that way, the same model can be used irrespective of the number of slip systems in the considered crystal
structure. In contrast, models involving slips and/or individual dislocation densities for each slip system as new degrees of
freedom will become computationally intractable in realistic situations. Furthermore, simple continuity rules for the mi-
croplastic deformation and tractions at grain boundaries were adopted. Such rules are independent again of the crystal
structure and do not require complex additional interface conditions to be implemented. Even though they do not convey
an exact physical description of dislocation processes at grain boundaries, it is our belief that they are more realistic than
so-called micro-hard and micro-soft conditions directly applied at grain boundaries, see e.g. [31].

This work has shown that significant grain size effects can be observed in the simple shear response of 2D polycrystalline
aggregates. They affect not only the overall hardening but also, in a non-trivial way, the plastic strain fields inside the grains.
The two additional material parameters, A and Hχ , of the proposed microcurl model were shown to control the power of the
scaling law and the grain size domain for which size effects occur. For ultra-fine grain sizes, plastic deformation was found
to localise in intense slip bands that circumvent the formation of energetically expensive zones of high lattice curvature.

Future work is needed to more accurately estimate the scaling laws for the grain size dependency shown in this work.
Currently, the power law exponents were found to be close to m = −1 from the 2D simulations with two slip systems.
However, the high scatter in the responses due to the small number of grains in the simulations induces uncertainties in
the evaluation of this exponent. More systematic and intensive computations are required. Future work will also be devoted
to the development of more realistic nonlinear constitutive equations for the plastic micro-deformation gradient. Such laws
could also be identified from the results of discrete dislocation dynamics simulations of various physical phenomena in
two-phase materials and polycrystals [46,47,41] where strain gradients are significant.
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