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a b s t r a c t 

The stress-gradient theory has a third order tensor as kinematic degree of freedom, which is work- 

conjugate to the stress gradient. This tensor was called micro-displacements just for dimensional rea- 

sons. Consequently, this theory requires a constitutive relation between stress gradient and micro- 

displacements, in addition to the conventional stress-strain relation. The formulation of such a consti- 

tutive relation and identification of the parameters therein is difficult without an interpretation of the 

micro-displacement tensor. 

The present contribution presents an homogenization concept from a Cauchy continuum at the micro- 

scale towards a stress-gradient continuum at the macro-scale. Conventional static boundary conditions at 

the volume element are interpreted as a Taylor series whose next term involves the stress gradient. A 

generalized Hill-Mandel lemma shows that the micro-displacements can be identified with the deviatoric 

part of the first moment of the microscopic strain field. Kinematic and periodic boundary conditions are 

provided as alternative to the static ones. The homogenization approach is used to compute the stress- 

gradient properties of an elastic porous material. The predicted negative size effect under uni-axial load- 

ing is compared with respective experimental results for foams and direct numerical simulations from 

literature. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The classical Cauchy theory of continuum mechanics requires

a constitutive relation between stress and strain. The constitutive

parameters appearing therein can, for dimensional reasons, conse-

quently always be grouped into those with dimension of a stress

and dimensionless ones. Lacking an intrinsic length scale, this the-

ory predicts a power-law scaling behavior when considering self-

similar specimens of different size, the integer scaling exponent

just depending on whether stress, strains, forces or displacements

are considered. Deviations from this scaling behavior are termed

size effects and have been observed for numerous physical phe-

nomena, cf. ( Aifantis, 2003 ). That is why certain generalized theo-

ries of continuum mechanics have been proposed in the literature.

A classification of the generalizations was given by Maugin (2011) .

Most of the generalized theories fall into the class of micro-

morphic continua, which were established by Mindlin (1964) and

Eringen and Suhubi (1964) . Therein, the (dimensionless) micro-
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eformation is introduced as additional kinematic degree of free-

om. Certain sub-classes of theories, like the micro-polar theory

Cosserat theory) or the strain-gradient theory can be obtained by

mposing kinematic constraints to the micro-deformation. As al-

ernative approach, Forest and Sab (2012) imposed a kinetic con-

traint to obtain a stress-gradient theory. Therein, a kinematic de-

ree of freedom �ijk appears as work-conjugate quantity to the

radient 

 i jk := 

∂�i j 

∂X k 

. (1)

f the stress tensor �ij . Though, the stress gradient cannot take

rbitrary values but it is restricted by the equilibrium conditions

s will be detailed below. Due the presence of R ijk in the respective

otentials, Neumann boundary conditions do not involve only the

ractions as normal component of �ij , but all components of �ij 

eed to be prescribed at a surface. Alternative Dirichlet boundary

onditions involve additional terms as well, cf. Sab et al. (2016) .

he third-rank tensor �ijk has the dimension of length, which

s why it was termed “micro-displacements”. Like all generalized

heories of continuum mechanics, the stress-gradient requires

https://doi.org/10.1016/j.ijsolstr.2020.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.02.014&domain=pdf
mailto:geralf.huetter@imfd.tu-freiberg.de
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Fig. 1. Homogenization procedure: (a) volume element, (b) heterogeneous microstructure ( Hütter, 2017; 2019 ). 
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1 This approach is used in many textbooks and lectures to derive the equilibrium 

conditions (4) for the Cauchy theory. 
dditional constitutive relations. Their formulation and the in-

erpretation of the boundary conditions is difficult without an

nterpretation of the tensor of micro-displacements �ijk . 

The scope of the present contribution is to provide a homog-

nization methodology from a classical, but heterogeneous, con-

inuum at the micro-scale towards a homogeneous stress-gradient

heory at the macro-scale. 

The present contribution is structured as follows:

ection 2 presents the homogenization theory, before this theory

s employed in Section 3 to compute the macroscopic non-classical

onstitutive parameters of a plane elastic micro-structure with

ores. These constitutive parameters are used in Section 4 to pre-

ict the size effect under uni-axial tension. Finally, Section 5 closes

ith a summary and conclusions. 

. Homogenization theory 

In a homogenization procedure, a material with heterogeneous

icro-structure is replaced by a homogeneous continuum with

more or less) equivalent macroscopic properties. For this purpose,

 volume element �V is considered, which contains the relevant

eterogeneities of the micro-structure as sketched in Fig. 1 . In

he following, capital symbols refer to macroscopic quantities, and

ower-case symbols to microscopic ones. For instance, σ ij and εij 

re the microscopic stress and strain, respectively, whereas �ij and

 ij refer to their macroscopic counterparts. 

In the classical theory of homogenization by Hill (1963) , either

inematic boundary conditions u i = E i j y j can be prescribed for the

isplacements on ∂�V ( X ), or static ones n i σi j = n i �i j for the trac-

ions. Therein, y j = x j − X j refers to the position vector of a point x j 

elative to the center X j = 

〈
x j 

〉
of the volume element, cmp. Fig. 1 .

he operator 〈 ( ◦) 〉 computes the volume average over the volume

lement �V . 

Gologanu et al. (1997) ; Kouznetsova et al. (2002) interpreted

he kinematic boundary conditions as a Taylor series. In this

ense, they incorporated an additional term to Hill’s expression

o obtain a homogenization scheme for the strain-gradient theory.

ühlich et al. (2012) argued that an analogous expansion of Hill’s

tatic boundary condition would yield the homogenization for a

tress-gradient theory. This proposal shall be exploited here in de-

ail. Using the notation of the stress-gradient theory, an expanded

tatic boundary condition thus reads 

i j n i = n i 

[
�i j + R i jk y k 

] ∀ y k ∈ ∂ �V ( X ) . (2)

urely static boundary conditions are prone to the condition that,

n absence of volume forces σi j,i = 0 , prescribed tractions need to
e self-equilibrating (statically admissible): ∮ 
 �V 

σi j n i d S = 0 , 

∮ 
∂ �V 

σi j n i y k ε jkl d S = 0 . (3) 

or the particular tractions (2) these conditions require 

 i ji = �i j,i = 0 , �i j = � ji , (4) 

orresponding to the macroscopic equilibrium conditions. 1 Con-

equently, the stress gradient is symmetric R i jk = R jik and devia-

oric in the sense R i j j = R ji j = 0 . The loading to a volume element

y stress gradients according to Eq. (2) is shown schematically in

ig. 2 . 

Furthermore, a homogenization theory requires a condition

f macro-homogeneity (Hill-Mandel condition), which defines the

acroscopic mechanical power P int as average over its microscopic

endant: 

σi j ˙ ε i j 

〉
= P int (X k ) . (5) 

y partial integration, the left-hand side of Eq. (5) can be trans-

ormed to a surface integral over the boundary ∂�V ( X ) of the vol-

me element �V into which boundary condition (2) can be in-

erted. After rearrangement and application of the divergence the-

rem, the left-hand side of Eq. (5) becomes 

σi j ˙ ε i j 

〉
= 

1 

�V 

∮ 
∂ �V 

σi j n i ˙ u j d S = �i j 

〈
˙ ε i j 

〉
+ R i jk 

[ 〈
˙ ε i j y k 

〉
− 1 

n + 1 

(〈 ̇ ε im 

y m 

〉 δ jk + 

〈
˙ ε jm 

y m 

〉
δik 

)] 
(6) 

herein, n = δkk refers to the dimension of space ( n = 2 or n = 3 ).

rom Eq. (6) , a strain tensor E ij and a third-order tensor �ijk , called

ensor of micro-displacements ( Forest and Sab, 2012 ), can be intro-

uced as work-conjugate macroscopic deformation measures to �ij 

nd R ijk , respectively, as 

 i j = 

〈
ε i j 

〉
= 

1 

2�V 

∮ 
∂ �V 

u i n j + u j n i d S (7)

i jk = 

〈
ε i j y k 

〉
− 1 

n + 1 

(〈 ε im 

y m 

〉 δ jk + 

〈
ε jm 

y m 

〉
δik 

)
= 

1 

2�V 

∮ 
∂ �V 

(
u i n j + u j n i 

)
y k −

1 

n + 1 

( u i n m 

+ u m 

n i ) y m 

δ jk 

− 1 

n + 1 

(
u j n m 

+ u m 

n j 

)
y m 

δik d S . (8) 
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Fig. 2. Loading to the volume element by macroscopic stress gradients: (a) R 111 = −R 122 = −R 212 , (b) R 221 . 
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Thereby, it was taken into account that the stress and stress gra-

dient exhibit symmetries, and so do their work-conjugate quanti-

ties ( E i j = E ji , �i jk = � jik and �i j j = 0 ). Eq. (8) indicates that the

micro-displacement tensor �ijk corresponds to the deviatoric part

of the first moment of the local strain field. Furthermore, it shall

be mentioned that micro-macro relations (7) and (8) are objective,

i. e., that they are invariant to superimposed rigid-body motions. 

For a hyperelastic material σi j ˙ ε i j = 

˙ W , Eq. (6) can be integrated

in time to a macroscopic strain energy potential 

W (E i j , �i jk ) = 

〈
W(ε i j ) 

〉
(9)

with 

�i j = 

∂ W 

∂ E i j 

, R i jk = 

∂ W 

∂ �i jk 

. (10)

Furthermore, it is required that the energy at the macroscopic

scale is conserved. This means, that it must be possible to con-

vert the internal power P int = �i j 
˙ E i j + R i jk 

˙ �i jk to the divergence of

a flux Q 

mech 
i 

of mechanical power: 

P int = Q 

mech 
i,i . (11)

By partial integration of P int using the equilibrium conditions

(4) and the definition (1) of the stress gradient, it turns out that

the flux of mechanical work has to be identified as 

Q 

mech 
i = �i j 

˙ U j + � jk 
˙ � jki . (12)

Therein, U j ( X k ) is the macroscopic displacement field. Furthermore,

the kinematic relation for the strain becomes 

E i j = U (i, j) + �i jk,k . (13)

The round brackets ( ij ) are used here and in the following to indi-

cate the symmetric part of a tensor with respect to indices i and

j . The kinematic relation (13) involves the divergence of the micro-

displacements at the right-hand side, in addition to the symmetric

part of the displacement gradient. 

In this context, it may be recalled, that it is an (implicit) ad-

hoc postulate of the classical homogenization theory of Hill (1963) ,

that the strain field E ij is macroscopically compatible, i. e., that it it

is related to a macroscopic displacement field via a kinematic rela-

tion, and that the field of macroscopic stresses satisfies equilibrium

conditions. In the present approach, both, the macroscopic equilib-

rium conditions (4) as well as the kinematic relation (13) are an

outcome of the homogenization procedure. 

Alternatively, relations (12) and (13) can be written in terms of

a “generalized displacement tensor” ( Sab et al., 2016 ) 


i jk := 

1 

(
U i δ jk + U j δik 

)
+ �i jk (14)
2 
n short as E i j = 
i jk,k and Q 

mech 
i 

= � jk 
˙ 
 jki , respectively. The trace

i j j = (n + 1) U i / 2 is directly related to the macroscopic displace-

ent vector, whereas the deviatoric part of 
 ijk corresponds to

he micro-displacement tensor �ijk . In view of Eq. (8) 2 , the micro-

acro relation for the generalized displacement tensor is formu-

ated as 

i jk = 

1 

2�V 

∮ 
∂ �V 

(
u i n j + u j n i 

)
y k d S = 

〈
ε i j y k 

〉
+ 

1 

2 

(〈 u i 〉 δ jk + 

〈
u j 

〉
δik 

)
. 

(15)

he deviatoric part of Eq. (15) is identical to Eq. (8) for the micro-

isplacement. Furthermore, for a superimposed rigid translation

he right-hand side of (15) transforms according to Eq. (14) . 

In classical homogenization, kinematic or periodic boundary

re usually favored over static ones for several reasons. In order

o construct kinematic boundary conditions for the present stress-

radient homogenization, it has firstly be noted that the kinematic

icro-macro relations (7) and (8) can be transformed to pure sur-

ace integrals. Thus, it is possible at all to prescribe E ij and �ijk ex-

lusively by suitable boundary conditions (in contrast to micromor-

hic theory, cf. e.g. ( Hütter, 2017; Forest and Sab, 1998; Jänicke and

teeb, 2012 )). In particular, an additional quadratic term is added

o conventional kinematic boundary conditions 

 i = U i + E i j y j + C i jk y j y k (16)

s proposed in ( Gologanu et al., 1997; Kouznetsova et al., 2002 ). It

an be verified easily that ansatz (16) satisfies the classical micro-

acro relation (7) ad hoc. Furthermore, Eq. (15) yields a set of 18

quations for the micro-displacements 
 ijk in terms of the 18 in-

ependent componentes of C ijk . These equations involve the sec-

nd geometric moment G i j = 

〈
y i y j 

〉
. For simply shaped volume el-

ments, the second geometric moment is a spherical tensor G i j =
δi j . In this case, the system of equations for C ijk can be solved,

f. ( Hütter, 2017 ). After reinserting Eq. (15) , the kinematic bound-

ry condition for the stress-gradient theory reads 

 i = U i + E i j y j + 

1 

2 G 

(
�i jk + �ik j − �k ji + 

1 

n + 2 

�mmi δ jk 

)
y j y k . 

(17)

his boundary condition can be inserted to the left-hand side of

he generalized Hill-Mandel condition (5) . A comparison with the

ight-hand side of Eq. (5) shows that the kinetic micro-macro rela-

ions read 

i j = 

1 

�V 

∮ 
∂ �V 

n k σk (i y j) d S = 

〈
σi j 

〉
(18)
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Fig. 3. Non-classical kinematic boundary conditions: (a) �111 = −�122 = −�212 , (b) �221 . 
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b  
 i jk = 

1 

2�V G 

∮ 
∂ �V 

2 n p σp(i y j) y k − n p σpk y i y j 

+ 

1 

n + 2 

n p 

[ 
σpk δi j − 2 

n + 3 

n + 1 

σp(i δ j) k 

] 
y m 

y m 

d S 

= 

1 

G 

〈 
σi j y k + 

1 

n + 2 

(
δi j σkm 

− 2 

n + 3 

n + 1 

σ(im 

δ j) k 

)
y m 

〉 
. (19) 

t can be verified, that the extended static boundary condition

2) satisfies these kinetic micro-macro relations. The quadratic de-

ormation modes are illustrated in Fig. 3 for certain components of

he micro-displacement tensor �ijk . It seems to be plausible, that

he loading and deformation modes in Figs. 2 and 3 , respectively,

elong to each other. 

Periodic boundary conditions can be constructed by amending a

uctuation �u i ( y k ) to the kinematic boundary condition (17) 

 i = U i + E i j y j + 

1 

2 G 

(
�i jk + �ik j − �k ji + 

1 

n + 2 
�mmi δ jk 

)
y j y k + �u i (y k ) .

(20) 

his fluctuation field is assumed to be periodic 

u i (y + 
k 
) = �u i (y −

k 
) . (21)

herein, y + 
k 

and y −
k 

refer to homologous points of the boundary

�V ( X ), i. e., to points with opposing normal n i (y −
k 
) = −n i (y + 

k 
) as

ketched in Fig. 1 b. In order to formulate a boundary-value prob-

em for the microscopic displacement field u i ( y k ), the fluctuations

re eliminated in Eq. (21) by Eq. (20) , yielding 

u i (y + 
k 
) − u i (y −

k 
) = E i j 

(
y + 

j 
− y −

j 

)
+ 

1 

2 G 

(
�i jk + �ik j − �k ji + 

1 

n + 2 

�mmi δ jk 

)(
y + 

j 
y + 

k 
− y −

j 
y −

k 

)
(22) 

he periodicity of the fluctuation field, Eq. (21) or (22) , satisfies ad

oc the kinematic micro-macro relation (7) for the strain, but not

q. (8) for the micro-displacements. Thus, Eqs. (8) and (22) have to

e imposed as global constraints at the micro-scale ( Hütter, 2019 ).

or a hyper-elastic material with strain-energy density W(ε i j ) , the

orresponding Lagrangian thus reads 
 = 〈 W 〉 − 1 

�V 

∫ 
∂ �V + 

λi (y + p ) 
[ 

u i (y + 
k 
) − u i (y −

k 
) − E i j 

(
y + 

j 
− y −

j 

)
− 1 

2 G 

(
2�i ( jk ) − �k ji + 

1 

n + 2 
�mmi δ jk 

)(
y + 

j 
y + 

k 
− y −

j 
y −

k 

)] 
d S 

+ λi jk 

[ 

�i jk −
1 

�V 

∮ 
∂ �V 

u (i n j) y k −
1 

n + 1 
u (i n m ) y m δ jk −

1 

n + 1 
u ( j n m ) y m δik d S 

] 

. 

herein, the first surface integral is taken over one half of the

oundary y + 
k 

∈ ∂ �V + and the respective homologous points y −
k 

ave to be given as a function in terms of y + 
k 

∈ ∂ �V + . Correspond-

ngly, the field of scalar Lagrange multipliers λ
i 

is defined in terms

f y + p . The functional L is to be optimized with respect to the mi-

roscopic displacement field u i ( y k ) and to the Lagrange multipliers

i 
(y + p ) and λ

i jk 
. The corresponding stationarity conditions are the

ocal equilibrium conditions σi j,i = 0 and σi j = σ ji , as well as the

nforced relations (8) and (22) and the boundary conditions 

 i σi j = ±λ j (y k ) + n i λi jk y k . (23) 

he plus sign + λ j (y k ) in the first term applies to points y k ∈
 �V + , whereas the minus sign applies to respective homologeous

oints y −
k 

. Thus, the tractions at the boundary, Eq. (23) , involve the

nti-periodic part λj ( yk ) with a superimposed linear term with λijk .

orrespondingly, the classic case is recovered in absence of stress-

radients. For irreversible material behavior, the stationarity con-

itions are generalized to hold without existence of a Lagrangian

unction L (principle of virtual power). 

Inserting Eq. (23) to the kinetic micro-macro relations (18) and

19) yields 

i j = 

1 

�V 

∫ 
∂ �V + 

(
y + 

(i 
− y −

(i 

)
λ j) (y + 

k 
) d S (24)

 i jk = λi jk + 

1 

2�V G 

∫ 
∂ �V + 

2 λ(i 

(
y + 

j) 
y + 

k 
− y −

j) 
y −

k 

)
− λk 

(
y + 

i 
y + 

j 
− y −

i 
y −

j 

)
+ 

1 

n + 2 

(
λk δi j − 2 

n + 3 

n + 1 

λ(i δ j) k 

)(
y + m 

y + m 

− y −m 

y −m 

)
d S (25) 

hese terms coincide with the coefficients of ˙ E i j and 

˙ �i jk when

valuating the left-hand side of the generalized Hill-Mandel condi-

ion (5) , so that the latter is satisfied. 

. Homogenization of an elastic porous medium 

A circular (or spherical) volume element as shown in Fig. 4 can

e used as approximation to a material with a regular hexagonal
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Fig. 4. Circular volume element with pore. 

Fig. 5. Dependence of stress-gradient compliance moduli on porosity and type (pe- 

riodic “pBC” or kinematic “kinBC”) of boundary conditions ( ν = 0 . 3 ). 

Fig. 6. Tensile test with stress-gradient material. 
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arrangement of pores. The circular volume element has firstly the

advantage that this geometry does not posses preferred directions.

Consequently, isotropic behavior of the microscopic constituents

will result in an isotropic homogenized behavior. Secondly, certain

analytical solutions can be found for this simple geometry. That

is why, this geometry has been used within numerous studies on

fundamental aspects of homogenization, e.g. ( Gologanu et al., 1997;

Hütter, 2019; Mühlich et al., 2012 ). 

In the present study, the effective properties of the stress-

gradient continuum shall be computed for linear elastic behav-

ior σi j = λδi j ε kk + 2 με i j of the matrix material r i ≤ | y i | ≤ r a us-

ing periodic boundary conditions. For the circular volume ele-

ment, the homologeous points are located opposite to each other
 

−
i 

= −y + 
i 

with respect to the center of the volume element. Thus,

q. (25) reduces to R i jk = λi jk . Effectively, this means that the prob-

em (23) can be interpreted as superposition of static boundary

onditions for the stress-gradient terms with the conventional pe-

iodic conditions for classical behavior, i. e., for the effective Lamé’s

onstants λ(eff) and μ(eff) in a relation 

i j = λ(eff) δi j E kk + 2 μ(eff) E i j . (26)

he solution for λ(eff) and μ(eff) is well-known. It remains to ad-

ress the non-classical terms. 

In the plane case, the stress gradient tensor has four inde-

endent components R 111 = −R 122 = −R 212 , R 221 , R 222 = −R 211 =
R 121 , R 112 , and so does have the tensor of micro-displacements

ijk ( Forest and Sab, 2012 ). 

Favorably, the circular volume element is treated in polar coor-

inates r , ϕ. In particular, the part of the boundary condition (23) ,

hich is related to the stress gradient, reads 

rr (r a ) = 

r a 

4 

[ −(R 221 − 3 R 111 ) cos (3 ϕ) + (R 111 + R 221 ) cos (ϕ) 

+ (R 112 + R 222 ) sin (ϕ) + (R 112 − 3 R 222 ) sin (3 ϕ) ] (27)

rϕ (r a ) = 

r a 

4 

[ (R 221 − 3 R 111 ) sin (3 ϕ) + (R 111 + R 221 ) sin (ϕ) 

− (R 112 + R 222 ) cos (ϕ) + (R 112 − 3 R 222 ) cos (3 ϕ) ] (28)

he problem can be solved with an ansatz for the Airy stress func-

ion F ( r , ϕ), which involves respective terms of the Mitchell se-

ies: 

 = [ (R 111 + R 221 ) cos (ϕ) + (R 112 + R 222 ) sin (ϕ) ] 

(
A 1 r 

3 + 

A 2 

r 

)
+ [ (R 221 − 3 R 111 ) cos (3 ϕ) − sin (3 ϕ)(R 112 − 3 R 222 ) ] 

×
(

A 3 r 
5 + 

A 4 

r 
+ A 5 r 

3 + 

A 6 

r 3 

)
. (29)

he coefficients A 1 to A 6 can be determined from boundary con-

itions (27) and (28) , and the trivial natural boundary condition

rr (r i ) = σrϕ (r i ) = 0 at the surface of the pore. Instead of eval-

ating the kinematic micro-macro relation (8) , the correspond-

ng micro-displacements can be computed equivalently by Cas-

igliano’s method. For this purpose, the complementary strain en-

rgy is computed as 

 

∗ = 

〈 
1 

4 μ

(
σi j σi j − νσ 2 

kk 

)〉 
= 

˜ b 1 
2 

[
(R 111 + R 221 ) 

2 + (R 112 + R 222 ) 
2 
]

+ 

˜ b 2 
2 

[
(R 221 − 3 R 111 ) 

2 + (R 112 − 3 R 222 ) 
2 
]

(30)

ith 

˜ 
 1 = 

r 2 a 

32 μ

3 − 4 ν + c 2 

1 − c 2 
, 

˜ 
 2 = 

r 2 a 

32 μ

1 + c + 9 c 3 − 7 c 2 + (3 −4 ν)(1 + c)(1 + c 2 ) c 2 

(1 + 4 c + c 2 )(1 − c) 3 
(31)

or the plane strain case. Therein, c = r 2 
i 
/r 2 a refers to the porosity

f the material. The procedure can be performed analogously for

inematic boundary conditions as described in the appendix. The

esulting compliance moduli are plotted in Fig. 5 . Plausibly, their

alue tends to infinity as c tends to 1. The same ˜ b 1 is obtained

or both types of boundary conditions. The values of ˜ b 2 coincide

or homogeneous material c = 0 , but for porous material c > 0

eriodic boundary conditions yield more compliant behavior than

inematic boundary conditions. This behavior is known from clas-

ical homogenization. For the plane stress case, ν in Eq. (31) has to

e replaced by ν/ (1 + ν) . 
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Fig. 7. Stress-gradient medium under uni-axial tension: (a) stresses over cross section, (b) size effect in apparent Young’s modulus. 

Fig. 8. Intrinsic length of stress-gradient theory from homogenization (plane 

stress). 
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Fig. 9. Predictions of stress-gradient theory in comparison with experimental re- 

sults ( Andrews et al., 2001 ) and beam models ( Teko ̆glu et al., 2011 ; Liebenstein et 

al., 2018 ) of foams ( ν = 0 ). 
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Forest and Sab (2012) wrote the non-classical linear-elastic con-

titutive relation of an isotropic and centro-symmetric material in

ompliance form in a Voigt-type notation as 

3�111 

�221 

)
= 

ˆ [ B ] ·
(

R 111 

R 221 

)
, 

(
3�222 

�112 

)
= 

ˆ [ B ] ·
(

R 222 

R 112 

)
(32) 

he factor 3 in front of �111 and �222 was introduced such that

he Voigt-type column vectors are work-conjugate to each other.

orrespondingly, ˆ [ B ] is a symmetric and positive definite compli- 
nce matrix. A comparison of Eq. (31) with Eq. (32) shows, that

he compliance matrix for the stress gradients has to be identified

s 

ˆ 
 

B ] = 

(
˜ b 1 + 9 ̃

 b 2 ˜ b 1 − 3 ̃

 b 2 
˜ b 1 − 3 ̃

 b 2 ˜ b 1 + ̃

 b 2 

)
. (33) 

. Uni-axial tension 

.1. Stress gradient theory 

As an example, the predictions of the stress-gradient theory for

ni-axial tension shall be investigated as sketched in Fig. 6 . The

tress-gradient theory requires extended boundary conditions in

orm of a second order tensor, cf. ( Forest and Sab, 2012 ). Here, the

rivial natural boundary condition 

i j (X 2 = ±H/ 2) = 0 (34)

s prescribed at the lateral free surfaces. Consequently, a state of

onstant stress �11 = const . is not a solution to the uni-axial ten-

ion problem since it would violate the boundary condition (34) , in

ontrast to classical Cauchy continuum theory or even (first order)

icro-morphic or strain-gradient theories. 

For a sufficiently long specimen, the stress state depends only

n X 2 and the only non-vanishing components of stress and its

radient are �11 ( X 2 ) and R 112 ( X 2 ), respectively. Inserting the lat-

er to the constitutive relation (32) yields �222 = 1 / 3 ̂  B 12 R 112 and

112 = 

ˆ B 22 R 112 . Correspondingly, the components of the strain ten-

or, Eq. (13) , are 

 11 = U 1 , 1 + �112 , 2 , E 22 = U 2 , 2 + �222 , 2 . (35)

herein, U 1,1 equals the applied strain ε̄ . Furthermore, the constitu-

ive relation (26) between �11 and strains E 11 and E 22 is required.

avorably, it is used in compliance form E 11 = �11 /Y (eff) , wherein

 

(eff) refers to (macroscopic) Young’s modulus. Together with the

onstitutive law for �112 , Eq. (35) 1 yields the ODE 

11 − Y (eff) ˆ B 22 �11 , 22 = Y (eff) ε̄ , (36) 

hose coefficient introduces the intrinsic length � = 

√ 

Y (eff) ˆ B 22 .

nder boundary conditions (34) , the solution is 

11 = Y (eff) ε̄ 

[ 

1 −
cosh 

(
X 2 
� 

)
cosh 

(
H 
2 � 

)
] 

(37) 

s plotted in Fig. 7 a for some parameter sets. Subsequently,

q. (35) 2 could be solved for the lateral displacements U 2 ( X 2 ). Fi-

ally, the strain energy within a single cross section X = const is
1 
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computed as 

1 

2 

H/ 2 ∫ 
−H/ 2 

�11 E 11 + R 112 �112 d X 2 = 

1 

2 

ε̄ 2 H Y (eff) 
[ 

1 − 2 � 

H 

tanh 

(
H 

2 � 

)] 
︸ ︷︷ ︸ 

=: Y app 

, 

(38)

from which the apparent Young’s modulus Y app of the specimen

can be extracted. The square bracket in Eq. (38) reflects the size

effect. Fig. 7 b shows that the apparent Young’s modulus of smaller

samples is smaller than that of sufficiently large samples. Such

negative size effects have already been observed for the stress-

gradient continuum under different loading conditions ( Tran et al.,

2018 ). 

The size effect depends on the single intrinsic length � only.

The predicted values of this intrinsic length from the homogeniza-

tion in Section 3 are depicted in Fig. 8 . Thereby, the required ef-

fective value of Young’s modulus Y (eff) from Hütter (2019) has been

used to compute � . The figure shows firstly that Poisson’s ratio ν
of the matrix material has a very weak influence on � . Secondly,

the intrinsic length has an approximately constant and small value

� ≈ 0.5 r a for small porosities c � 0.6. For larger values of c , the

value of � increases strongly and even tends to infinity as c goes

to one. This behavior is attributed to the fact that the classical

properties like Y (eff) tend to zero as 1 − c, whereas the stress gra-

dient compliance, Eq. (31) , has a (1 − c) 3 singularity. Furthermore,

Fig. 8 shows that the predicted size effect does not vanish com-

pletely for homogeneous material c = 0 . Though, this was neither

the case for the strain-gradient theory ( Mühlich et al., 2012; Golo-

ganu et al., 1997; Kouznetsova et al., 2004 ). 

4.2. Comparison with experiments and direct numerical simulations 

It is known that foam materials exhibit size effects when the

specimen size becomes comparable to the cell size of the foam.

In particular, negative size effects under uni-axial loading have

been observed in experiments with foams ( Andrews et al., 2001 )

and direct numerical simulations with discretely resolved strut

structure ( Teko ̆glu et al., 2011; Liebenstein et al., 2018 ). The ob-

served negative size effect was attributed to a surface layer of

incomplete cells which do not carry any load ( Andrews et al.,

2001; Rueger and Lakes, 2019; Wheel et al., 2015 ). This sur-

face layer can be seen as physical explanation of the bound-

ary condition (34) for the stress-gradient theory in the previ-

ous section. It was shown that the stress-gradient theory can

describe the negative size effect qualitatively . The subsequent

question is whether the present homogenization approach al-

lows quantitative predictions of this size effect. Fig. 9 compares

the experimental results of Andrews et al. (2001) and the di-

rect numerical simulations (DNS) of Teko ̆glu et al. (2011) and

Liebenstein et al. (2018) with the predictions of the present

homogenization theory. Andrews et al. (2001) investigated two

materials (“Alporas”, “Duocell”). Teko ̆glu et al. (2011) modeled

these foams by plane, Voronoi-tesselated beam networks. They

specified a “cell size d ”, which is taken here as d ≈ 2 r a .

Liebenstein et al. (2018) investigated honeycomb structures for

which r a is identified with the radius of a circle of equal area.

The relative density of the foams was specified to be 7–10%, cor-

responding to a porosity of c = 0 . 90 · · · 0 . 93 . Fig. 9 shows that the

trend of the experimental data and direct numerical simulations

is captured quite well by the present homogenized stress-gradient

theory (“SG”). 

However, the absolute size effect is slightly overestimated by

the homogenized theory if the actual porosity is used. Rather,

the average of experimental results and direct numerical simu-

lations comply best with the predictions of the present stress-
radient approach for c ≈ 0.80. This deviations might be at-

ributed to the simple representation of the pores by circles.

urther studies are required on the effect of the topology of

oam micro-structures on size effects during elastic and inelastic

eformations. 

. Summary and conclusions 

The stress-gradient theory requires a constitutive relation be-

ween the tensor of micro-displacements �ijk and the stress gra-

ient R ijk . In the present contribution, a homogenization frame-

ork was developed to identify this constitutive relation from

he microstructure of a material. For this purpose, the static

oundary conditions of classical homogenization have been in-

erpreted as a Taylor series, whose subsequent term involves the

tress gradient. A condition of macro-homogeneity (generalized

ill-Mandel condition) yields a kinematic micro-macro relation

or �ijk . It turned out that �ijk can be identified with the de-

iatoric part of the first moment of the microscopic strain field.

ased on the kinematic micro-macro relations, kinematic bound-

ry conditions for the micro-scale have been identified, where the

icro-displacements �ijk appear as coefficients of the non-classical

uadratic term. Furthermore, generalized periodic boundary condi-

ions have been formulated. The proposed homogenization frame-

ork with generalized boundary conditions at the micro-scale and

icro-macro relations for all involved kinematic and kinetic quan-

ities allows to use linear or nonlinear constitutive relations at the

icro-scale. It is thus well-suited for numerical implementations

ike FE 2 . 

The homogenization procedure was employed to compute the

tress-gradient parameters of an elastic material with pores. These

arameters were used to predict the negative size effect of foam

aterials under uni-axial loading. A comparison with respective

xperiments and direct numerical simulations from literature ex-

ibited a reasonable agreement. 

It shall be mentioned that similar non-classical terms in static

r kinematic boundary conditions appear in homogenization ap-

roaches towards strain-gradient or (first order) micromorphic the-

ries ( Gologanu et al., 1997; Hütter, 2017 ). The latter theories pre-

ict positive size effects, in contrast to the stress-gradient theory.

his means that the choice of the generalized continuum theory to

e used at the macro-scale, is an important constitutive assump-

ion itself. 
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ppendix A. Solution for kinematic higher-order boundary 

onditions 

For the circular volume element, kinematic BCs (17) read 

 r (r a ) = 

1 

2 
(3�111 − �221 ) cos (3 ϕ) + (�111 + �221 ) cos (ϕ) 

+ (�112 + �222 ) sin (ϕ) + 

1 

2 
(�112 − 3�222 ) sin (3 ϕ) (A.1) 

 ϕ (r a ) = − 1 

2 
(3�111 − �221 ) sin (3 ϕ) + 2(�111 + �221 ) sin (ϕ) 

− 2(�112 + �222 ) cos (ϕ) + 

1 

2 
(�112 − 3�222 ) cos (3 ϕ) (A.2) 

he problem can be solved with an Airy ansatz analogous to

q. (29) 

 = 2 μ[ (�111 + �221 ) cos (ϕ) + (�112 + �222 ) sin (ϕ) ] 

(
A 1 r 

3 + 

A 2 

r 

)
+ 2 μ[ (�221 − 3�111 ) cos (3 ϕ) − sin (3 ϕ)(�112 − 3�222 ) ] 

×
(

A 3 r 
5 + 

A 4 

r 
+ A 5 r 

3 + 

A 6 

r 3 

)
. (A.3) 

inally, a macroscopic strain-energy density of 

 

∗ = 

˜ a 1 kBC 

2 

[
(�111 + �221 ) 

2 + (�112 + �222 ) 
2 
]

+ 

˜ a 2 kBC 

2 

[
(�221 − 3�111 ) 

2 + (�112 − 3�222 ) 
2 
]

(A.4) 

s obtained for the plane strain case with 

˜  1 kBC = 

18 μ

r 2 a 

1 − c 2 

3 − 4 ν + c 2 
, 

˜  2 kBC = 

2 μ

r 2 a 

(1 − c) 
[
(3 − 4 ν)(1 + c) + 8 c 2 − 8 c 3 + c 4 + c 5 

]
(1 + c 6 )(3 − 4 ν) + 16 c 2 ν2 − 24 c 2 ν + 17 c 2 − 16 c 3 + 9 c 4 

. (A.5) 

he respective independent components R 111 , R 221 , R 222 , R 112 of the

tress gradient are derived by differentiation by respective work

onjugate quantities 3 �111 , �221 , 3 �222 , �112 , finally yielding a

tiffness matrix 

ˆ 
 

A ] = 

(
˜ a 1 kBC 

9 
+ 

˜ a 2 kBC 
˜ a 1 kBC 

3 
− ˜ a 2 kBC 

˜ a 1 kBC 

3 
− ˜ a 2 kBC ˜ a 1 kBC + 

˜ a 2 kBC 

)
. (A.6) 

s inverse ˆ [ A ] = 

ˆ [ B ] 
−1 

to the compliance matrix in Eq. (32) . A com-

arison with Eq. (33) shows that stiffness and compliance coeffi-

ients are related by 

˜ 
 1 = 

9 

16 ̃

 a 1 
, ˜ b 2 = 

1 

16 ̃

 a 2 
. (A.7) 
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