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Usually solutions of partial differential equations(DPEs) are sought as a

field of a spatial variable

Parameters are selected to set partial differential equations (PDESs), but solutions are denoted by:
u(x), xeQ

Often, discussions about parameters are weak, although more and more numerical simulations
are performed in order to understand the effect of parameters on solutions.

Prediction of a temperature field for casting simulation.

PDE solutions are more than fields!
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Empirical Orthogonal Functions and Statistical Weather Prediction

Data mining of 64 pressure sensors over the USA.

. Tho
tho sun of the squares of @ function, at the 64 stations ia 1

Integration of dynamic equations by using empirical modes was first suggested in 1956.

p:V‘Y,V€R64X8

TE.N. Lorenz, Empirical Orthogonal Functions and Statistical Weather Prediction, Sc. Report, Statistical Forecasting Project,
MIT, 1956
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Images a er tensors

Greyscale digital images can be considered as matrices, or 2-order tensors.

Coherent structures in the wall region of a turbulent boundary layer 117

Fiour 1. Bubble-wire visualization of the turbulent boundary layer at z; = 6.6. A single frame
from the movie taken by S. Kline at Stanford University (see Kline el al. 1967) and kindly provided
by S. Kline.

In Aubry, Holmes, Lumley, Stone (1988)2

Qe RN v e RN N < Ny
First solution of a PDE by using empirical modes.

2N. Aubry, P. Holmes, J.L. Lumley, E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary
layer, J. Fluid Mech., 192, pp. 115-173 (1988)
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for gappy data®

Qe R(NxNy)xm, Ve R(NxNy)xN

Reconstruction of a face, not in the original
ensemble from a 10% mask. The
reconstructed face, (b), was determined with
50 empirical eigenfunctions and only the
white pixels shown in (a). The original face is
shown in (c), and a projection (with all the
pixels) of the face onto 50 empirical
eigenfunctions is shown in (d). The masked
image is the vector Zf (Z is a truncated
identity matrix):

v = argmin [|(Zf) - ZV4* |2
mi

= ~v=(V'2"zv)" "' V'Z7 (zf)

The reconstructed image reads:

faappy =V (V7Z272V)~1VTZT (zZf)

3Karhunen-Loéve procedure for gappy data, R. Everson, L. Sirovich, J. Opt. Soc. Am.iA, Vol. 12, 8 (1995)
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More recent results on tensor completion*

The left figure contains 80% missing
entries shown as white pixels and the
right figure shows its reconstruction
using the low rank approximation.

Color images are at least 3 order tensors u(/, j, k), (i,j) is related to the pixel location and k to the
color (k = R,G,B for instance).

4Tensor Completion for Estimating Missing Values in Visual Data, Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye,
(2012)
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Tensor format of PDE solutions

For model reduction, we consider a set of fields over Q2 x [0, T] for time dependent problems, or
over Q x D for solutions of parametric differential equations, where D is the parameter space.

Tensor format of PDE solutions and matricization Doctoral workshop, Mines ParisTech, 13-17 february 2016 11/40



Tensor format of PDEs solutions

Solutions of balance equations are tensors when considering the entire domain of variation of all
variables:

ux,t) e vec, (x,t)eQx[0,T]

One can define a multilinear application by introducing integrals:

-
v(x) e V¥, g(h)ecC* —  Ty(v,9) ::/Q/O u(x,t)v(x) g(t)wdx dt €R

Here, u has two variables. It is a second order tensor.

Here V and C are vector spaces for space and time functions respectively. The dual vector spaces for space functions and time function are:
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High dimensional tensor

When considering the solution as a function of more than 2 variables (x, p1, ..., #p—1),

i € [, 1M3X] we obtain a tensor of order D (D > 2):

v(x) € V¥, gi(p1) €CF,.., Ip—1(pp—1) €CH_y —  Tu(V,01,...,90-1) €R

1max D—1max
"

n
T, :/Q/ w2 V)G () - gp 1 (WP wakdu! .. P!
"

1 min ”D—1 min

Here the solution is defined over the domain:

Q x [‘LLmin17 umax1] X ... % [‘u‘minD—17 umaxD—1]
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Tensors in finite element setting

Let's introduce finite element shape functions (¢4, . . ., ¢ ) defined over the domain Q c RY, and
a time discretization {t,..., tm}.

N
Up(X, ) == > @i(X) qi(f)), Vi :=span(ey,...,x) CV
i=1

A numerical simulation gives access to a matrix of snapshots (second order tensor):

Qe RV Q;=qi(t)

u(x,tipng) = Qy

®i(X) = o2 (%) ek
k=1,...,d
p= 1, A ,No
=
Example of snapshot extracted from a mechanical
simulation of a modified turbine blade.
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Modal unfolding of order-D tensors

To unfold a tensor (FR: déployer un tenseur) is to arrange its entries in a matrix.

In the first modal unfolding, all variables of u, except the first one, are grouped in a single
multidimensional variable g = (g1, ..., #p—1)-

U(Xi,u},---ﬁu,-D*‘) = Uy (Xi; 1), Xi € Q, p; € P = Qpyj

Here, each column of Q(4 contains all the nodal values of the field related to a given vector of
parameters.
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Modal unfolding of order-D tensors

To unfold a tensor (FR: déployer un tenseur) is to arrange its entries in a matrix.

In the first modal unfolding, all variables of u, except the first one, are grouped in a single
multidimensional variable g = (g1, ..., #p—1)-

U(Xi,u}y---ﬁu,-oq) = Uy (Xi; 1), Xi € Q, p; € P = Qpyj

Here, each column of Q(4 contains all the nodal values of the field related to a given vector of
parameters.

Curse of dimension : If a regular grid of 10 steps per parameter ¥ is introduced for the
discretization of D, then Q(q) has N rows and 1001 columns!

Remarks:
@ In most cases, Q(y) is not sparse.

@ The TT-cross approximation proposed by Y. Oseledets and E. Tyrtyshnikov in 2010, starts by
a decomposition of Q4.
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Singular value decomposition or Principal Component Analysis

The thin SVD: Let @ € R %™ pe the matrix containing all the PDE solutions. There exist
orthogonal matrices

=[Vq...Vm] € RVX™, VV=1,
=Wy .. W] €R™M W W =1y
and a diagonal matrix containing the singular values of Q
S =diag(o1,...,0m), whereoy > ... > om >0

such that: s
Q=VSWwW
The rank is obtained by:
rank(Q) = arg max k < min(N,m)

k, ox>0

Property: if rank(Q) < A then V[:, 1, ..., rank(Q)] is a reduced basis.
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A posteriori model reduction

In most cases, it is not possible to have access to all possible solutions: Q € RV XM |n a
posteriori model reduction approach, simulations are ran before computing empirical modes.

A posteriori model reduction

N

)

XXL dof
highfidelity model Offline training phase
to lose dof

Low dof and good shape,
Hyper-reduced order model
ready for online phase

This approach is very convenient for the reduction of nonlinear PDEs, because there is no
assumption about the PDE when collecting data.
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A posteriori model reduction

A random sampling of D or [0, T] is introduced to collect data.

Q = [qljex,,, €RV*™, m=Card(Zyan), m< N

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 19/40



Truncated SVD

V=[v;...vpn] e RVN N < rank(Q)
W = [wy...wy] € R™XN
S = diag(o1,...,0nN)

such that

rank(Q)
Q=VSW' +R, [RlZ= > of [Rl2=o0ns
k=N+1

and S~ exists.

Frobenius norm : [[R[|Z = 32, 3, ri/2'
Matrix 2-norm : ||R||2 = Amax(RT R)

Singular value decomposition (SVD) Doctoral workshop, Mines ParisTech, 13-17 february 2016 20/40



The Eck oung theorem °

The SVD decomposition is optimal: it is the best rank-N decomposition of Q,

N
QM =S "ojviw/ =VsW’,
i=1

min Q- Bz = [|Q - Q™2 = oy
rank(B)=N

where || - ||2 is the matrix 2-norm.

5Matrix Computations, 4th ed., G. H. Golub, C.F. Van Loan, The Johns Hopkins University Press, Baltimore, (2013)
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apshot POD®

(02)7_, are the eigenvalues of the following correlation matrix, Q" Q:
QTQWk:Wk(fi, k=1,...m

or
Q'aw=ws?

and
v=Qws'

Usually, we assume that V is a good candidate for the approximation of the subspace spanned by
the columns of Q.

8Turbulence and the dynamics of coherent structures, parts I-lll., L. Sirovich, Quarterly of Applied Mathematics, XLV:561-590,
(1987)
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Proper Orthogonal Decomposition with respect to L2 norm

POD empirical modes are fields defined over Q.

Proper orthogonal modes 1), are solutions of:
m N
* mi*n ZHU(J)_Z"#; <¢;>u('7j) > ”iZ(Q)
i Il 2=13 =
<uv>= /Q uvdQ, ||u||f2(m =<u,u>
Property: POD modes are orthogonal

< P ¥p >= Op
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Proper Orthogonal Decomposition with respect to L2 norm

POD empirical modes are fields defined over Q.

Proper orthogonal modes ), are solutions of:

m N
min ST uCg) = YWk < wkuCd) > g
Yo Ikl 2=143 P
<uv>= /Q uvadQ, ||u||f2(m =<uu>
Property: POD modes are orthogonal

< P ¥p >= Op

SVD modes of @ = L7 Q gives access to POD modes, if M = LL” according to the Cholesky
decomposition, with m;; = [, vi¢; dQ2, such that

N
b= wivi, V=LV

i=1
More details in the work of S. Volkwein.
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Let’s consider

N

N
V(-,j) = Z(pl plj7 u('?j) = Z% ql] =< V(',j),U(',j) >= p]TMq] = (PTMQ)/]
i=1 i=1

Let’s consider

N
M=LL", Q=L"Q, v}= PR Rt VAR VoA Vi Y
k ®i v
i=1
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Let’s consider

N N
V(-,j) = lel plj7 u('?j) = Z% ql] =< V(',j),u(',j) >= pjTMq] = (PTMQ)/]
i=1 i=1

Let’s consider
_ N
M=LL", Q=LTQ, ;=) ovy* VI =LTv vTve=ly
=1
Then _
rank(V* (V*T Q)) < N (we assume, = N), and
m N
D G ) =Dk < kul)) > Hfz(g) =Tr[(@—V¥* (V¥*T MQ))" M(Q — V¥* (V¥*T MQ))]
j=1 k=1
=T(@-Vv* (VT Q)7 (@-V* (V*T Q)]
whose minimum is the SVD of Q.

VIV=1 = VOTLLTVY =1 = <4y, 9, >=bpp
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Fundamental assumption

All data are related to the same discretization of 2: a unique mesh.

The mesh is assumed to be convenient for accurate predictions related to all parameters and all
time instants!

In most cases, mesh adaptation is not the purpose of model reduction methods.
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The Finite Element (FE) method

Let’s consider the following balance equation:
ucul+V, L(u)=0vxeQ, (eg.L=pii—div(Ce(u)))

what ever the material is, and what ever the boundary conditions are, the weak form of the FE
equations reads:

ueuw +Vv, Vh= span(c,a,-){‘:f1 cV, / LUV dQ=0 WW* eV,
Q

N
u(x, 1) =u? + > ¢;(x) gi(1)
i=

This is a full order model (FOM).
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Cea’s lemma

Let V be a real Hilbert space with the norm || - ||

In case of elliptic problems, let’s introduce a bilinear form:

a(v, w) = /ﬁw(ﬁ(v) —£(0)dx €R

with the property, 3v > 0, « > 0 such that:
@ Jav, w)| < ~IIvI| [l ¥ v, w (Continuity)

@ a(v,v) > a ||v||2 (Coercivity)
and a linear form:
b(w) =/w£(0) dx €R
Q

Let’s denote by uj, the unique (Lax-Milgram theorem) FE approximation of the unique exact solution u:
Up € Vy C V, a(up, W) = b(w) YW € Vy

Cea’s lemma states: ~
Jlu—upl < X min fju—v]|
« VEVy

The lower the projection error on V}, of u, the better the solution uy,.

This lemma is valid for all subspaces of V, especially for Vroy C Vp.
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Usual offline procedure when using the Proper Orthogonal

Decomposition (POD)

During the design of the experimental set-up: the numerical results of preliminary FE solutions are
considered as data for the snapshot POD [Sirovich 1987].

‘ u(xprtj;ﬂl) = Qi/ vx € Q
N

u(X, i py) = Uo + > (%) Qj
i=1

Vn = span(ey, ..., Pxr)

rangmemsas s
These data are the inputs of a singular value decomposition (SVD).

o
S wT

Q= =
>
= -
2 ! contabutions
v Number of empirical modes
N
Urom(X, t; p) = Z"/’k(x) Wt m), Pr(X¥) =D @i(X) Vi, N << N

i=1
Doctoral workshop, Mines ParisTech, 13-17 february 2016
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Numerical example, POD modes (Z-set code)

We have performed the simulation of 5 load cycles. The POD Reduced Basis has 6 empirical
modes. Additional modes can be obtained by the DEPOD.

o ¥

s PRS0 PSR egeal -, -

a L »
B A

N,
el  =Smal =Ganfll =il

POD modes are global shape functions for model reduction.
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The usual POD Galerkin setting

ucul 4V, V= span(<,a,v){\:’1 cV, / LU)v dQ=0 W* eV,
Q
becomes

ueu?+ Vrom, Veom = span(wk),’é’ﬂ C Vh, / LU)v dQ=0 W* € Vgoy.
Q
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Matrix setting of the equations

Let’s consider an implicite Euler scheme combined to the Newton-Raphon algorithm. We restrict
our attention to a linear step of the Newton-Raphson procedure.

The setting of the Reduced equations Doctoral workshop, Mines ParisTech, 13-17 february 2016 33/40



Matrix setting of the equations

Let’s consider an implicite Euler scheme combined to the Newton-Raphon algorithm. We restrict
our attention to a linear step of the Newton-Raphson procedure.

Let’s r be the residual of the FE balance equations:
a7r@ = [ Lwvan u=uwiYea v =Y eq
i i

The linear correction step reads:

or

J(q) 69 = —r(q), avecd(q) = @(q)

The new prediction of the degrees of freedom reads: q + 4q.
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Matrix setting of the equations

Let’s consider an implicite Euler scheme combined to the Newton-Raphon algorithm. We restrict
our attention to a linear step of the Newton-Raphson procedure.

Let’s r be the residual of the FE balance equations:
a7r@ = [ Lwvan u=uwiYea v =Y eq
i i

The linear correction step reads:

or

J(q) 69 = —r(q), avecd(q) = @(q)

The new prediction of the degrees of freedom reads: q + 4q.

The Galerkin setting of the reduced problem reads: Find §q = V §~ such that,

V(@) Véy=-V'ra), q=V~.

The setting of the Reduced equations Doctoral workshop, Mines ParisTech, 13-17 february 2016 33/40



Matrix setting of the equations

Let’s consider an implicite Euler scheme combined to the Newton-Raphon algorithm. We restrict
our attention to a linear step of the Newton-Raphson procedure.

Let’s r be the residual of the FE balance equations:
a7r@ = [ Lwvan u=uwiYea v =Y eq
i i

The linear correction step reads:

or

J(q) 69 = —r(q), avecd(q) = @(q)

The new prediction of the degrees of freedom reads: q + 4q.

The Galerkin setting of the reduced problem reads: Find §q = V §~ such that,
V(@) Véy=-V'ra), q=V~.
It is related to the following orthogonality constrain:

J@)Vy+r() eRN 1L VeRVXN
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The computational complexity of the Galerkin procedure

Vi J@)Viy=-V'r@), q=Vr.

Number of floating point operations (flops) related to V7 r(q) : 2 N N,
Number of floating point operations (flops) related to V7 J(q) V: 2 N2 N+ 2 N N b. Where b is
the number on non-zero entries in each row of J.

Although N < N, the Galerkin procedure is time consuming when we need to update the tangent
stiffness matrix of the ROM.

Here N must be smaller than the band width of J in order to reduce the computational complexity.
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Numerical simulatio

Steady state thermal problem: heat conduction in a composite material. 5 parameters: thermal
conductivity of each inclusion, 2 heat fluxes at the boundary ¢4 and ¢».
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Sanpsho

Q has 7 columns.

J=-g ]
§ -
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POD empirical modes

Q=Vsw’, =

{0

f:
s " . <
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POD empirical modes

Q=Vsw’, =

{0

f s
N | RS

Computational time: FEM 0.3 s, Galerkin POD 0.3 s
No speedup!
50 % of the computational time is devoted to the assembly procedure.
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Linear problems with affine parameter dependence

Here
J(p) = Jo + p1 J1 + p2 do + p3 J3

r(p) = pg ¥g + ps s
Then, the following projections can be performed during the offline phase:

JA=vTyv, i=0,1,23

f=virv, =45
The online operations reads:

WS+ 11 I + 12 IF + g IF) v = ps v + ps vl

But the extension of this decomposition in not straightforward for nonlinear problems involving
threshold effects. Solutions are proposed by the Empirical Interpolation Method or
Hyper-reduction methods.
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Outlook

In the future,
@ less data destruction
more massive experimental data (Tomography, ...)
more image processing
more parameters in numerical models
more FE simulations and more simulation data
high dimensional visualizations and collaborative tools
more model reduction and data compression
hybrid Full-order/reduced-order modeling (Partial far field mechanics)
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