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Under tension low carbon steel exhibits inhomogeneous plastic deformation. This instability called
Piobert-Liiders banding creates fronts of localized strain that propagate in the structure. To date,
Liiders banding has been studied experimentally and numerically only in simple geometries like sheets,
tubes and normalized fracture mechanics specimens. This paper focuses on architectured materials and
specifically lattice structures which can be defined as a tessellation of unit-cells periodically distributed
in space. This class of advanced materials draws new mechanical properties from its inner architecture.

We investigate the effect of the architecture on the global behavior of the structure. Especially, how
bands interact with the lattice and how to control initiation and propagation of localized strain using
the architecture. An elastoplastic material model is used in order to simulate the Piobert-Liiders band for-
mation and propagation. The model also considers a large deformation framework for elastoplasticity
with periodic boundary conditions in order to represent the architectured material. Initiation and prop-
agation of material instabilities depend on the geometry as well as its on the relative orientation with
respect to the loading direction. Propagating and non-propagating behaviors are identified for the
Piobert-Liiders bands and related to the different types of geometry. Material instabilities affect the
mechanical behavior of the structure as far as they are governed by the architecture. These conclusions
are compared to experimental results from tensile tests on laser-architectured specimens made of
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ARMCO steel.
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1. Introduction

Architectured materials, in the sense given by Ashby and Bréchet
(2003), Bouaziz et al. (2008), Bréchet (2013), Bréchet and Embury
(2013) and Ashby (2013), are obtained from a design process aim-
ing at fulfilling a specific set of requirements through a given func-
tionality, behavior, or performance, induced via a particular
morphological arrangement between multiple material phases.
Among architectured materials, lattices are a specific kind of cellu-
lar materials, i.e. a combination of material and space. Lattice struc-
tures are composed of a connected network of struts, that may be
organized periodically in space. They are generally used in cases
where there is a need for either high specific stiffness, or high speci-
fic strength, but are also the basis of mechanical metamaterials
(Ashby, 2006; C eté et al., 2006; Zok et al., 2016; Nassar et al.,
2016; Combescure and Elliott, 2017; Poncelet et al., 2018; Rosi
et al., 2018; Latture et al., 2018; Turco et al., 2018; dell’lsola et al.,
2018; Onal et al., 2018; Rosi and Auffray, 2019). Modeling the
mechanical response of architectured materials, especially lattice
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structures, is of prime interest for enabling their use in industrial
applications. From an analytical viewpoint, models have been avail-
able for the description of the elastic behavior of cellular and lattice
materials based on a strength of materials approach. Beyond the
classical elastic behavior of cellular materials, (Gibson and Ashby,
1999) proposed a description based on geometrical and material
parameters for the nonlinear behavior of lattices, e.g. plastic buck-
ling, toughness. Following the seminal work by Gibson and Ashby,
2D topologies were widely studied using both analytical and
numerical models (Wang and McDowell, 2004; Wang and
McDowell, 2005; Fleck and Qiu, 2007; Alonso and Fleck, 2007) in
order to improve the description of elastoplasticity and failure of
such materials. By taking into account the deflection of inclined
struts in lattices, i.e. extending the analytical model to large defor-
mations, (Guoming et al., 2006) improved the description of elastic
moduli in 2D cellular materials given in Gibson and Ashby (1999).

In the same way, (Tankasala et al., 2017) investigated the tensile
response of lattices at finite strains. A description of various
regimes from buckling to fracture in lattices under tension was
given. Using an elastic perfectly-plastic material model, (Bonfanti
et al., 2016; Bonfanti and Bhaskar, 2018) focused on the nonlinear
plastic response of cell walls in 2D lattices under combined loads. A
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study of geometrical instabilities trough computational modeling
completed by experimental testing in 2D cellular materials is pro-
posed by Niknam and Akbarzadeh (2018).

Most of the previous studies generally consider perfect elasto-
plastic models to study plasticity in lattices. Another type of insta-
bilities is related to the microstructure for some materials, e.g. mild
steel, aluminum alloy, etc. This is the so-called Piobert-Liiders
(Piobert, 1842; Liiders, 1860) phenomenon, which occurs during
the initiation of plasticity and causes localized plastic deformation
as bands that propagate along the specimen. The question arises of
the interaction of such static strain ageing instabilities with the
architecture of the lattice. To the knowledge of the authors, this
problem has never addressed for lattice structures. For example,
Kyriakides et al. (2008) studied, numerically and experimentally,
the interaction between Liiders banding and buckling of steel bars.
Another example in which the architecture can alter the modes of
buckling of a structure has been presented by He et al. (2018)
exploring different geometry for vertices in a square lattice.
Hallai and Kyriakides (2011) emphasized the role of the propaga-
tion of Piobert-Liiders bands in the emergence of a propagating
non-uniform curvature during the bending of steel tubes.

The localized nature of the Piobert-Liiders bands can lead to
premature collapse if not properly accounted in the design. On
the other hand, one could take advantage of these instabilities
for instance by controlling them through the architecture.

In this article, we are interested in the interaction between the
Piobert-Liiders phenomenon and 2D-lattices with different topolo-
gies covering both bending- and stretch-dominated behaviors. The
objective of the present paper is to simulate the initiation and
propagation of Piobert-Liiders bands within planar architectured
media and to study how such material instabilities affect the
mechanical response of architectured materials. This work aims
at a classification of architectures enabling or impeding the propa-
gation of localized deformation modes induced by the Piobert-
Liiders bands occuring in the struts.

This paper is organized as follows: firstly, finite deformation
elastoplastic model accounting for Piobert-Liiders is presented. In
the same section, three archetypal geometries are introduced for
the subsequent simulations and experiments. The initial boundary
value problem including periodic boundary conditions is formu-
lated and finite element simulation results are reported in Sec-
tion 3. The macroscopic behavior of each lattice is analyzed in
the light of accumulated plastic strain maps. Section 4 deals with
the issue of the proper volume element size to be considered in
the presence of instabilities while considering periodic boundary
conditions. An experimental validation of the predicted instability
propagation properties is proposed in Section 5 for the considered
architectured. For that purpose finite size samples with a limited
number of cells are tested to investigate the localization phenom-
ena at the local and global scales. The experimental results are
compared to finite element simulations on the whole samples. A
thorough discussion of the results is presented in Section 6 and
concluding remarks are provided in Section 7.

The following notations are used throughout: first, second and
fourth order tensors are respectively denoted by a,b and C. The

double contraction is written a : a = a;aj;.
2. Periodic media and material instabilities
2.1. Lattice structure
A lattice structure can be defined as a tessellation of unit-cells
periodically distributed in space. In the following, we are only

interested in 2D lattices. Numerous studies focused on the behav-
ior of these architectures and they are classically divided into two

different groups depending on their main deformation mode: (i)
bending-dominated or (ii) stretch-dominated, as shown in Fig. 1.

(i) Bending-dominated: as in Fig. 1, the first configuration (a) is
a mechanism according to Deshpande et al. (2001). When
loaded, it can deform thanks to the rotation of pin-joints and
induces bending in the struts caused by rigidity of the joints.
It exhibits low stiffness and low strength.

(ii) Stretch-dominated: as in Fig. 1, the second configuration (b)
is a structure as explained in the work of Deshpande et al.
(2001). When loaded, struts are either in tension or in compres-
sion thanks to the higher connectivity between joints. Joints are
mostly not rotating and the deformation is stretch-dominated.
Such structures usually exhibit higher stiffness and strength
than bending-dominated lattices.

This study focuses on the in-plane finite strain tensile response
of three representative topologies: triangular, square and hexago-
nal as shown in Fig. 2. These ideal structures display a large variety
of mechanical responses, which justifies the choice of those
topologies.

The triangular and the hexagonal lattices are invariant by a 60°
rotation, the square by a 90°. As explained in Auffray et al. (2015)
and Tankasala et al. (2017), the triangular and the hexagonal lat-
tices are isotropic in-plane for linear elasticity, but anisotropic
for non-linear behavior. The triangular lattice is stiff and belongs
to the stretch-dominated structures while the hexagonal lattice
is bending-dominated and exhibits a more compliant behavior.
On the contrary, the square lattice exhibits quadratic anisotropy
in-plane for linear elasticity. It displays a stretch-dominated
behavior if loaded along its struts and a bending-dominated behav-
ior when struts are oriented by 45° with respect to the loading
direction. Therefore, it is interesting to study which direction and
which geometry promote the propagation of plastic strain bands.
The three architectures will be loaded in all possible in-plane
directions taking into account their symmetry. Each unit cell is
defined by the length and thickness of its struts. For each lattice,
the relative density is fixed to 30% and the length to 1. The corre-
sponding thickness of the struts of each lattice reported in Table 1
for each geometry.

2.2. Phenomenological modeling of the Piobert-Liiders phenomenon

The Piobert-Liiders instability in low carbon steel characterizes
the transition from the elastic to the plastic deformation regimes
corresponding to the release of dislocations pinned by interstitial
atoms. Macroscopically, it generally results in the emergence and
subsequent propagation of plastic deformation bands.

An elastoplastic material model is used in this work in order to
simulate the Piobert-Liiders band formation and propagation. The
model accounts for large deformations as needed because of the
high strain levels experienced locally by the different geometries

studied in Section 3.
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Fig. 1. (a) a mechanism; (b) a structure; (c) self-stressed state mechanism adapted
from Deshpande et al. (2001).
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Fig. 2. Lattice topologies and their corresponding unit cells employed for the FE simulation with their periodic vectors. (a) triangular lattice, (b) square lattice and (c)

hexagonal lattice.

Table 1
Thickness of struts for a 30% relative density and a length of 1.
Triangle Diamond Hexagon
Thickness 0.09 0.15 0.26

The finite deformation formulation chosen in the present work
for isotropic nonlinear material behavior is based on a co-
rotational transformation of the stress rate-strain rate problem
making use of a local objective frame. This framework developed
in Ladeveze (1980), Dogui and Sidoroff (1986) and Besson et al.
(2009) allows for the extension of constitutive laws from infinites-
imal strain to large deformation without modification of the form
of the plastic flow and hardening rules. e and s are the invariant

strain rate and stress measures defined by transport of the Eulerian
strain rate D and the Cauchy stress T into the local objective frame
E. The evolution from E to E is characterized by the rotation
Q(x,t). The velocity gradient L defined as L = F.F-! where F is

the usual deformation gradient. L is decomposed into its symmet-

ric and skew parts, D and Q.

143 )

-Q".D.Q
s=¢'.TQ M

The strain rate tensor g is split into elastic and plastic parts. The
yield function is f(s,R). The rate-independent elastoplasticity
model for large defor;nation is finally written as:

e-ee

f(8,R) =15(8) = R(p)

where R(p) is the yield stress taken as a function of the accumulated
plastic strain p.

A von Mises criterion is chosen for f with J,(s) = , /3 sdev : sdev,

the second invariant of the stress tensor and s is the deviatoric

part of the stress tensor.

2.3. Numerical approach of the Piobert-Liiders phenomenon

Tsukahara and Iung (1998) introduced a local behavior model-
ing the Piobert-Liiders behavior by the finite element method. It
consists in a description of the work-hardening material function
as linear softening branch followed by a linear hardening branch.
Later, Ballarin et al. (2009) smoothened this behavior hardening
potentials evolving non linearly with p.

R(p) =Ro+Qi(1 —e™?) + Qy(1 —e7™P) +-Q3(1 —e ™) 3)

The elastic behavior is described by the Young modulus and the
Poisson ratio, equal to 210 GPa and 0.3, respectively. Regarding the
plastic behavior, a softening term (Q,;b,) added to a Voce strain
hardening law described by the initial yield stress Ry and the
parameters (Q,;b;) with Q; > 0 and Q, < 0. Static strain aging is
modeled by the negative potential Q,. The third function (Qs;bs)
is added to the initial model to smooth out the peak stress for bet-
ter convergence during finite element simulation (Marais et al.,
2012). The corresponding values of the parameters are given in
Table 2. These parameters are chosen to replicate a 2% strain long
stress plateau at 90 MPa and a stress peak at 100 MPa as shown in
Fig. 3. On the same figure, the softening branch of the function R(p)
is visible in the constitutive response of a material point. It is well-
known that such a softening branch is unstable and leads to the
formation of a localization band right after the peak stress
(Maziére and Forest, 2015). This is illustrated by the finite element
simulation of a plate in tension with the corresponding overall
stress (force divided by the initial section) and applied overall
strain curve in Fig. 3. 3D computation has been performed in order
to minimize constraint on the behavior of instabilities. The forma-
tion and propagation of Piobert-Liiders band in such a plate in ten-
sion is illustrated in Fig. 4. This phenomenological approach is used
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Table 2

Parameters for the phenomenological plasticity model.
Ro (MPa) Q (MPa) by Qz (MPa) b, Q3 (MPa) bs
100 400 10 —-100 80 5 300

120 4

110

100

90]

211 [MPa]

80

70 4

60 - == Volume element
== Structural response

50 T v .
0.00 0.01 0.02 0.03
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Fig. 3. Intrinsic consitutive law for Piobert-Liiders phenomenon integrated on a
single Gauss point (Volume element) compared to the overall response of a plate
endowed with this material behavior. The accumulated plastic strain maps
corresponding to the points (1,2,3,4) marked on the plate response curve are
shown in Fig. 4.

to mimic the Piobert-Liiders effect in our simulations. Macroscop-
ically, it yields a stress plateau at a lower value than the peak, as
shown in Fig. 3. After the propagation of the band throughout
the specimen, homogeneous hardening starts taking place.

3. Propagation of material instabilities in infinite periodic
media

3.1. Periodic boundary value problem

Investigated lattices are periodic in plane. The homogenized
behavior of the structure is found from the unit-cell with appropri-

l. 2 3. 4.

accumulated
plastic strain

NIRRO IS IR
NN )
NN

Fig. 4. Accumulated plastic strain map on a sample in tension with propagation of a
Piobert-Liiders localization band.

ate periodic boundary conditions. The reference configuration of
the unit cell is called V, whereas the current state at time t is V.
The displacement field and the Cauchy stress tensor inside the unit
cell are respectively called u and 6. The macroscopic strain and

Cauchy stress tensors are defined as spatial averages over the unit
cell:

E =y [, GradudV,

4
=1 [, 6dV @

The gradient operator Grad is computed with respect to
Lagrange coordinates. Note that the conjugate of E in the work of

internal forces is the Boussinesq tensor, also called first Piola-
Kirchhoff stress tensor. However we will use the effective Cauchy
stress X for post-processing the results of the finite element

simulations.

The periodic boundary value problem over the unit cell aims at
finding the local displacement field u as the sum of a macroscopic
part and a periodic fluctuation:

u=EX+v )

where E is the prescribed macroscopic strain tensor and X denote

the Lagrange reference coordinates. Applying the macroscopic
strain E, one computes the fluctuation vector on the unit cell. The

uniform strain distribution E would be the strain of the medium

if it were homogeneous and » represents an in-plane periodic fluc-
tuation of the displacement due to local inhomogeneities of the
material and in this present case to the architecture. Thus, the strain
and stress fields over the infinite structure vary in a periodic man-
ner around the mean values E and p> with a periodicity equal to the

unit cell size. The periodic boundary conditions mean that the fluc-
tuation » takes the same value at homologous points on opposite
sides of the cell, such that:

V(X7 x7) € (097;,0Q"), v(x7) = v(X) (6)

whereas the traction vector ¢ -n is anti-periodic:
V(x; xY) € (097;,0Q), 6(x ).nx ) = —-o(x")n@x") ()

Our computational homogenization calculations will rely on the
periodic finite element available in the Z-Set finite element pack-
age, making it possible to prescribe mixed boundary conditions
like in the tensile tests considered in the following. For that pur-
pose, the macroscopic strain E; is prescribed and all the macro-
scopic stress components X are fixed to zero, except X;.

A Newton algorithm is used to solve the global equilibrium
equations based on the finite element method with a total Lagran-
gian formulation. An implicit Newton method is used to solve the
system of local constitutive equations. Switching to an explicit
Runge-Kutta scheme with automatic time-stepping is possible
when the Newton scheme does not converge in the presence of
strong instabilities. The total number of degrees of freedom
(DOF) is reported for all three cell: 91122 DOF for the square cell,
62130 DOF for the triangle cell, and 132742 DOF for the hexagon
cell. Full-field finite element (FE) solutions are reported for the
elastoplastic response of the three considered lattices considered.
For each cell, the steel volume fraction is 30%. Selected FE results
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Fig. 5. Macroscopic stress-strain curve for studied lattices (a) without Piobert-Liiders instability (b, ¢, d) with Piobert-Liiders instability.

are reported up to a macroscopic strain of 10% and the accumu-
lated plastic strain (epcum variable) evolution is given for most rel-
evant orientations.

The macroscopic response of the three studied cells without
Piobert-Liiders instability is reported in Fig. 5a for the most rele-
vant orientation. The parameter Q, in the original behavior law
(2) is changed to be positive with the same value. There is no local-
ization in this case.

3.2. Triangle lattice

The macroscopic mechanical response of the triangular lattice
has a global shape similar for all loading directions, see Fig. 5b.
Stress levels differ depending on the orientation, from a plateau
stress at 50 MPa for 0° to 35 MPa for 30°. The response exhibits
an initial stiff and linear behavior corresponding to the elastic
regime of the material. The stress reaches a first maximum value,
a peak stress, when plastic strain localization starts. Then stress

slowly decreases to reach a plateau, indicating that the propaga-
tion of plastic strain in the branches of the lattice has begun.
Finally a hardening behavior takes place after the instability has
finally crossed the whole structure. For the orientation 0°, the
peak-plateau stress phenomenon is sharper. Besides, the triangular
lattice is the only lattice to preserve the stress plateau in every
loading direction due to its stretch-dominated behavior. The stress
level for the plateau depends on the orientation of the lattice with
respect to the loading direction.

The discrepancies of stress level and the local instability which
occur for the three tensile tests can be explained through the anal-
ysis of the propagation of Piobert-Liiders instabilities within the
triangle lattice. Figs. 6 and 7 represent the accumulated plastic
strain for the triangle cell for two relevant orientations, 0° and
30°. Plastic localization initiates in the middle of the struts of the
triangle. This nucleation depends on the orientation. For orienta-
tion 0°, plastic deformation starts in the two most loaded struts
at the same time. For the other configurations, plastic deformation
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Fig. 6. Accumulated plastic strain map in the triangle lattice 0°-oriented unit cell.
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Ert = 0.015

Fig. 7. Accumulated plastic strain map

begins, first, only in the best oriented strut with respect to the
loading direction of the cell. Then, as the macroscopic loading
increases, the plastic instability propagates along the struts sym-
metrically, see Fig. 7.

Because of the high-connectivity of the cell, the struts are mainly
loaded in tension thus promoting the propagation of Piobert-Liiders
bands. Whatever the loading direction, there are always struts sub-
jected to tension. This results in a macroscopic behavior which
exhibits a peak-plateau stress as the instability propagates
throughout the lattice. The isotropic behavior of the triangle lattice
is verified in the elastic domain while it is lost when plastic
instabilities appear. The higher level of stress for the 0°-oriented
triangle cell is due to the quantity of material that undergoes
plasticity in the lattice. For this orientation in the end, 4 struts are
plastic (see Fig. 6) while for the 30°-oriented cell there are only 2
(see Fig. 7).

3.3. Square lattice

Square lattice behaves very differently from the triangular lat-
tice and both its linear and non-linear behaviors are strongly ani-
sotropic. From the macroscopic stress-strain curves of the square
lattice in Fig. 5¢, two extreme mechanical responses can be identi-
fied. The first one, corresponding to the orientation 0°, is close to
the localization-propagation behavior with a peak and a plateau

0.02

0.018

0.016

0.014

[a

0.012

E1l = 0.008

R 0.01

0.008

0.006
0.004
0.002

0.00

Ell = 0.020 Ell = 0.030

in the triangle lattice 30°-oriented unit cell.

stress. In contrast, the second one for orientation 45°, relies on
the elastic then plastic bending of the struts and no peak nor pla-
teau stresses are observed.

Therefore, the analysis of the square lattice is divided into three
parts: stretching-dominated regime when struts are less than 5°
misoriented with respect to the loading direction and a bending-
dominated regime from 5° to 45°.

Stretching-dominated regime for 0°

Cell walls are exactly aligned with the loading direction. No
mechanism is active in the lattice, neither bending of the walls
nor plastic hinges. Conditions are close to a tension test on a single
plate made of material undergoing Piobert-Liiders instability in
Fig. 3 and 4. Three zones are identified from the macroscopic
stress-strain curve in Fig. 5c:

Zone 1: Stress peak. The initial response of the lattice is linear
until the yield stress is overcome while plastic strain localizes in
the thickness of the strut. Unlike the plate in tension, no defect is
needed to initiate the localization. Stress concentration in the lat-
tice is enough to trigger localization in the loaded struts.

Zone 2: Stress plateau. The peak stress at 55 MPa is followed by
a plateau at a stress level of 50 MPa corresponding to the plateau
stress value for the triangular lattice at 0° and last until 0.02
Macroscopic strain.

Zone 3: Hardening behavior of the lattice. After the Piobert-
Liiders instability has propagated through the horizontal struts of
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Fig. 8. Accumulated plastic strain map in the square lattice 0°-oriented unit cell.

the square lattice, the lattice undergoes a hardening behavior fol-
lowing the constitutive model.

Fig. 8 represents the accumulated plastic strain for the square
cell at 0°. Localized plasticity initiates (zone 1) in the middle of
the strut in tension into a single band. Then, it propagates along
this strut (zone 2) until the whole strut is plastic and it reaches
the central joint (zone 3). The localization does not take the shape
of an inclined band as in the case of a sample in tension. The trans-
verse struts of the lattice connected with periodic boundary condi-
tions prevent the strut with plastic localization to accommodate
the macroscopic deformation. None of the two inclined possible
bands is favored so they both coexist.

Stretching-bending regime for 4°

The unit cell is now slightly rotated from the tensile loading
direction. The strut oriented at 4° is loaded in both tension and
bending. The macroscopic behavior of the 4°-configuration in
Fig. 5c is compared to the 3 steps of 0°-configuration.

Zone 1: Elastic bending of the struts. The FE analysis captures
the elastic bending of each strut. The effective Young modulus
depends on the orientation of the strut with respect to the loading

Ei1 = 0.00

E11 = 0015

E11 = 0.004

E1l = 0020

direction, which shows the anisotropy of the square lattice in elas-
tic regime. An analytical expression is given by Gibson and Ashby
(1999). Compared to the 0°-oriented cell, there is no peak in this
case. Because the strut is bent, stress along the strut depends on
the lever arm from the end of the strut. This is unlike tension
where the stress is uniform until plasticity occurs.

Zone 2: Plastic bending of the struts. Plasticity propagates in the
struts of the cell and elastic bending becomes plastic bending. As a
result of the variable stress, the stress plateau is replaced by an
increasing stress until 0.12 macroscopic strain.

Zone 3: Hardening behavior of the lattice. As for the 0°-oriented
lattice, the lattice undergoes a hardening behavior after a local
instability marking the end of the propagation phase.

The accumulated plastic strain map of the square cell oriented
at 4° is represented in Fig. 9. While struts undergo elastic bending
(zone 1), plasticity starts early in the corners at the joints where
stress concentration is maximum on the side in tension. From
there, localized plasticity propagates towards the border in tension
of the bent struts. Plastic instability propagates along the half strut
under tension (zone 2) until it is fully plastic. When the band

0.02
0.018
0.016
0.014
0.012
Ei1 = 0.008
0.01

0.008

0.006
0.004
0.002

0.00
E1l = 0030

Fig. 9. Accumulated plastic strain map in the square lattice 4°-oriented unit cell.
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Fig. 10. Accumulated plastic strain map of the square lattice 45°-oriented unit cell.

reaches one end of the strut, it continues in the second half which
has not yet fully reached plasticity (zone 3).

Bending-dominated regime for 45°

In the case of the square cell oriented at 45°, the macroscopic
behavior of the lattice is two-fold (see Fig. 5¢). First, the response
is linear with an effective Young modulus lower than for other ori-
entations. Then, the lattice enters the elastoplastic regime and
hardening takes place.

The accumulated plastic strain maps of the square cell oriented
at 45° are represented in Fig. 10. While struts undergo elastic bend-
ing, plasticity initiates early in the corners at the joints where
stress concentration is maximum. From there, localized plastic
strain spreads but is still confined at the joints. Plasticity never
propagates through the struts. Neither a peak nor a plateau can
be seen on the macroscopic stress—strain curve. As the Young mod-
ulus increases when the struts tend to align with the loading direc-
tion, the plastic behavior of the square lattice evolves gradually
from the 45°-oriented cell to the 5°-oriented one.

The orientation of the square lattice modifies its mechanical
behavior from stretching-dominated to bending-dominated but it
also inhibits the propagation of Piobert-Liiders instabilities. In
stretch-dominated configuration, the square cell exhibits a prop-
agative behavior for plastic instabilities following the peak-
plateau stress response observed for the triangular lattice. On the

= 0.00

E, =0.073

E; =0.078

contrary, the bending-dominated configurations exhibit a harden-
ing behavior without propagation of plastic instabilities.

3.4. Hexagonal lattice

The comparison of the macroscopic behavior of the hexagon cell
oriented at 0°-degree with Piobert-Liiders instability and without,
respectively Fig. 11 and 5a, highlights the effect of the softening in
the plastic region.

The in-plane isotropic behavior of the hexagonal cell in elastic-
ity is verified while the behavior with plastic instabilities become
anisotropic. Because of the low connectivity of the hexagonal cell,
this lattice acts like a mechanism, i.e. it is bending-dominated.
After an isotropic linear response of the material, deformation
becomes plastic. The global behavior of the hexagonal lattice
depends very little on the orientation. The macroscopic stress—
strain curves for 3 relevant orientations in Fig. 5d differ only
slightly in the plastic domain. The behavior is characteristic of
bending-dominated lattices. For the 0°-oriented cell, a stress drop
is observed at 0.07 macroscopic strain. It is caused by Liiders local-
ization in the single stretched strut. No stress plateau is observed.

It is found that no propagation of the Piobert-Liiders instability
can be observed in the hexagonal lattice whatever the direction of
loading, except for the 0°-orientation (see Fig. 11). For this orienta-
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Fig. 11. Accumulated plastic strain map of the hexagon lattice 0°-oriented unit cell..
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tion, some struts are aligned with the tensile direction and a Pio-
bert-Liiders band can form. This occurs at the same overall stress
level of 55 MPa as for the square and triangular lattices. However
the propagation remains limited, see Fig. 11, so that no extended
plateau is observed on the overall curve. Due to low connectivity,
the inner mechanism, inducing the bending-dominated behavior
of the hexagon, does not activate the propagation of Piobert-
Liiders instabilities regardless of the orientation.

A two-fold behavior, propagative or non-propagative, has been
identified for 2D periodic lattices characterized by their either
stretch- or bending-dominated mechanical behavior. Moreover
for each lattices, discrepancies appear in the plastic behavior insta-
bilities due to different orientations. This validates that plastic
instabilities can be modified using both architecture and orienta-
tion. The propagative behavior of Piobert-Liiders bands can be
altered depending on the 2D lattice structure and loading direc-
tion. The propagation of Piobert-Liiders bands along the struts of
the lattice is found to take place mainly in stretch-dominated lat-
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(c) Square lattice oriented at 45°

tices provided the struts are properly oriented with respect to
the loading.

4. The role of the number of unit cells

It is well-known that the analysis of the stability of periodic
structures cannot be limited to the study of a single unit cell. This
is due to the fact that instability modes can emerge, exhibiting a
wavelength larger than the unit cell size (Triantafyllidis and
Bardenhagen, 1996; Schraad and Triantafyllidis, 1997). It is neces-
sary to examine a larger volume element (VE) composed of more
that one primitive unit cell. It means that the periodic boudary
conditions (PBC) are no more imposed on a single unit cell but
on the boundary of the larger volume element. Simulations of
the previous section were carried out again for VE sizes of 3 x 3
and 5 x 5 cells, named respectively 9-cell RVE and 25-cell RVE in
the following. In Fig. 12 the macroscopic curves are plotted for
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Fig. 12. Macroscopic behavior of RVE with increasing number of cells.
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Fig. 13. Plastic strain map in a 9-cell 45°-oriented square lattice.
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Fig. 14. Plastic strain map in a 25-cell 45°-oriented square lattice.

the square lattice with the orientations 0° (a) and 45° (c), for the
O°-oriented triangular (b) and hexagon (d) lattices. For bending-
dominated lattices as well as the 45°-oriented square and hexagon,
no discrepancy is observed between the one-cell and multiple cell
VE responses (see Fig. 13 and 14). In the case of propagating insta-
bilities during the loading of the lattice (stretched-dominated or
square 0°-oriented), differences can be observed only when insta-
bilities cross the whole lattice (Figs. 15 and 16). During the phase
of instability propagation, localized plasticity occurs in the struts
in tension. Then two possible patterns of localization exist: as in
Fig. 16 at E;; = 0.003 where the five struts of a single column
undergo plastic deformation or in Fig. 16 at E;; = 0.0045 where
the plastically deforming struts are distributed on two columns.
This cell to cell propagating behavior also occurs for the hexagon
cell oriented at 0° in Fig. 19 in the horizontal struts. Macroscopi-
cally, the number of columns in the RVE, for example 5 for the
25-cell RVE, matches the number of stress drops on the macro-
scopic curve of Fig. 12 (d) which corresponds to the sequential

localization of the stretched struts in each column. Once the plastic
instabilities have propagated through the whole lattice structure,
the global behavior is identical whatever the size of the RVE. The
same conclusions are drawn for the triangular and hexagon lattices
both also simulated with 9 cell and 25 cell RVE which are respec-
tively stretched-dominated and bending-dominated. The global
behaviors of these lattices are reported in Fig. 12 (b) and (d). The
accumulated plastic strain maps are reported in Fig. 17-19.
Piobert-Liiders instabilities in periodic media are found to be
non-propagative for bending-dominated lattices. Each cell under-
goes the same mode of plastic strain localization. On the contrary,
stretched-dominated lattices exhibit propagating localization
through the lattice while two neighboring cells do not undergo
the same plastic strain localization during the propagation stage.
Moreover in those last lattices, several modes of localization exist
involving one or more columns of struts perpendicular to the load-
ing direction. Changing the definition of the RVE changes the insta-
bility propagation mode. A primitive RVE does not capture all
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Fig. 16. Plastic strain map in a 25-cell 0°-oriented square lattice.

possible modes of localization for material instabilities. New
modes with two columns of tensile struts involved in the propaga-
tion of instabilities are highlighted with higher number of cells in
the RVE. By increasing the size of the RVE, constraints on the cells
are relaxed compared to the primitive cell RVE.

5. Experimental analysis

A comparison between the numerical model and experimental
results is proposed in this section. The two specific types of lattice
behavior, namely bending-dominated and stretch-dominated, with
propagating material instabilities have been tested in tension. In
order to understand the propagation of Piobert-Liiders bands in
those lattices, different specimens have been architectured by laser
cutting of steel sheets. The three same geometries as for the
numerical study are chosen: the triangle, square and hexagon.

Those lattices are representative of the mechanical behavior of
the archetypal bending- and stretch-dominated behaviors. The
dimensions of the samples are limited by two opposite constraints.
On the one hand, the number of cells must be large enough to
allow for a description of the transmission of local to global insta-
bilities. On the other hand, strain field measurements are necessary
for quantitative analysis of the structural response at the strut
level. Due to these experimental constraints, a relative density
equal to 50% has been retained. Struts have to be thick enough
to track the localization by means of Digital Image Correlation
(DIC). The total number of cells is limited to ensure that observa-
tions of global and local strain fields are simultaneously possible.
The specimens used for the experiments are shown in Fig. 20.
Finally, the relevant dimensions for the samples are the total width
of 2 cm and the total length of 8 cm. The thickness of the speci-
mens is 1 mm. For the square cell, the width of a strut is 1.5 mm
and its length 3.45 mm. For the triangle cell, the width of a strut
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Fig. 18. Plastic strain map in a 25-cell 0°-oriented triangle lattice.

is 1.5 mm and its length 5.3 mm. For the hexagon cell, the width of
a strut is 1.8 mm and its length 2.8 mm. Fig. 21 shows the sample
at the end of the experiment.

The investigated material is an ARMCO® low carbon steel alloy.
ARMCO® steel is know to be very sensitive to static strain ageing. It
exhibits the Piobert-Liiders phenomenon. Table 3 provides the
chemical composition of the experimented material for additional
elements to a 99.85% Fe base.

5.1. Digital image correlation

Experiments are conducted on a MTS-10t servo-hydraulic ten-
sile machine. The load cell measuring range is 0 — 100 kN. No
extensometer was used due to the heterogeneous architecture of
the samples. Digital Image Correlation (DIC) displacement field
measurements were performed instead. The main features of the
DIC set-up are: Dual camera system: 4.1 Mpixels each (Manta
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Fig. 21. Speckled architectured samples broken after testing.

G419) with a maximum frequency acquisition of 27 images/s in
high resolution and correlation software VIC-3D. The experimental
set-up is shown in Fig. 22.

Fig. 22. Experimental set-up for digital image correlation. In red: cameras system,
in green: tensile specimen.

The full-field surface displacement of the sample is computed
from a random pattern tracked during the experiment. A subset
is a collection of pixels values identified on the undeformed sam-
ple. The unique grayscale pattern associated to this subset is its
signature. The correlation algorithm tracked this subset on every
image of deformed sample taken during the experiment. Identifica-
tion is made using a criterion of maximum similarity with the ref-
erence image. Another possible strategy is updating the reference
image by the n—1 image. The random pattern is obtained by
spraying painting on the specimen surface.

Measurement uncertainty is evaluated by correlating two
repeatedly acquired images without rigid body motion. The error
on the strain field is mainly due to the numerical noise of the cam-
eras. The minimum strain between two images must be more than
the strain resolution calculated this way.

Table 3
Chemical composition of ARMCO steel provided by the steel manufacturer.
C Mn P S Cr Cu N Ni
Chemical composition [wt%)] 0.02 0.050 0.004 0.0027 0.017 0.007 0.005 0.016




A.-E. Viard et al./International Journal of Solids and Structures 202 (2020) 532-551 545

350
300
oee
....'..o'ooc 0...\ ......\
250 -
..M“
o
©
Ay 200
2
U? 150
<!
w
100
50 —e- First experiment (v=0.03mm/s)
--@-- Second experiment
—— Identified behavior law
0.00 0.02 0.04 0.06 0.08 0.10

En [
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5.2. Experimental results

Identification. Fig. 23 shows the tensile response of the plain
strip of steel subsequently analyses in Fig. 24. The effect of the
propagation of plastic instabilities is clearly identifiable on this
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Table 4
Experimentally Identified parameters for the phenomenological plasticity model.

Ro (MPa) Q; (MPa) by Q2 (MPa) b, Q3 (MPa) bs
259 360 33 —360 55 30 2000

curve through the peak and plateau stress. The identification of
parameters for the model is delicate. Three features are important
to replicate in this study. Since we are interested in the propaga-
tion of instabilities, it is important to model properly the peak
and the entire plateau stress. The two experimental curves
obtained in the same conditions highlight the complexity of iden-
tifying a single set of parameters. We focused on capturing the
strain of the peak and the rough stress level of the plateau with
its length. The after-plateau behavior is easily identifiable. Param-
eters are given in Table 4.

Numerically, this set of parameters which fits with the experi-
ments introduces a premature necking after the end of the plateau.
This is due to the stress level of the peak which is too close from
the stress level plateau.

Piobert-Liiders instability propagation in the sheet material.
A reference test has been performed for the initial sheet material,
i.e. without any inner architecture. The objective is to characterize
the Piobert-Liiders bands in the bulk material. Strain localization is
found to occur at one end of the sample in tension in the form of
two symmetrical bands as shown in Fig. 24 (b). Then, the two
bands propagate all along the sample and reach the other end.
Fig. 24 (c) shows that after the passage of the band the strain level
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Fig. 24. Bulk sheet in tension with propagation of Piobert-Liiders instability with digital image correlation results. On the left is represented the strain e; in the tensile
direction for three different lines defined on Figure (a). On the right is represented the map obtained by DIC of the strain e;.
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Fig. 25. Experimental stress—strain curves of architectured samples.

is about 10%. In the band front, the strain level ranges between 5%
and 6%. The band front width is between 0.8 cm where the two
bands crossed and 1.2 cm at the largest. Once it passes the middle
of the specimen, the front band is not clearly defined any more and
strain levels spread from 7% to 14%. This experiment on a bulk
sample allows us to characterize the propagation mode of the
instability without interaction with any architecture and will be
necessary for the identification of the model later on. The reader
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is referred to Maziére et al. (2017) for a direct comparison of
numerical and experimental results in the case of a C-Mn steel.
The tensile curve for the architectured samples is given in
Fig. 25. The macroscopic strain E;; is computed for the machine
displacement divided by the initial length of the sample, 8 cm.
The strain is calculated from the force divided by the total initial
section, Sy = 1 x 15 mm. This definition for the strain does not take
into account the architecture since it is not possible to define a
unique section along an architectured sample. For each oriented
architecture, 3 samples have been tested. The results are very com-
parable (less than 5% differences on the overall curves) so only one
response of each sample is reported in Fig. 25.
Stretch-dominated behavior for a square lattice oriented at
0°. In the case of the square at 0°, localized plasticity starts in the
middle of the struts under tension. During this regime, the activa-
tion of plasticity in each strut occurs in a random way until they all
reach the same level of accumulated plastic strain, see Fig. 26 (a)
and (b). After plasticity has been activated in all the struts, Pio-
bert-Liiders bands propagate along the strut until accumulated
plastic strain value of 0.06 is reached in every strut, as shown in
Fig. 26 (c). We demonstrate with this 0°-oriented square lattice
specimen that, in stretch-dominated lattices, plasticity initiates
first in the struts in a random manner, i.e. all struts do not become
plastic at the same time. Material instabilities are globally propa-
gating through the lattice. Locally, the propagation of plastic insta-
bility in single struts is not easily visible. This is likely due to the
width of the localization band front being larger than the struts.
In addition, side effects can be observed in snaps of Fig. 26 (c),
struts in the middle column behave differently that the ones on
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Fig. 26. Architectured sample with 0°-oriented square architecture loaded in tension. On the left-hand side is the strain in the loading direction for three different struts
represented in (a). On the right-hand side is the map of the strain in the loading direction, e;, computed from image correlation measurements.
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the edges. In the middle, plasticity propagates through the nodes of
the lattices while for the ones on the edges plastic strain increases
up to 10%. Finally, strain equalizes in all struts. Moreover, in a strut
the localized plastic strain does not have sufficient space to prop-
agate as a band. The localization zone occupies one half of the
struts. This effect can be modified by designing cells with longer
struts.

Bending-dominated behavior for a square lattice oriented at
45°, In the case of the square at 45°, plasticity localizes in the nodes
of the lattice. In contrast to the 0°-oriented lattice, there is no ran-
dom localization regime. We observe essentially the same distribu-
tion of strain along three different struts and also on the strain map
on the right side in every struts. No global band propagation at the
scale of the lattice can be observed. The level of strain rises in the
same way in all cells at the same time.

We demonstrate that for a bending-dominated lattice, there is
no material instability propagation through the lattice. Plasticity
develops in all cells at the same time. Edge effects are less signifi-
cant than for the specimen with 0°-oriented lattice. Fig. 21 shows a
comparison between specimens before tension and after failure. It
also underlines the limitations of such testing. On the square ori-
ented at 45°, cells that break do not undergo the same boundary
conditions than those in the middle of the sample. Those cells have
some struts that are not connected. For the hexagon, cells on the
edge have only one neighboring cell, thus their deformation is dif-
ferent from the ones in the middle of the sample. For a more com-
plete analysis, it would necessary to consider larger samples by
adding more cells in the specimen. In the case of the triangular
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lattice, premature failure of some struts modify the connectivity
of the lattice, and, consequently the mechanical behavior and the
propagation of instabilities.

The question of the number of cells that are necessary in both X
and Y directions to estimate quasi-perfect periodic boundary con-
ditions remains open.
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Fig. 28. Simulation of the architectured samples: stress-strain curves.
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Fig. 27. Architectured sample with 45°-oriented square architecture loaded in tension. On the left-hand side is the strain in the loading direction for three different struts
represented in (a). On the right-hand side is the map of the strain in the loading direction, e;, computed from image correlation measurements.
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5.3. Finite element modeling of the experiments

From the identification of the parameters we can simulate the
experiments on the architectured samples. The calculations are
performed within the large deformation framework with quadratic
triangular elements with reduced integration (6 nodes and 3 Gauss
points). Finite element meshes of the 4 samples of Fig. 20 were
built and used for the simulation of their structural behavior in
tension. Numerical samples are 3D. Fig. 28 shows the mechanical
tensile response of the 4 tested architectured samples: triangle,
hexagon, square loaded at 0° and square loaded at 45°. The ranking
of the 4 architectures is found to be in good agreement with the
experimental curves of Fig. 25. From the strongest to the weakest
responses, we observe: the 0°-oriented square lattice, the triangu-
lar lattice, the hexagon lattice and the 45°-oriented square lattice.

The simulation results overestimate the stress levels for all 4 archi-
tectured, by 15 to 20%. In the Fig. 25, the initial apparent Young
modulus is found to differ for all four lattices. The numerical model
confirms the theory with Young moduli equal to 94 GPa, 16 GPa
and 26 GPa respectively for the square at 0°, the square cell at
45° and the hexagon 0°.

For each stretched- or bending-dominated architectures, the
observed behavior of plastic instabilities is in accordance with
the numerical predictions. For the 0°-oriented square cell and the
triangle cell, we observe the plateau stress even though it is less
pronounced in the experiment. The numerous drops in the simula-
tion correspond to the localization/propagation phenomenon in
each strut of the lattice. In the case of the 0°-oriented square cell,
localization occurs in each row of the strips one after another. In
contrast, in the 45°-oriented square and the hexagon samples there
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is no macroscopic manifestation of the propagation of plastic insta-
bilities as predicted by the periodic FE model. The hexagon simula-
tion in Fig. 28 highlights load drops not visible in the experiment.
In the simulation, those drops are the results of a plastic localiza-
tion in the struts oriented in the direction of the loading.

The decrease of the stress after more than 10% overall strain in
the simulation curves of Fig. 28 is due to premature necking of the
struts, which differs in the experiment. However, this premature
necking after the end of the stress plateau or after the propagation
of plastic instabilities does not impact the understanding of the
propagation modes of instabilities.

The plastic strain maps of Figs. 29 and 30 show comparisons
between the experiments and simulation for e;, the local strain
in the tensile direction. They confirm the different scenarios of Pio-
bert-Liiders band propagation between stretch- and bending-
dominated lattices, deduced from the computational homogeniza-
tion analysis. In the two stretch-dominated lattices, we observe
propagation of strain localization bands at the two scales: the scale
of each unit cell and the scale of the whole lattice structure. The
propagation of a macroscopic horizontal localization band is
clearly visible on the left side of Fig. 29. This is also the case in
the experiment, see the right side of Fig. 29, but to a lesser extent,
meaning that several horizontal bands are observed experimen-
tally instead of a single one. This may explain the absence of
marked serrations on the experimental loading curve in contrast
to the idealized simulation. No such propagative behavior is
observed for the hexagon lattice of Fig. 30. In bending-dominated
structures, plasticity initiates in all cells simultaneously and simi-
larly in each cell, i.e. the strain field is almost periodic. In the sim-
ulation of Fig. 30 (left), strain localization phenomena are observed
in some struts in tension. This explains the few stress drops in the
red curve of Fig. 28. While sharp localization is obtained in the sim-
ulation based on an idealized geometry, the experiments reveal
smoother responses due to the heterogeneous and imperfect nat-
ure of the samples.

6. Discussion

We characterized the development of material instabilities in
architectured material depending on the geometrical features of
the lattice, both numerically and experimentally. This study deals
only with basic geometries which tessellate the plane in a periodic
and regular manner. Graded microstructures should also be con-
sidered, combining bending- and stretch-dominated lattices with
slowly varying evolution of the geometry in the sample. Another
important issue is to understand the mechanisms that drive local-
ization in the struts for stretch-dominated lattices and in the nodes
for bending-dominated lattices in order to take advantage of very
localized or diffused plasticity in lattices.

Computational homogenization using periodic boundary condi-
tions has been shown to be an appropriate tool to investigate the
development of instabilities in architectured materials. However,
we have seen that the choice of the number of primitive cells in
the unit cell raise several issues during the propagation of instabil-
ities, and could lead to missing localization modes due to the con-
straining effect of periodic boundary conditions. There is a
dependence of the number of predicted instability modes on the
number of cells in the unit cell. As explained by Vigliotti et al.
(2014) dealing with the buckling of lattices, increasing the volume
element size, i.e. increasing the cell number, leads to an increase of
possible buckled configurations. They also analyzed the effect of
the unit cell size on the homogenized model. Similar effects are
expected in the case of material instabilities like Piobert-Liiders
banding. Al Kotob et al., (2020) proposed a systematic method
for the analysis of elastoplastic instabilities. This method perturbs

the periodic boundary conditions and makes it possible to compute
elementary modes of localization. In Gong et al. (2005), the authors
present a method based on Bloch waves developed by Triantafyl-
lidis and co-workers to discuss the RVE size necessary to capture
the buckling modes of a periodic column. Combescure et al., (2020),
Combescure and Elliott, (2017) reported different equilibrium
configurations of honeycombs subjected to bi-axial compression
computed on different volume element sizes. Using Bloch wave
theory, they report the identification of modes involving a higher
number of cells in the VE. It is necessary to identify the minimal
number of cells to capture the most relevant instability modes
for the structural behavior. The previous methods were applied
mainly to geometric instabilities. The case of material instabilities
associated with the softening constitutive branch is different in
nature, but the present work shows that the problem can be tack-
led by means of periodic nonlinear homogenization provided that a
large enough number of primitive cells are considered.

Geers et al. (2010) addressed the main issues of multi-scale
computational homogenization. They presented computational
homogenization of emerging and evolving localization bands as
an open issue to be tackled. First-order and second-order computa-
tional homogenization schemes present several limitations in the
presence of localization. Localization causes ill-posedness of the
boundary value problem on the representative RVE and questions
the assumption of scale separation in continuous homogenization.
Classical homogenization cannot be used beyond the onset of
strain localization. Coenen et al. (2012) developed a computational
homogenization-localization framework and overcame the viola-
tion of the separation of scale by enriching the macro-scale contin-
uum with a displacement discontinuity. The case of static strain
ageing instabilities is different in the sense that the softening
branch is followed by subsequent hardening restoring the well-
posedness of the boundary value problem. These issues were dis-
cussed in (Maziére and Forest, 2015; Rezaee Hajidehi and
Stupkiewicz, 2017) where a regularization method based on gradi-
ent and micromorphic model enhancement was proposed to regu-
larize the localization problem. The subsequent hardening is
responsible for the band front propagation in contrast to continu-
ing localization or damage in static bands. The issues about the size
of the unit cell impact the mechanical behavior only during the
phase of instabilities propagation. After this transition, the behav-
ior for all number of unit cells is the same.

The experiments presented in this paper confirmed partially the
predictions of the numerical models based on periodic homoge-
nization on the one hand and on the full field simulation of the
actual samples. In stretch-dominated lattices, the formation of
Piobert-Liiders bands in some struts trigger the formation of a
(or several) macroscopic band(s) that propagate through the whole
sample. In bending-dominated lattices, no macroscopic propaga-
tive band emerges. According to the last snaps of Fig. 28 and
Fig. 27(d) that represent the strain maps just before the failure of
each specimen, additional conclusions can be drawn. For the 0°-
oriented and the 45°-oriented square lattices, the macroscopic
strains at fracture respectively are 0.067 and 0.112 whereas the
maximum local strain values in the Y direction are 0.13 and
0.035. The non-propagating behavior of bending-dominated may
be explained by the fact that the local strain level is not high
enough to trigger the propagation of the Piobert-Liiders band in
the struts. In Fig. 24(d), the band has a strain level of 0.05 during
its propagation. In other terms, the structure fails before the
Piobert-Liiders strain has been reached at the nodes of the lattice.
On the one hand, stretch-dominated lattices experience higher
plastic strain levels in the struts even at low macroscopic deforma-
tion, while, on the other hand, bending-dominated lattices undergo
much larger macroscopic deformation without high levels of local
plastic strain. Thus, one can choose bending-dominated structures
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for applications at large deformations or stretched-dominated
structures if a stiff behavior is wanted.

Results are calling for improvements to enhance the precision
in the tracking of propagation of material instabilities in lattices
with higher number of cells and larger strut cross section. More-
over, side/edge effects in the form of free-standing struts in the
square lattice for instance are significant in the experimental
results. There is a competition between the size of the unit cell,
large enough to be tracked with DIC and the number of cells in
the specimen in order to neglect the edge effects. Next samples
should integrate more cells. It is essential that boundary conditions
should be well defined and side effects reduced to a minimum. The
comparison between theory and experiments regarding the
stretch-dominated behavior of the square lattice requires more
precision. Theory predicts propagation in the lattice which is not
observed clearly in the experiments. Simulations have been run
with perturbed direction of the solicitation and show softened
localisation in the cross sections of the numerical sample. This
may confirm that perfect orientation of the sample is a necessary
condition to observe relevant localisation and macroscopic behav-
ior. The question of the sensibility to imperfections deserves a
more detail study which is not the purpose of this work.

7. Concluding remarks

The uniaxial tensile response of 2D lattice with propagation of
plastic instabilities known as Piobert-Liiders bands has been ana-
lyzed for 4 geometries: triangle, square at 0° and 45° and hexago-
nal lattices. We have demonstrated that the tensile response of
each lattice depends on its either stretch- or bending-dominated
behavior. It is then possible to control the initiation and the prop-
agation of material instabilities through architectures.

For bending-dominated structures, the macroscopic strain-
stress curve is characterized by 2 regimes: (i) initial linear elastic
regime and (ii) plastic strain starting in the plastic hinges of the lat-
tice. It does not exhibit any peak or plateau stress. Plasticity initi-
ates at the same time, at all nodes and in the same manner. Then, it
spreads still identically from the plastic hinges. A single cell RVE is
needed to simulate this behavior. Those lattices do not propagate
instabilities except for the orientation that align one strut with
the loading direction. It is the case for the hexagon oriented at
0°. In this case, the aligned struts can be stretched. A plastic band
propagates in each well-oriented strut of the lattice.

For stretch-dominated lattices, the macroscopic stress-strain
curve is characterized by 3 regimes: (i) initial linear elastic regime,
(ii) peak and plateau stress as a result of the initiation and propaga-
tion of Piobert-Liiders bands in the main stretched struts and (iii)
post-propagation hardening behavior with increasing plastic strain.
Between two neighboring cells, localization and propagation of plas-
ticinstabilities is different during the second regime. The behavior of
plastic instabilities depends on the lattice geometry during its initi-
ation and propagation. Once all cells are plastic (iii), the behavior
becomes identical in the whole lattice. It is therefore necessary to
have a volume element larger than a single primitive cell in order
toobserve the propagative behavior from cell to cell. The triangle cell
enhances the possibility to control the level of stress for the propa-
gation of plastic instability, i.e. the stress level of the plateau. This
stretched-dominated lattice allows to tune this stress level thanks
to the orientation of the lattice to the loading direction. The more
struts can undergo plastic instability, the higher the stress plateau is.

Experimental testing on ARMCO® steel specimens architectured
by laser cutting essentially confirmed the periodic homogenization
predictions. In bending-dominated lattices plasticity develops at
the nodes and no further propagation of bands was observed. In
stretch-dominated lattices plasticity develops in the struts into

propagating bands. Features of the band propagation, peak and
stress, plateau in the structure could not be well identified on
the stress-strain curves due to important side effects and experi-
mental imperfections.

Finally, those remarks seem to confirm that a well-chosen lat-
tice architecture and orientation can control the initiation and
the propagation of Piobert-Liiders bands for a given mechanical
load. The choice of the architectures can be made to meet a specific
objective. The two different behaviors of plastic instabilities in
bending-dominated or stretch-dominated and the possibility to
combine those two in a single structure open the path to material
instability-based architectured materials.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This study was funded by Agence Nationale de la Recherche
through the ANR ALMARIS project (Grant No. ANR-16-CE08-
0001). The support of the Centre des Matériaux for conducting
the experiments is gratefully acknowledged. Thanks are due in par-
ticular to Stéphanie Dang and Abdennour Meddour from Mines
ParisTech.

References

Alonso, 1.Q., Fleck, N., 2007. Damage tolerance of an elastic-brittle diamond-celled
honeycomb. Scr. Mater. 56, 693-696. URL:http://
www.sciencedirect.com/science/article/pii/S1359646207000152,https://doi.
org/10.1016/j.scriptamat.2006.12.027..

Ashby, M., 2006. The properties of foams and lattices. Philos. Trans. R. Soc. A: Math.,
Phys. Eng. Sci. 364, 15-30. URL:https://royalsocietypublishing.org/doi/abs/10.
1098/rsta.2005.1678,https://doi.org/10.1098/rsta.2005.1678..

Ashby, M., 2013. Designing architectured materials. Scr. Mater. 68, 4-7. URL:http://
www.sciencedirect.com/science/article/pii/S1359646212002965,https://doi.
org/10.1016/j.scriptamat.2012.04.033. architectured Materials..

Ashby, M., Bréchet, Y., 2003. Designing hybrid materials. Acta Mater. 51, 5801-
5821. URL:http://www.sciencedirect.com/science/article/pii/
$1359645403004415,https://doi.org/10.1016/S1359-6454(03)00441-5.  the
Golden Jubilee Issue. Selected topics in Materials Science and Engineering:
Past, Present and Future..

Auffray, N., Dirrenberger, J., Rosi, G., 2015. A complete description of bi-dimensional
anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69-70, 195-206. URL:
http://www.sciencedirect.com/science/article/pii/S0020768315002577,
https://doi.org/10.1016/j.ijsolstr.2015.04.036..

Al Kotob, M., Combescure, C., Maziére, M., Rose, T., Forest, S., 2020. A general and
efficient multistart algorithm for the detection of loss of ellipticity in
elastoplastic structures. International Journal for Numerical Methods in
Engineering 121 (5), 842-866. https://doi.org/10.1002/nme.6247.

Ballarin, V., Soler, M., Perlade, A., Lemoine, X., Forest, S., 2009. Mechanisms and
modeling of bake-hardening steels: Part i. uniaxial tension. Metall. Mater. Trans.
A 40, 1367-1374. https://doi.org/10.1007/s11661-009-9813-5.

Besson, ]., Cailletaud, G., Forest, ].L.C.S., 2009. Mécanique non linéaire des matériaux.
https://doi.org/10.1007/978-90-481-3356-7.

Bonfanti, A., Bhaskar, A., 2018. Elastoplastic response and recoil of honeycomb
lattices.  Eur. J. Mech. -  A/Solids 71, 77-88. URL:http://
www.sciencedirect.com/science/article/pii/S0997753817301122,https://doi.
org/10.1016/j.euromechsol.2017.12.003..

Bonfanti, A., Bhaskar, A., Ashby, M., 2016. Plastic deformation of cellular materials,
in: Reference Module in Materials Science and Materials Engineering. Elsevier.
URL:http://www.sciencedirect.com/science/article/pii/
B9780128035818030095,https://doi.org/10.1016/B978-0-12-803581-8.03009-
5.

Bouaziz, O., Bréchet, Y., Embury, J., 2008. Heterogeneous and architectured
materials: A possible strategy for design of structural materials. Adv. Eng.
Mater. 10, 24-36. URL:https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.
200700289,https://doi.org/10.1002/adem.200700289..

Bréchet, Y., Embury, J., 2013. Architectured materials: Expanding materials space.
Scr. Mater. 68, 1-3. URL:http://www.sciencedirect.com/science/article/pii/
$135964621200499X,https://doi.org/10.1016/j.scriptamat.2012.07.038.
architectured Materials..

Bréchet, Y.J.M., 2013. Chapter 1. architectured materials: An alternative to
microstructure control for structural materials design? a possible playground


http://www.sciencedirect.com/science/article/pii/S1359646207000152
http://www.sciencedirect.com/science/article/pii/S1359646207000152
https://doi.org/10.1016/j.scriptamat.2006.12.027
https://doi.org/10.1016/j.scriptamat.2006.12.027
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2005.1678
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2005.1678
https://doi.org/10.1098/rsta.2005.1678
http://www.sciencedirect.com/science/article/pii/S1359646212002965
http://www.sciencedirect.com/science/article/pii/S1359646212002965
https://doi.org/10.1016/j.scriptamat.2012.04.033
https://doi.org/10.1016/j.scriptamat.2012.04.033
http://www.sciencedirect.com/science/article/pii/S1359645403004415
http://www.sciencedirect.com/science/article/pii/S1359645403004415
https://doi.org/10.1016/S1359-6454(03)00441-5
http://www.sciencedirect.com/science/article/pii/S0020768315002577
https://doi.org/10.1016/j.ijsolstr.2015.04.036
https://doi.org/10.1002/nme.6247
https://doi.org/10.1007/s11661-009-9813-5
https://doi.org/10.1007/978-90-481-3356-7
http://www.sciencedirect.com/science/article/pii/S0997753817301122
http://www.sciencedirect.com/science/article/pii/S0997753817301122
https://doi.org/10.1016/j.euromechsol.2017.12.003
https://doi.org/10.1016/j.euromechsol.2017.12.003
http://www.sciencedirect.com/science/article/pii/B9780128035818030095
http://www.sciencedirect.com/science/article/pii/B9780128035818030095
https://doi.org/10.1016/B978-0-12-803581-8.03009-5
https://doi.org/10.1016/B978-0-12-803581-8.03009-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.200700289
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.200700289
https://doi.org/10.1002/adem.200700289
http://www.sciencedirect.com/science/article/pii/S135964621200499X
http://www.sciencedirect.com/science/article/pii/S135964621200499X
https://doi.org/10.1016/j.scriptamat.2012.07.038

A.-E. Viard et al./International Journal of Solids and Structures 202 (2020) 532-551 551

for bio-inspiration?, in: Materials Design Inspired by Nature: Function Through
Inner Architecture. The Royal Society of Chemistry, pp. 1-16.https://doi.org/10.
1039/9781849737555-00001..

Cété, F., Deshpande, V., Fleck, N., Evans, A, 2006. The compressive and shear
responses of corrugated and diamond lattice materials. Int. J. Solids Struct. 43,
6220-6242. URL:http://www.sciencedirect.com/science/article/pii/
S0020768305004919,https://doi.org/10.1016/].ijsolstr.2005.07.045..

Coenen, E., Kouznetsova, V., Geers, M., 2012. Multi-scale continuous-discontinuous
framework for computational-homogenization-localization. ]J. Mech. Phys.
Solids 60, 1486-1507. URL:http://www.sciencedirect.com/science/article/pii/
$0022509612000749,https://doi.org/10.1016/j.jmps.2012.04.002..

Combescure, C., Elliott, R., 2017. Hierarchical honeycomb material design and
optimization: Beyond linearized behavior. Int. ]. Solids Struct. 115. https://doi.
org/10.1016/j.ijsolstr.2017.03.011.

Combescure, C, Elliott, RS, Triantafyllidis, N, 2020. Deformation Patterns and their
Stability in Finitely Strained Circular Cell Honeycombs. Journal of the Mechanics
and Physics of Solids. https://doi.org/10.1016/j.jmps.2020.103976 103976.

dell'lsola, F., Seppecher, P., Alibert, ].J., Lekszycki, T., Grygoruk, R., Pawlikowski, M.,
Steigmann, D., Giorgio, 1., Andreaus, U., Turco, E., Gotaszewski, M., Rizzi, N.,
Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo,
M., Cazzani, A., Corte, A.D., Battista, A., Scerrato, D., Eremeeva, 1.Z.,, Rahali, Y.,
Ganghoffer, J.F., Miiller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K,
Hoschke, K., Neggers, J., Hild, F., 2018. Pantographic metamaterials: an example
of mathematically driven design and of its technological challenges. Continuum
Mech. Thermodyn. https://doi.org/10.1007/s00161-018-0689-8.

Deshpande, V., Ashby, M., Fleck, N., 2001. Foam topology: bending versus stretching
dominated architectures. Acta Mater. 49, 1035-1040. URL:http://
www.sciencedirect.com/science/article/pii/S1359645400003797,https://doi.
org/10.1016/S1359-6454(00)00379-7..

Dogui, A., Sidoroff, F., 1986. Rhéologie anisotrope en grandes déformations,
rhéologie des matériaux anisotropes. Ed. C. Huet, D. Bourguoin, S. Richemond,
Cepadues Toulouse, 69-78..

Fleck, N.A., Qiu, X., 2007. The damage tolerance of elastic-brittle, two-dimensional
isotropic lattices. J. Mech. Phys. Solids 55, 562-588. URL:http://
www.sciencedirect.com/science/article/pii/S0022509606001359,https://doi.
org/10.1016/j.jmps.2006.08.004..

Geers, M., Kouznetsova, V., Brekelmans, W., 2010. Multi-scale computational
homogenization: Trends and challenges. ]J. Computat. Appl. Math. 234, 2175-
2182. URL:http://www.sciencedirect.com/science/article/pii/
S0377042709005536,https://doi.org/10.1016/j.cam.2009.08.077. fourth
International Conference on Advanced COmputational Methods in
ENgineering (ACOMEN..

Gibson, J., Ashby, M., 1999. Cellular Solids: Structures and Properties. Cambridge
University Press.

Gong, L., Kyriakides, S., Triantafyllidis, N., 2005. On the stability of kelvin cell foams
under compressive loads. J. Mech. Phys. Solids 53, 771-794. URL: http://
www.sciencedirect.com/science/article/pii/S0022509604001899,https://doi.
org/10.1016/j.jmps.2004.10.007..

Guoming, H., Hui, W,, Youlin, Z., Wujun, B., 2006. A large deformation model for the
elastic moduli of two-dimensional cellular materials. J. Wuhan Univ. Technol.-
Mater. Sci. Ed. 21, 154.

Hallai, J.F., Kyriakides, S., 2011. On the effect of liiders bands on the bending of steel
tubes. part i: Experiments. Int. J. Solids Struct. 48, 3275-3284. URL:http://
www.sciencedirect.com/science/article/pii/S0020768311002472,https://doi.
org/10.1016/j.ijsolstr.2011.06.024..

He, Y., Zhou, Y., Liu, Z., Liew, K., 2018. Buckling and pattern transformation of
modified periodic lattice structures. Extreme Mech. Lett. 22, 112-121. URL:
http://www.sciencedirect.com/science/article/pii/S2352431618300841,
https://doi.org/10.1016/j.em1.2018.05.011..

Kyriakides, S., Ok, A., Corona, E., 2008. Localization and propagation of curvature
under pure bending in steel tubes with liiders bands. Int. ]. Solids Struct. 45,
3074-3087. URL: http://www.sciencedirect.com/science/article/pii/
S0020768308000255.https://doi.org/10.1016/j.ijsolstr.2008.01.013..

Ladevéze, P., 1980. Sur la théorie de la plasticité en grandes déformations. ENS-
Cachan-LMT Internal Report.

Latture, R.M., Begley, M.R., Zok, F.W., 2018. Design and mechanical properties of
elastically isotropic trusses. ]. Mater. Res. 33, 249-263. https://doi.org/10.1557/
jmr.2018.2.

Liiders, W., 1860. Uber die dusserung der elasticitit an stahlartigen eisenstiben und
stahlstaben, und tiber eine beim biegen solcher stibe beobachtete molecularbe-
wegung. Dinglers Polytech J5, 18-22.

Marais, A., Maziére, M., Forest, S., Parrot, A., Delliou, P.L., 2012. Identification of a
strain-aging model accounting for liiders behavior in a c-mn steel. Phil. Mag. 92,
3589-3617. https://doi.org/10.1080/14786435.2012.699687.

Maziére, M., Forest, S., 2015. Strain gradient plasticity modeling and finite element
simulation of liders band formation and propagation. Continuum Mech.
Thermodyn. 27, 83-104. https://doi.org/10.1007/s00161-013-0331-8.

Maziére, M., Luis, C., Marais, A., Forest, S., Gasperini, M., 2017. Experimental and
numerical analysis of the liiders phenomenon in simple shear. Int. J. Solids
Struct. 106-107, 305-314. URL:http://www.sciencedirect.com/science/article/
pii/S0020768316301871,https://doi.org/10.1016/j.ijsolstr.2016.07.026..

Nassar, H., He, Q.C., Auffray, N., 2016. A generalized theory of elastodynamic
homogenization for periodic media. Int. ]. Solids Struct. 84, 139-146. URL:
http://www.sciencedirect.com/science/article/pii/S0020768316000445,
https://doi.org/10.1016/j.ijsolstr.2016.01.022..

Niknam, H., Akbarzadeh, A., 2018. In-plane and out-of-plane buckling of architected
cellular plates: numerical and experimental study. Compos. Struct. 206, 739-749.
URL:http://www.sciencedirect.com/science/article/pii/S0263822318321809,
https://doi.org/10.1016/j.compstruct.2018.08.026..

Onal, E., Frith, J.E., Jurg, M., Wu, X., Molotnikov, A., 2018. Mechanical properties and
in vitro behavior of additively manufactured and functionally graded ti6al4v
porous scaffolds. Metals 8. URL:https://www.mdpi.com/2075-4701/8/4/200,
https://doi.org/10.3390/met8040200..

Piobert, G., 1842. Expérience sur la pénétration des projectiles dans le fer forgé.
Mémoire de I'Artillerie 505..

Poncelet, M., Somera, A., Morel, C,, Jailin, C., Auffray, N., 2018. An experimental
evidence of the failure of cauchy elasticity for the overall modeling of a non-
centro-symmetric lattice under static loading. Int. J. Solids Struct.147, 223-237.
URL:http://www.sciencedirect.com/science/article/pii/S0020768318302221,
https://doi.org/10.1016/j.ijsolstr.2018.05.028..

Rezaee Hajidehi, M., Stupkiewicz, S., 2017. Gradient-enhanced model and its
micromorphic regularization for simulation of I++ders-like bands in shape
memory alloys. Int. J. Solids Struct. https://doi.org/10.1016/j.
ijsolstr.2017.11.021.

Rosi, G., Auffray, N., 2019. Continuum modelling of frequency dependent acoustic
beam focussing and steering in hexagonal lattices. Eur. ]. Mech. - A/Solids 77,
103803. URL:http://www.sciencedirect.com/science/article/pii/
S0997753818309859,https://doi.org/10.1016/j.euromechsol.2019.103803..

Rosi, G., Placidi, L., Auffray, N., 2018. On the validity range of strain-gradient
elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. - A/
Solids 69, 179-191. URL: http://www.sciencedirect.com/science/article/pii/
S0997753817305880,https://doi.org/10.1016/j.euromechsol.2017.12.005..

Schraad, M.W., Triantafyllidis, N., 1997. Scale effects in media with periodic and
nearly periodic microstructures, Part I: macroscopic properties. J. Appl. Mech.
64, 751-762.https://doi.org/10.1115/1.2788979, arXiv:https://
asmedigitalcollection.asme.org/appliedmechanics/article-pdf/64/4/751/
4726981/751_1.pdf..

Tankasala, H., Deshpande, V., Fleck, N., 2017. Tensile response of elastoplastic
lattices at finite strain. J. Mech. Phys. Solids 109, 307-330. URL: http://
www.sciencedirect.com/science/article/pii/S0022509616307967,https://doi.
org/10.1016/j.jmps.2017.02.002..

Triantafyllidis, N., Bardenhagen, S., 1996. The influence of scale size on the stability
of periodic solids and the role of associated higher order gradient continuum
models. J. Mech. Phys. Solids 44, 1891-1928. URL: http://
www.sciencedirect.com/science/article/pii/0022509696000476,https://doi.org/
10.1016/0022-5096(96)00047-6..

Tsukahara, H., Iung, T., 1998. Finite element simulation of the piobert-liiders
behavior in an uniaxial tensile test. Mater. Sci. Eng.: A 248, 304-308. URL:
http://www.sciencedirect.com/science/article/pii/S0921509397008575,
https://doi.org/10.1016/S0921-5093(97)00857-5..

Turco, E., Misra, A., Pawlikowski, M., dell'Isola, F., Hild, F., 2018. Enhanced piola-
hencky discrete models for pantographic sheets with pivots without
deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94—
109. URL: http://www.sciencedirect.com/science/article/pii/
$0020768318302002,https://doi.org/10.1016/j.ijsolstr.2018.05.015..

Vigliotti, A., Deshpande, V.S., Pasini, D., 2014. Non linear constitutive models for
lattice materials. J. Mech. Phys. Solids 64, 44-60. URL: http://
www.sciencedirect.com/science/article/pii/S0022509613002238,https://doi.
org/10.1016/j.jmps.2013.10.015..

Wang, AJ., McDowell, D., 2004. In-plane stiffness and yield strength of periodic
metal honeycombs. J. Eng. Mater. Technol. 126, 137-156.

Wang, AJ., McDowell, D., 2005. Yield surfaces of various periodic metal
honeycombs at intermediate relative density. Int. ]. Plasticity 21, 285-320.
URL: http://www.sciencedirect.com/science/article/pii/S0749641904000026,
https://doi.org/10.1016/j.ijplas.2003.12.002..

Zok, F.W.,, Latture, R.M., Begley, M.R., 2016. Periodic truss structures. J. Mech. Phys.
Solids 96, 184-203. URL: http://www.sciencedirect.com/science/article/pii/
S0022509615300983,https://doi.org/10.1016/j.jmps.2016.07.007..


https://doi.org/10.1039/9781849737555-00001
https://doi.org/10.1039/9781849737555-00001
http://www.sciencedirect.com/science/article/pii/S0020768305004919
http://www.sciencedirect.com/science/article/pii/S0020768305004919
https://doi.org/10.1016/j.ijsolstr.2005.07.045
http://www.sciencedirect.com/science/article/pii/S0022509612000749
http://www.sciencedirect.com/science/article/pii/S0022509612000749
https://doi.org/10.1016/j.jmps.2012.04.002
https://doi.org/10.1016/j.ijsolstr.2017.03.011
https://doi.org/10.1016/j.ijsolstr.2017.03.011
https://doi.org/10.1016/j.jmps.2020.103976
https://doi.org/10.1007/s00161-018-0689-8
http://www.sciencedirect.com/science/article/pii/S1359645400003797
http://www.sciencedirect.com/science/article/pii/S1359645400003797
https://doi.org/10.1016/S1359-6454(00)00379-7
https://doi.org/10.1016/S1359-6454(00)00379-7
http://www.sciencedirect.com/science/article/pii/S0022509606001359
http://www.sciencedirect.com/science/article/pii/S0022509606001359
https://doi.org/10.1016/j.jmps.2006.08.004
https://doi.org/10.1016/j.jmps.2006.08.004
http://www.sciencedirect.com/science/article/pii/S0377042709005536
http://www.sciencedirect.com/science/article/pii/S0377042709005536
https://doi.org/10.1016/j.cam.2009.08.077
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0110
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0110
http://www.sciencedirect.com/science/article/pii/S0022509604001899
http://www.sciencedirect.com/science/article/pii/S0022509604001899
https://doi.org/10.1016/j.jmps.2004.10.007
https://doi.org/10.1016/j.jmps.2004.10.007
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0120
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0120
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0120
http://www.sciencedirect.com/science/article/pii/S0020768311002472
http://www.sciencedirect.com/science/article/pii/S0020768311002472
https://doi.org/10.1016/j.ijsolstr.2011.06.024
https://doi.org/10.1016/j.ijsolstr.2011.06.024
http://www.sciencedirect.com/science/article/pii/S2352431618300841
https://doi.org/10.1016/j.eml.2018.05.011
http://www.sciencedirect.com/science/article/pii/S0020768308000255
http://www.sciencedirect.com/science/article/pii/S0020768308000255
https://doi.org/10.1016/j.ijsolstr.2008.01.013
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0140
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0140
https://doi.org/10.1557/jmr.2018.2
https://doi.org/10.1557/jmr.2018.2
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0150
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0150
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0150
https://doi.org/10.1080/14786435.2012.699687
https://doi.org/10.1007/s00161-013-0331-8
http://www.sciencedirect.com/science/article/pii/S0020768316301871
http://www.sciencedirect.com/science/article/pii/S0020768316301871
https://doi.org/10.1016/j.ijsolstr.2016.07.026
http://www.sciencedirect.com/science/article/pii/S0020768316000445
https://doi.org/10.1016/j.ijsolstr.2016.01.022
http://www.sciencedirect.com/science/article/pii/S0263822318321809
https://doi.org/10.1016/j.compstruct.2018.08.026
https://www.mdpi.com/2075-4701/8/4/200
https://doi.org/10.3390/met8040200
http://www.sciencedirect.com/science/article/pii/S0020768318302221
https://doi.org/10.1016/j.ijsolstr.2018.05.028
https://doi.org/10.1016/j.ijsolstr.2017.11.021
https://doi.org/10.1016/j.ijsolstr.2017.11.021
http://www.sciencedirect.com/science/article/pii/S0997753818309859
http://www.sciencedirect.com/science/article/pii/S0997753818309859
https://doi.org/10.1016/j.euromechsol.2019.103803
http://www.sciencedirect.com/science/article/pii/S0997753817305880
http://www.sciencedirect.com/science/article/pii/S0997753817305880
https://doi.org/10.1016/j.euromechsol.2017.12.005
https://doi.org/10.1115/1.2788979
http://www.sciencedirect.com/science/article/pii/S0022509616307967
http://www.sciencedirect.com/science/article/pii/S0022509616307967
https://doi.org/10.1016/j.jmps.2017.02.002
https://doi.org/10.1016/j.jmps.2017.02.002
http://www.sciencedirect.com/science/article/pii/0022509696000476
http://www.sciencedirect.com/science/article/pii/0022509696000476
https://doi.org/10.1016/0022-5096(96)00047-6
https://doi.org/10.1016/0022-5096(96)00047-6
http://www.sciencedirect.com/science/article/pii/S0921509397008575
https://doi.org/10.1016/S0921-5093(97)00857-5
http://www.sciencedirect.com/science/article/pii/S0020768318302002
http://www.sciencedirect.com/science/article/pii/S0020768318302002
https://doi.org/10.1016/j.ijsolstr.2018.05.015
http://www.sciencedirect.com/science/article/pii/S0022509613002238
http://www.sciencedirect.com/science/article/pii/S0022509613002238
https://doi.org/10.1016/j.jmps.2013.10.015
https://doi.org/10.1016/j.jmps.2013.10.015
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0240
http://refhub.elsevier.com/S0020-7683(20)30200-6/h0240
http://www.sciencedirect.com/science/article/pii/S0749641904000026
https://doi.org/10.1016/j.ijplas.2003.12.002
http://www.sciencedirect.com/science/article/pii/S0022509615300983
http://www.sciencedirect.com/science/article/pii/S0022509615300983
https://doi.org/10.1016/j.jmps.2016.07.007

	Propagating material instabilities in planar architectured materials
	1 Introduction
	2 Periodic media and material instabilities
	2.1 Lattice structure
	2.2 Phenomenological modeling of the Piobert-Lüders phenomenon
	2.3 Numerical approach of the Piobert-Lüders phenomenon

	3 Propagation of material instabilities in infinite periodic media
	3.1 Periodic boundary value problem
	3.2 Triangle lattice
	3.3 Square lattice
	3.4 Hexagonal lattice

	4 The role of the number of unit cells
	5 Experimental analysis
	5.1 Digital image correlation
	5.2 Experimental results
	5.3 Finite element modeling of the experiments

	6 Discussion
	7 Concluding remarks
	Declaration of Competing Interest
	Acknowledgments
	References


