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Abstract 

9-12%Cr creep-resistant ferritic-martensitic steels are candidates for structural components of Generation IV nuclear power 
plants. However, they are sensitive to softening during fatigue and creep-fatigue loading. To better understand softening 
mechanisms in ASTM Grade 92, fatigue tests were carried out at 823 K at various strain amplitudes. Two different values of the 
strain rate (2 10-3 s-1 and 10-5 s-1) were used for one strain amplitude. The softening behavior is mainly due to microstructural 
evolution. Examination of fractured specimens (hardness tests, TEM) shows an influence of strain rate on both increase in 
subgrain size and decrease in free dislocation density during cycling. Study of the evolution of isotropic, kinematic and viscous
contributions to stress during fatigue tests shows a decrease in the kinematic contribution during cycling. A simplified mean field
polycrystalline model based on subgrain growth is proposed in order to account for this strain rate effect. Potential impact on
further creep resistance behavior is discussed. 
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1. Introduction 

Several grades of 9-12%Cr tempered martensitic steels are candidate materials for structural components for 
Generation IV nuclear power plants. They possess high strength and high thermal conductivity, low thermal 
expansion compared to austenitic steels, good corrosion resistance and interesting mechanical properties after 
irradiation [1-2]. However, they are sensitive to softening during high temperature mechanical loading such as low 
cycle fatigue, creep, and creep-fatigue [3-5]. Transmission electron microscopy (TEM) and electron backscatter 
diffraction (EBSD) performed with field-emission gun scanning electron microscope (FEG-SEM) observations 
showed that this phenomenon is mainly due to an increase in size of the microstructure and a decrease in free 
dislocation density during high-temperature deformation [6-8]. 

The strain rate seems to influence the microstructural stability of Grade 92 (9% Cr) steel at least during tensile 
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tests [9]. The purpose of the present work is to focus on the influence of strain rate on microstructural stability of 
Grade 92 steel during pure fatigue (PF) tests at 823K. 

Besides TEM observations of specimens after fatigue tests, a possible way to identify the main physical 
mechanisms inducing softening is partitioning of the macroscopic cyclic stress between “isotropic”, “kinematic” and 
“viscous” contributions [10]. Finally, a simplified mean field polycrystalline model based on Kröner’s approach [11] 
is proposed. Using physical parameters mainly determined by microstructural observations, the model describes the 
evolution of the dislocation structure. The results are discussed and some prospects are proposed in order to improve 
the model. 

2. Low cycle fatigue results 

2.1. Pure Fatigue tests 

Pure fatigue tests were conducted on Grade 92 steel specimens taken from a pipe of 219 mm in outer diameter 
and 20 mm in thickness. Its chemical composition is given in Table 1. The as-received material had been austenized 
at 1333 K for 30 min, quenched and tempered at 1043 K for 60 min. 

Table 1. Chemical composition of the studied Grade 92 steel (in wt%) 

Elements C N Cr Mo W Mn V Si Ni Al Nb P S B

Wt. (%) 0.12 0.046 8.68 0.37 1.59 0.54 0.19 0.23 0.26 0.02 0.06 0.014 0.004 0.002 

All PF tests were performed in air at 823 K using a MAYES ESM100 servo-mechanical machine with resistance 
furnace heating. They were conducted on smooth cylindrical specimens with 16 mm in gauge length, 8 mm in gauge 
diameter and a shoulder radius of 16 mm, machined from mid-thickness of the pipe along its longitudinal axis. The 
temperature along the gauge part of the specimen was controlled within ±2 K. PF tests were performed with a 
control of axial strain, measured by a capacitive extensometer (10 mm in gauge length) directly attached on the 
gauge part of the specimen. The accuracy of elongation measurements is better than 0.5 μm, allowing PF tests with 
a total strain range as small as 0.1 % to be conducted. Ten PF tests were carried out at 2 10-3 s-1 for various fatigue 
strain ranges (Table 2). Additionally, one PF test was performed at 10-5 s-1 for a strain range of 0.70 %.  

Fig. 1 presents the relationship between plastic strain range and fatigue lifetime N50 for Grade 91 and Grade 92 
steels in similar conditions (except for test 11 at 10-5 s-1). For a given imposed strain rate, no significant difference 
between Grade 91 and Grade 92 steels is observed: the Manson-Coffin parameters of each adjusted curves do not 
differ significantly with respect to experimental scatter . Moreover, although only one PF test was carried out at 
10-5 s-1 on Grade 92 steel, it seems that the strain rate has no significant influence on fatigue lifetime.  

2.2. Cyclic softening curves 

The study of the 10 PF tests carried out at 2 10-3 s-1 for various strain ranges from 1.00 % to 0.40 % of total strain 
showed that softening is more pronounced for higher strain range values: the higher the strain range, the more 
pronounced the softening effect. 

To study the influence of strain rate on P92 cyclic softening, this work will now focus on tests 3 and 11 whose 
conditions are the same except for the strain rate. Fig. 2 presents four hysteresis loops recorded at the 1st, 10th, 100th

and 1,000th cycle for each test. 
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Table 2. PF tests results on Grade 92 steel. E is the macroscopic strain range and Ep is its plastic part. Nf and N50 are the number of fatigue 
cycles to fracture and leading to a 50 % decrease in maximum stress, respectively. 

Tests Strain rate (s-1) E (%) Ep (%) N50 Nf

1 2 10-3 1.00 0.610 1,872 2,291 

2 2 10-3 1.00 0.618 2,225 2,392 

3 2 10-3 0.70 0.335 4,450 4,552 

4 2 10-3 0.70 0.334 5,193 6,689 

5 2 10-3 0.60 0.245 7,613 8,545 

6 2 10-3 0.60 0.242 8,482 9,786 

7 2 10-3 0.50 0.155 12,957 13,450 

8 2 10-3 0.50 0.158 15,374 15,961 

9 2 10-3 0.40 0.083 144,766 157,017 

10 2 10-3 0.40 0.089 169,793 170,829 

11 10-5 0.70 0.376 3,793 3,960 

Fig. 1. Manson-Coffin curves for Grade 91 [12] and Grade 92 steels at 823 K. 

(a)            (b)

Fig. 2. Hysteresis loops recorded at 1st, 10th, 100th and 1,000th cycles of PF for (a) test 3 and (b) test 11. 
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Although hysteresis loops of test 11 are affected by some noise (Fig. 2(b)), cyclic softening is significant for both 
strain rates (Figs. 2 and 3) and the stress range decreases faster for the lower strain rate (Fig. 3(b)). This result means 
that the studied material is more sensitive to softening for lower strain rates.  

(a)       (b)

Fig. 3. (a) Evolution of maximum, minimum and mean stresses for test 3 and test 11 and (b) evolution of the difference between stress range of 
test 3 and stress range of test 11: dif(N) = test 3 (N) - test 11 (N) with  (N) = max (N) - min (N) for each test. 

2.3. Analysis of softening 

To improve the understanding of strain rate sensitivity during PF tests, evolution of the isotropic (R), the 
kinematic (X) and the viscous parts ( v) of the macroscopic stress have been studied. This partition is used to 
investigate the mechanisms responsible for the mechanical behavior of crystalline materials under cyclic 
loading [13]. On the one hand, the effective stress, corresponding to the sum of the isotropic and viscous parts, 
corresponds to short-range interactions and is assimilated to the stress required to move a dislocation. On the other 
hand, the kinematic stress corresponds to long-range interactions (subgrain boundary effects, strain 
incompatibilities…) [12]. A method developed by Fournier et al. for highly viscous materials [12] is used to extract 
and study the evolution of the three components during test 3 (Fig. 4).  

(a)              (b)

Fig. 4. Evolution of the kinematic (X), isotropic (R) and viscous ( v) contributions to total stress for test 3 (a) in compression and (b) in tension 

Both in compression and in tension, R and v are constant during the test: they do not decrease, except at the very 
end of the tests, due to macroscopic cracking in the specimen. However, the variation of X shows a gradual 
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decrease: during the first cycles, X is about 70 MPa higher that R, whereas their respective values are equal at the 
end of the test. Thus, similarly to the case of Grade 91 steel [12], cyclic softening of Grade 92 steel during pure 
fatigue at 550°C is mainly due to a decrease in kinematic hardening i.e. to a decrease in long-range interactions, 
probably induced by the vanishing of low-angle subgrain boundaries often reported in the literature [14,15]. 
Concerning test 11, the significant noise which affects experimental data did not permit us to apply the Fournier’s 
method to extract R, X and v. However, the hysteresis loops presented in Fig. 2 show similar trends for the two 
tests: a decrease in the value of X is also expected for test 11. Microstructural observations have been carried out in 
order to confirm these results. 

3. Microstructural evolution 

The microstructure of tempered martensite steels is composed of prior austenite grains, packets, blocks, laths and 
subgrains [16]. Evolution of this complex microstructure during fatigue, creep and creep-fatigue tests [3,14,17-19] is 
expected to affect softening. As precipitation is expected to be hardly affected by (short-term) pure fatigue at 550°C, 
the following microstructural observations focus on the evolution of subgrain size and dislocation density. Some of 
the typical effects resulting from long-term tests at high temperature (growth of M23C6 precipitates, formation of 
Laves phases and Z phase…) [19-21] are thus neglected in this study. 

3.1. Experimental procedures 

Subgrains were observed with a PHILIPS EM430 Transmission Electron Microscope (TEM) operated at 300 kV. 
Thin foils were taken from the as-received material and from the gauge length of specimens after tests 3 and 11, far 
from the fracture area and in a zone perpendicular to the loading axis. Small slices were cut and mechanically 
polished down to a thickness of 200 μm. For each of them, 3 mm diameter discs were punched and electrolytically 
thinned with a solution composed of 90 % ethanol and 10 % perchloric acid. 

The size distribution of subgrains was determined from one typical TEM bright field picture for each sample with 
a magnification of 5500. Subgrains were manually traced on a transparent medium, followed by image processing 
with Matlab software. About 1,100 subgrains for the as-received material and about 400 subgrains for tests 3 and 11 
samples were quantified on an area of interest of about 265 μm2 for each material. 

The average free dislocation density was determined from two TEM images of each sample with a mean linear 
intercept method using four randomly oriented segments per image [22]. The value of the average density was 
determined using Eq. 1 with e the local thickness of the thin foil (assumed to be about 0.15 μm), ni the number of 
intersections between a segment and a dislocation and li the length of a segment: 

i i

i i

le

n2
(1) 

3.2. Evolution of hardness and damage development 

The as-received Grade 92 steel shows a macrohardness of 224 ± 4 HV30 in sections both parallel and 
perpendicular to the pipe axis. Fatigue specimens show a slight decrease in hardness i.e. 210 ± 4 HV30 after test 3 
and 207 ± 4 HV30 after test 11 far from the fractured surface. No significant effect of strain rate was evidenced. 

Study of damage was rigorously carried out for Grade 91 by Fournier et al. [23] and permitted to exclude the 
influence of this phenomenon on the sensitivity of this kind of material to softening. Moreover, even if the 
cumulated viscoplastic deformation is high during PF tests, a previous study showed that cavitation has no influence 
on softening for Grade 92 during tensile tests [9].  As growth of cavities during uniaxial deformation was not 
significant in the uniformly strained part of the gauge length, even for low strain rates, it seems that softening is 
mainly due to microstructural evolution. 
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3.3. Evolution of dislocation structure 

Microstructural evolution of tempered martensite during high temperature mechanical loading is well known [18-
21]. Short-term PF tests on Grade 91 steel induced a modification of subgrain size distribution and a decrease in 
average free dislocation density [7-8]. TEM observations of the present study clearly show that numerous laths and 
subgrains of the as-received microstructure coarsened during PF tests (Fig. 5). A wider size distribution of subgrains 
is observed after PF tests (average sizes equal to 0.70 ± 0.05 μm and 0.74 ± 0.05 μm for tests 3 and 11 respectively) 
than in the as-received material (average size equal to 0.43 ± 0.05 μm), due to a heterogeneous increase in size of 
subgrains (Fig. 6). Fig. 6(b) shows that a lower strain rate induces a slightly wider distribution of subgrain size. This 
slight difference may have an influence on the slightly higher softening rate during test 11 with respect to test 3. 

Regarding the decrease in average free dislocation density during PF tests, TEM observations (Fig. 5) show a 
lower free dislocation density after PF (~ 1014 m-2 for test 3), especially for the lowest strain rate (~ 3 1013 m-2 for 
test 11) compared to the as-received material (~ 2 1014 m-2), in agreement with the observed cyclic softening. 

The microstructural mechanisms responsible for softening are based on the disappearance of subgrain 
boundaries, composed of dislocation networks, induced by their annihilation with mobile dislocations that glide 
during viscoplastic deformation (see detailed description in [9,15]). In the present study, a simple homogenization 
model was introduced, using the mechanical effects of the evolution of the dislocation network induced by low cycle 
fatigue in order to predict the macroscopic behavior of Grade 92 steel. 

            
(a)          (b)                (c) 

Fig. 5. TEM observations of the microstructure (a) in the as-received material, (b) after test 3 and (c) after test 11 

(a) (b)

Fig. 6. Subgrain size distribution and corresponding cumulative frequency (a) for as-received material (average 0.43 ± 0.05 μm) and (b) after 
test 3 (average 0.70 ± 0.05 μm, dark grey and black continuous line) and after test 11 (average 0.74 ± 0.05 μm, bright grey and black dotted line) 

2146 P.F. Giroux et al. / Procedia Engineering 2 (2010) 2141–2150



P.F. Giroux et al. / Procedia Engineering 00 (2010) 000–000 7

4. Modeling cyclic behavior and metallurgical evolution during fatigue 

4.1. Description of the model 

The model presented in this paper is a simple mean field model based on polycrystalline elastoplasticity.  
Equations described in this part were implemented in SiDoLo software. Simulations were carried out considering a 
body-centered cubic (BCC) polycrystal composed of 50 crystals (here, martensite blocks) with randomly distributed 
crystal orientations. BCC crystal structure requires considering two families of slip systems – {110} and {112} 
planes and <111> slip directions – which altogether mean 24 slip systems. 

In a first approximation, the model is based on Kröner’s model [11] and the localization rule is given by the 
interaction law as follows: 

PP12 E (2) 

In Eq. 2,  is a constant equal to 2(4 - 5 )/15(1 - ) [11]; μ is the shear modulus equal to 68 GPa;  is the 
Poisson’s ratio equal to 0.3;  and  are respectively the local (i.e. in the considered block) and macroscopic stress 
tensors and P and EP are respectively the local and macroscopic plastic strain tensors. Considering one block and 
one slip system i, the shear stress i is expressed in Eq. 3, resulting from the projection of the local stress tensor  on 
ith slip system. 

iii nm: (3) 

In Eq. 3, mi is the slip direction and ni is the normal to the slip plane. The critical shear stress c corresponding to 
the sum of the critical shear stress on each of the 24 slip systems and required to activate the plastic slip, is supposed 
to be the same for all slip systems. It is expressed as: 

se0c b (4) 

In Eq. 4,  is a constant equal to 0.35 for BCC crystals [24]. As the Peierls stress is close to zero for temperature 
higher than 400 K [25], 0 is taken equal to zero. Other obstacles, such as MX precipitates, are not taken into account 
in this simple model; the influence of this hypothesis is discussed later. The Burgers vector magnitude b is equal to 
0.254 nm. In this model, the distinction between edge and screw dislocations (with respective total free dislocation 
densities e and s) is required as explained later. Both average free dislocations densities e and s are considered as 
homogeneously distributed in the matrix: thus, each of the 24 slip systems i is characterized by two free dislocation 
densities e

i and s
i respectively equal to e/24 and s/24 in the as-received condition. Here, subgrain boundaries are 

considered as networks of edge or screw dislocations [26]. Following this hypothesis, viscoplastic slip and evolution 
of dislocation density are expressed separately for edge and screw dislocations. Viscoplastic slip on slip system i
requires a positive effective stress Ai, defined as: 

c
iii xA   (5) 

xi is the local kinetic hardening (its evolution is described in Eq. 10). Following the theory of thermally activated 
processes [27], if Ai is positive, the viscoplastic slip rates are expressed for edge and screw dislocations respectively 
by: 

Tk
AV

Tk
Qb

i
i
e

i
e sinhexp2

0 and
Tk
AV

Tk
Qb

i

j

j
s

i
s sinhexp2

0  (6) 

In Eq. 6, 0 is a vibration frequency relative to jump over an obstacle and is equal to about 1013 s-1. Parameters k,
T, Q and V are respectively the Boltzmann constant, the testing temperature, the activation energy and the activation 
volume.  is the set of slip systems containing screw dislocations having the same Burgers vector as the considered 
screw dislocation. For a given slip system i and a given dislocation type (edge or screw), the evolution of average 
misorientation is expressed as: 
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i
e

i
e

i
e b

ye  and 
j

j
s

j
s

i
s b

ys (7) 

ye (resp. ys) is the athermal edge (resp. screw) annihilation distance, equal to about 6b (resp. 200b) for copper at 
room temperature [28]. Subgrain boundaries are here considered to be composed of either edge or screw dislocation 
types in equal quantities. Their corresponding misorientations ( e

i and s
i respectively) are weighted values of the 

misorientation of each subgrain boundary type. The diameter d of subgrains is calculated simply using Eq. 8, and 
dblock being the average subgrain misorientation and the average size of blocks, respectively.  

block
block dddd

0

0 with (8) 
24

1
se

i

ii

In Eq. 8, d0 is the initial diameter of subgrains, equal to 0.43 μm (see previous section) and 0 is the initial 
average misorientation equal to 1.7° [29]. As total free dislocations densities, 0 is considered as homogeneously 
distributed in the matrix: in as-received condition, both e

i and s
i are equal to 0/48. Based on a Hall-Petch-like 

formulation, the maximal kinematic stress for one given slip system was expressed by Li [30] as follows, with block
the misorientation between two blocks: 

dd
d

dd
dbx block

blockblock

i

33

max 1
2
45.0

1
 (9) 

block and dblock were taken from EBSD measurements on a Grade 91 steel [31]. During one cycle, the evolution of 
the local kinematic hardening on each slip system is described by: 

ii
i

i
iii

x
xxsignCx se
max

(10) 

The function sign( i – xi) is set to +1 if ( i – xi) is positive and -1 if ( i – xi) is negative. In the present paper, the 
dislocation density during cycling is considered as constant: at present, neither softening nor evolution of isotropic 
hardening is taken into account (in fact, isotropic hardening has been shown in previous sections to be constant). 
Consequently, the identification of model parameters was performed on the first cycle of test 3. 

4.2. Identification of model parameters 

The set of parameters and their values required for the model are presented in Table 3. Only three of them (Q, V
and C) were adjusted for predicting the hysteresis loop of test 3 as accurately as possible. 

Table 3. Parameters and their value required for the model. Fixed parameters were estimated from literature or from simplifying assumptions and 
adjusted parameters were optimized by an iterative method 

Universal constants and microstructural parameters evaluated from the as-received condition and observations of first loop of test 3 

0.3 T 823 K  block 30 ° [31] 

μ 68 GPa  ye 2 nm [28] d0 0.43 μm 

0 1013 s-1 [27] ys 50 nm [28] dblock 2.3 μm [31] 

b 2.54 10-10 m  = e + s 2 1014 m-2

k 1.38 10-23 J.K-1
0 1.7 ° [29] 

Fixed parameters Optimized parameters 

0.35 [24]   Q 1.3 eV 

0 0 MPa [25] V 110 b3

   C 406,800 MPa 
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The results of the model are presented for the first cycle in Fig. 7. 

(a)       (b)

Fig.7. First hysteresis loop recorded and the corresponding model prediction using parameters from Table 3 (a) for test 3 and (b) for test 11 

Although only three parameters were adjusted, the model shows good agreement with experimental stress-strain 
curves and with the expected strain rate sensitivity. The difference between experimental data and predicted curve 
on the first tensile load is due to the simplified hypothesis of neglecting the strengthening effect induced by 
precipitates in the tempered martensite matrix. Considering the values of adjusted parameters, the activation volume 
V is similar to the value corresponding to fatigue-induced plastic deformation (about 100 b3) and the activation 
energy Q is lower than that of typical diffusion processes in ferrite (about 2.5 eV). These results are nevertheless in 
agreement with literature: the corresponding values are significantly scattered because they strongly depend on the 
material, experimental conditions and technique that are used [12]. The small value of V suggests that viscoplastic 
deformation is driven by phenomena taking place at a scale finer than the subgrain size. 

The macroscopic strain rate sensitivity is well predicted by the model. However, cyclic softening is not taken into 
account in this present study yet: the first improvement of the model will be to implement the evolution of free 
dislocation density during fatigue testing. Other main improvements will concern the localization law used in the 
model and the maximal kinematic stress evolution. A localization law adapted from the approach of Molinari et 
al. [32] will be implemented in the model in order to better approximate the elastic-viscoplastic behavior of these 
steels: indeed, the present Kröner’s localization rule does not permit us to predict accurately loading involving 
significant viscoplastic deformation, such as relaxation or creep. Eq. 9 formulated by Li will be replaced by another 
model in better accordance with experimental observations. Finally, misorientations between subgrains that are 
more realistic with respect to the tempered martensite microstructure will be considered. 

5. Conclusions 

Pure fatigue tests at two different strain rates (2 10-3 s-1 and 10-5 s-1) were carried out at 823 K on Grade 92 steel. 
Experimental results and model prediction lead to the following conclusions: 

1. Cyclic softening depends on the strain rate: the lower the strain rate, the more pronounced the cyclic softening. 
2. Cyclic softening is mainly due to a decrease in the kinematic part of hardening during the fatigue test. TEM 

observations show that this is induced by an increase in subgrain size and a decrease in free dislocation 
density. These evolutions are more pronounced for the lower strain rate. 

3. The model gives a good prediction of the influence of strain rate on the macroscopic mechanical behavior 
during the first cycles. However, it has to be improved to describe softening due the evolution of subgrain size 
and free dislocation density during further cycling. 
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