

Comportement et rupture d'un acier au C – Mn en présence de vieillissement dynamique sous déformation

Doctorants : Jeanne Belotteau (2009) Huaidong WANG : RDV le 18 mai 2011 !

Ecole Centrale Paris/MSSMat: C. Prioul, <u>C. Berdin</u> (ICMMO/Paris-Sud 11)Mines Paris Tech/CdM: S. Forest, M. MazièreEDF/ MMC: A. Parrot, P. Le Delliou

Journée vieillissement Mines Paris Tech - 20 avril 2011

Contexte industriel et objectifs

- Rupture des tuyauteries du circuit secondaire de refroidissement des R.E.P.
- Sensibilité au vieillissement dynamique des aciers au C-Mn des tuyauteries
- → Chute importante de la ténacité entre 150 °C et 250 °C

Prévision de la rupture ductile en présence de vieillissement dynamique

- Caractérisation et modélisation du comportement de 20 à 350°C
- Approche locale de la rupture

- Comportement mécanique
 - Matériau
 - Comportement en traction simple
 - Modélisation : modèle KEMC

4 Etude de la rupture

- Essais de rupture
- Etude fractographique
- Modélisation des essais

Prédiction de la rupture par l'approche locale

- Bibliographie
- Critère de Rice et Tracey comportement KEMC
- Micromécanique et écrouissage apparent

Matériau

Acier TU48C

- Classe A42, A48
- Couches alternées ferrite / perlite (mise en forme par laminage circulaire)

С	S	Р	Si	Mn	Ni	Cr
0.19	0.0074	0.011	0,27	1.07	0.04	0.15
Mo	Nb	V	Cu	Sn	Ν	A

% massique

Comportement

Essais de traction simple

- 24 essais $20^{\circ}C \le T \le 350^{\circ}C$ $10^{-5}s^{-1} \le \dot{\varepsilon} \le 10^{-2}s^{-1}$

- Sensibilité inverse du comportement à la vitesse de déformation $\dot{\varepsilon}$
 - Sensibilité inverse à la température, T
 - Phénomène de Portevin-Le Chatelier (PLC)

Modèle de Kubin - Estrin - Mc Cormick (KEMC) (Graff, 2006)

- Diffusion des atomes de soluté vers les dislocations mobiles arrétées momentanément par des obstacles \rightarrow ancrage des dislocations (durcissement)

$$\dot{p} = \dot{\varepsilon}_0 \exp\left(-\frac{E_A}{k_B T}\right) \sinh\left(\frac{V_A < J_2(\sigma) - R - R_a >}{k_B T}\right) \qquad \dot{R}(p) = bQ\dot{p} \exp(-bp) + H\dot{p}$$
$$R(0) = R_0$$

Terme de vieillissement, temps de vieillissement :

$$R_{a}(p,t_{a}) = P_{1}(1 - \exp(-P_{2}p^{\alpha}t_{a}^{n})) \qquad \dot{t}_{a} = 1 - \frac{\dot{p}}{\omega}t_{a} \qquad t_{a}(t=0) = t_{a0}$$

13 paramètres, 7 fonctions de la température

- Identification (ZéBuLoN)
 - Elément de volume
 - Structure éprouvette

Simulations du comportement

- Simulation du PLC
 - Pas d'influence de l'hypothèse 2D/CP-3D sur la courbe globale
 - 3D : orientation des bandes dans les éprouvettes cylindriques
 - => paramètre @ (Mazière, 2006)

Simulations du comportement

Comportement mécanique

- Matériau
- Comportement en traction simple
- Modélisation : modèle KEMC

Etude de la rupture

- Essais de rupture
- Etude fractographique
- Modélisation des essais

Prédiction de la rupture par l'approche locale

- Bibliographie
- Critère de Rice et Tracey comportement KEMC
- Micromécanique et écrouissage apparent

Influence du taux de triaxialité des contraintes

- Influence du taux de triaxialité classique

domaine du vieillissement

Résistance à la déchirure

- Fissuration continue, pas de saut de fissure (Marshall et al., 1984)

Etude Fractographique

4 Surfaces de rupture des AE

AE4 à 200°C

4 Surfaces de rupture des CT

CT à 150°C

- Rares zones à cupules « couchées » observées aussi par Gupta et al. (2006)

Pas de caractéristique particulière en présence de vieillissement / (Xu et al. 2006) : « shallower dimples »

- Rupture ductile (croissance, coalescence des cavités)

Modélisation des essais sur AE

- Bandes de \dot{p} asymétriques mais iso-contours de p symétriques
- Pas d'influence 2D/3D sur la courbe globale

- Modélisation éprouvette CT
 - Pas d'effet de symétrie
 - 1/4 d'éprouvette avec rainure latérale

Simulation correcte de la courbe globale à 200°C 3D proche 2D/DP

Effet du comportement sur la zone plastique

Comportement

- KEMC

- Elasto-plastique avec écrouissage apparent identifié sur les essais de traction simple à $\dot{\varepsilon} = 10^{-4} s^{-1}$

 $T = 200^{\circ}C$

Zone plastique

Localisations plus intenses dues à l'effet de PLC

Comportement mécanique

- Matériau
- Comportement en traction simple
- Modélisation : modèle KEMC

4 Etude de la rupture

- Essais de rupture
- Etude fractographique
- Modélisation des essais

Prédiction de la rupture par l'approche locale

- Bibliographie
- Critère de Rice et Tracey comportement KEMC
- Micromécanique et écrouissage apparent

Prédiction de la rupture en présence de vieillissement dynamique

- A508 cl. B (Amar et Pineau, 1985), A48 (Wagner et al., 2002)
- Rupture ductile \rightarrow critère de Rice et Tracey

$$\frac{\dot{R}}{R} = 0.283 \exp\left(\frac{3}{2}\frac{\sigma_m}{\sigma_{eq}}\right)\dot{I} \quad \text{rupture pour} \quad \left(\frac{R}{R_0}\right)_c$$

- Modélisation des essais sur AE avec un modèle élastoplastique

Prédiction avec le critère de Rice et Tracey

- Fractographie : $\left(\frac{R}{R_0}\right)_c (T) = \left(\frac{R}{R_0}\right)_c$

- Champs mécaniques locaux calculés avec le modèle KEMC

Isovaleurs de (R/R_0) à l'instant de rupture

Prédiction insuffisante du creux de ductilité

Influence du vieillissement (température) sur la rupture ductile ?

- Mécanismes : croissance, coalescence des cavités
- Température = viscosité → localisations de PLC (à quelle échelle ?)
 - = écrouissage apparent variable

=> Etude micromécanique de la croissance de cavité (Koplik et Needleman, 1988)

- Application du modèle aux éprouvettes AE4
 - Calcul avec le comportement EP10-4 ou avec KEMC

Chute de ductilité prédite Evolution avec la température ?

Prédiction de la ténacité à l'amorçage

- Application du modèle aux éprouvettes CT
 - Calcul avec le comportement KEMC
 - Amorçage de la fissure pour : $R/R_0 = R_c/R_0$ à $\delta_c = 200 \mu m$ ($J_{0,2}$)
 - Energie de Surface :

Prédiction d'une chute de ténacité de 25% Evolution avec *T* ?

- Loi d'endommagement
 - Gradient de vitesse de déformation en pointe de fissure
 - Ecrouissage apparent = fonction de *T* et de la vitesse de déformation

Comportement local - Cavités dans une matrice de comportement EP/KEMC (thèse H. Wang) Calcul 2D/DP à vitesse de déformation imposée $\dot{E}_{11} = -0.5\dot{E}_{22}$ (Faleskog et al., 1997) E_{22} \otimes \square \dot{E}_{11} $iso - \dot{p}$ \$ ↔ 68 69 Matrice EP Matrice **KEMC**

Disymétrisation en présence de PLC / Échelle des localisations de PLC ?

Conclusions

- Vieillissement dynamique sous déformation du TU48C
 - **PLC** pour $150^{\circ}C \le T \le 250^{\circ}C$ $10^{-4}s^{-1} \le \dot{\varepsilon} \le 10^{-2}s^{-1}$
 - Chute de ductilité et de ténacité dans cette gamme de température
- Modélisation du comportement
 - Modèle de Kubin Estrin Mc Cormick ($R_a(t_a,p)$)
 - Identification entre 20°C et 350°C (difficultés)
- Prédiction de la rupture
 - Calculs avec KEMC à l'échelle macroscopique :
 - pas d'effet du PLC sur la croissance de cavité
 - Influence de l'écrouissage apparent (température) sur la croissance de cavité
 - → Prédiction d'une chute de ductilité et de ténacité
 / évolution de la ténacité avec la température à améliorer

Influence de la vitesse de déformation sur l'écrouissage apparent sur la croissance de cavité