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Abstract An attempt is made here to capture numeri-
cally slant ductile fracture and its early slant strain pre-
cursors via combining a dynamic strain aging (DSA)
model with ductile damage models. In recent experi-
mental studies it has been shown that in an AA2XXX
alloy strain localization in slant bands preceded the
onset of damage, originating slant fracture ahead of
a notch. Here tensile tests are performed at differ-
ent strain rates revealing some negative strain rate
sensitivity which is an indication of DSA effect for
AA2198-T8. A McCormick-type DSA model in con-
junction with a Rousselier damage model, a reduced
polycrystalline plasticity model and a Coulomb frac-
ture criterion for slip systems have been used. Full 3D
finite element simulations using this model and typical
parameters for aluminum alloys capture the early strain
localization in slanted bands, their intermittent activ-
ity and the final slant fracture. Prior simulation results
without the DSAmodel and others using the vonMises
plasticity or the GTN model did not capture the early
slant strain localization thereby suggesting that DSA
may well be the physical origin of the early slant strain
localization and final slant fracture phenomena in this
alloy.
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1 Introduction

The understanding and prediction of strain and dam-
age interactions in ductile alloys remain a crucial topic
e.g. due to the need for weight reduction without com-
promising passenger safety in transport applications.
The development of novel alloys and enhanced join-
ing techniques (Le Jolu et al. 2014, 2015) make duc-
tile alloy candidates for future structural applications.
This understanding of strain and damage interactions
is important formicromechanics-based development of
newmaterials and the assessment of structural integrity.

Ductile fracture is commonly linked to ductile frac-
ture micromechanisms which are: the nucleation of
voids, their growth and final coalescence. However,
failure in cases where strain localization takes place
and also in cases where the triaxial stress, the driving
force of void growth during ductile deformation, is low,
i.e. typically below 1 (Papasidero et al. 2014) is poorly
understood. An insufficiently understood phenomenon
linked to localization and strain and damage interac-
tions during ductile tearing is slant fracture (Mahgoub
et al. 2003).

With recent advances in synchrotron imaging (Maire
et al. 2011; Maire and Withers 2014) and strain mea-
surement techniques via digital volume correlation
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(Morgeneyer et al. 2013), it has become possible to
measure damage and strain evolution in situ and in
three dimensions non-destructively. For the observa-
tion of damage and strain interaction during ductile
tearing of sheet materials synchrotron laminography is
particularly adapted (Helfen et al. 2012).

For an Al–Cu–Li alloy with low work hardening
(AA2198-T8) it has been shown with these techniques
that slant strained bands precede the onset of dam-
age and the slant crack (Morgeneyer et al. 2014). This
region of the sample has been shown to be in a plane
strain state with respect to the crack propagation direc-
tion (Buljac et al. 2016). It has also been shown that
the ratio between the strain in the band and outside
of the band was of the order of 2 (Morgeneyer et al.
2014). In other words, the material outside the bands
also deforms during every load step, except for the very
last ones, but to a lesser extent than the material within
the band. For the last load step deformation only occurs
within the band. Strain concentrations in a slant band
were observed very early on and the scene for localiza-
tion and fracture was already set. For another 2XXX
alloy with initial porosity and strong work hardening
(AA2139-T3), the early strain localization in slanted
bands ahead of a notch has been confirmed via themen-
tioned techniques (Morgeneyer et al. 2016). Intermit-
tent band activity and their relative stability in space
could be confirmed. Von Mises plasticity or a GTN-
typemodel did notmanage to reproduce the abovemen-
tioned findings in terms of slant bands or slant fracture
(Morgeneyer et al. 2014).

Slant fracture is hard to reproduce numerically in
general (Besson 2010). This could be linked to numer-
ical problems due to mesh dependence of local models
(Besson et al. 2001). Slant fracture has successfully
been simulated using shear void nucleation based on
theLodeparameter (Morgeneyer andBesson2011) that
actually resembles the shearmodification of theGurson
model (Nahshon andHutchinson 2008). InMorgeneyer
et al. (2016), this model has been used. Slant fracture
was reproduced successfully but the early strain local-
ization could not be captured. In Besson et al. (2013)
it has been shown via a computational cell simulation
that the dissipated energy reaches a minimum when
the crack is slanted. Experimentally, slant fracture is
widely observed in thin walled structures (Pardoen and
Hutchinson 2003) and can also lead to flip-flopping
phenomena (El-Naaman and Nielsen 2013; Simonsen
and Tornqvist 2004) that are neither understood nor

reproduced numerically, although out-of-plane loading
in thin sheets is a possible explanation.

One objective of the present work is to investigate
whether the multiple and intermittent crossing strain
bands could be related to dynamic strain aging (DSA)
via simulations. In aluminum alloys at room temper-
ature, DSA can also be involved in ductile fracture.
Shear banding in aluminum alloys at room temperature
has also been attributed to DSA and the Portevin–Le-
Chatelier (PLC) effect (LeChatelier 1909; Portevin and
LeChatelier 1923). It led to equally spaced rough bands
on the surface of a Kahn tear test specimenmade of Al–
Li alloy (Delafosse et al. 1993). InClausen et al. (2004),
it was noted that shear failure only occurred inside the
PLC domain. The macroscopic KEMCmodel has been
used for DSA in many papers (Zhang et al. 2001; Graff
et al. 2004; Benallal et al. 2008; Belotteau et al. 2009;
Mazière et al. 2010; Wang et al. 2011). In the present
paper, the polycrystalline framework enables to use
this model at the slip system scale, which seems more
appropriate (Rousselier and Quilici 2015; Marchenko
et al. 2016). The limitation is numerical: for a fixed
loading rate, the KEMCmodel is intrinsically unstable
when the so-called waiting time tw = ω/|γ̇ | decreases,
where γ̇ is the slip rate (or the strain rate in a macro-
scopic model) and ω is the strain parameter of the
model. Very small time steps are then required to
describe the transient behavior of PLC. Also, when the
parameter ω is very small for a given loading rate, the
numerical integration fails in some finite elements.

Another objective is to investigate the transition
from flat to slant fracture in a thin aluminum CT speci-
men. In some aluminum alloys, fracture surfaces do not
show the dimples related to void damage and another
mechanism is involved, in particular in slant and shear
fracture (Rousselier and Luo 2014; Morgeneyer et al.
2014). InRousselier andLuo (2014), theCoulomb frac-
ture model (Coulomb 1773) was combined with the
Rousselier damage model in the framework of poly-
crystalline plasticity. In the present work, the combina-
tion of these models with the KEMC model enables to
investigate the interactions of DSA with ductile frac-
ture. The combination of all the above-mentionedmod-
els is required to match the whole set of experimental
measurements and observations. It leads to several dif-
ficulties and the calculations are at the limit of what
is reasonably achievable. In finite element (FE) anal-
yses, the CPU time is very long because of the small
time steps required by the DSA model. For most of
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the calculations, a relatively coarse finite element mesh
is used to limit the CPU time. Another difficulty is
the mesh dependence in fracture predictions, in par-
ticular the propagation of a slant crack in a Cartesian
mesh for which a pragmatic method is used. The mod-
eling choices can be discussed but they succeeded in
reproducing qualitatively and quantitatively the local-
ized strain pattern found experimentally and the main
features of physical damage and of flat to slant fracture
transition.

The paper is structured as follows: material data
and experimental results from tensile tests are given
to assess the PLC effect for the material. Experimen-
tal findings for strain and damage interaction during
tearing measured by laminography and digital volume
correlation (DVC) are recalled. Fracture mechanisms
are discussed. The combined models are presented and
the material parameters are calibrated with the existing
observations and data. The numerical strain patterns
are compared to the measured ones. The flat to slant
fracture transition is shown for coarse and fine meshes.
The achievements and limitations of the current work
are then discussed and the main conclusions are drawn.

2 Experimental results for AA2198-T8R

2.1 Material

The 2.0 mm thick aluminum sheet was provided
by Constellium in the recrystallized state and after

an artificial ageing treatment (T8) generating nano-
metric hardening precipitates. The composition is
2.9–3.5Cu, 0.8–1.1Li, 0.25–0.8Mg, 0.1–0.5Ag, 0.04–
0.18Zr (in wt.%), balance Al. The intermetallic par-
ticles volume fraction is ∼0.3–0.4%, their size is 2–
3 μm. Almost no initial porosity was found (<0.03
vol%). The grains are elongated to ∼200–300 μm in
the longitudinal L direction and to ∼60 μm in the
transverse T direction. The typical grain size in the
short transverse S direction is ∼25–30 μm. The yield
strength is ∼440MPa and the ultimate tensile strength
is ∼500MPa, showing relatively low work harden-
ing. The material has moderate texture and hardly any
anisotropy measured in stress–strain curves.

The room temperature experimental tensile curves
in the transverse direction are plotted in Fig. 1, using
the nominal strain measured by the extensometer (�L:
elongation, L0: extensometer gage length = 25 mm,
specimen width = 6 mm, thickness = 2 mm). A small
but significant negative strain rate sensitivity equal to
4 MPa is observed in this alloy between 10−4 and
10−2 s−1. Repeated tests at the same strain rate give
a scatter smaller than 1 MPa. Serrations are larger for
10−2 s−1 in the enlargement of Fig. 1b, but they also
appear in other regions of the curves in Fig. 1a. As the
PLC effect is sensitive to temperature and strain rate,
the current test conditions seem to be located around the
lower boundary of the PLC sensitive zone (see Fig. 3
in Lebyodkin et al. 2000).

Fig. 1 Tensile curves in T-direction, elongation rates 10−5 to 10−2 s−1, F/S0 (MPa) versus �L/L0: a 420–520 MPa range and b
450–480 MPa range
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Fig. 2 Tensile tests in
T-direction, strain rate (s−1)
along the specimen gage
length (coordinate Y) versus
time (s), elongation rates: a
10−4 s−1, noise ∼10−5 s−1,
b 10−3 s−1, noise
∼10−4 s−1. The strain rate
scale is on the right of each
figure

The strain rate measured by 2D digital image
correlation (DIC) on the specimen surface is non-
homogeneous in the gauge length. It can be seen in
the space–time figures for 10−4 and 10−3 s−1 (Fig. 2: in
this figure, the strain along a line in the specimen length
direction Y is plotted vs. time). The tests at 10−2 s−1

show the same features. The heterogeneities are signif-
icantly larger than the estimated measurement noise,
equal approximately to 10−5 and 10−4 s−1 in Fig. 2a,
b, respectively. They have more or less fixed locations.
For 10−3 s−1, the locations are more mobile. The char-
acteristic length of the heterogeneities is larger than
∼1 mm. In this 2198-T8R alloy, DIC does not reveal
themobile inclined strain rate bands that can be seen for
example in 2198-T3R with the same chemical compo-
sition but with a different heat treatment. For nominal
strains �L/L0 larger than 0.1, the strain rate concen-
trates in some fixed regions of the gauge length and
eventually in a fixed horizontal band corresponding to
through-the-thickness slant fracture.

2.2 Laminography (CT specimen)

A CT-like specimen with dimensions: width W =
60mm, heightH = 70mm, thicknessB = 1mm, notch
length a = 36 mm, ligament W − a = 24 mm, notch
radius ρ = 0.17mm, was investigated by in situ X-ray
laminography at the European Synchrotron Radiation
Facility (ESRF, Grenoble, France) (Morgeneyer et al.
2014). A schematic view of the laminography exper-
imental set-up is shown in Fig. 3a. An anti-buckling
device was used to limit out-of-plane displacements.
A 3-D reconstructed volume of the notch region in the
initial unloaded state is also shown in Fig. 3a. The gray
levels give the notch geometry, the voids and the cracks
in plane sections and in reconstructed volumes. The

specimen is loaded in the T–L configuration. The coor-
dinates x, y, z correspond to L, T, S, respectively. The
two regions of interest (ROI 1 and ROI 2) defined in
Fig. 3b were analyzed with digital volume correlation
(DVC). Sections normal to L and S-axes are referred to
as L and S-sections in the sequel. The results are pre-
sented and discussed in Morgeneyer et al. (2014) and
Buljac et al. (2016).

A stepwise loading was applied on the crack with
screws (Fig. 3a). Each loading step is applied within
several seconds. The displacement is kept constant dur-
ing the laminography scans. More details are given in
Morgeneyer et al. (2014). The notch opening was mea-
sured at a mid-thickness point in the notch ∼200μm
in front of the initial notch tip using the laminography
images (e.g. Fig. 3). The notch opening displacement
(NOD) is obtained by subtracting the initial notch open-
ing (Table 1). The time is the one of the FE calculations;
it is defined in Sect. 4.3.

2.3 Strain fields

Figure 4a shows the incremental equivalent strain fields
in the ROI 1 for the previously described loading steps:
1–2, 2–3 and 3–4 (the correlation quality was insuffi-
cient for step 5). The incremental activity of the local-
ization bands can be seen more clearly in this represen-
tation than for the total equivalent strain fields. (Incre-
mental strain fields calculated by FE analysis are shown
for comparison. The used model combines a Rousse-
lier damagemodelwith dynamic strain aging, a reduced
polycrystalline model and a Coulomb model at the slip
system scale for damage. The model and the simula-
tions are discussed in Sect. 4.4.) For steps 1–2, themain
experimentally measured band is approximately ori-
ented at minus 45◦ in the yz plane and several parallel
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Fig. 3 (From Buljac et al. 2016). a Schematic view of the
laminography experimental setup with scanned region in front of
the notch root (red) and reconstructed volume. b Reconstructed
volume sections with ROI positions and relevant dimensions for

DVC analyses. ROI 1 corresponds to the analysis reported in
Morgeneyer et al. (2014). The approximate notch opening dis-
placement (NOD) measurement location is shown (initial value
2 ρ = 340μm has to be subtracted)

Table 1 Applied NOD measured on laminography images for loading steps 1 to 5 and at unstable fracture (Morgeneyer et al. 2014)

Load step 0 1 2 3 4 5 Failure

NOD (μm) 0 56 101 127 177 210 245

Time (s) 0 277 386 436 517 564 609

The corresponding time values are obtained with the FE analyses in Sect. 4

bands appear at plus and minus 45◦ with “hot spots”
at band intersections. The band pattern is not symmet-
ric with respect to mid-height (notch plane) and mid-
thickness. These features are preserved for steps 2–3
and 3–4 but strain is more and more localized in the
main band region. The band activity is highly variable
but the bands locations do not change much, perhaps
due to the large load steps.

The spacing between the bands ranges from 100 to
300 μm. By contrast, the strain heterogeneities that
appear in the DIC images of the tensile specimens
tested at 10−2 s−1, 10−3 s−1 and 10−4 s−1 are sepa-

rated bymore than 1mm (the specimenwidth is 6mm).
The length scale of the strain heterogeneities seems to
depend on the specimen geometry.

With the hypothesis of a one minute duration for
each load step, the maximum strain rate in the bands
increases approximately from 5×10−4 s−1 in steps 1–
2 and 2–3 to 10−3 s−1 in steps 3–4 (Fig. 4a). Outside
the bands, the strain is still increasing in steps 1–2 and
2–3, with an approximate rate of 2 × 10−4 s−1 (Mor-
geneyer et al. 2014; Buljac et al. 2016). In the case
of damage-related strain localization, the strain rate
contrast between the band and the adjacent material
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Fig. 4 Incremental von
Mises equivalent strain
fields: a DVC results in the
ROI 1 (reduced thickness
0.694 mm), front L-section
at x = 36.968 mm,
undeformed geometry (from
Morgeneyer et al. 2014), b
FE analysis with the fine
mesh, L-section x = 37 mm
viewed from x+, full
thickness 1 mm, deformed
geometry, the initial mesh is
in red lines. From left to
right: loading steps 1–2,
2–3 and 3–4 (3–4* for FE
analysis, stopped at
NOD = 171 instead of
177μm in Table 1). The
scales in % are the same for
DVC and FE

is expected to be larger. Moreover, damage could not
be found at micrometer resolution (Morgeneyer et al.
2014). By contrast, a smaller incremental strain rate,
approximately 10−4 s−1, is observed outside the bands
in the right figures for steps 3–4; it corresponds to the
localization that will lead to the final slant fracture.
With the hypothesis of 5 s duration for each load step,
probably closer to the real one, the strain rates still lie
in the range 10−2 to 10−4 s−1.

Note that for steps 1–2–3–4 of Table 1, the dam-
age is very small in ROI 1 (Morgeneyer et al. 2014).
In the simulations (Sect. 4.5, fine mesh), the crack tip
is at 0.06–0.2–0.3–0.8 mm from the notch tip, respec-

tively. The front section of ROI 1 at 0.968 mm is not
yet reached by the crack.

Figure 5a reveals the traces of the incremental strain
bands in S-sections parallel to the specimen faces.
(Incremental strain fields calculated by FE analysis are
shown for comparison. They are discussed in Sect. 4.4.)
Depending on the section (only mid-thickness sections
are shown here) and on the loading step, one, two or
three bands can be seen. A more quantitative assess-
ment is given in Fig. 8 of Buljac et al. (2016). In their
paper, it is also shown that at distances larger than
∼250μm from the notch tip, the strain in the crack
propagation direction L is very small and deformation
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Fig. 5 Incremental von
Mises equivalent strain
fields, ROI 2, mid-thickness
S-sections (z = 0),
undeformed geometry with
the notch on the left: a DVC
analyses (from Buljac et al.
2016), b FE analysis with
the fine mesh. From left to
right loading steps 0–1, 1–2
and 2–3. The scale 0–0.1 is
the same for DVC and FE

is mainly shear in the T–S plane. It can be concluded
again that the band activity is highly variable but that
the band locations do not change much; they are fixed
by the presence of the notch.

2.4 Fracture results

The fracture surface scanning electronic microscopy
(SEM) images of Fig. 6 show a typical flat-to-slant
crack transition in a thin sheet made of the same mate-
rial teared in similar conditions as in Morgeneyer et al.
(2014). The crack initiates at the notch tip or very close
to it and it first propagates in the notch plane in a flat
triangular region. At a small distance from the notch,
two shear lips form at the specimen surfaces. They join
each other after ∼1 mm propagation and the crack
becomes fully slanted. Large dimples corresponding
to the intermetallic particles can only be seen in the
flat triangular crack Fig. 6, but they are mixed with
flat zones without visible dimples. The shear lips and
slant zones could correspond to transgranular fracture.
Similar fracture zones without dimples were already
observed with SEM on the same alloy in the slanted
cracks of Kahn and M(T) specimens (Chen 2011).

In Fig. 12 of Buljac et al. (2016), the overlay of L-
section strain fields and final crack path reconstructed
images shows that, at distances larger than ∼250μm
from the notch tip, the “flat” crack triangle actually is
made of “zigzagged” failure patterns at the locations of
the very early strain bands. Associated with the limited
void damage, it supports the occurrence of an addi-
tional shear transgranular fracture mechanism in some
aluminum alloys.

These features are confirmed in Fig. 7a, b show-
ing the final damage ahead of the notch. In Fig. 7a,
the reconstructed image of the damage (in blue)
shows mainly the flat crack, together with some
transgranular damage in the elongated grains in the
L-direction (perpendicular to the notch round tip).
In Fig. 7b, damaged zones are selected at a smaller
scale. The slant crack appears at some distance from
the notch (the elevation of each point is represented
by a color scale). In the reconstructed S-sections of
Fig. 7c, transgranular cracking is more visible than
void damage; a small shear crack can be seen at
the notch tip, corresponding to the additional fracture
mechanism.

In Fig. 10 ofMorgeneyer et al. (2014), 3D rendering
of the very small initial porosity and of the void/damage
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Fig. 6 SEM of the full
thickness fracture surface
(left, triangular flat zone)
and of the flat zone (right,
enlargement of the red
quadrangle in left figure).
The horizontal bars
represent 100 and 10 μm,
respectively

Fig. 7 Voids/cracks at the
notch: a 3D rendering of
damage in the laminography
images investigated by
DVC, b height map of the
final crack, c 2D slices of
reconstructed laminography
data at mid-thickness
normal to the S-direction for
steps 4 (left) and 5 (right)

shows no evolution in ROI 1 after the first and second
loading steps. Some damage appears for steps 3 and
4 but only in the regions of strain localization and the
void volume fraction is still very limited (Fig. 8a). Final
failure is characterized by a burst of localized damage
forming a slanted crack (Fig. 8b). The slanted crack is
very straight and seems to be transgranular. No damage
can be seen after failure in the vicinity of the slanted
crack. The nanometric dimples on the slant fracture
surface are much smaller than the intermetallic par-
ticles (Fig. 8c). Slant strain localization is the critical
event and nanometric voids only appear in the localiza-
tion band after a large amount of deformation. Similar
tomography results without dimples were obtained by

Chen (2011) in the slanted cracks of Kahn specimens
made of the same alloy.

3 Models

The results of Sect. 2 reveal two original features:
(i) plastic deformation is heterogeneous at the macro-
scopic scale with the early formation of several inter-
mittent shear strain bands ahead of the notch, (ii) ductile
fracture mechanisms in the CT specimen are not only
void nucleation, growth and coalescence but also trans-
granular fracture with limited diffuse damage develop-
ment. Prior calculations using von Mises plasticity or
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Fig. 8 Voids/crack in the ROI 1: a, b laminography images investigated by DVC for step 4 and after unstable fracture, respectively,
c SEM of the slant fracture surface showing nanometric dimples, the horizontal bar represents 4μm (Morgeneyer et al. 2014)

the GTN porous plasticity and ductile fracture model
did not capture localization bands neither slant frac-
ture (Morgeneyer et al. 2014; Ren et al. 2016). This
indicated that plasticity modeling need to be enhanced
to be able to capture the experimental findings in sim-
ulations. To make an attempt to improve the plastic-
ity model and associated simulations, a well-known
dynamic strain aging (DSA) model (Kubin and Estrin
1985;McCormick 1988; Kubin and Estrin 1990; Estrin
and McCormick 1991; McCormick and Ling 1995;
Zhang et al. 2001) is used in the present analyses. This
so-called KEMC model is formulated here at the slip
system scale (Rousselier andQuilici 2015). In addition,
to account for fracture mechanisms not related to void
damage, the Coulomb fracture model at the slip sys-
tem scale (Rousselier and Luo 2014) is combined with
porous plasticity (Rousselier 1981). It is emphasized
that these combined models are all necessary to match
the numerous experimental observations, as detailed in
Sect. 4.1. The quantitative agreement is the result of
parameter calibration, Sect. 4.2.

3.1 Plasticity

A polycrystalline plasticity model is the backbone of
the present work. The framework of physically based
polycrystalline metal plasticity has intrinsic advan-
tages in describing the anisotropy and distortion of the
yield surface, as well as realistic anisotropic hardening.
Moreover, crystal plasticity is required to introduce the
DSA and Coulomb models at the slip system scale.

Besides, void nucleation and growth models have to
be reformulated in the polycrystalline framework. A
particular self-consistent polycrystalline model (Cail-
letaud 1992) was improved to model with accuracy the
anisotropic behavior at large strain (Luo andRousselier
2014). For brevity, only key ingredients of the polycrys-
talline plasticity model are presented here.

The polycrystal is composed of N grains (single
crystals) that differ only by their crystallographic ori-
entation. The single crystal model relates the slip rate
γ̇s and the resolved shear stress τs of each slip sys-
tem (s = 1 to M, M = 12 for the FCC aluminum
alloy). A phenomenological viscoplastic model (Cail-
letaud 1992) is used as the constitutive equations for
each slip system:

γ̇s = v̇sSign (τs − Xs) , (1)

v̇s = |γ̇s | = Max

[
0,

( |τs − Xs | − rs
K

)n]
, (2)

rs = rs(vs, vt ), ∀t �= s, (3)

α̇s = γ̇s − dαs v̇s, Xs = cαs . (4)

For each slip system, two scalar internal variables
are introduced: rs = rs(vs, vt ) for isotropic harden-
ing, depending on the cumulated slips v of the M slip
systems, and αs for kinematic hardening. Equation (4)
defines a nonlinear kinematic hardening model (Arm-
strong and Frederick 1966; Chaboche 1977) with two
parameters c and d. Viscoplastic flow reaches the rate-
independent limit for large n and small K . Two con-
stant hardeningmatrices H and K are introduced in the
isotropic hardening equation:
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rs = R + Q1

M∑
t=1

Hst
[
1 − exp (−b1vt )

]

+ Q2

M∑
t=1

Kst
[
1 − exp (−b2vt )

]
. (5)

In Eq. (5), R is the initial critical resolved shear
stress (CRSS) and the two hardening terms Q1 and Q2

depend on the cumulated slips of the M slip systems
(self and latent hardening) through the two hardening
matrices H and K . More details are given in Luo and
Rousselier (2014). The 12× 12 symmetric hardening
matrices only depend on six parameters h1 to h6 and k1
to k6, respectively. Readers are referred to Rousselier
et al. (2009) for the detailed elements of H (they are
the same in K ).

To establish a unique relationship between the
stresses at the macroscopic and microscopic (i.e. crys-
tal) scales, the so-called “β-rule” generalized for
anisotropicmaterials is used (Cailletaud 1992; Sai et al.
2006). It requires a scalar modulus C of initial elas-
tic accommodation close to the elastic shear modulus
μ = E/(1+ ν)/2, in accordance with Kröner’s theory
(Kröner 1971) and a fourth-order tensor of orthotropic
anisotropy D. With the Voigt notation for the symmet-
ric second-order tensors, D has 10 independent ele-
ments Di j .

3.2 DSA modeling

The physical origin of PLC is DSA, the pinning of dis-
locations by solute atoms that diffuse during straining.
The dislocations are temporarily arrested at obstacles
such as forest dislocations. Stress softening due to dis-
location unpinning could be the cause of strain local-
ization. It is postulated that each slip system has its own
history of dislocation pinning and unpinning by solute
atoms, corresponding to different aging times (Rousse-
lier and Quilici 2015). For the KEMC model, the DSA
term is added to the hardening Eq. (5) of each slip sys-
tem (to shorten the equation, H and K are substituted
with H1 and H2):

rs = R +
2∑

i=1

Qi

M∑
t=1

Hst
i

[
1 − exp(−bivt )

]

+ P1
[
1 − exp

(−P2v
α
s (ta)

β
s

)]
. (6)

The cumulated equivalent strain in theKEMCmodel
is substituted here with the cumulated slip vs of each

slip system. P1 and P2 are multiplicative constants, α
and β are exponents. The DSA term mainly depends
on the aging time variables ta (one for each slip system
s), the rate equation of which is:

ṫa = 1 − |γ̇ |
ω

ta . (7)

3.3 Ductile fracture

Contrary to the GTN model, the Rousselier model: (i)
fulfills the necessary kinematic condition for flat or
slant macroscopic localization (Rousselier and Quilici
2015), (ii) has the ability to model ductile fracture in
shear, (iii) can be reformulated in the polycrystalline
framework (Rousselier and Leclercq 2006) with the
plastic potential:

F = σeq

1 − f
−

⎛
⎝ N∑
g=1

fgσ g

⎞
⎠
eq

+D1 f σ1 exp

(
σ∗
m

(1 − f )σ1

)
,

(8)

In Eq. (8), σeq is the macroscopic von Mises equiv-
alent stress, f is the void volume fraction, the grains of
the matrix material g = 1 to N have the volume frac-
tions (1− f ) fg and the stress tensors σ g (the equation
for σ g is not recalled here). D1 and σ1 are constants.
As proposed in Morgeneyer et al. (2009), the mean
macroscopic stress σm is substituted with σ ∗

m to model
3D anisotropic void growth in an orthotropic material
(principal axes of orthotropy: L, T, N). For isotropic
void growth, αL = αT = αN = 1/3 and σ ∗

m = σm :

σ ∗
m = αLσLL + αT σT T + αNσNN with αL

+αT + αN = 1. (9)

The void volume fraction rate is the sum of a first
term due to the mass conservation law and a second
term for void nucleation; ε̇

p
eq is the macroscopic von

Mises equivalent strain rate:

ḟ = (1 − f )ε̇ p
eqD1 f exp

(
σ ∗
m

(1 − f )σ1

)
+ Aε̇ p

eq. (10)

In this paper, the factor A is a Gaussian function of
the cumulated equivalent plastic strain ε

p
eq with param-

eters fN , σN and εN (Chu and Needleman 1980):

A = fN

σN
√
2π

exp

⎡
⎣−

(
ε
p
eq − εN

σN
√
2

)2
⎤
⎦ . (11)
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For the Coulomb fracture model at the slip system
scale, an additional slip rate γ̇ C

s activated at large strains
is added to the slip rate γ̇s of Eq. (1). The total slip rate
is: γ̇ tot

s = γ̇s + γ̇ C
s . For |τ | + c0σn ≥ R0, the Coulomb

slip γ C
s and cumulated Coulomb slip are given by the

viscoplastic rate equations:

γ̇ C = Max

[
0,

(
|τ | + c0σn − R0 exp

(−b0γ C
cum

)
K

)n]
Sign(τ ),

γ̇ C
cum = γ̇ CSign (τ ) . (12)

In Eq. (12), the index s of the slip system is not
written. At the slip system scale, the only two stress
components are the resolved shear stress τ and the nor-
mal stress σn . The Coulomb model depends on the two
parameters R0 and c0. The novel feature in Eq. (12)
is a slow decrease (small parameter b0) of the critical
stress with γ C

cum, resulting in stress softening and strain
localization.

To sum up, the macroscopic plastic strain rate tensor
is:

ε̇ p = (1 − f )
N∑

g=1

fg

M∑
s=1

msg

(
γ̇s + γ̇ C

s

)

+ f
D1

3
exp

(
σ ∗
m

(1 − f )σ1

)
ε̇ p
eq1. (13)

In Eq. (13),msg is the orientation matrix of each slip

system; 1 is the unity matrix; ε̇ p
eq is calculated by taking

the second invariant of the first right-hand term. The
second right-hand term of Eq. (13) is the volumetric
strain rate, obtained by derivation of the porous plastic
potential Eq. (8); the DSA model is included in γ̇s ; the
Coulomb fracture model corresponds to γ̇ C

s .

4 Finite element analyses

4.1 Objectives, constraints, limitations

As mentioned at the beginning of Sect. 3, the objective
of finite element analyses in this paper is to model the
particular features of plastic deformation and slant duc-
tile fracture of the 2198-T8R CT specimen. As far as
possible, the constitutive models are based on physical
mechanisms and provide a quantitative agreement with
the available experimental data.

In ductile fracture, a large amount of plastic defor-
mation is involved. Therefore, a suitable modeling of
large strain plasticity is a prerequisite for the analy-

sis of the CT specimen. Moreover, both crack initia-
tion at the notch tip and crack propagation generate
highly non-proportional loading paths. At large strains
and in non-proportional loading, the complex distor-
tion of the yield locus is related to the activation and
cross-hardening of different slip systems, depending on
crystallographic orientations. Advanced macroscopic
models give a good description of the initial plastic
behavior of most metallic materials, in particular of ini-
tial anisotropy. However, the modeling of anisotropic
hardening still is a difficult task for these models. By
contrast, anisotropic hardening and non-proportional
loadings are well captured using self-consistent poly-
crystalline plasticity, physically-based at the slip sys-
tem scale.

A first constraint is the computation time in the
numerical integration of the polycrystalline constitu-
tive model. An accurate modeling of the material tex-
ture requires at least hundreds crystallographic orien-
tations and thousands internal variables. Fortunately,
a promising modeling of a large database of mechan-
ical tests can be obtained with a significant reduction
of the number of representative crystallographic orien-
tations (Luo and Rousselier 2014). Usually, N/4 = 3
texture components and N = 12 orientations are suf-
ficient for an initially orthotropic metal. This so-called
reduced texture methodology (RTM) consists in apply-
ing a specific calibration procedure. The reduced tex-
ture parameters (3N/4 Euler angles and N/4 − 1 vol-
ume fractions) are calibrated with the mechanical tests
only (Rousselier et al. 2009, 2010). It can be verified
a posteriori that the reduced texture matches the real
texture. A limitation of the present work is that ten-
sile tests in 3 directions only were available to cali-
brate the model. Although the reduced texture is not
accurately representative of the material, it is expected
that the intrinsic qualities of the polycrystalline model
are preserved. Another limitation is that crystallo-
graphic texture evolution is not modeled, although a
few total slips γ tot

s = γs + γ C
s can be very large near

fracture.
InKok et al. (2003), a DSAmodel was already intro-

duced at the slip system scale in a polycrystallinemodel
(using a Taylor-type assumption) for FE simulations of
Al–2.5%Mg tensile specimens. The N -crystal aggre-
gates assigned to the integration points have random
orientations, with N = 1, 8 or 16 (same orientations
in a given finite element). The objective is to introduce
material heterogeneity with a length scale equal to the

123



106 G. Rousselier et al.

element size when N = 1 and smaller when N = 8 or
16. It generates stress gradients and enables to model
the complex spatio-temporal dynamics of jerky flow. In
our simulations, the material is homogeneous and the
length scale that spontaneously appears in the strain
band patterns seems to be more related to the speci-
men geometry and size. Moreover, the KEMC model
is more advanced than the “crude” one used in Kok
et al.

To model crack initiation and propagation, it is also
necessary to use ductile fracture models. In its broad-
est sense, ductile damage may be defined as the cause
of failure processes involving a significant amount of
dissipation. Various mechanisms can be involved (adi-
abatic softening at high strain rates and creep fracture
mechanisms at high temperature are not considered in
this paper):

1. plastic deformation diffuse macroscopic localiza-
tion, like necking in round tensile specimens or in
thin sheets,

2. shear fracture due tomicro-shear bands localization
at the slip system scale,

3. dimple fracture due tomicro-voids initiation, growth
and coalescence.

The first item is modeled provided the plasticity
model is accurate enough. In aluminum alloys, no dim-
ples are observed on some fracture surfaces, for exam-
ple in AA6260 notched tension and shear specimens
(Rousselier and Luo 2014). In the present AA2198
alloy, dimples are observed in the flat fracture zone
only and even in this zone they are mixed with trans-
granular fracture surfaces without dimples. Therefore,
the mechanism #2 can be involved. A specific model
is required. The Coulomb fracture model at the slip
system scale was used with success in Rousselier and
Luo (2014). It is based on the resolved shear and nor-
mal stresses on the slip plane. Alternatively, a model
based on a critical cumulated slip associated with a
stress softening equation could be used, similar to the
maximum shear strain model of Kim and Yoon (2015).
In the analyses, the Coulomb fracture model competes
with the porous plasticity model for the mechanism
#3. Because of the very low initial porosity and the
early intermetallic particle damage of the present alloy
(Morgeneyer et al. 2014), a void nucleationmodel also
is necessary.

4.2 Model parameters

The combined models of Sect. 4.1 involve a large num-
ber of parameters. The lack of appropriate number and
kind of mechanical tests made it impossible to cali-
brate the initial anisotropy and the parameters of the
KEMC model for the present material. Realistic val-
ues or parameters taken from the existing literature are
used. By contrast, the experimental data enables a good
calibration of the fracture parameters.

6260 and the present 2198-T8 aluminum alloys have
the same small anisotropy of the tensile stress–strain
curves in the sheet plane. That is why the available
reduced texture parameters of AA6260 with N = 12
crystallographic orientations are used (Luo and Rous-
selier 2014). The calibration of the reduced texture (11
parameters for N = 12) would need at least additional
tensile tests and shear tests in the sheet plane. For the
same reason, the two hardeningmatrices terms are sup-
posed to be all equal to one: hi ≡ 1 and ki ≡ 1.Because
of the small positive strain rate effect of aluminum
alloys at room temperature, the viscosity parameters
n and K of Eqs. (2) and (12) are chosen to give a
small effect of the viscoplastic stress K γ̇ 1/n for a large
range of shear rates γ̇ . The “β-rule” matrix is sup-
posed to be isotropic with equal diagonal terms Dii

and zero non-diagonal terms Di j . The remaining hard-
ening parameters are the first seven ones in Table 2:
from R to d. These parameters are calibrated with the
tensile curve in the T-direction (single finite element
calculation, Fig. 9). An optimization software is used
with the Levenberg–Marquardt algorithm (Levenberg
1944). Because no tension-compression test was avail-
able, the kinematic hardening parameters c and d of
Eq. (4) are calibrated like a third isotropic hardening
term at large strain (exponent coefficient d smaller than
b1 and b2). These two parameters are not representa-
tive of the real kinematic hardening of the material.
Note that in Luo and Rousselier (2014), initial values
of the back resolved shear stresses (kinematic hard-
ening) at the slip system scale were implemented to
model the small deviation from orthotropy resulting in
tension-compression asymmetry (the so-called differ-
ential stress effect) and distinct shear curves in the two
diagonal directions of the sheet plane. These values are
equal to zero here.

In the calibration with the tensile test, the ductile
damage parameters have a negligible effect: no sig-
nificant damage softening can be seen in Fig. 9. The
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Table 2 Hardening,
viscosity, localization and
elasticity parameters

R (MPa) Q1 (MPa) b1 Q2 (MPa) b2 c (MPa) d hi

101.0 23.9 6.41 9.9 3.51 49.3 1.065 1

ki n K (MPa s1/n) Dii (MPa) Di j (MPa) C (MPa) E (MPa) ν

1 25 20 200 0 20,000 74,000 0.3

ΔL/L0

Fig. 9 Tensile curve in T-direction: F/S0 (MPa) versus �L/L0,
experimental points and calibrated model curve. The maximum
�L/L0 = 0.1 is applied in 100 s

dislocations are pinned because a large value ω = 0.04
of the DSA strain parameter in Eq. (7) has been used,
giving large waiting times tw = ω/ |γ̇ |. In that case,
the calibrated initial CRSS is R + P1, i.e. 181 MPa
for P1 = 80MPa. The values of P1 in the polycrys-
talline model are larger than the ones in a macro-
scopic model because unpinning only impacts simul-
taneously a small fraction of the model N × M = 144
slip systems. Experimental data were not designed to
calibrate the DSA model. The three DSA parameters
P2 = 4s−β, α = 0.1, β = 0.33 in Table 3 are taken
from the literature for aluminum alloys (Estrin and
McCormick 1991; Graff et al. 2004; Benallal et al.
2008; Böhlke et al. 2009). In these papers, ω = 10−4

is used.
According to Eq. (6), the PLC domain approxi-

mately corresponds to 0 < ta < 1 s; see also Fig. 12a in
Rousselier and Quilici (2015) obtained with R + P1 =
69MPa and P1 = 30MPa (same ratio R/P1 as for the
present alloy). The asymptotic value ta = tw = ω/|γ̇ |
of Eq. (7) decreases when strain rate increases with
plastic deformation and ta decreases abruptly when

Table 3 KEMC model parameters

P1 (MPa) P2(s−β) α β ω

80 4 0.1 0.33 0.002

it crosses this value. Therefore, for slip rates in the
order of 10−3 s−1, the PLC domain can be obtained
for ω < 0.001, approximately. In aluminum alloys, it
corresponds to the PLC domain lower limit in strain
rate and to the upper limit in temperature. For smaller
values of P1, at the same strain rates, ta and ω have
to be decreased simultaneously. The CT specimen has
been calculated mainly with P1 = 80MPa. In that
case, ω = 0.002 is the smallest value for which
the calculation does not diverge early (it diverges for
ω = 0.0015). Other couples (P1, ω) have also been
investigated (“Appendix 1”).

The fracture parameters are given in Table 4. The
rather flat tensile curve enables to define a flow stress
σY and the porous plasticity parameter σ1 = 2σY /3 =
350MPa. D1 = 2 is the value given by early void
growth measurements (Rousselier 1987). The mea-
sured intermetallic particles volume fraction and ini-
tial porosity give fN and f0. Because of the very small
initial porosity volume fraction, the mean nucleation
strain εN = 0.1 is the decisive parameter; this value
is representative of the intermetallic particles and it
matches well the experimental crack growth. Nucle-
ation is concentrated around this mean value with a
small scatter σN = 0.02. Without experimental data
for anisotropic void growth, αL = αT = αN = 1/3 is
retained.

In this paper, we only use the Coulomb model with
c0 = 0, because the single fracture experiment does
not enable to calibrate this parameter and also because
the computational cost is reduced with a fully associ-
ated model (the Coulomb model with c0 �= 0 is non
associated). The experimental balance between dim-
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Table 4 Coulomb fracture model and porous plasticity parameters

D1 σ1 (MPa) f0 fN εN εN slant σN fc

2 350 0.0001 0.0034 0.1 0.05 0.02 0.15

c0 R0 (MPa) R0 slant (MPa) b0 γ C
c αL αT αN

0 260 240 2 2 0.3333 0.3333 0.3333

ples and transgranular fracture in the triangular flat zone
is obtained with R0 = 260MPa. To deal with the mesh
orientation effect in local approach to ductile fracture,
smaller values for R0 = 240MPa and εN = 0.05 are
used in the shear lips and in the slant fracture zones
defined in Sect. 4.3 (refer to this section and to Sect. 4.5
for amore complete discussion and reference to similar
methods). These values for R0 are calibrated to match
the experimental crack growth. Although it is reduced
to 0.05, the nucleation parameter εN has no significant
effect in these zones because void damage is very small
(Fig. 6).

The material is considered as “broken” when the
void volume fraction exceeds some critical value: f >

fc or when a first cumulated Coulomb slip exceeds
some critical value: γ C

cum > γ C
c . A quadratic cumula-

tive rule ( f/ fc)2+(max(γ C
cum)/γ C

c )2 = 1 is usedwhen
porous plasticity and the Coulomb fracture model are
combined. The material behavior is then replaced by
an elastic behavior with a very low stiffness (Young’s
modulus Ec = 1MPa). Gauss integration points where
this condition is met are referred to as “broken Gauss
points” (Morgeneyer et al. 2009). It is shown in Fig. 11
of Rousselier and Luo (2014) that displacements at
failure of a notched tensile specimen differ by <1%
with parameters in the ranges 0.15 < fc < 0.25 and
2 < γ C

c < 3. At these large values: f = fc = 0.15
and max(γ C

cum) = γ C
c = 2, the material has lost its

mechanical strength because of almost complete stress
softening, see for example Eq. (12) with b0 = 2. Con-
sequently, these two parameters have very little effect
on the results and we must emphasize that they are not
fracture parameters (contrary for example to fc in the
GTNmodel). They do not participate in strain localiza-
tion. Their single function is to alleviate the calculation.

At the FE mesh level, when nc = 4 Gauss points
of a reduced integration quadratic hexahedral element
C3D20R (for example) are “broken”, the element is
removed from the calculation. It is not realistic to

remove an element when only nc = 3 Gauss points
out of the total number n = 8 are broken. It has been
checked theoretically and with FE analyses that the
removal criterion with nc ≥ 5 gives no element dele-
tion: with 4 out of 8 broken Gauss points, C3D20R
elements have lost their load carrying capacity. That is
why in some figures of Sect. 4.5 unbrokenGauss points
(in white) are visible in the cracked areas, mixed with
red broken points.

In conclusion, the only decisive parameters that
could not be calibrated with experimental and litera-
ture data are the PLC parameters P1 and ω.

4.3 Meshes

The element numbers are 13,000 and 29,360 in the
coarse and fine meshes, respectively (Fig. 10). The
Cartesian grid in the notch region, Fig. 10b, d, is
designed with equal size C3D20R hexahedral elements
to prevent the well-known “mesh size effect” in local
approach to fracture. For the coarse mesh, the element
size in the notch region is 0.25 × 0.20 × 0.25mm3

(four elements in the 1 mm thickness, z direction). For
the fine mesh, it is 0.125 × 0.10 × 0.125mm3 (eight
elements in the thickness). The elements are smaller
in the y-direction to account for their elongation in the
deformed state. For the same mesh size effect preven-
tion, a special design is chosen at the notch tip, so that
the element height in the deformed state is as close
as possible to that of the Cartesian mesh, Fig. 10c, e.
The design is completed with C3D15R prismatic ele-
ments. The Cartesian mesh is 2 mm long; it enables
approximately 2 mm crack propagation with limited
mesh size effect. The coarse and fine meshes are used
to quantify the mesh size effect. With the fine mesh
and the unstable DSA model, the calculations are very
long; the coarse mesh also enables preliminary calcu-
lations at a reasonable cost. An accurate calculation of
themechanical fields can only be obtained with the fine
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Fig. 10 3Dmeshes: a–c coarse mesh, four elements through the
thickness; d, e fine mesh, eight elements through the thickness.
Meshes a and d are tilted. In d, the positions of ROI 1 (red) and

ROI 2 (yellow) are shown (at mid-thickness section, half geom-
etry). The coordinates of the notch tip are x = 36 mm, y = 0

mesh, remember the∼100–300μmexperimental band
spacing in Figs. 4 and 5.

DisplacementsUy and –Uy are imposed to the upper
and lower rigid elastic triangles attached to the crack
in Fig. 10a (Young modulus 107 MPa). The applied
rate is 10−3 mm/s and the final value is Uy = 1 mm
(Uy = time/1000). To prevent rigid-body motion, the
point x = W = 60 mm, y = z = 0 (mid-height, mid-
thickness) is fixed. To prevent buckling and mode III
crack loading, Uz= 0 is imposed to the specimen mid-
thickness z = 0, except a large zone surrounding the
notch tip (30 < x < 50, −5 < y < 5). Without this
kind of condition, buckling is effectively observed.

The NOD is calculated from the vertical displace-
ments of mid-thickness nodes at 301μm (coarse mesh)
and 292μm (fine mesh) from the notch tip (radius

170μm). The NOD determined at 200μm from the
notch tip is smaller by less than 5μm. The NOD
is used in the comparisons with experimental obser-
vations, because the variable “time” does not corre-
spond to the real loading history and because the load
is not measured during the tests. (For that reason,
the numerical load–displacement curves of Sect. 4.4
could not be compared to the experimental one.) In
Table 1, the correspondence between NOD and time is
obtained with the coarse mesh. It depends on numeri-
cal crack propagation. With the fine mesh, crack prop-
agation is earlier and the time values are slightly
different.

It has been shown, for example in Rousselier and
Quilici (2015) with the same models, that crack prop-
agation is much more rapid in one of the Cartesian
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Fig. 11 Slant region (red)
and shear lip region (blue),
half meshes, sections y = 0,
notch on the left: a coarse
mesh and b fine mesh

mesh directions than at 45◦ of it. It is the “mesh ori-
entation effect” in local approach to fracture. It can be
prevented with the so-called non-local models (For-
est and Lorentz 2004; Bargellini et al. 2009; Feld-
Payet et al. 2011; Bergheau et al. 2014). These models
increase the computational cost and they are beyond
the scope of the present work. A more pragmatic way
is to use different fracture parameters in the flat frac-
ture region on the one hand and in the shear lips and
slant fracture regions on the other hand (R0 = 260 and
240 MPa in Table 4, respectively). These regions are
known a priori from the SEM fractographies of Fig. 6.
This approach is not entirely predictive but it is effec-
tive in the present case. The regions are defined in
Fig. 11.

The method used in Morgeneyer and Besson (2011)
is not so different. The authors have introduced an
additional strain-based void nucleation model with
a Lode angle dependence that promotes shear frac-
ture. Consequently, this ad-hoc model gives the shear
lips. The two lips eventually join at mid-thickness,
forming slant fracture. Instead of different parame-
ters for the same models in the present work, the
authors use different models in the flat and slanted
fracture zones. This method is not convenient here
because there is no void nucleation in the shear lips
and slant fracture regions. In Chen (2011), the Carte-
sian mesh of a Kahn specimen is gradually slanted
to follow the experimental flat-to-slant transition, suc-
cessively avoiding the mesh orientation effect. As the
two preceding ones, this third method is not entirely
predictive.

An order-2 Runge–Kutta algorithm with automatic
time stepping is used for the material model. The tan-
gent matrix is the elastic one. The finite strain formula-
tion is based on the so-called co-rotational frame asso-
ciated with the rotation tensor (e.g. Rousselier and Luo
2014, Appendix 1). The equilibrium is solved with a
Newton–Raphson algorithm.

4.4 Load serrations and PLC bands

According to Table 1, the applied NOD rate increases
from 0.2 to 0.8 μm/s. In Fig. 4b, the numerical strain
rate is between 5 × 10−4 and 2 × 10−3 s−1 for load
steps 1–2, 2–3 and 3–4, with time increments ∼100,
50 and 50 s, respectively. The experimental load steps
are applied in less than 10 s, i.e. the stain rate is larger,
but still in the PLC range 10−4 to 10−2 s−1 (Sect. 2).

In the load–displacement curves of Fig. 12, a small
scatter can be seen for several runs of the same config-
uration (coarse or fine mesh), even with the same sin-
gle processor and therefore the same rounding errors
correction algorithm, because of the unstable char-
acteristic of the DSA model, Eq. (7). The different
results are probably seeded by the random exchanges
between the two cores used in the calculations or by the
random share between several users of the processor.
Load inflexions appear in Fig. 12 for Uy∼ 0.300 mm
(time = Uy/1000∼ 300 s). Before this displacement,
there is no difference between the coarse and fine mesh
curves because damage is small and it is limited to a
very small zone at the notch tip. The first broken Gauss
point and the first removed element appear in the two
fine mesh calculations at time = 250–250 and 301–
311 s, respectively. In the five coarsemesh calculations,
the time ranges of these two events are 295–300 and
454–467 s, respectively. Classically, crack growth is
more rapid in the finemeshwhich results in a lower load
curve and slightly delayed load oscillations. (The first
removed element appearsmuch later in the coarsemesh
also because two layers of elements are involved in flat
fracture vs. a single layer in the finemesh, see Sect. 4.5.
Thus, by contrast with the broken point events, the
removed element events are notmechanically relevant.)

The large sinusoidal oscillations of Fig. 12 are not
commonlyobserved in experimental load–displacement
curves. The maximum time increment �t = 1 s can be
too large to capture well the instabilities generated by
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Fig. 12 Load (kN) versus displacement curves: a Uy range 0–
0.7 mm, b Uy range 0.3–0.55 mm. The MESH numbers cor-
respond to several calculations with the same coarse or fine
meshes and with the same material parameters P1 = 80MPa
and ω = 0.002. The maximum time increment is �t = 1 s,
except for COARSE MESH 5 (�t = 0.1 s)

the DSAmodel (the automatic time stepping algorithm
is not activated by the DSA model in the present cal-
culations). With �t = 0.1 s (COARSE MESH 5), the
red curve shows more realistic serrations. For exam-
ple, the load decreases for Uy = 0.3046 to 0.3064 mm.
This range exactly corresponds to the appearance and
disappearance of strain rate bands ahead of the notch.
The same correspondence is observed for the follow-
ing load decreases. In this #5 calculation, the bro-
ken Gauss points appear at the notch tip in the inter-
vals Uy = 0.2981–0.3062 mm (4 points), 0.3800–
0.3812 mm (+4 points), 0.4063–0.4079 mm (+6
points), etc. They form two layers of broken inte-
gration points on each side of the symmetry plane
y = 0. The broken point events always fall in the
load decrease events but with �t = 0.1 s the latter are
much more numerous in the range Uy= 0.3–0.45 mm.
For Uy > 0.475 mm, load decreases, strain rate bursts

and broken points always coincide. It shows that the
intermittent PLC bands and the broken point events
are strongly related. PLC may well be the initiator of
broken point events.

The coarse mesh calculations with �t = 1 and 0.1 s
give very close crack propagation rates. Both give crack
growth during strain rate band bursts. The difference is
that for �t = 1 s these events are much longer and
consequently the load oscillations are much larger.

Smaller values P1 = 40 and 30 MPa have been
investigated using the coarse mesh, with ω = 0.0005–
0.0003 and 0.0001, respectively. The results are given
in “Appendix 1”. In the rest of this Sect. 4, we only
consider P1 = 80 MPa and ω = 0.002 for both coarse
and finemeshes with the maximum time step�t = 1 s.

The strain rate bands are better visible with the fine
mesh. The occurrence of 2 or 3 horizontal bands on the
specimen surface is emphasized in Fig. 13. The figures
are slightly tilted around the y axis (positive rotation
angle) to show the notch tip inner surface on the left.
The strain rate is zero at mid-thickness in the notch tip
because the Gauss points are broken, but the small flat
crack does not yet extend to the surfaces (similar to the
left inset in Fig. 18, “Appendix 1”). At time = 385 and
425 s (Uy= 0.385 and 0.425mm), the successive strain
rate bursts are clearly shown, both on specimen surface
and through the thickness (section AA at 1 mm from
the notch tip). As in the coarse mesh, they coincide
with discontinuous crack propagation steps: no broken
integration points for time = 350–376 s, 14 additional
broken points for time= 377–393, no broken points for
time= 394–417, etc. At time= 425 s, the crack forms a
flat triangle shorter than 0.4mm, it shows that the strong
interaction between strain rate and crack propagation
bursts begins in the flat fracture regime. The load has
two minima at time = 385 and 430 s, in accordance
with the strain rate bursts of Fig. 13.

The calculated incremental strain fields (FINE
MESH 1) are compared to the measured ones in Fig. 4
of Sect. 2.3. The full thickness (1mm) is shownbecause
the small number of Gauss integration points cannot
be reduced without an important loss of information.
The deformed mesh is used to evidence the small dis-
placements of the incremental bands, which seem to be
immobile in the DVC figures. In the latter, the ROI 1
thickness only is ∼0.7mm and the initial geometry
is used. The large load increments 1–2, 2–3 and 3–4
encompass several load oscillationswith slightly differ-
ent locations of the calculated strain rate bands, which
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Fig. 13 Strain rate fields,
fine MESH 1 calculation,
front surface z = +0.5mm
tilted mesh (Cartesian mesh
region, 0–2 mm from the
notch) with the notch on the
left and section AA at
�x = 1mm from the notch
(view from x+) for
time =370–385–400–425 s.
The strain rate range is
0–0.005s−1, navy blue to
dark red). The initial
meshes are in red lines

 0. p
eqp ε= =0.005 

could explain this difference. Nevertheless, the same
experimental method was applied to another aluminum
alloy with much smaller load steps and no significant
band motion was detected (Morgeneyer et al. 2016).
The large PLC amplitude P1 in the analyses could also
increase the band motion.

Apart from the band mobility, which is slightly
larger in the numerical simulations, there are strong
similarities between the band patterns: several paral-
lel bands at plus and minus 45◦ with “hot spots” at
band intersections, no symmetry with respect to mid-
height (y = 0) and mid-thickness (z = 0), similar
strain levels although there are no “black zones” (very
small values) in the two left DVC figures. The hot
spots correspond to distinct micro-mechanical mecha-
nisms, as evidenced in the infrared thermography mea-
surements of Delpueyo et al. (2016), and to distinct
slip systems in the numerical analyses, which accu-
mulate at the crossing points. The inter-band spacing
of several hundred microns cannot be related to crys-
tallographic heterogeneities. It strongly suggests that
DSA is the cause of multiple banding. Anyway, DSA
is not a completely deterministic phenomenon and a
strictly identical band pattern was not expected. For
steps 3–4, the localization in a single band is more
advanced in the calculation, probably because with the
fine mesh the crack is larger than the experimental one,
see Sect. 4.5. When the crack approaches the section
x = 37 mm of Fig. 4, the crack geometry imposes a
single band, flat or slanted depending on the speci-

men geometry (the thickness in particular that impacts
the mechanical fields) and on the parameters of the
various fracture mechanisms. Note that in Fig. 4b the
numerical main band is at plus 45◦ in the yz plane,
i.e. perpendicular to the experimental main band of
Fig. 4a. Because of the random characteristic of the
DSAmodel, the result plus orminus 45◦ depends on the
calculation.

Figure 14 enables a more quantitative comparison.
The cumulated equivalent strain in the main localiza-
tion band is about twice as large as in the surrounding
area for load steps (1), (2) and (3), in DVC as in FE
analysis. For load step (4), the ratio is larger than 2
and the band is narrower for DVC. In FE analyses,
the strain rate bands are more mobile than in the mea-
surements and consequently the total cumulated strain
is less localized. This early PLC-related strain local-
ization is distinct from the late damage-related strain
localization where plastic yielding takes place within
the band only and the outer region undergoes elastic
unloading. In the 2198-T8R alloy, the latter localiza-
tion is linked to the former. This mechanism could be
general for this class of aluminum alloys (Morgeneyer
et al. 2016). By contrast with Fig. 4, the total strain
for the whole history is shown in Fig. 14; that is why
the main band only is clearly visible, particularly in the
finite element calculation with slightly moving strain
rate bands. Figure 14 also does not show the strain rate
band mobility.
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Fig. 14 Total cumulated von Mises equivalent strain along a
line perpendicular to the localization band for load steps 1–4,
deformed geometry for the abscissa ξ: a, b measured by DVC
along line ξ in the plane at �x = 1mm from the notch (step

4 in Fig. 14a), initial reduced thickness 0.694 m (ROI 1), from
Fig. 8 inMorgeneyer et al. (2014) and c fineMESH1 calculation,
initial full thickness 1 mm

4.5 Ductile fracture

The results for both coarse and fine meshes are pre-
sented. The DSA model parameters are P1 = 80MPa
and ω = 0.002. In Fig. 15, the damage variables are
shownon the surface y=0.Thenotch is on the right, the
thickness S-direction is vertical. The flat crack and the
intersection of the slant crack with the plane z = −0.5
mm can be seen in some figures (because of thickness
reduction in Fig. 15c, d). The void volume fraction is
large in the triangular flat fracture zone only: Fig. 15a,
e for the coarse and fine meshes, respectively. It is neg-
ligible in the shear lips and in the slant crack although
a smaller value for the void nucleation strain εN was
used in these regions. It is not homogeneous because it
competes with transgranular fracture, according to the
SEM images of Fig. 6. As mentioned in Sect. 4.2, a
good balance between dimples and transgranular frac-
ture in the flat zone is obtained with the Coulomb crit-
ical resolved shear stress R0 = 260MPa. A few maps
of the Coulomb slips are presented for both meshes.
The critical Coulomb slip depends on the local stress
and strain tensors; that is why several slip systems are
involved in crack growth. Some of the ones with the
larger Coulomb slips are shown in Fig. 15g. For exam-
ple, at the notch tip, the critical Coulomb slip index is
85 (Fig. 15h) which means grain g = 8 and slip system
s = 1 (7× 12 + 1 = 85); it corresponds to the normal
to the slip plane {0.773,−0.599, 0.212} and slip direc-
tion {−0.440,−0.649,−0.227} (undeformed geome-
try values) that give a pure shear strain in a plane close

to the xy plane, parallel to the specimen surface (the
shear plane is the one formed by the first two eigen-
vectors of the orientation matrix msg, they are close to
the directions x and y). The crack initiates with this
Coulomb slip, in agreement with the small shear crack
in Fig. 7c and with the small stress triaxiality σm/σeq
in the vicinity of the notch free surface that limits void
damage. Void damage only prevails at some distance
from the notch, Fig. 15e. Note that σm/σeq ≤ 1 in the
whole specimen. This small value for a CT specimen is
due to the very small relative thickness B/W = 1/60.
In the standard CT specimens with B/W = 25/60,
maximum stress triaxiality is larger than 2.5. It partly
explains the limited void damage in the experiment and
the prevalence of the Coulomb model in the numerical
analyses.

The damaged zones are smaller in the fine mesh
figures because they correspond to a smaller applied
NOD (the calculation incidentally stopped at NOD =
199μm). This displacement corresponds to the∼1mm
crackofFig. 15j: thewhite integration points are broken
(zero stress). The shear lips are alreadywell developed;
the front one can be seen on the specimen surface (the
mesh is tilted). In the fine mesh, unbroken points are
visible on the surfaces. The reason why was explained
at the end of Sect. 4.2: only 4 broken points out of 8
integration points are possible in one element, some
of them are hidden. This mixed pattern is not seen in
the coarse mesh because the element thickness is twice
larger in the perpendicular direction and the damage
concentrates in two layers of integration points adjacent
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Fig. 15 a–d coarse MESH
2 calculation, lower half of
the specimen y < 0, the
notch is on the right,
time = 698,
NOD = 335μm: a void
volume fraction, scale
0–0.1, b–d Coulomb slips
99, 116, 126, respectively,
scale 0–2. e–j fine MESH 2
calculation, upper half of the
specimen y > 0, the notch
is on the right, time = 542,
NOD = 199μm: e void
volume fraction, scale
0–0.1, f–i Coulomb slips 13,
71, 85, 116, respectively,
scale 0–2, j von Mises
equivalent stress, scale
0–600, tilted mesh, the
initial mesh is in red lines

(a) (b)

(c) (d)

(e)  (f)  (g) 

(h)  (i)  (j) 

0.  0.1 ( f ), 2. ( C
cumγ ) 

0.  600. ( eqσ )

to the plane y= 0 (Fig. 16a); the four broken points are
all visible on this plane.

For the applied NOD = 242μm, the coarse mesh
L-sections of Fig. 16a give the experimental flat zone
length of ∼1mm. The right transition from flat to slant
fracture is obtained with R0 = 240MPa (Table 4)
in the shear lips and in the slant region of Fig. 11a.
With R0 = 245MPa, slant fracture is delayed and the
slant crack is not as nice as the one in Fig. 16b. With
R0 = 250MPa, shear lips and slant fracture are not
obtained. The transition fromflat to slant fracture is also
shown in Fig. 16c with the intersections of the crack
and the surfaces y = 0 (mid-height) and z = −0.5 mm
(specimen surface).

The three values R0 = 240–245–250 MPa in the
shear lips—slant crack regions have also been tested in
the coarse mesh without DSA (ω = 0.020 instead of
0.002, that suppresses the load serrations and the strain
rate bands). Slant fracture is obtained with R0 = 240
and 245 MPa, not with R0 = 250MPa. Because of
the completely pinned dislocations with ω = 0.020,
the stresses and the load are slightly larger and conse-
quently the Coulomb model gives earlier crack prop-
agation than with ω = 0.002. By contrast, the load

is smaller after crack initiation. Void damage is much
smaller than the experimental one in the flat crack.
Without DSA, slightly larger values of R0 in both the
flat crack and the shear lips—slant crack regions should
be used to match physical damage and experimental
crack path and growth rate.

The CT specimen has also been calculated with
the same R0 parameter in the whole mesh (coarse
mesh). With R0 = 260MPa, the crack does not quit
the direction of the Cartesian mesh, it remains flat.
With R0 = 250MPa, a shear lip forms on one side
of the specimen and after 2 mm propagation it encom-
passes only the half of the specimen thickness. With
R0 = 240MPa, the flat crack stops too early, slant
crack propagation is obtained but it is too rapid and the
maximum load is much smaller. These results do not fit
experimental data and observations. Two distinct val-
ues for the R0 parameter are necessary in the present
calculations.

Figure 17 is for the fine mesh. The MESH 1
and MESH 2 calculations incidentally stopped at
time = 508 and 542 s, respectively (Fig. 12b). The
flat crack terminates in L-section �x = 0.875 mm
from the notch tip. The deformed mesh shows that a
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Fig. 16 Broken Gauss
points. a Coarse MESH 2
calculation, time = 610,
NOD = 242μm, notch tip
x = 36 mm (�x = 0).
Viewed from x = 0 and
L-sections viewed from x+
at �x = 0.25–0.50–0.75–1–
1.25–1.50 mm from the
notch. b Coarse MESH 2
calculation, time = 698,
NOD = 335 μm, L-sections
at �x = 0.75–1–1.25–
1.50–1.75–2 mm from the
notch. c Coarse MESH 1
calculation, lower half of
the specimen y < 0, tilted
mesh with the notch on the
right, time = 508 and 672,
NOD = 171 and 302 μm
respectively. The initial
meshes are in red lines

Δx=0.      Δx=0.25        Δx=0.5       Δx=0.75         Δx=1.        Δx=1.25        Δx=1.5 

Δx=0.75          Δx=1.          Δx=1.25          Δx=1.5         Δx=1.75         Δx=2. 

time=508 time=672 

(a)

(b)

(c)

single layer of finite elements is involved in flat frac-
ture, with two discontinuous layers of broken points.
The unbroken points in the removed elements make the
“discontinuous crack artifact” not visible in the coarse
mesh.

Figure 17b shows the intermittent crack growth in
relation with the DSAmodel. The figures at time= 465
and 483 s correspond to the beginning and the end of a
PLC band event and they show a large crack propaga-
tion causing a load decrease in Fig. 12. On the contrary,
there is almost no crack propagation from time= 483–
498 s, only one additional broken point can be seen in
the shear lip. The next strain rate burst and intermittent
crack growth occur at time = 500–520 s. In Fig. 17b,
the broken point patterns are somewhat different for
MESH 1 (time = 498) and MESH 2 (time = 542).
As expected, the NOD increase rate is larger during
the crack propagation periods. In the laminography
experiments on the ductile 2139-T3 aluminum alloy
(Morgeneyer et al. 2016), smaller load incrementswere
applied to a CT specimen and experimental stepwise

crack growth was observed, similar to the one in the
present calculations.

5 Discussion

The laminography observations of a 2198-T8R alu-
minum alloy CT-like specimen revealed unexpected
deformation patterns and early strain localization in
slant bands in the slant fracture region (Morgeneyer
et al. 2014). It was a challenge to simulate this exper-
iment because the material database is limited and
not designed for this purpose and because the calcu-
lations are at the limits of numerical capabilities. In
the future, a new experimental program should include
both laminography and a comprehensive characteri-
zation database. Moreover, the experimental results
showed complex interactions between plastic behav-
ior and ductile fracture. Ductile fracture itself resulted
from variousmechanisms. The backbone of the present
work is to contribute to the understanding of the het-
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Fig. 17 Broken Gauss
points, a fine MESH 2
calculation, time = 542,
Uy = 0.542,
NOD = 199μm, L-sections
at �x = 0.125–0.25–
0.375–0.5–0.625–0.75–
0.875–1.0–1.125 mm from
the notch, view from x+, b
fine MESH 1
(time = 465–483–498,
Uy = time/100,
NOD = 142–160–163 μm
respectively) and fine
MESH 2 (time = 542,
NOD = 199μm)
calculations, upper half of
the specimen y > 0, tilted
mesh with the notch on the
right. The initial meshes are
in red lines

Δx=0.125             Δx=0.25            Δx=0.375              Δx=0.5             Δx=0.625 

Δx=0.75            Δx=0.875             Δx=1.0             Δx=1.125 

time=465 time=483 time=498 time=542

(a)

(b)

erogeneous deformation ahead of the sharp notch using
enhanced plasticity models.

First, the physical origin of the strain bands is not
straightforward. On the one hand, the intermittent char-
acter of the bands seems to exclude the microstruc-
tural heterogeneity hypothesis. Also, the length scale,
larger than 1 mm in tensile specimens (6 mm width)
and smaller than 0.3 mm in the CT specimen (1 mm
thickness), is not in favor of this hypothesis. Clearly,
the length scale is related to the specimen geometry
and dimensions and to the mechanical fields resulting
from the boundary conditions. With infrared thermog-
raphy measurements of 5052 aluminum-magnesium
alloy tensile specimens loaded at strain rates larger than
10−2 s−1, Delpueyo et al. (2016) observed moving and
intermittent band patterns similar to the ones in the
present CT specimen but with a ∼5 mm length scale
related to the large 40 mm width of the specimens.

On the other hand, the 2198-T8R alloy is at the limit
of the PLC domain in tensile tests at room temper-
ature and for the usual constant strain rates consid-
ered in the present work. Also, the intermittent bands
seem to be fixed ahead of the notch of the CT speci-
men, which is not usual for the PLC phenomenon. This
could be explained by the physical origin of the PLC
phenomenon: DSA first takes place inside the grains

and because DSA is limited in this material and test-
ing conditions, it could be hardly visible at the macro-
scopic scale in tensile tests. The strain heterogeneities
could remain related to the grain microstructure and/or
be seeded by it, which could explain the fixed bands
in Figs. 4 and 5 and also the fixed strain localization
patterns in a 2139-T3 aluminum alloy (Morgeneyer
et al. 2016). This latter alloy has more work-hardening
than AA2198-T8R and equiaxed grains (mean sizes
60–52–24 μm in the L–T–S directions), nevertheless
the band spacing is the same in the CT specimen: 150–
250μm. This explanation would perhaps conciliate the
“DSA” and “microstructural heterogeneity” points of
views. The latter is modeled in Taupin et al. (2016): the
enforcement of tangential continuity conditions of the
distortion rate along grain boundaries spontaneously
gives shear bands patterns in the L–S plane of AA2198
rolled sheets. Nevertheless, these patterns are different
from the ones in Fig. 4.

For these aluminum alloys and this large in-plane
dimensions CT specimen (W/B = 60), the plastic
deformation is concentrated in a small region ahead
of the notch. That is why, by contrast with smooth ten-
sile specimens, the PLC phenomenon is not expected to
give large serrations of the load–displacement curve. In
the notch region, numerical simulations show a strong
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interaction between PLC and flat or slant ductile frac-
ture and consequently the load inflexions and oscil-
lations are also due to crack initiation and propaga-
tion. The coarse mesh calculations with sufficiently
small time steps �t = 0.1 s give realistic load serra-
tions (Figs. 12, 18). Unfortunately, a satisfactory mod-
eling of the strain rate bands could only be obtained
with the fine mesh and in that case only ω = 0.002
and �t = 1 s were within affordable computation
times. The combination of small ω and large time
steps gives early divergence of the calculation. (In the
present work, the smallest ratio without divergence is
�t/ω = 500 s for the applied loading rate. It corre-
sponds approximately to 1 > �t/tw > 0.2 with the
waiting time tw = ω/ ṗ and the equivalent strain rate
2 × 10−3 s−1 < ṗ < 5 × 10−4 s−1 in the bands.)

Although the 2198-T8R alloy is at the limit of the
PLC domain in classical tensile tests at room temper-
ature and the KEMC model parameters were not cal-
ibrated with these tests, it does not really impact the
results of this work. Actually, the stepwise loading of
the CT specimen was performed with a screw system
that results in relaxation between load steps. Recently,
relaxation periods were shown to give PLC-type ser-
rations and localization in tensile specimens made of
2139-T3 aluminum alloy although no PLC effect is
observed in constant strain rate tests (Ren et al. 2017).
Both the present KEMCmodel and the parameter cali-
bration with constant strain rate tests can be questioned
for complex loading paths (Böhlke et al. 2009). It was
beyond the scope of this work to simulate the complex
loading history of the CT specimen. The simulation
results are to be considered in relation with laminogra-
phy to support the role of DSA in the observed strain
patterns.

Special care was given to the mesh design in order
to limit mesh effects in ductile fracture modeling. Two
mesh sizes are used to quantify the mesh size effect.
Comparing Figs. 16a and 17a, it can be seen that in
both meshes the thickness of the fracture process zone
is equal to one element size in both flat and slant cracks,
i.e. twice larger in the coarse mesh, which delays crack
initiation and propagation. In the flat crack, there are
two parallel layers of broken integration points in both
meshes, but they are located differently, in one and two
layers of finite elements for the fine and coarse meshes,
respectively. These mesh effects could be eliminated
with regularized models. They include non-local mod-
els or higher-order continua models. The combination

of DSA and PLC modeling with strain gradient plas-
ticity has been shown in various publications (Aifantis
1987; Hähner 1993; Mazière and Forest 2015; Mazière
et al. 2016).

The two micro-mechanisms of ductile fracture are
modeled with two distinct models: porous plasticity
andCoulomb fracturemodel. Thesemechanismsdonot
correspond to flat and slant fracture. Dimples and trans-
granular fracture are both observed in the flat crack of
Fig. 6 aswell as in the slant fracture surface of a notched
tensile specimenmade ofAA6260 (Rousselier and Luo
2014). The balance seems to bematerial dependent and
the mechanisms should be carefully checked in ductile
fracture experiments.

6 Conclusions

At room temperature, tensile tests on many aluminum
alloys show evidence of dynamic strain aging (DSA),
resulting in the Portevin–Le Chatelier (PLC) effect. It
is the case for the Al–Cu–Li recrystallized 2198-T8R
alloy that exhibits serrations on the tensile curves, an
inverse strain effect, non-homogeneous strain rates in
the gauge length of the tensile specimens and through-
the-thickness slant fracture. On the tensile specimen
surface, digital image correlation (DIC) does not reveal
mobile inclined strain rate bands, contrary to some
other aluminum thin sheets. Large compact tension
(CT) specimens were also tested with high-resolution
in situ synchrotronX-ray laminography combinedwith
digital volume correlation (DVC) to measure the plas-
tic strain fields and the damage ahead of the crack-like
notch. The main experimental observations are several
parallel inclined strain bands at±45◦ in L-sections per-
pendicular to the crack plane, flat to slant fracture tran-
sitionwithoutmicrometric dimples in the shear lips and
in the slant crack and no damage outside the slant crack
(Morgeneyer et al. 2014).

Theseobservations suggest some interactionbetween
PLC and fracture for this thin aluminum sheet. To fur-
ther investigate this point, finite element analyses of the
CT specimen have been performed. Prior calculations
using von Mises plasticity or the GTN porous plas-
ticity and ductile fracture model did not capture the
localization bands neither slant fracture (Morgeneyer
et al. 2014; Ren et al. 2016). Contrary to the GTN
model, the Rousseliermodel fulfills the necessary kine-
matic condition for flat or slant macroscopic localiza-
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tion and it has the ability to model ductile fracture in
shear (Rousselier and Quilici 2015). Moreover, it can
be reformulated in the framework of polycrystalline
plasticity. This model is combined with the Chu and
Needleman (1980) model for void nucleation and with
the Coulomb fracture model formulated at the slip sys-
tem scale to account for transgranular fracture mecha-
nisms not related to void damage. The Kubin–Estrin–
McCormick (KEMC) model at the slip system scale is
used for DSA. The main conclusions are:

• Although the fracture models involve many mate-
rial parameters, most of them can be determined
with the available material data. The main remain-
ing parameters are the mean strain εN for void ini-
tiation and the Coulomb critical shear stress R0.
They are calibrated to match stable crack growth
before final failure and the balance between void-
related and void-free ductile fracture mechanisms.
To account for themesh orientation effect, different
values are used for the flat fracture region and for
the shear lips and slant fracture regions.

• The PLC parameters are taken from the literature
for aluminum alloys, except the stress amplitude
P1 = 80MPa and the time parameter ω = 0.002.
For P1 = 0 or for a large value ω = 0.020
(pinned dislocations), DSA is not activated; the
load–displacement curve displays neither serra-
tions nor oscillations. Nevertheless, slant fracture
is obtained with the calibrated Coulomb stress
R0 = 260–240 MPa (flat-slant). For a quantita-
tive and qualitative modeling, DSA activation with
ω ≤ 0.005 is necessary. For this material, the
combination of all the above-mentioned models is
required to match the whole set of experimental
measurements and observations.

• For P1 = 80MPa and 0.002 ≤ ω ≤ 0.005, bursts
of strain rate bands are obtained, corresponding to
the decreasing part of the load oscillations or serra-
tions. Crack growth takes place during these time
periods. Strain rates could not be determined exper-
imentally because of the small number of loading
steps in laminography, but the measured incremen-
tal strain fields between successive steps are in good
agreement with the numerical incremental strain
fields. If DSA is not activated, multiple bands can-
not be obtained.

• This early PLC-related strain localization is dis-
tinct from the late damage-related strain localiza-

tion where plastic yielding takes place within the
band and the outer region is plastically inactive. In
the present 2198-T8R alloy, the latter is linked to
the former. This mechanism could be general for
this kind of materials. Nevertheless, the numerical
strain rate bands are slightly moving whereas the
experimental ones seem to be fixed. The DSA acti-
vation could be related to somemicrostructural fea-
tures. The microstructure alone cannot be the main
origin of the bands because they are intermittent.
Moreover, the inter-band spacing is well predicted
with the DSA model.

• The increasing crack growth rates corresponding to
the successive strain rate bursts could lead to “pop-
ins” or even to unstable slant fracture like the one in
the experiment, but this result could not be achieved
in the present calculations because of numerical
divergence for ω ≤ 0.0015(P1 = 80 MPa) or too
large computation times for P1 < 80MPa(ω ≤
0.0003).

The numerical analyses have important limitations:

• Mechanical tests were not available to calibrate
the anisotropic plasticity model (reduced crystal-
lographic texture and mechanical parameters) and
the PLC model. Nevertheless, the results support
the interaction of PLCwith both plasticity and duc-
tile fracture for this material.

• Numerical problems have not been addressed in the
present work: (i) convergence accuracy, (ii) first
stress invariant accuracy in relation with the vol-
umetric plastic strain constraint (incompressibil-
ity or void growth), (iii) divergence and increas-
ing computation timeswith decreasing PLCparam-
eter ω and the related small time step �t , (iv)
mesh dependence (size, orientation, other charac-
teristics). The mesh size effect has been observed
with the coarse and fine meshes. The mesh orien-
tation effect has been accounted for in a pragmatic
waywith two sets of fracture parameters R0 and εN .
The experimentally observed unstable slant frac-
ture could probably bemodeledwith smaller values
of ω as in Rousselier and Quilici (2015).

Future studies are required for a better understand-
ing and modeling of the interaction between DSA and
ductile fracture:

• The DSA model could be enhanced to account for
non-monotonic loading.
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• The numerical integration of the DSAmodel could
be improved to reduce the computation time and to
avoid early divergence.

• Anumerically efficient method has to be developed
for the unresolved problem of themesh effect in the
transition from flat to slant fracture.

• The PLC effect is temperature and loading his-
tory dependent. Future studies would better include
these factors.

• DSA and ductile fracture are highly dependent on
microstructure. The present modeling methodol-
ogy could be applied to other aluminum alloys and
heat treatments.

• For the present aluminum alloy, the existing Kahn
tests could be used to calibrate the two parameters
of the Coulomb fracture model (R0 and c0).

Appendix 1

Smaller values P1 = 40 and 30MPa have been investi-
gated using the coarse mesh, with ω = 0.0005–0.0003
and 0.0001, respectively (the calculations diverge early

for smaller values of ω). The parameter R is increased
from 101 to 141 and 151 MPa (same R + P1), respec-
tively, to account for the smaller PLC amplitudes P1.
Although they assume completely pinned dislocations,
these corrections approximately give the same load
levels in Fig. 18 up to Uy ∼ 0.580 mm. Therefore,
the damage models (porous plasticity and mainly the
Coulomb fracture criterion which is very sensitive to
the stress level) are not much impacted and the crack
growth is almost the same. Note that for ω = 0.0003
and 0.0001 (pink and red curve), the maximum time
step had to be reduced (from �t = 1 s to �t = 0.1 s)
to catch the sharp variations of the aging time, Eq. (7).
With this small time increment, the CPU time already
is 24 days for the coarse mesh. (The clock time is
13.5 days with two cores. It is not significantly reduced
with 4 or 8 cores.) Although the coarse mesh only gives
poor images of the strain rate band patterns, fine mesh
calculations have not been attempted with these small
values of the ω parameter.

Small load decreases are obtained for P1 = 30MPa
and ω = 0.0001 (red curve in Fig. 18). For exam-

Fig. 18 Load (kN) versus displacement curves, effect of DSA
parameters P1 and ω, coarse mesh. The maximum time incre-
ment is �t = 1 s for ω = 0.0020 and 0.0005, �t = 0.1 s for
ω = 0.0003 and 0.0001. Right insert zoom with Uy range 0.4–
0.5 mm (time = 400–500 s). Left inserts for the red continuous
curve (P1 = 30 MPa and ω = 0.0001), (i) average equivalent

strain rate forUy range 0.4129–0.4139mm(time=412.9–413.9)
in the L-section x = 37 mm (at �x = 1 mm ahead of the notch,
view from x+) and (ii) broken integration points (in red) for
Uy = 0.4130 mm (time = 413), tilted mesh lower part y < 0,
the notch is on the right, the initial meshes are in red
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ple, the load decreases from 1.0551 to 1.0531 kN for
Uy= 0.4129 to Uy= 0.4139mm. Four or five crossing
incremental PLC bands can be guessed in the L-section
x = 37 mm, from Uy = 0.4115 to Uy = 0.4145 mm,
although they are smeared by the coarsemesh (left inset
in Fig. 18). The band pattern and spacing are similar
to the ones in Fig. 13. In these bands, the von Mises
equivalent strain rate in the 0.4129–0.4139 interval is
approximately 0.004 s−1 in a few integration points of
the L-section; it is about twice the average value in the
full thickness. At Uy = 0.4127 and 0.4130 mm, two
additional integration points are broken in the lower T-
section y < 0 (left inset in Fig. 18), forming a small
“triangular” crack with the prior six broken points at
the notch tip. (The configuration is the same in the
upper T-section y > 0.) There are no other “broken
point events” in the large interval from Uy = 0.3878
to Uy = 0.4544 mm. It shows that the intermittent
PLC bands and the broken point events are strongly
related also for P1 = 30 MPa and ω = 0.0001. The
load decreases because of simultaneous ductile dam-
age (microvoids and/or microcracks, crack propaga-
tion) and DSA softening (dislocation unpinning) tenta-
tively modeled by the porous plasticity, Coulomb frac-
ture and KEMC models, respectively.

Appendix 2

In the J-�a curve of Fig. 19, J is computed from
the numerical load–displacement curve, according to
ASTM1820 standard. Maximum crack growth length

Fig. 19 Fine MESH 2 calculation, J versus �a_max (red curve)
and J versus COD (black curve)

�amax is measured in the deformed geometry by taking
the position of the farthest broken integration point in
the fine mesh flat crack. The stepwise curve is due to
the incremental crack propagation in FE simulations.
The variation of J versus crack opening displacement
(COD = 2 Uy = time/500) is also shown in Fig. 19. It
can be noticed that the J-COD curve shows some oscil-
lations after 0.6 mm. It corresponds to the oscillations
in the load–displacement curve of Fig. 12. (These oscil-
lations are not representative of the PLC effect because
of the large maximum time step �t = 1 s in the fine
mesh simulations. Also, �amax is not representative of
the complex crack growth shape that can be seen for
example in Fig. 17b. The present numerical J-�a curve
is given for information purposes only.)
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