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Usually solutions of partial differential equations(DPEs) are sought as a
field of a spatial variable

Parameters are selected to set partial differential equations (PDEs), but solutions are denoted by:

u(x), x ∈ Ω

Often, discussions about parameters are weak, although more and more numerical simulations
are performed in order to understand the effect of parameters on solutions.

Prediction of a temperature field for casting simulation.

PDE solutions are more than fields!
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Empirical Orthogonal Functions and Statistical Weather Prediction

Data mining of 64 pressure sensors over the USA.

Integration of dynamic equations by using empirical modes was first suggested in 19561.

p = V γ, V ∈ R64×8

1E. N. Lorenz, Empirical Orthogonal Functions and Statistical Weather Prediction, Sc. Report, Statistical Forecasting Project,
MIT, 1956
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Images and 2-order tensors

Greyscale digital images can be considered as matrices, or 2-order tensors.

In Aubry, Holmes, Lumley, Stone (1988)2

Q ∈ RNy×Nx → V ∈ RNy×N , N < Nx

First solution of a PDE by using empirical modes.
2N. Aubry, P. Holmes, J.L. Lumley, E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary

layer, J. Fluid Mech., 192, pp. 115-173 (1988)
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Karhunen–Loève procedure for gappy data3

1658 J. Opt. Soc. Am. A/Vol. 12, No. 8 /August 1995 R. Everson and L. Sirovich

This result implies that for a face fsxd, a suitable ap-
proximation can be obtained from a limited summation,

fsxd ¯
NP

n≠1

ancnsxd , (5)

where the coefficients an are obtained from the usual
inner product,

an ≠ sf, cnd , (6)

and N represents the number of basis functions needed
to meet some specified error bound. Relation (5), looked
at in another way, states that in the presence of perfect
information (zero noise) we need to know only the gray
levels fsxd at N pixel locations.

To investigate this assertion we will consider marred
faces and then investigate how well they can be recon-
structed. We express a masked face by

˜fsxd ≠ msxdfsxd , (7)

where m ≠ 0 on the mask and m ≠ 1 elsewhere. The
challenge is to write ˜fsxd in the form of relation (5),

˜fsxd ¯ msxd
NP

n≠1

ãncnsxd , (8)

and from this to determine a best set of coefficients ãn.
Once this is done we can inquire how well f is captured
by

PN
n≠1

ãncn. Part of the problem involves the choice
of N .

The inner product [Eq. (6)] can no longer be used to find
the coefficients, because it requires information from the
full range of x; i.e., the fn are not necessarily orthogonal
over the support of ˜f, sf ˜fg. However, we can then use
a least-squares criterion to achieve a best fit of form (5).
That is, we minimize the error

E ≠
Z

sf ˜fg
dx

2
4

˜fsxd 2
NX

n≠1

ãncn

3
5

2

. (9)

The minimization of E leads to
0
@

˜f 2
NP

n≠1

˜ancn, ck

1
A
sf ˜fg

≠ 0 , (10)

which requires that the residual be orthogonal to ck for
k ≠ 1, . . . ,N , where as indicated the inner product is over
the support of ˜f, sf ˜fg. The Hermitian matrix

Mkn ≠ sck, cndsf ˜fg (11)

is nonnegative and is in principle OsN d.
If we write

fk ≠ sf,ckdsf ˜fg , (12)

then in vector notation we seek the unknown coefficients
˜ak from

M ˜a˜a˜a ≠ f . (13)

In the event that sf ˜fg is sufficiently dense in the space,
then M ¯ I, which among other properties says that the

eigenvalues of M are close to unity, and ˜ak ¯ sf, ckdsf ˜fg.
In the present instance, if we denote the eigenvalues mn

and the corresponding orthonormal eigenvectors vn, the
solution to Eq. (13) is then given by

˜a˜a˜a ≠
NP

k≠1

1

mn
svn, fdvn . (14)

Thus on intuitive grounds the construction becomes ques-
tionable if the mk depart significantly from unity; this is
made explicit in Appendix A.

To illustrate the nature of this construction, we con-
sider the mask shown in Fig. 1a. This is a relatively
extreme mask that obscures 90% of the pixels in a ran-
domly chosen way. This was used to mask a face that did
not belong to the original ensemble that was used to de-
termine the eigenfunctions. The result of applying the
above procedure, finding the ˜

a from Eq. (13) and using
N ≠ 50 eigenfunctions, is shown in Fig. 1b. The origi-
nal unmasked face is shown in Fig. 1c, and the projection
of the original face onto 50 eigenfunctions is shown in

Fig. 1. Reconstruction of a face, not in the original ensemble,
from a 10% mask. The reconstructed face, b, was determined
with 50 empirical eigenfunctions and only the white pixels shown
in a. The original face is shown in c, and a projection (with all
the pixels) of the face onto 50 empirical eigenfunctions is shown
in d.

Q ∈ R(Nx Ny )×m, V ∈ R(Nx Ny )×N

Reconstruction of a face, not in the original
ensemble from a 10% mask. The
reconstructed face, (b), was determined with
50 empirical eigenfunctions and only the
white pixels shown in (a). The original face is
shown in (c), and a projection (with all the
pixels) of the face onto 50 empirical
eigenfunctions is shown in (d). The masked
image is the vector Zf (Z is a truncated
identity matrix):

γ = arg min
γ?
‖(Zf)− ZVγ?‖2

⇒ γ = (VT ZT ZV)−1 VT ZT (Zf)

The reconstructed image reads:

fGappy = V (VT ZT ZV)−1 VT ZT (Zf)

3Karhunen-Loève procedure for gappy data, R. Everson, L. Sirovich, J. Opt. Soc. Am. A, Vol. 12, 8 (1995)
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More recent results on tensor completion4

1

Tensor Completion for Estimating Missing
Values in Visual Data

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye

Abstract—In this paper we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing
due to problems in the acquisition process, or because the user manually identified unwanted outliers. Our algorithm works
even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built
on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix
case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm.
First, we propose a definition for the tensor trace norm, that generalizes the established definition of the matrix trace norm.
Second, similar to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the
straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple
constraints. To tackle this problem, we developed three algorithms: SiLRTC, FaLRTC, and HaLRTC. The SiLRTC algorithm is
simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate
descent (BCD) method to achieve a globally optimal solution; The FaLRTC algorithm utilizes a smoothing scheme to transform
the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem;
The HaLRTC algorithm applies the alternating direction method of multipliers (ADMM) to our problem. Our experiments show
potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust
than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and
between FaLRTC and HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high
accuracy solution is desired.

Index Terms—Tensor completion, trace norm, sparse learning.

F

1 INTRODUCTION

In computer vision and graphics, many problems can be for-
mulated as a missing value estimation problem, e.g. image
in-painting [4], [22], video decoding, video in-painting [23],
scan completion, and appearance acquisition completion.
The core problem of the missing value estimation lies
on how to build up the relationship between the known
elements and the unknown ones. Some energy methods
broadly used in image in-painting, e.g. PDEs [4] and belief
propagation [22] mainly focus on the local relationship.
The basic (implicit) assumption is that the missing entries
mainly depend on their neighbors. The further apart two
points are, the smaller their dependance is. However, some-
times the value of the missing entry depends on the entries
which are far away. Thus, it is necessary to develop a tool
to directly capture the global information in the data.

In the two-dimensional case, i.e. the matrix case, the
“rank” is a powerful tool to capture some type of global
information. In Fig. 1, we show a texture with 80% of its
elements removed randomly on the left and its reconstruc-
tion using a low rank constraint on the right. This example
illustrates the power of low rank approximation for missing
data estimation. However, “rank(·)” is unfortunately not a
convex function. Some heuristic algorithms were proposed

• Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye are with
Arizona State University, Tempe, AZ, 85287.
E-mail: {Ji.Liu, pmusials, Peter.Wonka, and Jieping.Ye}@asu.edu

to estimate the missing values iteratively [13], [24]. How-
ever, they are not guaranteed to find a globally optimal
solution due to the non-convexity of the rank constraint.

Fig. 1: The left figure contains 80% missing entries shown
as white pixels and the right figure shows its reconstruction
using the low rank approximation.

Recently, the trace norm of matrices was used to approx-
imate the rank of matrices [30], [7], [37], which leads to
a convex optimization problem. The trace norm has been
shown to be the tightest convex approximation for the rank
of matrices [37], and efficient algorithms for the matrix
completion problem using the trace norm constraint were
proposed in [30], [7]. Recently, Candès and Recht [9],
Recht et al. [37], and Candès and Tao [10] showed that
under certain conditions, the minimum rank solution can
be recovered by solving a convex optimization problem,
namely the minimization of the trace norm over the given
affine space. Their work theoretically justified the validity

The left figure contains 80% missing
entries shown as white pixels and the
right figure shows its reconstruction
using the low rank approximation.

Color images are at least 3 order tensors u(i, j, k), (i,j) is related to the pixel location and k to the
color (k = R,G,B for instance).

4Tensor Completion for Estimating Missing Values in Visual Data, Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye,
(2012)
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Tensor format of PDE solutions

For model reduction, we consider a set of fields over Ω× [0,T ] for time dependent problems, or
over Ω×D for solutions of parametric differential equations, where D is the parameter space.

. . .
Temperature fields during a transient thermal simulation.
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Tensor format of PDEs solutions

Solutions of balance equations are tensors when considering the entire domain of variation of all
variables:

u(x, t) ∈ V ⊗ C, (x, t) ∈ Ω× [0,T ]

One can define a multilinear application by introducing integrals:

v(x) ∈ V?, g(t) ∈ C? → Tu(v, g) :=

∫
Ω

∫ T

0
u(x, t) v(x) g(t) ω dx dt ∈ R

Here, u has two variables. It is a second order tensor.

Here V and C are vector spaces for space and time functions respectively. The dual vector spaces for space functions and time function are:

v(x) ∈ V?, g(t) ∈ C?
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High dimensional tensor

When considering the solution as a function of more than 2 variables (x, µ1, . . . , µD−1),
µi ∈ [µmin

i , µmax
i ], we obtain a tensor of order D (D > 2):

v(x) ∈ V?, g1(µ1) ∈ C?1 , . . . , gD−1(µD−1) ∈ C?D−1 → Tu(v, g1, . . . , gD−1) ∈ R

Tu :=

∫
Ω

∫ µ1max

µ1min
. . .

∫ µD−1max

µD−1min
u(x, µ1, . . . , µD−1)v(x)g1(µ1) . . . gD−1(µD−1)ωdx dµ1 . . . dµD−1

Here the solution is defined over the domain:

Ω× [µmin1, µmax 1]× . . .× [µminD−1, µmax D−1]
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Tensors in finite element setting

Let’s introduce finite element shape functions (ϕ1, . . . ,ϕN ) defined over the domain Ω ⊂ Rd , and
a time discretization {t1, . . . , tm}.

uh(x, tj ) :=
N∑
i=1

ϕi (x) qi (tj ), Vh := span(ϕ1, . . . ,ϕN ) ⊂ V

A numerical simulation gives access to a matrix of snapshots (second order tensor):

Q ∈ RN×m, Qij = qi (tj )

u(xp,tj;µ1) = Qij

Example of snapshot extracted from a mechanical
simulation of a modified turbine blade.

ϕi (x) = ϕ1D
p (x) ek

i = (p − 1) d + k

k = 1, . . . , d

p = 1, . . . ,No
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Modal unfolding of order-D tensors

To unfold a tensor (FR: déployer un tenseur) is to arrange its entries in a matrix.

In the first modal unfolding, all variables of u, except the first one, are grouped in a single
multidimensional variable µ = (µ1, . . . , µD−1).

u(xi , µ
1
j , . . . , µ

D−1
j ) = u(1)(xi ,µj ), xi ∈ Ω, µj ∈ P = Q(1)ij

Here, each column of Q(1) contains all the nodal values of the field related to a given vector of
parameters.

Curse of dimension : If a regular grid of 10 steps per parameter µk is introduced for the
discretization of D, then Q(1) has N rows and 10D−1 columns!

Remarks:
In most cases, Q(1) is not sparse.

The TT-cross approximation proposed by Y. Oseledets and E. Tyrtyshnikov in 2010, starts by
a decomposition of Q(1).
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Singular value decomposition or Principal Component Analysis

The thin SVD: Let Q ∈ RN×m be the matrix containing all the PDE solutions. There exist
orthogonal matrices

V = [v1 . . . vm] ∈ RN×m, VT V = Im

W = [w1 . . .wm] ∈ Rm×m, WT W = Im

and a diagonal matrix containing the singular values of Q

S = diag(σ1, . . . , σm), where σ1 ≥ . . . ≥ σm ≥ 0

such that:
Q = V S WT

The rank is obtained by:
rank(Q) = arg max

k, σk>0
k ≤ min(N ,m)

Property: if rank(Q) ≤ N then V[:, 1, . . . , rank(Q)] is a reduced basis.

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 17/40



A posteriori model reduction

In most cases, it is not possible to have access to all possible solutions: Q ∈ RN×m. In a
posteriori model reduction approach, simulations are ran before computing empirical modes.

XXL#dof#
highfidelity#model# Offline#training#phase#

to#lose#dof# Low#dof#and#good#shape,#
Hyper:reduced#order#model#

ready#for#online#phase#

A#posteriori#model#reduc>on#

This approach is very convenient for the reduction of nonlinear PDEs, because there is no
assumption about the PDE when collecting data.
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A posteriori model reduction

A random sampling of D or [0,T ] is introduced to collect data.

Q = [qj ]j∈Σtrain ∈ RN×m, m = Card(Σtrain), m ≤ N
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Truncated SVD

V = [v1 . . . vN ] ∈ RN×N , N ≤ rank(Q)

W = [w1 . . .wN ] ∈ Rm×N

S = diag(σ1, . . . , σN )

such that

Q = V S WT + R, ‖R‖2
F =

rank(Q)∑
k=N+1

σ2
k , ‖R‖2 = σN+1

and S−1 exists.

Frobenius norm : ‖R‖2
F =

∑
i
∑

j r2
ij

Matrix 2-norm : ‖R‖2
2 = λmax (RT R)

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 20/40



The Eckhart-Young theorem 5

The SVD decomposition is optimal: it is the best rank-N decomposition of Q,

Q(N) =
N∑

i=1

σi vi wT
i = V S WT ,

min
rank(B)=N

‖Q− B‖2 = ‖Q− Q(N)‖2 = σN+1

where ‖ · ‖2 is the matrix 2-norm.

5Matrix Computations, 4th ed., G. H. Golub, C.F. Van Loan, The Johns Hopkins University Press, Baltimore, (2013)
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Snapshot POD6

(σ2
k )m

k=1 are the eigenvalues of the following correlation matrix, QT Q:

QT Q wk = wk σ
2
k , k = 1, . . .m

or
QT Q W = W S2

and
V = Q W S−1

Usually, we assume that V is a good candidate for the approximation of the subspace spanned by
the columns of Q.

6Turbulence and the dynamics of coherent structures, parts I-III., L. Sirovich, Quarterly of Applied Mathematics, XLV:561-590,
(1987)
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Proper Orthogonal Decomposition with respect to L2 norm

POD empirical modes are fields defined over Ω.

Proper orthogonal modes ψk are solutions of:

min
ψ?k , ‖ψ

?
k ‖L2 =1

m∑
j=1

‖u(·, j)−
N∑

k=1

ψ?k < ψ?k ,u(·, j) > ‖2
L2(Ω)

< u, v >=

∫
Ω

u v dΩ, ‖u‖2
L2(Ω)

=< u,u >

Property: POD modes are orthogonal

< ψk ,ψp >= δkp

SVD modes of Q̃ = LT Q gives access to POD modes, if M = LLT according to the Cholesky
decomposition, with mij =

∫
Ω ϕiϕj dΩ, such that

ψk =
N∑
i=1

ϕi vψik , Vψ = L−T V

More details in the work of S. Volkwein.

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 23/40



Proper Orthogonal Decomposition with respect to L2 norm

POD empirical modes are fields defined over Ω.

Proper orthogonal modes ψk are solutions of:

min
ψ?k , ‖ψ

?
k ‖L2 =1

m∑
j=1

‖u(·, j)−
N∑

k=1

ψ?k < ψ?k ,u(·, j) > ‖2
L2(Ω)

< u, v >=

∫
Ω

u v dΩ, ‖u‖2
L2(Ω)

=< u,u >

Property: POD modes are orthogonal

< ψk ,ψp >= δkp

SVD modes of Q̃ = LT Q gives access to POD modes, if M = LLT according to the Cholesky
decomposition, with mij =

∫
Ω ϕiϕj dΩ, such that

ψk =
N∑
i=1

ϕi vψik , Vψ = L−T V

More details in the work of S. Volkwein.

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 23/40



Proof

Let’s consider

v(·, j) =
N∑
i=1

ϕi pij , u(·, j) =
N∑
i=1

ϕi qij ⇒< v(·, j),u(·, j) >= pT
j Mqj = (PT MQ)jj

Let’s consider

M = LLT , Q̃ = LT Q, ψ?k =
N∑
i=1

ϕi vψik
?, Vψ? = L−T V?, V?T V? = IN

Then
rank(V? (V?T Q̃)) ≤ N (we assume, = N), and

m∑
j=1

‖u(·, j)−
N∑

k=1

ψ?k < ψ?k ,u(·, j) > ‖2
L2(Ω)

= Tr[(Q−Vψ? (Vψ?T MQ))T M(Q−Vψ? (Vψ?T MQ))]

= Tr[(Q̃− V? (V?T Q̃))T (Q̃− V? (V?T Q̃))]

whose minimum is the SVD of Q̃.

VT V = I ⇒ VψT L LT Vψ = I ⇒< ψk ,ψp >= δkp
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Fundamental assumption

All data are related to the same discretization of Ω: a unique mesh.

The mesh is assumed to be convenient for accurate predictions related to all parameters and all
time instants!

In most cases, mesh adaptation is not the purpose of model reduction methods.
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The Finite Element (FE) method

Let’s consider the following balance equation:

u ∈ ud + V, L(u) = 0 ∀x ∈ Ω, (e.g. L = ρ ü− div(C ε(u)) )

what ever the material is, and what ever the boundary conditions are, the weak form of the FE
equations reads:

u ∈ ud + Vh, Vh = span(ϕi )
N
i=1 ⊂ V,

∫
Ω
L(u) v∗ dΩ = 0 ∀v∗ ∈ Vh

u(x, t) = ud +
N∑
i=1

ϕi (x) qi (t)

This is a full order model (FOM).
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Cea’s lemma

Let V be a real Hilbert space with the norm ‖ · ‖.

In case of elliptic problems, let’s introduce a bilinear form:

a(v, w) =

∫
Ω

w (L(v)− L(0)) dx ∈ R

with the property, ∃γ > 0, α > 0 such that:

|a(v, w)| ≤ γ‖v‖ ‖w‖ ∀ v, w (Continuity)

a(v, v) ≥ α ‖v‖2 (Coercivity)

and a linear form:
b(w) =

∫
Ω

w L(0) dx ∈ R

Let’s denote by uh the unique (Lax-Milgram theorem) FE approximation of the unique exact solution u:

uh ∈ Vh ⊂ V, a(uh, w) = b(w) ∀w ∈ Vh

Cea’s lemma states:
‖u− uh‖ ≤

γ

α
min

v∈Vh
‖u− v‖

The lower the projection error on Vh of u, the better the solution uh.

This lemma is valid for all subspaces of V, especially for VROM ⊂ Vh.
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Usual offline procedure when using the Proper Orthogonal
Decomposition (POD)

During the design of the experimental set-up: the numerical results of preliminary FE solutions are
considered as data for the snapshot POD [Sirovich 1987].

u(xp,tj;µ1) = Qij ∀x ∈ Ω

u(x, tj ;µ1) = uo +
N∑
i=1

ϕi (x) Qij

Vh = span(ϕ1, . . . ,ϕN )

These data are the inputs of a singular value decomposition (SVD).

Q =                                                       ~

.         .

V

S WT

E
n
e
rg

y
Number of empirical modes

Negligible 
contributions

uROM (x, t ;µ) =
N∑

k=1

ψk (x) γk (t ;µ), ψk (x) =
N∑
i=1

ϕi (x) Vik , N << N
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Numerical example, POD modes (Z-set code)

We have performed the simulation of 5 load cycles. The POD Reduced Basis has 6 empirical
modes. Additional modes can be obtained by the DEPOD.

POD modes are global shape functions for model reduction.
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The usual POD Galerkin setting

u ∈ ud + Vh, Vh = span(ϕi )
N
i=1 ⊂ V,

∫
Ω
L(u) v∗ dΩ = 0 ∀v∗ ∈ Vh

becomes

u ∈ ud + VROM , VROM = span(ψk )N
k=1 ⊂ Vh,

∫
Ω
L(u) v∗ dΩ = 0 ∀v∗ ∈ VROM .
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Matrix setting of the equations

Let’s consider an implicite Euler scheme combined to the Newton-Raphon algorithm. We restrict
our attention to a linear step of the Newton-Raphson procedure.

Let’s r be the residual of the FE balance equations:

q∗T r(q) =

∫
Ω
L(u) v∗ dΩ, u = ud +

∑
i

ϕi qi , v∗ =
∑

i

ϕi q∗i

The linear correction step reads:

J(q) δq = −r(q), avec J(q) =
∂r
∂q

(q)

The new prediction of the degrees of freedom reads: q + δq.

The Galerkin setting of the reduced problem reads: Find δq = V δγ such that,

VT J(q) V δγ = −VT r(q), q = V γ.

It is related to the following orthogonality constrain:

J(q) V δγ + r(q) ∈ RN ⊥ V ∈ RN×N
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The computational complexity of the Galerkin procedure

VT J(q) V δγ = −VT r(q), q = V γ.

Number of floating point operations (flops) related to VT r(q) : 2 N N .
Number of floating point operations (flops) related to VT J(q) V : 2 N2 N + 2 N N b. Where b is
the number on non-zero entries in each row of J.

Although N < N , the Galerkin procedure is time consuming when we need to update the tangent
stiffness matrix of the ROM.

Here N must be smaller than the band width of J in order to reduce the computational complexity.
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Numerical simulations

Steady state thermal problem: heat conduction in a composite material. 5 parameters: thermal
conductivity of each inclusion, 2 heat fluxes at the boundary φ1 and φ2.
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Sanpshots

Q has 7 columns.
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POD empirical modes

Q = V S WT , N = 7

Computational time: FEM 0.3 s, Galerkin POD 0.3 s
No speedup!
50 % of the computational time is devoted to the assembly procedure.
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Linear problems with affine parameter dependence

Here
J(µ) = Jo + µ1 J1 + µ2 J2 + µ3 J3

r(µ) = µ4 r4 + µ5 r5

Then, the following projections can be performed during the offline phase:

JR
i = VT Ji V, i = 0, 1, 2, 3

rR
i = VT ri V, i = 4, 5

The online operations reads:

(JR
0 + µ1 JR

1 + µ2 JR
2 + µ3 JR

3 ) γ = µ5 rR
4 + µ5 rR

5

But the extension of this decomposition in not straightforward for nonlinear problems involving
threshold effects. Solutions are proposed by the Empirical Interpolation Method or
Hyper-reduction methods.
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Outlook

In the future,

less data destruction

more massive experimental data (Tomography, ...)

more image processing

more parameters in numerical models

more FE simulations and more simulation data

high dimensional visualizations and collaborative tools

more model reduction and data compression

hybrid Full-order/reduced-order modeling (Partial far field mechanics)
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