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Abstract

Germain’s general micromorphic theory of order n is extended to fully non-symmetric higher-order tensor degrees

of freedom. An interpretation of the microdeformation kinematic variables as relaxed higher-order gradients of the

displacement field is proposed. Dynamical balance laws and hyperelastic constitutive equations are derived within the

finite deformation framework. Internal constraints are enforced to recover strain gradient theories of grade n. An

extension to finite deformations of a recently developed stress gradient continuum theory is then presented, together

with its relation to the second-order micromorphic model. The linearization of the combination of stress and strain

gradient models is then shown to deliver formulations related to Eringen’s and Aifantis’s well-known gradient models

involving the Laplacians of stress and strain tensors. Finally, the structures of the dynamical equations are given for

strain and stress gradient media, showing fundamental differences in the dynamical behaviour of these two classes of

generalized continua.
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1. Introduction

The micromorphic theory is currently arousing strong interest in the mechanics of materials community, due
to its ability to account for size effects in the continuum modelling of many physical phenomena like strain
and damage localization or the dispersion of elastic waves; see for example [1] and [2]. Eringen and Mindlin’s
original model goes back to the early 1960s; see [3] and [4] for the presentation at finite deformations. The
generally incompatible microdeformation field variable χ

∼
was introduced by these authors to represent the

deformation of a triad of directors attached to the material’s microstructure, like lattice vectors in crystalline
solids or fibre directions in composite materials. This represents a drastic enhancement of the continuum theory
by nine additional degrees of freedom complementing the displacement vector of the material point.
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The most ambitious extension of the classical Cauchy continuum model is probably Germain’s general
micromorphic theory which introduces higher-order microdeformations, χij,χijk ,χijkl..., of increasing tensor
order up to order n [5]. Germain’s vision of this hierarchy of additional degrees of freedom is related to a Taylor
expansion of the description around the material point. Due to their definition in terms of a Taylor expansion, the
general microdeformations are symmetric with respect to all the indices except the first one. Germain’s paper
provides the hierarchy of balance of momentum equations. However, it does not provide constitutive equations
for this class of media. It should be noted that Eringen himself also extended the original micromorphic model
to higher-order microdeformation tensors based on averaging procedures [6, 7]. However, his theory was shown
to be incomplete by Germain, leaving indeterminate higher-order micromorphic variables.

The multipolar continuum mechanics proposed by Green and Rivlin [8] also represents one of the most
general continuum models involving both higher-order field variables and higher-order gradients. Green and
Rivlin’s multipolar theory was compared to the general micromorphic one by Germain [5]. Such a comparison
will also be drawn for the theory proposed in the present work.

Suitable internal constraints on the microdeformation can be introduced so that Eringen’s micromorphic
model reduces to the strain gradient theory proposed by Mindlin [9], which is identical to the second gradient of
the displacement model. Such a reduction has been proposed by Bleustein [10] and recently discussed by Madeo
et al.[11] and Broese et al. [12]. This reduction can be applied to Germain’s general micromorphic media. For
instance, the second-order micromorphic theory (n = 2) can be shown to degenerate into Mindlin’s second strain
gradient model by constraining the first and second microdeformations to coincide with the deformation first
and second gradients, respectively; see [9,13,14]. In gradient theories, the micromorphic degrees of freedom
are therefore eliminated and a single balance equation of higher order remains to solve for the displacement
field. Finite element simulations of strain gradient materials very often rely on the use of such a constrained
micromorphic theory; see [15,16,17,18,19] and the discussion in [20]. Mindlin’s second strain gradient theory
[9] was recently applied to the elasticity of nano-objects with surface effects [14] and to the numerical analysis
of singularities at edges and corners [21]. The associated computational analysis was based on a constrained
second-order micromorphic theory where the first- and second-order microdeformations are constrained to
coincide with the first and second gradients of the displacement field [22,14]. These internal constraints were
only considered for micromorphic media at small strains. Conversely, the micromorphic continua can be seen
as relaxed higher-grade materials.

A third-rank tensor as additional independent kinematic degrees of freedom is also present in the stress
gradient theory recently proposed by Forest and Sab [23] and Sab et al. [24]. The stress gradient model is
a completely new continuum theory which was shown to be fundamentally different from the strain gradient
approach. It was inspired by the bending gradient theory for thick plates according to Lebée and Sab [25,26].
The third-order degrees of freedom are conjugate to the gradient of the classical stress tensor in the work of
internal forces. They therefore have a physical unit different to Germain’s second-order microdeformation. An
alternative stress gradient theory was designed by Polizzotto [27,28] where third-order kinematic test functions
also arise but are not treated as independent degrees of freedom of the theory. The original stress gradient elas-
ticity model was then shown to lead to a well-posed boundary value problem with the new boundary conditions
proposed by Forest and Sab [23] and Sab et al. [24]. In particular, in a static stress gradient medium, the full
stress tensor can be prescribed at the boundary, in contrast to Cauchy’s model for which only the traction vector
is controlled. The stress gradient theories were originally formulated in the context of linear elasticity and a
complete stress gradient theory at finite deformation is still missing.

The theory of elastoviscoplasticity for first-order micromorphic media at finite deformation has been well
established since the works by Forest and Sievert [29,30], Regueiro [31] and Sansour et al. [32], and so on. First
strain gradient theory was also explored at finite elastoviscoplastic deformations in [29,33,34]. Second strain
gradient hyperelasticity at finite deformation was then considered by Javili et al. [13]. However, the reduction
of the hyperelastic laws based on invariance requirements was not performed in the latter reference, so suitable
Lagrangian strain measures remain to be defined. The treatment of internal constraints in gradient continua at
finite strains was presented recently by Bertram and Glüge [35].

The objective of the present work is to formulate a phenomenological theory of higher-order micromorphic
media generalizing Germain’s one, and to establish the links to strain and stress gradient models. The formu-
lation is presented in the finite deformation setting. For that purpose, a constitutive framework is proposed for
hyperelasticity, taking into account possible internal constraints. Its linearization will be shown to provide gen-
eral equations for the statics and dynamics of second strain gradient media and of stress gradient media. In
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particular, the dynamical stress gradient theory will be formulated at finite strain for the first time, providing the
balance, boundary and Lagrangian constitutive equations.

The proposed extension of Germain’s theory consists in abandoning the symmetry requirements for the
microdeformation tensors, thus departing from the Taylor expansion approach. The theory is presented for the
order n = 2 (first- and second-order microdeformation tensors of orders two and three respectively) and limited
to the grade p = 1, considering only the first gradient of all degrees of freedom. Extensions to order n and grade
p are possible but not considered in the present work for the sake of simplicity.

The higher-order kinematics is presented in Section 2. Following [5,36], the method of virtual power is used
to derive balance equations and the associated boundary conditions. Lagrangian strain measures are proposed
to formulate hyperelastic constitutive equations in Section 3, based on the Helmholtz or Gibbs free energy
potentials. This section ends with the consideration of general internal constraints and the consequences of
the formulation of hyperelastic laws based on the exploitation of the second principle of thermodynamics.
Specific internal constraints are then discussed in Section 4 in order to relate the general theory to strain gradient
and stress gradient models. Section 4.2 is devoted to the formulation of the stress gradient theory at finite
deformation. This theory is then linearized and shown to coincide with the already existing linear elastic stress
gradient model. The applications presented in Section 5 deal with the statics and dynamics of combined linear
stress and strain gradient media.

1.1. Notation

The material points of the body are labelled according to their position vectors X with respect to a reference
configuration �0. They occupy the positions x = 8(X, t) in the current configuration � of the body at time t.
Their coordinates are expressed in two distinct Cartesian orthonormal bases:

X = XI EI , x = xi ei (1)

where upper-case (respectively, lower-case) letters are used for indices referring to the reference (respectively,
current) configuration of the body. The components XI (respectively, xi) are called Lagrangian (respectively,
Eulerian) coordinates. Einstein’s convention on summation of repeated indices is enforced.

The Lagrangian (respectively, Eulerian) volume and surface elements are dV (respectively, dv) and dS
(respectively, ds), respectively. The gradient operators are written as

∇
0 =

∂

∂XI

EI , ∇ =
∂

∂xi

ei (2)

In index notation, we write

ui,J =
∂ui

∂XJ

(3)

An intrinsic type of notation is used whereby tensors of orders one, two, three, four and six are respectively
denoted by a, A

∼
, A

∼
(or A

∼
), A

≈
, and A

∼
∼
∼

. To avoid any ambiguity, the corresponding index notation is often provided

together with the intrinsic one.

2. Kinematics and balance laws for higher-order micromorphic media

2.1. Higher-order micromorphic degrees of freedom

Each material point is endowed with the following set of generalized degrees of freedom:

DOF = {u, χ
∼

, χ
∼

, χ
≈

, . . . } (4)

DOF = {ui, χiJ , χiJK , χiJKL, . . . }

where u = 8(X, t)−X is the displacement vector and the micromorphic degrees of freedom are independent ten-
sors of increasing orders. Following notation similar to that introduced by Mindlin [9], the same letter χ is used
for the independent micromorphic degrees of freedom of various orders. These variables can be distinguished
by the indication of respective tensor rank in the tensor notation or from the number of indices.
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The first- and higher-order microdeformation tensor variables are generally non-compatible fields. They
do not possess any symmetry property a priori. In particular, the second-order microvariable χiJK does not
exhibit any symmetry with respect to the last two indices. This is in contrast to Germain’s general micromorphic
medium where the higher-order microvariables are conceived as the coefficients in a Taylor expansion of the
relative motion of the material particle with respect to its centre of mass. Such symmetry properties also hold in
Eringen’s higher-grade micromorphic theory where higher-order moments of the microfields are introduced [7].
The physical meaning and physical dimension of the higher-order micromorphic variables are left unspecified
since they will depend on the specific application. However, if

F
∼

= 1
∼

+ u ⊗ ∇
0 = FiJ ei ⊗ EJ , J = det F

∼
> 0 (5)

is the deformation gradient of the continuum, the first interpretation of the micromorphic degrees of freedom
proposed in this work is the relaxation of F

∼
and its gradients of increasing order. The microdeformation tensor

χ
∼

is viewed as the relaxed counterpart of F
∼

meaning that it is a generally incompatible deformation field,

in contrast to F
∼

. The reference state of the microdeformation is χ
∼

= 1
∼

and it is assumed that det χ
∼
> 0.

Similarly, the second-order microdeformation χiJK represents the relaxed microdeformation gradient χiJ ,K , and,
consequently, the relaxation of the second gradient FiJ ,K = ui,JK which is symmetric with respect to the last two
indices. The reference states of the second- and higher-order microdeformation tensors are zero. According to
this definition, the physical dimension of each higher-order microdeformation tensor is that of the corresponding
higher gradient of F

∼
, so χ

∼
is dimensionless, χ

∼

is in m−1, and so on.

The transformation of the deformation gradient by a change of observer represented by the time-dependent
rotation Q

∼
(t) is as follows:

F
∼

−→ Q
∼

· F
∼

(6)

The following transformation rules are assumed for the micromorphic degrees of freedom:

χ
∼

−→ Q
∼

· χ
∼

FiJ −→ QikFkJ (7)

χ
∼

−→ Q
∼

· χ
∼

χiJK −→ QilχlJK (8)

. . .

The generalized degrees of freedom χiJK... have the same structure and transformation rules as the multipolar
displacements introduced by [8], later called multipolar deformation fields in [37]. The fundamental difference
with the present theory lies in the generalization of the balance of momentum equation which is absent in
Green and Rivlin’s theory, as recognized by Germain [5]. Green and Rivlin’s interpretation of the multipolar
fields, presented in the appendix of [8], involves a collection of particles and is based on a Taylor expansion
whereby the multipolar tensors must be completely symmetric with respect to all indices excepted the first.
Their multipolar displacements therefore represent a generalization of this concept to multiparticle systems.

The interpretation of the first microdeformation tensor as the linear transformation of a triad of directors
attached to the microstructure is particularly illustrative. Extension to higher-order microdeformation is possible
based on higher-order tensor products of directors as proposed by Green et al. [38].

2.2. Lagrangian generalized strain measures

The proposed theory is a continuum model of order n and of grade 1, meaning that only the first gradient of all
degrees of freedom is considered. The set GRAD contains all the available constitutive variables of the model:

GRAD = {u, u ⊗ ∇
0, χ

∼
, χ

∼
⊗ ∇

0, χ
∼

, χ
∼

⊗ ∇
0, . . .} (9)

GRAD = {ui, ui,J , χiJ , χiJ ,K , χiJK , χiJK,L, . . .}

Appropriate strain measures are obtained by considering the invariance properties of the constitutive functions.
In the case of hyperelasticity, the constitutive function is the Helmholtz free energy potential ψ per unit volume.
It is a priori a function depending on all the variables contained in GRAD. According to the requirement of
Galilean invariance, it must be invariant with respect to all Galilean transformations. The translation invariance
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excludes the presence of the displacement in the arguments of the constitutive function. The invariance with
respect to all constant rotations Q

∼
0 is

ψ(F
∼

, χ
∼

, χ
∼

⊗ ∇
0, χ

∼

, χ
∼

⊗ ∇
0, . . .)

= ψ(Q
∼

0 · F
∼

, Q
∼

0 · χ
∼

, Q
∼

0 · χ
∼

⊗ ∇
0, Q

∼
0 · χ

∼

, Q
∼

0 · χ
∼

⊗ ∇
0, . . .)

= ψ(U
∼

, R
∼

T · χ
∼

, R
∼

T · χ
∼

⊗ ∇
0, R

∼

T · χ
∼

, R
∼

T · χ
∼

⊗ ∇
0, . . .) (10)

= ψ(UIJ , RT
IkχkJ , RT

IjχjK,L, RT
IjχjKL, RT

IjχjKL,M , . . .)

where the specific choice Q
∼

0 = R
∼

T was made among all possible rotations, R
∼

being the rotation part in the

polar decomposition of the deformation gradient F
∼

= R
∼

· U
∼

, with U
∼

the Lagrangian stretch tensor. The last
expression shows that the arguments of the free energy potential are Lagrangian strain measures appropriate for
constitutive modelling. In the present work, the following set of Lagrangian strain measures is adopted, without
loss of generality:

ψ(C
∼

, ϒ
∼

:= χ
∼

−1 · F
∼

, K
∼

:= χ
∼

−1 · (χ
∼

⊗ ∇
0), ϒ

∼
:= χ

∼

−1 · χ
∼

, K
≈

:= χ
∼

−1 · (χ
∼

⊗ ∇
0), . . .) (11)

ψ(CIJ , ϒIJ := χ−1
Ik FkJ , KIJK := χ−1

Il χlJ ,K , ϒIJK := χ−1
Il χlJK , KIJKL := χ−1

Im χmJK,L, . . .)

The pull-back of all quantities by χ
∼

−1 provides Lagrangian strain measures. The right Cauchy–Green strain is

C
∼

= F
∼

T · F
∼

. The generalized strain measures ϒ
∼

and K
∼

as defined in equation (11) are the ones used in Eringen’s

original micromorphic theory [39,29]. All the arguments of the constitutive function (11) can be expressed in
terms of the arguments found in the reduced constitutive law (10), as they should. The Lagrangian generalized
strain measure K

∼
possesses the remarkable property that its time derivative can be directly and simply related to

the Eulerian gradient of the microdeformation rate:

(χ̇
∼

· χ
∼

−1) ⊗ ∇ = χ
∼

· K̇
∼

: (χ
∼

−1
� F

∼

−1), (χ̇iLχ
−1
Lj ),k = χiPK̇PQRχ

−1
Qj F−1

Rk (12)

Other pull-backs are possible and lead to different strain measures, as usual in finite deformation theories.
However, they lead to more complicated expressions as discussed by [39,29] and [33] for the special case of
strain gradient theory. The new tensors ϒ

∼
and K

≈
represent direct extensions to second-order micromorphic

media.
Note that Green and Rivlin [8] define similar Lagrangian generalized strain measures pulled back by means

of F
∼

T instead of χ
∼

−1.

2.3. Generalized principle of virtual power

The method of virtual power is used to introduce the generalized stress tensors of the theory. The virtual power
density of internal forces is computed with respect to any subdomain D0 of the reference configuration �0:

P
(i)(δu, δχ

∼
, δχ

∼

, . . .) = −

∫

D0

Jp(i)(δu, δχ
∼

, δχ
∼

, . . .) dV (13)

where p(i) is the virtual power density of internal forces per unit volume of the current configuration, and J
is the Jacobian. It is introduced as a function of the virtual fields represented by variations of displacements
and microdeformations of any order. The virtual power density of internal forces is taken as a linear form with
respect to the variations of the Lagrangian strain measures (11):

Jp(i) =
1

2
5
∼

: δC
∼

+ T
∼

: δϒ
∼

+ M
∼

... δK
∼

+ T
∼

... δϒ
∼

+ M
≈

:: δK
≈

(14)

=
1

2
5IJ δCIJ + TIJ δϒIJ + MIJK δKIJK + TIJK δϒIJK + MIJKL δKIJKL
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where 5
∼

is the usual Piola stress tensor, and T
∼

and T
∼

are the stress tensors conjugate to the microdeformations,

whereas M
∼

and M
≈

are generalized couple stress tensors. The variations of the strains can be expressed in terms

of the virtual displacements and microdeformations:

δC
∼

= F
∼

T · δF
∼

+ δF
∼

T · F
∼

(15)

δϒ
∼

= χ
∼

−1 · δF
∼

− χ
∼

−1 · δχ
∼

· ϒ
∼

(16)

δK
∼

= χ
∼

−1 · (δχ
∼

⊗ ∇
0) − χ

∼

−1 · δχ
∼

· K
∼

(17)

δϒ
∼

= χ
∼

−1 · δχ
∼

− χ
∼

−1 · δχ
∼

· ϒ
∼

(18)

δK
≈

= χ
∼

−1 · (δχ
∼

⊗ ∇
0) − χ

∼

−1 · δχ
∼

· K
≈

(19)

The virtual power of contact forces acting on the boundary ∂D0 takes the form

P
(c)(δu, δχ

∼
, δχ

∼

, . . .) =

∫

∂D0

p(c)(δu, δχ
∼

, δχ
∼

, . . .) dS

=

∫

∂D0

t · δu + t
∼

: δχ
∼

+ t
∼

... δχ
∼

+ . . . dS (20)

The virtual power of external forces acting at a distance is of the form

P
(e)(δu, δχ

∼
, δχ

∼

, . . .) =

∫

D0

Jp(e)(δu, δχ
∼

, δχ
∼

, . . .) dV

=

∫

D0

f · δu + f
∼

: δχ
∼

+ f
∼

... δχ
∼

+ . . . dV (21)

Higher-order volume forces working with the gradient of the microdeformation tensors could be introduced in
the latter expression in the spirit of [40].

The virtual power of acceleration forces is taken in the form

P
(a)(δu, δχ

∼
, δχ

∼

, . . .) = −

∫

D0

Jp(a)(δu, δχ
∼

, δχ
∼

, . . .) dV

= −

∫

D0

ρ0

(

a · δu + (χ̈
∼

· I
∼
) : δχ

∼
+ (χ̈

∼

: I
≈
)
... δχ

∼

+ . . .

)

dV (22)

= −

∫

D0

ρ0

(

aiδui + χ̈iLILJδχiJ + χ̈iPQIPQJKδχiJK + . . .
)

dV

where I
∼

and I
≈

are Lagrangian generalized microinertia tensors. The mass densities per unit reference or cur-

rent volume are called ρ0 and ρ, respectively. They are such that J = det F
∼

= ρ0/ρ to comply with mass
conservation. The acceleration vector is a. This Lagrangian formulation is in contrast to Germain’s general
micromorphic dynamics which is primarily introduced in the Eulerian framework; see [5]. Note that the accel-
eration of the multipolar deformations was not considered by Green and Rivlin [8], even though these authors
take the acceleration of directors into account in subsequent works [38,37].

The principle of virtual power for general micromorphic media stipulates that

P
(i) + P

(c) + P
(e) + P

(a) = 0, ∀δu, δχ
∼

, δχ
∼

and ∀D0 ⊂ �0 (23)



Forest and Sab 1435

2.4. Balance laws of generalized moments of momentum

The exploitation of the principle of virtual power stated in the previous section leads to the derivation of the
balance equations valid for all X ∈ �0 in the form

Div (S
∼

+ T
∼

B) + f = ρ0a, SiJ ,J + TB
iJ ,J + fi = ρ0ai (24)

Div M
∼

B − T
∼

C + f
∼
= ρ0χ̈

∼
· I

∼
, MB

iJK,K − TC
iJ + fiJ = ρ0χ̈iKIKJ (25)

Div M
≈

B − T
∼

B + f
∼

= ρ0χ̈
∼

: I
≈
, MB

iJKL,L − TB
iJK + fiJK = ρ0χ̈iPQIPQJK (26)

and of the Neumann boundary conditions valid for all X ∈ ∂�0:

(S
∼

+ T
∼

B) · N = t, (SiJ + TB
iJ )NJ = ti (27)

M
∼

B · N = t
∼
, MB

iJKNK = tiJ (28)

M
≈

B · N = t
∼
, MB

iJKLNL = tiJK (29)

Tensor S
∼

= F
∼

· 5
∼

is the usual Boussinesq stress tensor, also called first Piola–Kirchhoff stress tensor. The label
B refers to generalized Boussinesq tensors:

T
∼

B = χ
∼

−T · T
∼

, TB
iK = χ−T

iJ TJK (30)

T
∼

B = χ
∼

−T · T
∼

, TB
iJK = χ−T

iI TIJK (31)

M
∼

B = χ
∼

−T · M
∼

, MB
iJK = χ−T

iI MIJK (32)

M
≈

B = χ
∼

−T · M
≈

, MB
iJKL = χ−T

iI MIJKL (33)

The generalized stress tensor T
∼

C arising in equation (25) couples all other micromorphic stress tensors in the
following way:

T
∼

C = T
∼

B · F
∼

T · χ
∼

−T + M
∼

B : K
∼

T · χ
∼

−T + T
∼

B : χ
∼

T · χ
∼

−T + M
≈

B
... K

≈

T · χ
∼

−T (34)

TC
pQ = TB

pJ FT
Jiχ

−T
iQ + MB

pJKKiJ ,Kχ
−T
iQ + TB

pJKχiJ ,Kχ
−T
iQ + MB

pJKLKiJK,Lχ
−T
iQ

In contrast to the derived generalized balance of momentum equations, Green, Rivlin and Naghdi considered a
single balance of momentum equation [8,38,37]. Relations are introduced involving the divergence of multipolar
stresses defining auxiliary higher-order stress tensors akin to the present tensors TiJK.... These relations (see the
equations (13.2) in [8]) are regarded as constitutive, not as balance equations. There are substituted into a single
additional boundary condition involving the heat flux through the surface. Germain noted that this is due to
their derivation of all equations from the energy conservation law which, in the classical case, leads to the same
results as the method of virtual power, but to fewer equations in the case of micromorphic media; see [5].

2.5. Linearized balance laws

The previous field equations are now linearized to obtain a more simple form and recover some existing balance
laws for micromorphic continua. Deformations are small when

‖F
∼

− 1
∼
‖ � 1 (35)

Considering that the microdeformations are relaxed strain-gradient-like variables, the generalized microdefor-
mations are small when

‖χ
∼

− 1
∼
‖ � 1, L‖K

∼
‖ � 1, L‖χ

∼

‖ � 1, L2‖K
≈
‖ � 1 (36)

where L is a characteristic length related to the structure or to the wavelength of the applied loading conditions.
In the following, χ

∼
− 1

∼
is replaced by the same notation χ

∼
. The acceleration terms involve constitutive inertia

tensors of orders two and four.
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Within the context of small deformations and microdeformations, the generalized strain measures are
linearized as follows:

C
∼

' 1
∼

+ 2ε
∼
, with 2ε

∼
= u ⊗ ∇ + ∇ ⊗ u (37)

ϒ
∼

' u ⊗ ∇ − χ
∼

, ϒ
∼

' χ
∼

(38)

The linearized stress measures are then

S
∼

= F
∼

· 5
∼

= Jσ
∼

· F
∼

−T ' σ
∼

(39)

T
∼

B ' T
∼

, T
∼

B ' T
∼

, T
∼

C ' T
∼

(40)

M
∼

B ' M
∼

, M
≈

B ' T
≈

(41)

where σ
∼

is the usual Cauchy stress tensor.
As a result, the balance laws (24) to (26) reduce to

div (σ
∼

+ T
∼

) + f = ρa (42)

div M
∼

− T
∼

+ f
∼
= ρχ̈

∼
· I

∼
(43)

div M
≈

− T
∼

+ f
∼

= ρχ̈
∼

: I
≈

(44)

These equations have the same form as the Eulerian balance laws according to Germain’s general micromorphic
theory, except that the present stress tensors T

∼
, T

∼
, M

∼
, M

≈
do not exhibit any symmetry property, in contrast to

Germain’s ones.

3. Hyperelasticity of second-order micromorphic media

The constitutive theory of hyperelastic second-order micromorphic media is based on the objective Helmholtz
free energy potential per unit volume:

ψ(C
∼

, ϒ
∼

, K
∼

, ϒ
∼

, K
≈

) (45)

3.1. Derivation of the hyperelastic state laws

The local form of the Clausius–Duhem inequality for second-order micromorphic media is

Jp(i) − ψ̇ ≥ 0 (46)

Taking the expression (14) of the power of internal forces and the dependence (45) into account, it gives

(

5
∼

2
−
∂ψ

∂C
∼

)

: Ċ
∼

+

(

T
∼

−
∂ψ

∂ϒ
∼

)

: ϒ̇
∼

+

(

M
∼

−
∂ψ

∂K
∼

)

... K̇
∼

+

(

T
∼

−
∂ψ

∂χ
∼

)

... ϒ̇
∼

+



M
≈

−
∂ψ

∂K
≈



 :: K̇
≈

≥ 0 (47)

The positiveness of this linear form with respect to the strain rates requires that the conjugate quantities vanish.
The hyperelastic laws follow:

5
∼

= 2
∂ψ

∂C
∼

, T
∼

=
∂ψ

∂ϒ
∼

, M
∼

=
∂ψ

∂K
∼

, T
∼

=
∂ψ

∂χ
∼

, M
≈

=
∂ψ

∂K
≈

(48)
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3.2. Consideration of internal constraints

Internal constraints are envisaged in the form of relations that must be fulfilled by kinematic quantities. As an
example, two constraints are introduced:

f (ϒ
∼

) = 0, g(ϒ
∼

, K
∼

) = 0 (49)

where f and g are differentiable scalar functions. This specific example is motivated by the applications in
Section 4, without loss of generality. Following the usual procedure, see for instance [41], extended for gradient
materials by [35], the only evolutions of the strain variables compatible with the constraints are

∂f

∂ϒ
∼

: ϒ̇
∼

= 0,
∂g

∂ϒ
∼

: ϒ̇
∼

+
∂g

∂K
∼

: K̇
∼

= 0 (50)

Some state laws (48) must be amended as follows to enforce the internal constraints:

T
∼

=
∂ψ

∂ϒ
∼

+ T
∼

R, M
∼

=
∂ψ

∂K
∼

+ M
∼

R, T
∼

=
∂ψ

∂χ
∼

+ T
∼

R (51)

where the quantities with the label R are reaction stresses of the form

T
∼

R = λf

∂f

∂ϒ
∼

, M
∼

R = λg

∂g

∂K
∼

, T
∼

R = λg

∂g

∂ϒ
∼

(52)

The reaction stresses involve the two Lagrange multipliers λf and λg. Their values must be determined from the
resolution of the boundary value problem.

3.3. Hyperelasticity based on the Gibbs free energy potential

The Gibbs free energy potential is obtained by the Legendre transform of the Helmholtz potential:

ψ?(5
∼

, T
∼

, M
∼

, T
∼

, M
≈

) = Max
{

C
∼

,ϒ
∼

,K
∼

,ϒ
∼

,K
≈

}

(

ψ(C
∼

, ϒ
∼

, K
∼

, ϒ
∼

, K
≈

) − 5
∼

:
C
∼

2
− T

∼
: ϒ

∼
− M

∼

... K
∼

− T
∼

... ϒ
∼

− M
≈

:: K
≈

)

(53)

The arguments of this constitutive function are the generalized stress tensors (5
∼

, T
∼

, M
∼

, T
∼

, M
≈

).

The dissipation inequality (46) transforms into

Jp(i) − ψ̇? − 5
∼

:
Ċ
∼

2
− T

∼
: ϒ̇

∼
− M

∼

... Ċ
∼

− T
∼

... ϒ̇
∼

− M
≈

:: K̇
≈

−5̇
∼

:
C
∼

2
− Ṫ

∼
: ϒ

∼
− Ṁ

∼

... K
∼

− Ṫ
∼

... ϒ
∼

− Ṁ
≈

:: K
≈

≥ 0 (54)

and consequently,

−ψ̇? − 5̇
∼

:
C
∼

2
− Ṫ

∼
: ϒ

∼
− Ṁ

∼

... K
∼

− Ṫ
∼

... ϒ
∼

− Ṁ
≈

:: K
≈

≥ 0

(

∂ψ?

∂5
∼

+
C
∼

2

)

: 5̇
∼

+

(

∂ψ?

∂T
∼

+ ϒ
∼

)

: Ṫ
∼

+

(

∂ψ?

∂M
∼

+ K
∼

)

... Ṁ
∼

+

(

∂ψ?

∂T
∼

+ ϒ
∼

)

... Ṫ
∼

+





∂ψ?

∂M
≈

+ K
≈



 :: Ṁ
≈

≤ 0 (55)

from which the dual state laws are derived:

C
∼

= −2
∂ψ?

∂5
∼

, ϒ
∼

= −
∂ψ?

∂T
∼

, K
∼

= −
∂ψ?

∂M
∼

, ϒ
∼

= −
∂ψ?

∂T
∼

, K
≈

= −
∂ψ?

∂M
≈

(56)
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These constitutive laws must be amended in the presence of internal constraints. The consideration of internal
constraints is usually limited to kinematic constraints; see [35]. Static constraints can also be envisaged. As an
example, let us consider a constraint linking two stress tensors:

f (5
∼

, M
≈

) = 0 (57)

The stress increments must then be such that

∂f

∂5
∼

: 5̇
∼

+
∂f

∂M
≈

: Ṁ
≈

= 0 (58)

The state laws (56)1 and (56)5 must then be amended as follows:

C
∼

= −2
∂ψ?

∂5
∼

+ 2λf

∂f

∂5
∼

, K
≈

= −
∂ψ?

∂M
≈

+ λf

∂f

∂M
≈

(59)

where the Lagrange multiplier λf must be determined from the resolution of the boundary value problem.

4. Relation to strain and stress gradient theories

Specific internal constraints are now presented to retrieve the strain gradient and stress gradient models as limit
cases.

4.1. Strain gradient theory

The following constraints are considered:

f (ϒ
∼

) = ϒ
∼

− 1
∼

= 0, g(K
∼

, ϒ
∼

) = ϒ
∼

− K
∼

= 0 (60)

The relative deformation tensor is assumed to remain the identity during any motion, which means that the
microdeformation χ

∼
coincides with the deformation gradient itself. As a result,

χ
∼

≡ F
∼

, K
∼

≡ F
∼

⊗ ∇
0 (61)

so that the theory includes the second gradient of displacement. The second-order microdeformation is forced
to coincide with the gradient of the microdeformation:

ϒ
∼

≡ χ
∼

⊗ ∇
0 ≡ F

∼
⊗ ∇

0, K
≈

≡ F
∼

⊗ ∇
0 ⊗ ∇

0 (62)

The constrained second-order micromorphic theory therefore reduces to the third displacement gradient model,
or equivalently the second strain gradient theory of Mindlin [9].

In this case, the reaction stresses (52) become

T
∼

R = λf 1
∼
, M

∼

R = λg1
∼
, T

∼

R = −λg1
∼

(63)

The constitutive equations therefore leave the spherical part of the coupling stress tensor T
∼

indeterminate. It
will be shown explicitly in the linearized case how the three balance equations (24) to (26) can be reduced
to a single set of higher-order partial differential equations for the unknown displacement components; see
Section 5.3.

As noted by [42], enforcing internal constraints makes it possible to derive the balance and constitutive
equations in the bulk for gradient theories but it does not provide the corresponding boundary conditions. The
latter are rather sophisticated and must be derived from the direct formulation of the grade n model; see [43, 42,
44, 45]. A further discussion of the reduction of the first-order micromorphic model to Mindlin’s strain gradient
elasticity can be found in [12].
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4.2. Stress gradient theory at finite deformation

The static stress gradient theory was proposed for the first time in [23] and shown to be fundamentally distinct
from the strain gradient approach. It was presented within the small strain framework and the objective of
this subsection and of the next one is to extend it to the general finite deformation and dynamical cases. The
theory is first introduced within the formalism of a constrained second-order micromorphic model and then a
direct construction is presented enforcing the constraint. However, it will become apparent that the mechanical
meaning of the additional degrees of freedom arising in the stress gradient theory differs from that of the
microdeformation tensors regarded as relaxed deformation gradients introduced in Section 2.1. As a result,
alternative strain measures, different from (11), are proposed in what follows.

In [23], the stress gradient model was interpreted as a constrained and truncated second-order micromorphic
medium where each material point is endowed with first- and third-rank tensors of degrees of freedom ui,8iJK ,
thus leaving aside first-order additional degrees of freedom:

DOF = {u, 8
∼
}, DOF = {ui, 8iJK}

GRAD = {u, u ⊗ ∇
0, 8

∼
, 8

∼
⊗ ∇

0}, GRAD = {ui, ui,L, 8iJK , 8iJK,L}

The first-order microdeformation tensor being absent from this special theory, the Lagrangian strain measures
(11) must be reconsidered. The three Lagrangian constitutive variables proposed for the stress gradient model
are

C
∼

:= F
∼

T · F
∼

, ϒ
∼

:= F
∼

T · 8
∼

, K
≈

:= F
∼

T · 8
∼

⊗ ∇
0 (64)

CIJ := FT
IkFkJ , ϒIJK := FT

Ii8iJK , KIJKL := FT
Ii8iJK,L

The motivation for the pull-back by means of the F
∼

T variable, instead of F
∼

−1, is the relation to the Boussinesq
stress tensor, which will become apparent in the following. The conjugate stress tensors are introduced in the
virtual power density of internal forces which is formally a truncation of (14):

Jp(i) = 5
∼

: F
∼

T · δF
∼

+ T
∼

... δϒ
∼

+ M
≈

:: δK
≈

(65)

The elastic dual potential is then ψ?(5
∼

, T
∼

, M
≈

).

An internal constraint linking the fourth-rank stress tensor M
≈

to the Piola stress tensor is now introduced:

f (5
∼

, M
≈

) = M
≈

− 5
∼

⊗ 1
∼

= 0 (66)

A consequence of this constraint is that M
≈

becomes symmetric with respect to the first two indices and last two

indices. It is equivalent to the constraint that the fourth-rank Boussinesq stress tensor is directly related to the
Boussinesq second-rank stress tensor:

M
≈

B = F
∼

· M
≈

= S
∼

⊗ 1
∼
, MB

iJKL = SiJδKL (67)

It must be noted that the physical dimension implied for the stress tensor components MB
iJKL by the constraint

(67) is different from the one proposed in the previous section in the case of micromorphic theory regarded as
a relaxed strain gradient model: Pa instead of Pa.m2 = N . An internal length could be introduced to restore
the dimensional consistency but it is preferable to keep the proposed form (67) which will be related to a
stress gradient theory. Accordingly, the physical dimension of the additional degrees of freedom, 8iJK , is that
of microdisplacements, in m, instead of microdeformations in the original theory of Section 2.1.

The presence of the internal constraint leads to the modification (59) of the constitutive equations in the
form

C
∼

= −2
∂ψ?

∂5
∼

− 2λf 1
∼
, T

∼
= −

∂ψ?

∂ϒ
∼

, K
≈

= −
∂ψ?

∂M
≈

+ λf 1
≈

(68)
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where λf is a Lagrange multiplier to be determined from the boundary conditions.
Due to this specific definition of the higher-order stress tensors, and, as a consequence, to an alternative def-

inition of the Lagrangian strain measures different from (11), the generalized balance of momentum equations
must be derived anew. For that purpose, the constraint (67) is directly implemented in the virtual power density
of internal forces (65):

Jp(i) = 5
∼

: F
∼

T · δF
∼

+ T
∼

... (δF
∼

T · 8
∼

+ F
∼

T · δ8
∼

) + M
∼

:: (δF
∼

T · 8
∼

⊗ ∇
0 + F

∼

T · δ8
∼

⊗ ∇
0)

= 5IJ FT
IkδFkJ + TIJK

(

δFT
Ik8kJK + FT

Ikδ8kJK

)

+5IJδKL

(

δFT
Ik8kJK,L + FT

Ikδ8kJK,L

)

= 5
∼

:

(

δC
∼

2
+ δ(F

∼

T · 8
∼

· ∇
0)

)

+ T
∼

... δ(F
∼

T · 8
∼

) (69)

=
(

5IJ FT
Jk +5IJ8kJL,L + TIJK8kJK

)

δuk,I + TIJKFT
Ikδ8kJK +5IJ FT

Ikδ8kJL,L

=
(

SkIδuk +5IJ8kJL,Lδuk + TIJK8kJKδuk

)

,I
−
(

SkI +5IJ8kJL,L + TIJK8kJK

)

,I
δuk

+TB
kJKδ8kJK + (SkJδ8kJL),L − SkJ ,Lδ8kJK (70)

where the generalized Boussinesq tensor, T
∼

B := F
∼

· T
∼

, has been introduced. As a result, the virtual power of

internal forces of a subdomain D0 ⊂ �0 can be written as the sum of a volume and a surface contribution:

P
(i) =

∫

D0

δu ·

(

S
∼

+ (8
∼

· ∇
0) · 5

∼
+ 8

∼
: T

∼

T
)

· ∇
0 dV

−

∫

∂D0

δu ·

(

S
∼

+ (8
∼

· ∇
0) · 5

∼
+ 8

∼
: T

∼

T
)

· N dS

−

∫

D0

(

T
∼

B − S
∼

⊗ ∇
0
) ... δ8

∼
dV −

∫

∂D0

(S
∼

⊗ N)
...δ8

∼
dS (71)

where the transposition for third-order tensors is taken as TT
JKI = TIJK . The latter expression of the power of

internal forces dictates the form of the power of contact forces to be

P
(c)(δu, δ8

∼
) =

∫

D0

(

t · δu + t
∼

... δ8
∼

)

dS (72)

where t
∼

and t
∼

are generalized surface traction tensors.

The virtual power of external and acceleration forces is taken as

P
(e)(δu, δ8

∼
) =

∫

D0

f · δu + f
∼

... δ8
∼

dV (73)

P
(a)(δu, δ8

∼
) = −

∫

D0

ρ0

(

a · δu + (8̈
∼

: I
≈
)
... δ8

∼

)

dV (74)

The resulting field equations are

Div
(

S
∼

+ (Div 8
∼

) · 5
∼

+ 8
∼

: T
∼

T
)

+ f = ρ0ü (75)

T
∼

B − S
∼

⊗ ∇
0 + f

∼

= ρ08̈
∼

: I
≈

(76)

The gradient of the classical Boussinesq stress tensor S
∼

arises in the latter equation. In the static case in particular

and in the absence of third-rank body forces, the generalized stress tensor T
∼

B is nothing but the stress gradient,

hence the name stress gradient theory.
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The exploitation of the principle of virtual power at the boundary provides the expression of the generalized
traction tensors:

t =

((

F
∼

+ 8
∼

· ∇
0
)

· 5
∼

+ 8
∼

: T
∼

T
)

· N, ti =
(

(FiJ +8iJL,L)5JK +8iJLTJLK

)

NK (77)

t
∼
= S

∼
⊗ N, tiJK = SiJ NK (78)

The consideration of equations (75) and (77) leads to the definition of a new Boussinesq stress tensor for the
stress gradient theory:

S
∼

B := S
∼

+ (Div 8
∼

) · 5
∼

+ 8
∼

: T
∼

T =

(

F
∼

+ Div 8
∼

)

· 5
∼

+ 8
∼

: T
∼

T (79)

whose divergence balances volume and inertia forces and whose action on the normal vector at the boundary
delivers the generalized traction.

4.3. Hyperelastic stress gradient model and its linearization

The reduced hyperelastic laws of the stress gradient medium can be obtained by eliminating the Lagrange
multiplier in equation (68). For that purpose, note that

K
≈

: 1
∼

= F
∼

T · Div 8
∼

(80)

so that

λf 1
∼

= F
∼

T · Div 8
∼

+
∂ψ?

∂M
≈

: 1
∼

(81)

Finally, it is found that

C
∼

2
+ F

∼

T · Div 8
∼

= −





∂ψ?

∂5
∼

+
∂ψ?

∂M
≈

: 1
∼



 = −
∂9?

∂5
∼

(82)

after recalling that M
≈

= 5
∼

⊗ 1
∼

and introducing a reduced stress potential 9?(5
∼

, T
∼

) such that

E
∼

=
C
∼

2
+ F

∼

T · 8
∼

· ∇
0 = −

∂9?

∂5
∼

, ϒ
∼

= F
∼

T · 8
∼

= −
∂9?

∂T
∼

(83)

Accordingly, the dual potential 9(E
∼

, ϒ
∼

) can be derived based on the reduced strain tensor E
∼

and the

generalized strain measure ϒ
∼

:

δ9 =
∂9

∂E
∼

: δE
∼

+
∂9

∂ϒ
∼

: δϒ
∼

= 5
∼

: δE
∼

+ T
∼

... δϒ
∼

(84)

after identification of the conjugate stress tensors as they appear in the increment of virtual work of internal
forces; see equation (69).

The linearization of the proposed theory is consistent with the linear stress gradient model presented in the
static case by Forest and Sab [23], as will be shown. The small deformation framework for the stress gradient
theory is characterized by

‖F
∼

− 1
∼
‖ � 1, L−1‖8

∼
‖ � 1, ‖8

∼
⊗ ∇‖ � 1 (85)

The generalized strain measures are linearized as

E
∼

− 1
∼
/2 = (C

∼
− 1

∼
)/2 + F

∼

T · 8
∼

' ε
∼

+ 8
∼

· ∇ ≡ e
∼
, ϒ

∼
= F

∼

T · 8
∼

' 8
∼

(86)

where ε
∼

is the infinitesimal strain tensor and e
∼

is the generalized strain measure found in [23]. Regarding
stresses, we obtain

5
∼

' σ
∼

, T
∼

' σ
∼

⊗ ∇ ≡ R
∼

(87)



1442 Mathematics and Mechanics of Solids 25(7)

where σ
∼

is the Cauchy stress tensor and R
∼

was the name given to the infinitesimal stress gradient in [23], in the

static case. The linearization of the balance laws (75) and (76) proceeds as follows:

S
∼

+ (Div 8
∼

) · 5
∼

+ 8
∼

: T
∼

T ' σ
∼

, since ‖S
∼
‖ � ‖(Div 8

∼
) · 5

∼
‖, ‖S

∼
‖ � ‖8

∼
: T

∼

T‖ (88)

As a consequence, the balance laws of the linear and static stress gradient theory by Forest and Sab [23] are
recovered:

div σ
∼

+ f = 0, R
∼

− σ
∼

⊗ ∇ + f
∼

= 0 (89)

After linearization of the stress and strain measures and their substitution into the hyperelastic laws (84), the
elastic laws proposed in [23] are also retrieved:

e
∼

=
∂w?(σ

∼
, R

∼
)

∂σ
∼

, 8
∼

=
∂w?(σ

∼
, R

∼
)

∂R
∼

, σ
∼

=
∂w(e

∼
, 8

∼
)

∂e
∼

, R
∼

=
∂w(e

∼
, 8

∼
)

∂8
∼

(90)

It is worth considering now the linearization of the virtual power of contact forces taken from equation (71):

δu ·

(

S
∼

+ (8
∼

· ∇
0) · 5

∼
+ 8

∼
: T

∼

T
)

· N + (S
∼

⊗ N)
... δ8

∼
' σ

∼
: (δu ⊗ N + δ8

∼
· N) (91)

which is the expression found in [23]. This structure for the virtual work of contact forces allows us to prescribe
the full stress tensor along a boundary, which is a peculiar feature of the linear stress gradient theory. Existence
and uniqueness theorems were established by Sab et al. [24] for such stress-based boundary conditions. Corre-
sponding existence theorems remain to be derived for the finite deformation stress gradient model proposed in
the present work.

5. Applications

The proposed applications deal first with a combination of strain and stress gradient theories in the static case
and then with the one-dimensional dynamics of second-order micromorphic and stress gradient media. They
are limited to the small strain case.

5.1. Combination of stress and strain gradient models

A second-order micromorphic medium is considered that involves the following degrees of freedom:

DOF = {u, χ
∼

, 8
∼
} (92)

The following expression of the work of internal forces, combining the features of first-order micromorphic and
stress gradient theories, is adopted:

p(i) = σ
∼

: (ε
∼

+ 8
∼

· ∇) + R
∼

... 8
∼

+ s
∼

: (χ
∼

− ε
∼
) + M

∼

... χ
∼

⊗ ∇ (93)

within the infinitesimal deformation framework. The field balance equations associated with such a medium are
threefold, as deduced from the earlier analyses:

div (σ
∼

+ s
∼
) = 0, R

∼
= σ

∼
⊗ ∇, div M

∼
+ s

∼
= 0 (94)

in the static case and in the absence of body forces. Implementing the internal constraint χ
∼

≡ ε
∼

corresponding

to the strain gradient part of the model, the three previous equations reduce to two:

div (σ
∼

− div M
∼

) = 0, R
∼

= σ
∼

⊗ ∇ (95)

The linear constitutive laws for the stress gradient part of the model are as in [23]:

σ
∼

= C
≈

: e
∼

= C
≈

: (ε
∼

+ 8
∼

· ∇), R
∼

= D
∼
∼
∼

... 8
∼

(96)
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where C
≈

and D
∼
∼
∼

are fourth- and sixth-rank tensors of generalized elastic moduli. In fact, for the purpose of

comparison with Eringen’s model, it is sufficient to consider the simplified law

8
∼

= `2
σC

≈

−1 : R
∼

(97)

so that
σ
∼

− `2
σ∇

2σ
∼

= C
≈

: ε
∼

(98)

which is identical to Eringen’s model involving the Laplacian of the stress tensor; see [46]. The fact that
Eringen’s model can be retrieved from a stress gradient theory was recognized by Polizzotto [28].

On the other hand, following [47], a simplified higher-order elasticity law linking the hyperstress tensor to
the strain gradient is

M
∼

= `2
εC≈

: (ε
∼

⊗ ∇) (99)

which is similar to equation (97). This leads to a generalized elasticity law for the effective stress tensor, τ
∼

,
whose divergence vanishes under static conditions, according to [40]:

τ
∼

= σ
∼

− div M
∼

= σ
∼

− `2
εC≈

: ∇
2ε

∼
(100)

which coincides with Aifantis’s celebrated gradient elasticity model [48]. Combining the constitutive laws (98)
and (100), the following partial differential equation for stress and strain tensors is obtained:

τ
∼

− `2
σ∇

2σ
∼

= C
≈

: (ε
∼

− `2
ε∇

2ε
∼
) (101)

This equation involves the Laplacians of both stress and strain tensors. Note that both stress tensors σ
∼

and τ
∼

are
present.

In the context of a combined stress and strain gradient theory, the question arises of the choice of the proper
stress tensor whose gradient should be incorporated in the model. Here, we have considered σ

∼
⊗ ∇, but the

theory could instead involve τ
∼

⊗ ∇. For that purpose, an alternative combination of stress and strain gradient
theories can be proposed from the following modification of the power of internal forces (93):

p(i) = σ
∼

: ε
∼

+ (σ
∼

+ s
∼
) : 8

∼
· ∇ + R

∼

... 8
∼

+ s
∼

: (χ
∼

− ε
∼
) + M

∼

... χ
∼

⊗ ∇ (102)

which leads to the following static balance equations:

div (σ
∼

+ s
∼
) = 0, R

∼
= (σ

∼
+ s

∼
) ⊗ ∇, div M

∼
+ s

∼
= 0 (103)

Eliminating the relative stress tensor s
∼

provides the balance equations with respect to the effective stress τ
∼

=

σ
∼

− div M
∼

:

div τ
∼

= 0, R
∼

= τ
∼

⊗ ∇ (104)

which shows that it is a theory for the effective stress gradient. Implementing again the internal constraint χ
∼

≡ ε
∼

corresponding to the strain gradient part of the model, the following constitutive equations are retained:

τ
∼

= C
≈

: e
∼

= C
≈

: (ε
∼

+ div 8
∼

), 8
∼

= `2
σC

≈

−1 : R
∼

(105)

The following relation between stress and strain gradients is deduced:

σ
∼

− `2
σ∇

2τ
∼

= C
≈

: (ε
∼

+ `2
ε∇

2ε
∼
) (106)

This equation differs from (101) by the interchange of σ
∼

and τ
∼

on the left-hand side and by the plus sign on the
right-hand side.
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Within the small strain framework, Gutkin and Aifantis [49] and Aifantis [50] proposed a gradient elasticity
constitutive law involving both strain and stress gradient variables in the form

(1 − l2
σ∇

2)σ
∼

= (1 − l2
ε∇

2)(λ(trace ε
∼
)1

∼
+ 2µε

∼
) (107)

Equations (101) and (106) also involve Laplacians of both stress and strain tensors. They are reminiscent of
Aifantis’s generalized gradient elasticity model (107). In this equation, σ

∼
is presented as the usual stress tensor.

Forest and Aifantis [47] suggested however that it should be interpreted as the effective stress τ
∼

from the strain
gradient model. Equation (107) is presented as a constitutive law. In fact, it is a combination of balance and
constitutive equations as in the derivation of equations (101) and (106). The ambiguity on the nature of the
stress tensor remains as long as the suitable balance, boundary and constitutive equations are not provided.

The merits of a combined stress and strain gradient model are suggested by the recent work of Tran [51]
where the stress gradient model was shown to predict softening effects at small scales. In contrast, stiffening
effects are generally obtained with a strain gradient model. Depending on boundary or interface conditions
related to either stress gradient or strain gradient types, such stiffening and softening effects may be competing
in actual materials.

5.2. Higher-order dynamics of linear micromorphic and strain gradient media

The dynamics of micromorphic media is derived in the case of linear elasticity. The obtained field equations
are then specialized in the presence of internal constraints linking the micromorphic deformations to strain
gradients.

The generalized Hooke laws are given in the case of a centro-symmetrical second-order micromorphic
material for the sake of brevity. The retained form is that proposed in [14]:

σ
∼

= c
≈

: ε
∼

(108)

T
∼

= a
≈

: (u ⊗ ∇ − χ
∼

) (109)

M
∼

= b
∼
∼
∼

... K
∼

(110)

T
∼

= a
∼
∼
∼

... (K
∼

− χ
∼

) (111)

M
≈

= b
∼
∼
∼

:: K
≈

(112)

The relations (109) and (111) penalize the difference between the first- (respectively, second-) order microde-
formation and the first (respectively, second) gradient of the displacement fields. Very large values of the
higher-order moduli a

≈
and a

∼
∼
∼

amount to prescribing the constraints (60) which reduce the second micromor-

phic medium to a second strain gradient material. Odd-rank tensors of elasticity are excluded in the previous
laws by the hypothesis of centro-symmetry [52]. The full classification of anisotropy classes remains to be done
for second-order micromorphic media and is not discussed here [53].

It is shown now how the three linearized balance laws (42) to (44) can be combined, after substitution of
the constitutive equations (108) to (112), to derive a single partial differential equation involving all degrees
of freedom and in which internal constraints can be enforced. The derivation is essentially formal due to the
complexity of tensor combinations. Eliminating the coupling stress T

∼
in equation (42) by means of equation

(43) yields

div (σ
∼

+ div M
∼

− ρIχ̈
∼

) = ρü

The third-rank stress tensor can be eliminated from the previous expression using the constitutive law (110) and
the balance law (44):

M
∼

= b
∼
∼
∼

... K
∼

= b
∼
∼
∼

...

(

χ
∼

+ a
∼
∼
∼

−1...T
∼

)

= b
∼
∼
∼

...

(

χ
∼

+ a
∼
∼
∼

−1...

(

div M
≈

− ρχ̈
∼

: I
≈

)

)
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and finally

div

(

σ
∼

+ div

(

b
∼
∼
∼

...

(

χ
∼

+ a
∼
∼
∼

−1...

(

div M
≈

− ρχ̈
∼

: I
≈

)

))

− ρIχ̈
∼

)

= ρü (113)

At this stage, the linearized internal constraints (60)

χ
∼

≡ u ⊗ ∇, χ
∼

≡ u ⊗ ∇ ⊗ ∇ (114)

are substituted into (113) to obtain the dynamical equations of second strain gradient media. This equation
is written in symbolic form in order to draw attention to the order of the space and time derivatives of the
displacement variable in each term:

Au(2) + Bu(4) + Cu(6) − ρIü(4) − Dü(2) − ρü = 0 (115)

where the integers in parentheses denote the order of the spatial derivative and the coefficients symbolically
represent appropriate combinations of elastic moduli. It is remarkable that the dynamical equation contains
spatial derivatives of even order up to six and mixed space and time derivatives of orders two to six. The
fourth-order terms are characteristic of Mindlin’s first strain gradient dynamics. The direct derivation of the
mixed term ü(2) in the strain gradient model requires the introduction of a hypermomentum tensor that is very
often forgotten, especially in the dynamics of Euler–Bernoulli beams; see [54, 55]. It arises here as a natural
consequence of the micromorphic dynamics. The introduction of the second-order microdeformation leads to
the terms of sixth order. The previous equation represents one of the most general ones for the analysis of the
dispersion of waves in gradient media [56, 57]. It contains terms that have been introduced heuristically in
several dynamical equations in the literature; see the discussions in [58, 59, 60, 61].

5.3. Dynamics of linear stress gradient media

Some specific aspects of the dynamical behaviour of linear stress gradient media are now unravelled by com-
bining the linear balance and constitutive equations including inertia contributions. The linearized dynamical
equations of stress gradient media are deduced from equations (75) and (76) as follows:

div σ
∼

= ρü, R
∼

− σ
∼

⊗ ∇ = ρI8̈
∼

(116)

in the absence of volume forces. Note that the inertia coefficient I in equation (116)2 has no physical dimension
since u and 8

∼
share the same physical dimension of length. The linearized elasticity laws are given by equation

(96). They relate the stress and stress gradients to the strain and microdisplacements. For the sake of brevity, the
derivation of the dynamic equation for displacement is presented in the one-dimensional case. Equations (116)
then reduce to

σ ′ = ρü, R − σ ′ = ρI8̈ (117)

where (•)′ denotes the one-dimensional derivative. The constitutive laws (96) become

σ = E(u′ +8′), R = D8 (118)

where E and D are constitutive elasticity moduli, in Pa. Substitution of the constitutive laws into the balance
equation leads to the generalized Navier equations

E(u(2) +8(2)) = ρü, D8− E(u(2) +8(2)) = ρI8̈ (119)

From the two previous equations, the following consequences are respectively deduced:

8(2) =
ρ

E
ü − u(2), D8(2) − ρü(2) = ρI8̈(2) (120)

Substitution of the former into the latter equation provides the linear differential equation for the displacement
variable:

Du(2) + ρ(1 − I)ü(2) +
ρ2I

E
¨̈u −

Dρ

E
ü = 0 (121)
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The dispersion of one-dimensional elastic waves according to equations (115) and (121) should be analysed
in a way similar to the work done by Metrikine [54] and Berezovski [62] for other microstructured continua.
Metrikine [54] examined the question of the causality of such equations. He postulates that a partial differential
equation that governs the dynamical behaviour of a one-dimensional model must be of the same order with
respect to the spatial coordinate and with respect to time. This is not the case for equation (115) due to the
higher-order spatial derivation. This feature is well known in strain gradient media and is encountered in the
Euler–Bernoulli beam model. It corresponds to the possibility of waves travelling with infinite speed. This
paradox is solved by the use of a Timoshenko beam model. Equivalently, the unconstrained micromorphic
media can be used to regularize the wave behaviour of gradient continua. The postulated causality condition is
not satisfied either for stress gradient continua, as can be seen from equation (121), but for a different reason.
The highest time derivative is four whereas the spatial order is two. This is a remarkable feature distinguishing
the stress gradient from the strain gradient models.

6. Conclusions

The main contributions of the present work are as follows.

• A second-order micromorphic model at finite deformation introducing generalized Boussinesq stress ten-
sors for balance and boundary conditions, and generalized Lagrangian strain measures for constitutive
laws. It is more general than the previous Green and Naghdi, and Eringen and Germain theories. The
higher-order microdeformations are introduced as relaxed deformation gradients of suitable order.

• A reduction of the general micromorphic model to the grade n continuum model by suitable constraints
on the microdeformations tensors. In strain gradient theories, the higher-order stress tensor is not equal to
the gradient of the usual stress tensor. That is why strain and stress gradient theories are distinct models
of the continuum.

• A stress gradient theory at finite deformation including inertia terms. It involves a third-order tensor
of additional degrees of freedom like the second-order micromorphic model. However, its mechanical
meaning is different: it represents microdisplacements and not a relaxed strain gradient.

• A one-dimensional linearized dispersion equation for the stress gradient model that essentially differs
from the strain gradient prediction. The highest order in time (respectively, space) derivation is two orders
larger than the spatial (respectively, time) derivation order in linear stress (respectively, strain) gradient
media.

These new theories are excellent candidates for the study of wave dispersion in generalized continua, as started
in [63,2] for first-order micromorphic continua. Micromorphic models are necessary to overcome the paradox
of the infinite wave speed of some elastic waves in gradient media and to obtain both acoustic and optical
branches in the dispersion diagrams [61].

A central remaining question is the determination of the higher-order elastic moduli arising in such theories.
Enhanced homogenization methods have been proposed recently to derive them from the microstructure of
periodic heterogeneous material; see [64,65,66] for the construction of gradient and micromorphic models
from the underlying heterogeneous Cauchy materials. Most approaches remain heuristic and the question is
still largely open. Nassar et al. [67] and Reda et al. [68] recently proposed alternative asymptotic methods for
the determination of dynamical properties of gradient and micromorphic media with application to composite
materials. The found properties are inevitably anisotropic, which has implications for the dispersion of waves;
see [55].

The strain gradient and stress gradient models emerge as distinct and rather complementary approaches to
material behaviour. Stiffening effects are expected in strain gradient media at small scales, whereas softening
effects were derived in the recent homogenization results by Tran [51]. It seems that both models should be
combined in order to represent the competition of stiffening and softening effects present in heterogeneous
materials, as sketched in Section 5.1.

The proposed theories were presented within the finite deformation framework for application in the size-
dependent plasticity and fracture of metals that generally occur at large deformations. They could be applied to
the ductile fracture of porous materials as initiated in [69,70] or to the deformation of metal polycrystals [71].
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