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Resulting Burgers vector

Burgers vector
b*(x)
Dislocation line vector

£(x)

[Krdner, 1969]
Resulting Burgers B® for slip system s for a closed
circuit limiting the surface S

Bs

B (/Sé(z)-n dS) b*
= /Sg.g dS

a(x)=b"®£(x)

Consider contributions of all systems and ensemble

average it
B = /g.g ds
s

a=) <b’®¢>

where

Ergodic hypothesis: compute the dislocation density
tensor by means of a volume average in DDD simula-
tions
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Dislocation density tensor for edge dislocations

3@ !
n edge dislocations piercing the
surface S
convention:

Z:

<&

o |lo

Statistical theory of dislocations

Resulting Burgers vector

E = nb§1
= ae;S
n
= —b
a cb®¢
= —pcbe,®e;
p® = n/S is the density of geometri-

cally necessary dislocations according to
(Ashby, 1970).

O 0 13
0 0 O
0 0 O

out of diagonal component of o

diagonal component az3 for screw disloca-
tions withb = b e,
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Fourth order and scalar dislocation densities

[Kréner, 1969]

Two—point correlation tensor

a(x,x')=<b(x)®&(x)®b(x)®&(x) >

The invariant quantity

l/a-"-(x x)dV*bj (x)dV*bzA*bZ
vafa, *VVX, =%V = p

where L is the total length of dislocation lines inside V and x(x) equals 1 when
there is a dislocation at x, 0 otherwise.

p is the scalar dislocation density traditionally used in physical metallurgy
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Reminder on tensor analysis (1)

The Euclidean space is endowed with an arbitrary coordinate
system characterizing the points M(q'). The basis vectors are

defined as
oM

gi = aq’
The reciprocal basis (Qi)i=1,3 of (e;)i=1,3 is the unique triad of
vectors such that

i _gi
e'-e; =0

If a Cartesian orthonormal coordinate system is chosen, then both
bases coincide.
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Reminder on tensor analysis (2)

The gradient operator for a tensor field T(X) of arbitrary rank is
then defined as

oT
aq’

The gradient operation therefore increases the tensor rank by one.

grad T=TQV = Qe
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Reminder on tensor analysis (2)

The gradient operator for a tensor field T(X) of arbitrary rank is

then defined as

oT
oq'
The gradient operation therefore increases the tensor rank by one.

The divergence operator for a tensor field T(X) of arbitrary rank is
then defined as

grad T=TQV = Qe

oT o
aq’ ~

The divergence operation therefore decreases the tensor rank by one.

divlT =T -V =
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Reminder on tensor analysis (2)
The gradient operator for a tensor field T(X ) of arbitrary rank is then

oT
aq’
The gradient operation therefore increases the tensor rank by one.

The divergence operator for a tensor field T(X) of arbitrary rank is then

defined as

grad T=TQ®V = Qe'

defined as

oT
g’ e
The divergence operation therefore decreases the tensor rank by one.
The curl operator (or rotational operator) for a tensor field T(X) of

i

divT =T -V :=

arbitrary rank is then defined as
O .o
aq'
where the vector productis A a Ab =e¢jrajbre;=€:(a®@b)

The component ¢;i of the third rank permutation tensor is the signature of the
permutation of (1,2, 3).

curl T=TAV =

The curl operation therefore leaves the tensor rank unchanged.
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Reminder on tensor analysis (3)

With respect to a Cartesian orthonormal basis, the previous formula
simplify. We give the expressions for a second rank tensor T

gradT = Tjxe;®e;®e,
diVI = T,'jJQ,-

We consider then successively the curl of a vector field and of a
second rank vector field, in a Cartesian orthonormal coordinate
frame

curiu e ujje;/\Ne: Ekijui i€
- X —=J =1 —=J ) =k
aX,

OA
curlA= = Ne,=Ajke;, Re; e, =cnpAjke;, @€,
~ an bl )
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Reminder on tensor analysis (4)

We also recall the Stokes formula for a vector field for a surface S
with unit normal vector n and oriented closed border line L:

fu ﬂ = —/(curlu) ‘n dS, ?{ u,'dl; = —Ek,'j/ uj jng ds
L S L S

Applying the previous formula to u; = Aj; at fixed / leads to the
Stokes formula for a tensor field of rank 2:

fe m = /(curlé) ‘n dS, %A,Jd/J = Emjk/ A;J-’knm ds
L S L S
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Incompatibility of elastic and plastic deformations
F=EP

In continuum mechanics, the

/’\ previous differential operators
F are used with respect to the

initial coordinates X or with

respect to the current coordi-

P | E nates x of the material points.
In the latter case, the notation
| V,grad,div and curl are used

Ll but in the former case we adopt
V x, Grad, Div and Curl.

F=1+Gradu = CwrllF=0
The deformation gradient is a compatible field which derives from the
displacement vector field. This is generally not the case for elastic and plastic
deformation:
CurlE#0, CurlP #0
It may happen incidentally that elastic deformation be compatible for instance
when plastic or elastic deformation is homogeneous.
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Incompatibility of elastic and plastic deformations
F=EP

/’F_\ E relates the infinitesimal vec-
tors d¢ and dx, where d¢ re-
sults from the cutting and re-

leasing operations from the in-

P | E finitesimal current lattice vec-
tor dx

| gzg—l.g

If S is a smooth surface containing x in the current configuration and bounded
by the closed line ¢, the true Burgers vector is defined as

B - f Elax
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Dislocation density tensor in continuum crystal
plasticity
F=EP
/’F\ E relates the infinitesimal vec-
tors d¢ and dx, where d¢ re-
sults from the cutting and re-
leasing operations from the in-

P | E finitesimal current lattice vec-
tor dx

I d¢ = E ' dx

If S is a smooth surface containing x in the current configuration and bounded
by the closed line ¢, the true Burgers vector is defined as

B - fEldx— [(culEnds—[ands
c S S

according to Stokes formula which gives the definition of the true dislocation

density tensor
_ -1 _ =
a = —cwlE" = —eu By e;®e;
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Dislocation density tensor in continuum crystal
plasticity

The Burgers vector can also be computed by means of a closed

circuit ¢g C Qg convected from ¢ C

B = Y{E—l.dx—%g—l.f.dx—]{g.dx
c o <o

So S

Nanson's formula ds = JE_T -dS has been used. We obtain the
alternative definition of the dislocation density tensor
1

a=—curlE™t = S(CurlP).- F7
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Dislocation density tensor in continuum crystal
plasticity

The Burgers vector can also be computed by means of a closed

circuit ¢g C Qg convected from ¢ C

B = %g—l-m—fg—l-g-m(—]élg-dx
c o <o

So S

Nanson's formula ds = JE_T -dS has been used. We obtain the
alternative definition of the dislocation density tensor
1

a=—curlE™t = S(CurlP).- F7

or equivalently
J(curllj*l) . INE*T = (Curl P) - BT

which is a consequence of curl F = curl (E- P) =0
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Dislocation density tensor at small deformation

We introduce the notations

H=Gradu =H°+H", with H®*=¢°+w® HP=gP+uP

~

Within the small perturbation framework

F=1+H = 1+ +w+el+wf ~ (1+£°+w®).(1+P+w”) ~ EP

~ ~

We have
~ 1+ H°

E7l~1-

0
1

l+|:"’

m

ZI

so that the dislocation density tensor can be computed as
a ~ CurlH® = —Curl H?

since Curl H = 0 due to the compatibility of the deformation
gradient.
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Lattice rotation full field measurement

initial orientations lattice orientation field after deformation

— Boundary levels: 1° 5° 10° I Boundary levels: ~* 5°
70.00 ym = 70 steps  IPF [001] 100.0 pm = 100 steps  IPF [001]

111

oo 101
Inverse Pole Figure [001]
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Dislocation density vs. lattice curvature
Experimental techniques like EBSD provide the field of lattice
orientation and, consequently, of lattice rotation R® during

deformation. Since
a=—curlE"t = —curl (U1 . ReT)

the hypothesis of small elastic strain (and in fact of small elastic

strain gradient) implies
a ~ —curl R*T

~

If, in addition, elastic rotations are small, we have
a ~ —curl (1 — w€) = curl w®

The small rotation axial vector is defined as
1 e

A
|€x

Wt W=

xe

w®=——¢

w €
25/34
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Dislocation density vs. lattice curvature

or, in matrix form,

0 wip w3y 0

el — e e _ X
wl=]| —wi, O wyz | = | w§
e e X
w3 —wy 0 —0S

X X
e e
—WwW3 Wy
X
e
X
e
Wy

The gradient of the lattice rotation field delivers the lattice

curvature tensor. In the small deformation context, the gradient of

the rotation tensor is represented by the gradient of the axial

vector:
X e
K =gradw

One can establish a direct link between curlw® and the gradient of

the axial vector associated with w.
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Dislocation density vs. lattice curvature

e e e e
w123 + W31 2 —Ws31,1 —W121
e _ e e e e
[curlcg ] = —Ww23,2 w123 + W31 —W12,2
e e e e
—w3 3 —Ww313 w31+ W3r,2
r X X X X
e e e
—W33 — Wy Wr 1 w31
. X e X o X o x €
= W12 —W33 — Wiy W32
XE XS Xe Xe
W13 W33 —Wi1 — Wao

from which it becomes apparent that

a =k — (tracer)l

~)

K=a - %(traceg)l

This is a remarkable relation linking, with the context of small elastic strains®
and rotations, the dislocation density tensor to lattice curvature. It is known as
Nye's formula [Nye, 1953].

and in fact of small gradient of elastic strain.
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Relating the dislocation density and lattice

curvature tensors at finite deformation

a = —cwlE ' =curl U RT

aX/

The finite lattice curvature tensor is defined as

1
[ =3¢ (RR @V))
Note that
RR ®V) = el Riki = —Rou €uew Tui
It follows
Q = AEI - U'e_l RmTu €klj €kvu rvL F[__/l g,‘ ®§J
= AT+ B ((CEY - T(LE 1)
fefl
where A¥ = ¢ Rime; ®e;.

Continuum crystal plasticity approach

e—1
o 2Un_ g Ut e RY L Pt
— | €n km + U~ €kl Rk, Fry e;®e;
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Lattice curvature due to edge dislocations

a=—pche,®e3

so that

K=—-pcbes;®e,

the only non—vanishing component is
K31 = P53

3® 1 which corresponds to bending with
respect to axis 3
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Tilt boundary
(Read, 1958)

(b)

Fig. XI-1. — Joint de grains simple. Le plan de la figure est paralléle & une face du cube
et normal 4 I'axe de rotation relative des deux grains. (a) Deux grains ayant un axe
quaternaire commun et une différence d’orientation f. (b) Les deux grains sont réunis
pour former un bicristal. Cette réunion ne demande ¢u'une déformation clastique,
sauf 1a ot un plan d’atomes se termine sur le joint en une dislocation coin marquée
par le symbole I. E
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Lattice torsion due to screw dislocations

- screw dislocations parallel to e 3

k=a’ — Z(tracea)l
-1 0 0

b
[N]_p% 0 -1 0
0 0 1

ﬁ torsion with respect to all axes!!!

relaxed Volterra cylinder

[Friedel, 1964]
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Fig. X1I-2. — Joint de torsion pure. Le joint est paralléle du plan de I figure, et les deux
grains ont subi une Iégére rotation relative autour de I'axe quaternaire normal & Ia
figure. Les cercles blancs représentent des atomes juste au-dessus du joint, el les
noirs des atomes juste au-dessous. Les grains s'unissent continiment, sauf suivant deux
ensembles de dislocations vis qui forment un quadrillage.
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Twist boundary
two families of or-
thogonal screw dis-
locations

a= —p(;b(g 18e 1+§2®§2)

[k] = pcb

o O o

00
00
01

torsion with respect
to axis 3

e
k33 = P33

(Read, 1958)
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Towards generalized single crystal plasticity

A continuum crystal plasticity model should at least include

e the effect of scalar dislocation density ps; this is the case of classical
crystal plasticity according to Mandel, Teodosiu, Sidoroff, Asaro which
incorporate hardening rules from physical metallurgy

o the effect of dislocation density tensor; it is the main ingredient of the
continuum theory of dislocations (closure problem)
geometrically necessary dislocation density pg

Combine both! But acknowledge then the fact that the presence of o in the
constitutive equations leads to higher order partial differential equations when
inserted in the equilibrium equations. Additional boundary conditions are
necessary. Several possibilities:

e since ¢ is implicitly related to P ® V and F ® V, consider a strain
gradient model or strain gradient plasticity model;
[Mindlin and Eshel, 1968] [Fleck and Hutchinson, 1997]

e since ¢ is related to the lattice curvature tensor, raise the lattice rotation
to internal degrees of freedom and consider a Cosserat theory.
[Giinther, 1958] [Krdner, 1963] [Mura, T., 1963]

Need for generalized continuum crystal plasticity 34/34



E

[

Fleck N.A. and Hutchinson J.W. (1997).
Strain gradient plasticity.
Adv. Appl. Mech., vol. 33, pp 295-361.

Friedel J. (1964).
Dislocations.
Pergamon.

Giinther W. (1958).

Zur Statik und Kinematik des Cosseratschen Kontinuums.
Abhandlungen der Braunschweig. Wiss. Ges., vol. 10, pp
195-213.

Kroner E. (1963).
On the physical reality of torque stresses in continuum

mechanics.
Int. J. Engng. Sci., vol. 1, pp 261-278.

Mindlin R.D. and Eshel N.N. (1968).
On first strain gradient theories in linear elasticity.
Int. J. Solids Structures, vol. 4, pp 109-124.

Need for generalized continuum crystal plasticity 34/34



B Mura, T. (1963).
On dynamic problems of continuous distribution of

dislocations.
Int. J. Engng. Sci., vol. 1, pp 371-381.

8 Nye J.F. (1953).
Some geometrical relations in dislocated crystals.
Acta Metall., vol. 1, pp 153-162.

Need for generalized continuum crystal plasticity 34/34



	Plan
	Statistical theory of dislocations
	The dislocation density tensor
	Scalar dislocation densities

	Continuum crystal plasticity approach
	Incompatibility and dislocation density tensor
	Lattice curvature tensor

	Need for generalized continuum crystal plasticity

