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Abstract Iron and steels are allotropes, meaning they exhibit different crystal configurations. The marten-
sitic transformation is crucial for a variety of processes, such as hardening. It is induced by a combination
of undercooling and mechanical deformation. Due to the changing material properties within the phases, and
due to topological changes that might occur during the transformation, a phase field approach was chosen that
incorporates both the mechanical and the chemical aspect of this problem. A comparison of the Voigt/Taylor
approach to the Khachaturyan approach within a multi-variant phase field modeling of the martensitic trans-
formation including a chemical and a mechanical energy contribution is presented in this paper. The model
was implemented in the finite element codes FEAP and Z-set independently. Numerical examples are given in
order to highlight the features of this model.

Keywords Phase field model · Homogenization · Martensitic transformation · Finite elements

1 Introduction

Iron and steels forming crystal structures exhibit allotropes with different mechanical and chemical properties
[25,53,60]. Here, mainly two allotropes are of interest: the face-centered cubic (fcc) austenite and the body-
centered cubic (bcc) martensite. While the austenitic phase is considered more ductile, the harder martensitic
phase is often desirable in near-surface regions, which are subject to mechanical strain and wear. Mechanical
properties and lattice constants of the allotropes have been investigated in, e.g., [2,24,27,32,33,36].

Solid–solid phase transformations are of interest in the context of surface hardening [9,31]. The marten-
sitic transformation (MT) is a diffusionless process as described in, e.g., [1,12,13,40,50,56]. Atommovement
during the MT is restricted to the interatomic distances, which results in a fast (10−7 s) transformation com-
pared to diffusive processes. In [56], two basic types of diffusionless transformations are considered: a global
transformation where all atoms move simultaneously and a civilian type of transformation where the atoms
move individually. The MT belongs to the latter.
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In this work, three influences on the formation of the martensitic phase are admitted. First, the lattice mis-
match between the austenitic parent phase and the transformed martensitic phases induces an eigenstrain. The
nature of this eigenstrain can be described with the orientation relationship. Historically, the transformation
mechanism proposed by Bain in [10] remains the case with the fewest transformation; however, more compli-
cated cases are possible. Consequently, the transformation of a parent unit cell may lead to differently oriented
martensitic child phases, introducing mirrored and rotated eigenstrains and thus motivating the presence of
several orientation variants.

Secondly, the influence of stress on theMT is relevant. Stress can induce a phase change from the austenitic
to themartensitic phase. This has been shown both experimentally [9] and theoretically [8]. The coupling of the
MT with a mechanical constitutive model through the eigenstrain with the stress accounts for a stress-induced
MT.

Thirdly, there is an influence of the temperature on theMT. There have beenmolecular dynamic calculations
studying the path of the MT in dependence of temperature [43]. As a result, the free energy is crucial for the
evolutionof themartensite phases. In [44,46] a temperature-dependent energy functional is discussed.However,
the temperature diffusion and the MT live in different time frames; therefore, the transience of the temperature
is neglected.

For this study, a phase field model is used. Phase field models are a versatile tool for various interfacial
problems, as they introduce a mathematical regularization of the sharp interface approach, scaling all phase-
dependent values with an additional degree of freedom, the order parameter [41]. Therefore, they automatically
account for topological changes and have been used for modeling, e.g., solidification [17,57], phase trans-
formation in solids [7,8], fracture problems [29,34,35] and multi-phase flows [3,16,21]. Typically, the order
parameter or a set of order parameters characterizes a phase’s presence, such as in [29,35], or a concentration
such as in [5,16]. Here, according to the former, a vector-valued order parameter identifies the transformed child
phases. There are two main types of evolution equations: a so-called conserving evolution equation proposed
by Cahn and Hillard [15,26], modeling the diffusion process of a field quantity. In the case of transformation
phenomena, the non-conserving evolution equation of the Ginzburg–Landau problem proposed by Allen and
Cahn is suitable for diffusionless transformations [4,14]. The latter is used in our case.

TheMT has been modeled with a variety of approaches. Multi-phase fields have been proposed by [47,52].
In those cases the phases present are identified by a set of order parameters. In contrast to multi-variant phase
field approaches, such as in [46], a matrix mobility allows transformations from either one of the phases to
another. Homogenization schemes for the modeling of plasticity have been employed in, e.g., [22]. Here, we
consider a multi-variant phase field approach with a constant mobility and separate evolution equations for
each order parameter. Consequently, the transformation between child phases is not explicitly modeled. Such
a transformation is still possible where one child phase transforms to the parent phase, and the parent phase
simultaneously transforms to the other child phase. In this paper, we present a multi-variant Voigt/Taylor
homogenization phase field approach. We essentially start with a Khachaturyan type approach for the MT as
proposed in, e.g., [46] and move toward a homogenization type approach as proposed in [5,6] for a multi-
variant phase field. The paper is structured as follows: First, the phase field model with a vector-valued
order parameter is established, accounting for the different transformed child phases. We then motivate the
energetic setup starting from the micro force balance as proposed in [19] and identify our field equations. We
consider the energy to be split up additively into a chemical part and a mechanical part. As phase field models
rely on interpolating phase-dependent quantities, we discuss different modes of interpolation in multi-variant
phase field approaches and show how we can ensure that the partition of unity holds even if using non-linear
interpolation functions. Specific regularization schemes of the energy are given in the Khachaturyan and the
Voigt/Taylor approach. We demonstrate that the Khachaturyan approach can lead to unphysical interpolation
behavior of the interface’s elastic energy. Another methodical advantage of the Voigt/Taylor approach is the
interchangeability of the child phases’ constitutive behavior. The model has been implemented and solved
with a monolithic finite element scheme.

2 Phase field model

Consider a scalar-valued order parameter φ living on [0, 1], where φ = 0 if the untransformed or parent phase
is assumed and φ = 1 where the transformed or child phase is assumed. Let f (φ, ∇φ) be an energy density
for the bulk phases and the interface in dependence of a phase field parameter φ and its gradient∇φ. The order
parameter φ interpolates the energy f such that f (0, 0) is the bulk energy for the parent phase, and f (1, 0) is
the bulk energy for the transformed phase. The interface is the region where 0 < φ < 1.
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The presence of more than two phases, for instance when considering several orientation relationships of
the martensitic transformation (MT), motivates the introduction of a vector-valued order parameter φ ∈ R

n .
The representation in summation convention φ = φαeα = [φ1, . . . φn]� reveals the components φα , where
α ranges from 1 to the number of martensitic orientation variants n. The α-th child phase is present when
φ = eα , where eα is a unit orthogonal basis vector in Rn . In the following, Greek indices (α, β, γ , . . .) live on
[0, 1, . . . , n], while Latin indices (i , j , k, . . .) denote spatial components. The parent phase is present whenever
φ = 0, as this denotes the absence of all n child phases together. The components in the vector-valued order
parameter are independent. The parent phase is identifiedwithφ0. Locally, the sum of the chemical components
φα is required to be constant [41]; therefore,

φ0 +
n∑

α=1

φα = 1 (1)

has to hold, where φ0 = 1 if only the parent phase is present. Note at this point, that φ0 is not a component of φ.
Therefore, following from (1), the order parameter identifying the parent phase is dependentφ0 = 1−∑n

α=1 φα .
The energy density f is a function of the individual vector-valued order parameter φ and their gradients∇ ⊗φ.
The energy density has to assume its respective value fα for each individual bulk phase. Vanishing gradient
terms ∇φα = 0 in the bulk lead to

f (φ = eα, ∇ ⊗ φ = 0∼) = fα, for all α ∈ [0, 1, . . . , n]. (2)

We define e0 = 0, such that φ = 0 and f0 represents the bulk energy in the parent phase. The order parameter
is non-conserved. Therefore, the evolution of the order parameter component φα with respect to time t is a
Ginzburg–Landau time-dependent evolution equation

∂φα

∂t
= −M

δE

δφα

= −M

[
∂ f

∂φα

− ∇ ∂ f

∂(∇φα)

]
, (3)

which is derived from the minimization of the local free energy E = ∫
V f dV . In the multi-variant field

approach presented here, only transformations from the parent phase to the child phases are modeled. In (3) a
vector-valued mobility could be introduced [52]; however, all orientation variants are considered to be equally
stable without preferential treatment. Therefore, the scalar proportional constant or mobility M ≥ 0 scaling
the kinematics of the evolution is assumed to be constant.

3 Energetic setup

We motivate the balance and evolution equations by the balance of micro forces following [19]. Let ė be the
rate of the energy density,

ė = −παφ̇α + ξαi φ̇α,i + σi j ε̇i j , (4)

where summation convention applies. The strain tensor due to the displacements ε∼ = εi j ei ⊗ e j is symmetric
in linear small strain theory. The small strain

ε∼ = ε∼
e + ε∼

∗ (5)

is the sum of an elastic strain ε∼
e and an inelastic strain. In general, the inelastic strain contains, e.g., the plastic

strain and any transformational parts. In the present work, it is restricted to the transformation strain ε∼
∗ only;

plasticity is not considered. As a consequence of the balance of linear and angular momentum, the stress tensor
σ∼ = σi j ei ⊗ e j is symmetric. Due to the absence of mass transport, the change of the entropy ṡ is related with

T ṡ ≥ 0. (6)

Assuming the flux of the free energy density ḟ = ė − T ṡ, we obtain the Clausius–Duhem inequality

− ḟ − παφ̇α + ξαi φ̇α,i + σi j ε̇i j ≥ 0. (7)
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Introducing the total derivative of f into (7) yields

−
(

πα − ∂ f

∂φα

)
φ̇α +

(
ξαi − ∂ f

∂φα,i

)
φ̇α,i + (σi j − ∂ f

∂εei j
)ε̇ei j ≥ 0, (8)

identifying the equations of state. The energy density is assumed to be additively split up into an elastic part
fu due to the local elastic strain ε∼

e, and a chemical free energy fch due to the energy release of the phase
transformation

f (φ, ∇ ⊗ φ, εe) = fu
(
ε∼
u, φ

)
+ fch

(
φ
)

+ fgrad
(
∇ ⊗ φ

)
. (9)

The matrix ∇ ⊗ φ is a concatenation of the vectors ∇φα . The gradient term fgrad vanishes for the bulk. It is
therefore only present on the interface, where the gradients of the individual order parameters components
∇φα are nonzero. The gradient term is

fgrad
(
∇ ⊗ φ

)
= αgrad

2
(∇ ⊗ φ) : (∇ ⊗ φ), (10)

where (:) denotes the double contraction. The chemical free energy fch is temperature dependent; however, in
this work a constant temperature T is considered. We relate the chemical free energy to a normalized double
well or Landau polynomial

fch
(
φ
)

= βch fL
(
φ
)
, with

fL
(
φ
)

= 1

2
A

n∑

α=1

[
φ2

α

] − 1

3
B

n∑

α=1

[
φ3

α

] + 1

4
C

[
n∑

α=1

[
φ2

α

]
]2

+ 1. (11)

The Landau polynomial is 1 when in the parent phase, and it vanishes when in one of the transformed phases
α = 1, . . . , n. Its first derivatives with respect to the order parameter components φα are assumed to vanish
when either in the parent or the transformed phases which renders B and C dependent on A [59]

B = 12 + 3A, and C = B − A. (12)

The parameter A can be related to the temperature T [44]. The proportional constants αgrad and βch can be
chosen to represent measures for the interfacial width L and the energy density G, which is attributed to the
interface

αgrad = κgradGL and βch = κsep
G

L
, (13)

where κgrad and κsep are calibration constants. The elastic energy density fu is a function of the elastic strain ε∼
e.

In a small strain setting, the total strain is assumed to be additively split up according to (5). The transformation
strain ε∼

* is modeled as a function of the phases present. It is not further specified at this point. Let the elastic
energy density within a phase α = 0, . . . , n be

fuα = 1

2
ε∼
e
α

: C∼∼ α
: ε∼

e
α
, (14)

where the elastic strain ε∼
e
α
and the material constants C∼∼ α

depend on the phase. The choice of fu has to conform

to (2). This is apparent when regarding one distinct phase α in view of (11)

f (eα, ∇ ⊗ φ = 0∼) = fu(ε∼
e, eα) + fch

(
eα

) ⇒ fu(eα, ε∼
e) = fuα . (15)

For the mechanical part of this problem, the balance of linear and angular momentum holds, and the stress can
be identified using (7)

∇ · σ∼ = 0, where σ∼ = ∂ f

∂ε∼
e
, (16)

in the static case and in the absence of volume forces. The equations (16) and (3) constitute our field equations
for the mechanical and the phase field part, respectively.
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4 Interpolation

In the previous sections, assumptions about the total free energy within a phase α in (2), the chemical free
energy in dependence of the phase setup φ in (11), and the evolution of the components of the order parameter
φα in (3) have been made. This leaves the elastic energy on the interface yet to be determined. No matter which
method is used, phase field approaches rely on interpolating values across the interface. Consider a quantity
a, which may be a scalar, vector, matrix or tensor supporting scalar multiplication, and a scalar interpolation
function h(φ). The value a is a function of the order parameter φ and assumes aα when in the α-th bulk phase

a(φ = eα) = aα. (17)

This is analogouswith (2). The quantitya can be thought of as a placeholder for the effectivematerial parameters
as in the Khachaturyan approach (Sect. 5), or for the elastic energy or the stress as in the Voigt/Taylor model
(Sect. 6). The function h is continuous on [0, 1] and interpolates smoothly between φ = 0 and φ = 1, such
that

h(0) = 0 and h(1) = 1 (18)

hold. Numerical implementations require first and second order derivatives with respect to the degrees of
freedom or in our case with respect to the components of the order parameter. A possible interpolation for a
is the sum of the bulk phase values aα multiplied by a phase-dependent interpolation function hα(φ)

a =
n∑

α=0

hα(φ)aα . (19)

In contrast to all other sums given previously, here we sum up from α = 0, 1, . . . , n in order to include the
parent phase (α = 0). The interpolation function hα is 1 when in the corresponding phase α, and vanishes for
all other phases

hα(φ) =
{
1, if φ = eα

0, otherwise.
(20)

The equation (20) only defines the boundary of hα; however, the behavior in the interface is not yet determined.
The choice of hα is not trivial. Defining the interpolation in dependence of a scalar function h simplifies the
implementation. A possible choice for the interpolation function is

hα(φ) = hα
an(φ) = h(φα), (21)

where the requirements for the scalar interpolation function are defined in (18) and the order parameter for the
parent phase φ0 is defined in (1). The advantage of that approach hα

an(φ) is that it works analogously for all the
order parameters φα . Furthermore, there is no case dependency for the implementation. Although this approach
is simple, in the following we show that it is only valid when either using a linear h or when considering at
most two different phases. However, in the general case, this interpolation is unphysical and can lead to wrong
solutions and numerical instabilities.

Consequently, rather than choosing hα analogously for all the phases, we introduce a case dependency for
the parent phase. The equations read

hα(φ) = hα
if(φ) =

{
1 − ∑n

α=1 h(φα) if α = 0
h(φα) if α > 0.

(22)

Consider a linear scalar function h(φ), where (18) still holds. In that case, the analogous interpolation function
hα
an is equal to the interpolation with a case dependency hα

if. As h
α
if is equivalent to hα

an, when regarding the
child phases (α = 1 . . . n), it is sufficient to prove h0if = h0an. Therefore,

h0an(φ) = h(φ0) = h

(
1 −

n∑

α=1

φi

)
h(φ)=φ= h(1) −

∑

α=1

h(φ0) = h0if(φ). (23)
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(a) (b)

Fig. 1 Interpolation of a constant aα = act = 1 with h = htanh using han (a) and using hif (b). The thick solid lines indicate
contours. The dashed lines mark the boundary of the admissible region where (1) holds

That means, if all hα = hα
if is a valid choice, the analogous approach in the linear case of h is valid as they

both coincide for any number of phases present. We will discuss the validity of hα
if after looking at the case of

two phases (n = 1). Here, function h is assumed to be point symmetric with

h(φ) = 1 − h(1 − φ), (24)

which is valid for a wide range of interpolation functions, a small selection is given in (35), (36), and (37).
Considering two phases, the interpolation function for the parent phase reads

h0an(φ) = h(φ0) = h

(
1 −

n∑

α=1

φα

)
symmetry= (25)

1 − h

(
n∑

α=1

φα

)
n=1= 1 − h(φ1) = h0if(φ), (26)

which is equivalent to the case-dependent choice of hα
if. However, in general number of phases, the analogous

interpolation in (21) is not equivalent to the case-dependent approach given in (22), even if assuming symmetry
for h. In general, this can lead to mixtures which exceed the values in the bulk phases such that drop-offs and
local minima can occur. We assume a system of n+1 phases identified by φ0, φ1, . . . , φn , and show if only two
phases (α and β) are present locally that the two cases presented here are equivalent. However, when adding
a third phase to the mixture, we get a different behavior. First, define a vector φ, where only two phases are
present. Keeping (1) in mind, this vector must be of the form

φ
I I

= φαeα + (
1 − φβ

)
eβ (27)

In view of (21), we can use the symmetry in (24) to show that in this case the analogous hα
an and the case-

dependent hα
if are indeed the same, meaning

hα
an(φ I I

) = hα
if(φ I I

). (28)

However, when adding a third phase, the two interpolation approaches differ. Fig. 1 demonstrates the interpo-
lation for a three phase system and a symmetric h for both cases if aα = act = 1. The dashed lines are the
boundary of the admissible region for φ and coincidentally indicate the state with at most two phases present
at once. The quantity a assumes the value of 1 regardless of the method chosen. Given hα

if, depicted in Fig. 1
(b), a plane at a = 1 is obtained. This is the expected behavior, as the mixture should not exceed the value
of any of the pure phases. However, when regarding hα

an as in Fig. 1 (a), this leads to a drop even if the order
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parameter moves within the admissible region, but it can also lead to numerical instabilities or wrong solutions
due to the extremal points outside the admissible region. Another downside of this interpolation approach is
that it scales with the choice of the parameters aα , as rearranging of (19) reveals

a = act

n∑

α=0

hα
an(φ). (29)

Using the case-dependent case, the sum of the functions hα
if becomes one, therefore obtaining the expected

value act in the interface region of more than two phases

a = act

n∑

α=0

hα
if(φ1, . . . , φn) = act. (30)

Furthermore, as there are no extremal points outside the admissible region, there is no energetic incentive for
the order parameter to become un-admissible. With that, the bulk phases represent energetic minima due to
the chemical energy. Therefore, in order to interpolate correctly, it is required that either

1. h is linear, or
2. at most two phases (n < 2) are present in the system at once, or
3. the sum of the interpolation functions hα(φ1, . . . , φn) becomes one.

Following from the latter, with addition to the sum of order parameters to be one (1), the partition of unity for
the set of interpolation functions hα has to hold

n∑

α=0

hα(φ1, . . . , φn) = 1. (31)

This is automatically the case for any number of phases when using hα
if (22). The partition of unity holds as

well for a linear interpolation function as a consequence of (1) for any number of phases, or in view of (24)
for at most two phases. Implementation-wise, as shown above, both cases coincide in the case of a linear h,
not restricting the use of a linear function.

5 Khachaturyan approach

Upuntil here, simply the conformity to (2) is assumed. The behavior of the elastic energy density on the interface
is not yet specified. In the following, we present the Khachaturyan and the Voigt/Taylor homogenizational
approach discussing this issue. For theKhachaturyan approach [7], we closely follow [44,46]. For the interface,
we suppose that (14) holds. We scale the effective material parameters with a scalar function h. The material
moduli C∼∼

and the transformational strain ε∼
∗ are

C∼∼
(φ) = C∼∼ 0

h0(φ) +
n∑

α=1

C∼∼ α
h(φα) and ε∼

∗(φ) = ε∼
∗
0h

0(φ) +
n∑

α=1

ε∼
∗
α
h(φi ) (32)

where h(0) = 0, h(1) = 1, and h0(φ) = 1 −
n∑

α=1

h(φα). (33)

By the choice of the parameters, the mechanical energy fu is fully defined and fulfills (2):

fu = 1

2
ε∼
e : C∼∼

: ε∼
e. (34)

Regarding (33), for example the following functions can be used:

hlinear(φ) = φ (35)

hcubic(φ) = 3φ2 − 2φ3 (36)
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Fig. 2 Elastic energy for the Khachaturyan and the Voigt/Taylor homogenizational approach (left) and combined elastic and
chemical energy (right) for a linear (solid, dash-dot), a cubic (dashes, dash-dot-dot) and a scaled tangent hyperbolicus (small
dashes, dots) interpolation function h

htanh(φ) = 1

2
tanh

(
θ

(
φ − 1

2

)) + 1

2
, (37)

which are referred to as linear, cubic, or a tangent hyperbolicus scaling function, respectively. While the linear
and cubic functions satisfy equation (33) perfectly, however, the tangent hyperbolicus function does not. If
θ = 14 a residual error of 1 − htanh(φ = 1) = htanh(φ = 0) ≈ 10−6 remains [38].

6 Voigt/Taylor approach

In the Voigt/Taylor approach, the strain is assumed to be uniform in each phase, see, e.g., [5,23,37,42], such
that

ε∼ = ε∼1 = . . . = ε∼α
= . . . = ε∼n . (38)

The stress in a phase α is defined as the derivative of the energy with respect to the elastic strain

σ∼α
= ∂ fα

∂ε∼
e
α

= C∼∼ α
: ε∼

e
α
, (39)

and the stress in the interface region is interpolated with a scalar function h as in (33)

σ∼ = σ∼0h
0(φ1, . . . , φn) +

n∑

α=1

σ∼α
h(φα). (40)

The local elastic energy is therefore

fu = fu0h
0(φ1, . . . , φn) +

n∑

α=1

fuαh(φα). (41)

A closer look at (41) and (40) reveals that the mechanical behavior within the phases can be chosen indepen-
dently of how the phase field parameter evolves. Therefore, the derivative of the elastic energy with respect to
the elastic strain remains the sum of all the derivatives within the phases. The same applies for the derivatives of
the stress with respect to the strain. Until here, no assumption about the material behavior within the phase has
been made, e.g., we only require the derivative of the stress w.r.t. strain in (40). Following (5), the constitutive
law in (39) within the individual phase α is formulated with

ε∼α
= ε∼

e
α

+ ε∼
*
α
. (42)
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Fig. 2 (left) depicts the elastic energy for a two phase system (α = 0, 1), where the order parameter interpolates
between the two phases. The nondimensionalized Young’s moduli are E0 = 1 and E1 = 1.1 for the parent
and the transformed phase, respectively; the Poisson’s ratio is held constant ν = 0.25. The uniform strain and
the transformation strain are given by

ε∼α
=

[
0.09 0
0 0

]
and ε∼

∗
α

=
[
0.02 0
0 0.05

]
. (43)

The parameters are chosen in order to discuss the difference in the elastic energy for the Voigt/Taylor and
the Khachaturyan approach. The energy behaves as described in (41) for the Voigt/Taylor case. Using the
linear interpolation function hlin, however, the second-order derivative with respect to the order parameter φ
vanishes. That is not the case for the Khachaturyan approach, as both the effective material parameters, and
the transformational strain are interpolated at least linearly. The downside is, however, that this results in an
unphysical dip of the elastic energy across the interface due to their multiplication (Fig. 2), and effectively
results in a stiffer interface than the bulk phases.

Fig. 2 (right) shows the combined elastic and chemical energy f = fu + fch for a two phase system
(α = 0, 1). Here, the proportional constant βch and the parameters of the Landau polynomial are given by

βch = 5 · 10−3, A = 10, B = 42, C = 32, and D = 1, (44)

such that the elastic fu and the chemical energy fch are in the same order of magnitude. Here, the global
minimum for the Khachaturyan approach and the Voigt/Taylor approach with a linear interpolation function
is not at φ = 1. It means that the minimization of this energy can lead to a solution, which does not represent
a valid bulk phase value for φ, and can even lie outside its valid range [0, 1].

7 Implementation

The Voigt/Taylor approach is implemented in the Finite Element Analysis Program FEAP [54] and in the Non-
linear Material and Structure Analysis Suite Z-set [55]. The degrees of freedom are d = (φ�, u�)�, where
u ∈ IRd and φ ∈ IRn . Here, d = 2, 3 is the number of spatial dimensions, and n is the number of different
ways to transform, where the components φα of φ are associated with the corresponding transformational
strain ε∼

∗
α
. The number of phases n and the transformational strain are dependent on the orientation relationship

(OR). CommonOR has been identified for the case of transforming face-centered cubic to body-centered cubic
crystalline structures. The interested reader is referred to [20,25] for a comprehensive overview. There are at
least five orientation relationships, with the Bain OR [10] having the fewest transformation variants; however,
more complicated cases such as the Nishiyama–Wassermann [39,58], Kurdjumov–Sachs [30], Greninger–
Troiano [18], or the Headley–Brooks OR [20] have been identified.

Using the Clausius–Duhem inequality in (7), the field equations are the balance of linear and angular
momentum, and the evolution of the order parameters with a Ginzburg–Landau time-dependent evolution
equation:

∇ · σ∼ = 0 (45)

φ̇α

M
+ ∂ fu

∂φα

+ ∂ fch
∂φα

−
(

∂ fgrad
∂

(
φα,i

)
)

,i

= πα − ξαi,i = 0. (46)

In view of the flux–divergence theorem, Green’s identity, the weak form of the mechanical problem and the
weak form of the evolution equation are obtained, which are useful for FE implementations, given by

∫

V
(∇ ⊗ η

u
) : σ∼dV =

∫

∂V
η
u

· (σ∼n)dS (47)

∫

V

φ̇α

M
ηφα + ∂ fu

∂φα

ηφα + ∂ fch
∂φα

ηφα + α
(∇φα

) · (∇ηφα

)
dV

=
∫

∂V
ηφα (∇φα · n)dS, (48)
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where n is the outer normal vector and η
u
and ηφα are the test functions for the mechanical problem and the

phase φα . The values u and φα are discretized with ansatz functions NI ∈ IR, where I represents the index of
the node. Nodal values are superscript with a hat ˆ(·). Discretized vectors and scalar quantities a, e.g., u, φ, φα ,
φ̇, φ̇α , are denoted with a superscript (·)h , reading

ah =
N∑

I=1

NI âI . (49)

The discretizations for the strain tensor and the gradient of the components of the order parameter φα are

εh =
N∑

I=1

B∼
u
I · û I and ∇φh

α =
N∑

I=1

Bφ
I φ̂α I , where (50)

B∼
u
I =

⎡

⎢⎢⎢⎢⎢⎣

N,1 0 0
0 N,2 0
0 0 N,3
0 N,3 N,2
N,3 0 N,1
N,2 N,1 0

⎤

⎥⎥⎥⎥⎥⎦
and Bφ

I = ∇NI ∈ IR3. (51)

7.1 Residual and elemental stiffness matrix

Using the weak forms, the residual vector RI ∈ IR(d+n) of the node I can be described with the nodal degrees

of freedom d̂ J = (û�
J , φ̂

�
J
)� and the time derivatives ˆ̇d J = ˆ̇φ

J
on a node J

RI (d̂ J ,
ˆ̇d J ) =

(
R
u
I (d̂ J )

R
φ

I (d̂ J ,
ˆ̇d J )

)
, R

u
I ∈ IRd and R

φ

I (d̂ J ,
ˆ̇d J ) =

n∑

α=1

Rφα

I (d̂ J ,
ˆ̇d J )eα ∈ IRn, (52)

R
u
I =

∫

V
(B∼

u
I )

�σdV, (53)

Rφα

I =
∫

V

φ̇i

M
NI + ∂ fu

∂φα

NI + ∂ fch
∂φα

NI + αgrad(∇φα) · Bφ
I dV . (54)

The symmetric elemental stiffness matrix K∼ can be divided up into a purely mechanical part K∼
uu , a pure phase

field part K∼
φφ and mixed terms on the antidiagonal K∼

φu , K∼
uφ :

K∼ I J = ∂RI

∂ d̂ J

=
[

K∼
uu
I J K∼

uφ

I J

K∼
φu
I J K∼

φφ

I J

]
. (55)

The matrix entries are

K∼
uu
I J = ∂R

u
I

∂ û J
= ∂R

u
I

∂ε

∂ε

∂ û J
=

∫

V
(B∼

u
I )

� ∂σ

∂ε
(B∼

u
J )dV, (56)

K∼
uφ

I J = ∂R
u
I

∂φ̂
J

=
∫

V
(B∼

u
I )

� ∂σ

∂φ̂
J

dV =
∫

V
(B∼

u
I )

� ∂σ

∂φ
NJdV, (57)
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K
φαφβ

I J = ∂Rφα

I

∂φ̂β J
=

∫

V

∂2 ( fch + fu)

∂φα∂φβ

NI NJ + αgradB
φ
I
∂(φα,i )

∂(φβ,i )

∂(φβ, j )

∂φ̂ j J
dV

=
∫

V

∂2 ( fch + fu)

∂φα∂φβ

NI NJ + αgradB
φ
I δαβB

φ
JdV, (58)

K
φαu
I J = ∂Rφα

I

∂ û J
=

∫

V

∂2 ( fch + fu)

∂φα∂u
NIdV

=
∫

V
∂

(
∂ fu
∂ε

∂ε

∂ û J

)
/∂φαNIdV

=
∫

V
∂

(
σ�B∼

u
J

)
/∂φαNIdV with

∂B∼
u
J

∂φα

= 0

=
∫

V
NI

(
∂σ

∂φα

)�
B∼
u
JdV, and (59)

K∼
φu
I J = (K∼

uφ

J I )
� =

∫

V
NI

(
∂σ

∂φ

)�
B∼
u
JdV . (60)

The damping matrix is dependent on the phase field terms only. It is given by

D∼ I J = ∂RI

∂ ˆ̇d J

=
[

0∼ 0∼
0∼ D∼

φφ

I J

]
, (61)

where the entries are

D
φαφβ

I J = δαβ

∫

V

NI NJ

M
dV . (62)

7.2 Derivatives of the chemical potential

The chemical free energy expressed in (11) is not dependent on the strain; however, the following first- and
second-order (mixed) derivatives w.r.t the order parameter φα arise:

∂ fch(φ)

∂φα

= Aφα − Bφ2
α + C(φβφβ)φα (63)

∂ fch(φ)

∂φα

φβ =
{
A − 2Bφα + 2Cφαφβ − Cφγ φγ , where α = β

2Cφαφβ, where α �= β
(64)

Subsequently, the first and second derivatives of elastic energy w.r.t. the elastic strain for the mechanical

problem (
∂σ∼
∂ε∼

e , σ∼ = ∂ fu
∂ε∼

e ) are given in the constitutive material law. The elastic energy within the interface is

given by (41). The derivatives w.r.t to the order parameter are

∂ fu
∂φα

(φ, u) = h′(φα) ( fuα − fu0) (65)

∂ fu
∂φα

φβ(φ, u) =
{
h′′(φα) ( fuα − fu0) , where α = β

0, where α �= β
. (66)

and depend on the choice of h (see equations 35, 36, 37) only. Their derivatives are given by

hlinear(φ)′ = 1, hlinear(φ)′′ = 0, (67)
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Table 1 Overview of different phases and interpolation methods. The x marks where a simulation was conducted here

n = 2 n = 3
han hif han hif

hlinear x, [45] equivalent to han x, [46] equivalent to han
hcubic x x wrong solution x
htanh x, [38] x no convergence x

hcubic(φ)′ = 6φ − 6φ2, hcubic(φ)′′ = 6 − 12φ, (68)

htanh(φ)′ = 1

2
α

(
1 − tanh

(
α

(
φ − 1

2

))2)
,

htanh(φ)′′ = −2α tanh
(
α

(
φ − 1

2

))
htanh(φ). (69)

In a preliminary test, the number of phases present (n = 2, 3), the interpolation methods (han, hif) and the
interpolation functions (hlinear, hcubic, htanh) have been varied. In the case of two phases, a two-phase beam
splits vertically in two halves where the left half is initialized with parent phase (φ1 = 0) and the right with
the child phase (φ1 = 1) is considered. In the case of three phases (n = 3), we consider a three-phase beam as
depicted in Fig. 3 (a). Table 1 gives an overview of the interpolation methods for a varying number of phases.
Where applicable, a literature reference is give. Cases successfully tested by us aremarkedwith an x; otherwise,
a comment on the issue is provided. As shown in Sect. 3, if either considering two phases or a linear hlinear,
the partition of unity (31) holds equally. However, when considering three different phases, while using the
analogous approach han for the interpolation, we do not necessarily obtain the correct solution or no solution at
all. In the case of a cubic interpolation function hcubic, the whole beam transforms to a homogeneous interface
region. It is filled with a valid, however, unphysical solution. In the case of a tanh interpolation function htanh,
no convergence and therefore no solution can be obtained.

8 Verification

A verification example is presented in Fig. 3. Consider a beam of 176nm length and 35.2nm height under load,
realized as a displacement of the far ends of the beam. The initial configuration is shown in Fig. 3 (a), where
the left quarter is initialized with the first martensitic orientation variant M1, the right quarter is initialized with
the second martensitic orientation variant M2, and the center section of the beam is endowed with austenite.
Before discussing the simulation, wemake some basic consideration, regarding the chemical and elastic energy
separately in a simplified setting.

We consider a temperature of T = 300K. Following [44], the parameters of the temperature-dependent
parameters of the Landau polynomial read

A = 9.7187, B = 9.7187, C = 31.4375, and D = 1. (70)

With that, the martensitic phase is stable. Considering the chemical energy only, while disregarding the elastic
energy, Austenite transforms into martensite. With the initial configuration given in Fig. 3 (a), both interfaces
M1 − A and M2 − A would proceed at the same speed toward the center, transforming austenite into the first
and second martensitic orientation variants. Eventually, they meet in the center, forming a single interface
M2 − M1. For the martensitic phases, an eigenstrain is introduced

ε∼
∗
1 =

[
0.05 0
0 0

]
and ε∼

∗
2 =

[
0 0
0 0.05

]
, (71)

such that the first orientation variant imposes a strain in x1-direction and the second orientation variant in x2-
direction. Therefore, a strain or force in x1-direction influences the elastic energy and therefore the formation
of the first orientation variant more strongly compared to the formation of the second variant, which is only
affected by the lateral strain. The same applies, for a strain or force in x2-direction and the second orientation
variant, however, interchanged.

Now, we disregard the chemical energy and neglect the lateral strain, while considering the elastic energy
only. A displacement of the far ends of the beam is applied in x1-direction. With that, the second martensitic
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(a)

(b)

(c)

(d)

Fig. 3 Time evolution of the martensitic transformation for different levels of mesh refinement. The solid colored regions indicate
the interface region where 0.2 < φ1 < 0.8 (left, dark grey), and where 0.2 < φ2 < 0.8 (right, light grey). Initially, the austenitic
phase is present in the center (A), with the martensitic orientation variants to the left (M1) and right (M2)

orientation variant M2 and the austenitic phase A are energetically indistinguishable, as neither imposes
an eigenstrain in x1-direction. As a consequence, we disregard the presence of the martensitic orientation
variant M2 altogether and replace it with austenite. A displacement of d = 8.8nm amounts to 5% total strain,
accommodating the M1 phase perfectly. The final configuration in that case is a beam of pure M1. With the
far ends clamped, where d = 0nm, the austenitic phase is stable. Any other displacement between 0 and
8.8nm accommodates both phases M1 and A partly. For example, a displacement of d = 4.4nm, amounting
to 2.5% total strain, leads to a final configuration, where half of the beam is austenitic, and the other half
is of pure martensite M1. In that case, the final configuration can be described with the interface position at
x1M1A = 88nm. The interface position can be determined with a ratio

x1M1A = d(
ε∗
1

)
11

, (72)

where
(
ε∗
1

)
11 is the 11-component of the transformation strain tensor ε∗

1. For example, a strain of 2%, tantamount
to d = 3.52nm, leads in this simplified case to an interface position of x1M1A = 70.4nm.

In the simulation, both the elastic and the chemical energies are consideredwith the parameters asmentioned
above. The Voigt/Taylor approach with a cubic interpolation function is used. The elasticity matrices for pure
iron in the austenitic and the martensitic phase are given by

C∼∼ 0
= C∼∼ Fe, fcc, simpl.

=
⎡

⎣
2.2 1.5 0
1.5 2.2 0
0 0 0.3

⎤

⎦ · 105Nmm−2, and (73)
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Table 2 Interface position in dependence of the mesh compared with the analytic solution

mesh nel nelx1 nelx2 nelx1
L
l x1(M1A)

coarse 720 60 12 10.23 67.48nm
standard 2880 120 24 20.45 67.54nm
fine 11520 240 48 40.91 67.55nm
analytic - - - - 70.40nm

C∼∼ 1
= C∼∼ 2

= C∼∼ Fe, bcc, simpl.
=

⎡

⎣
2.9 1.6 0
1.6 2.9 0
0 0 0.6

⎤

⎦ · 105Nmm−2. (74)

Please note that in contrast to [46] the parameters have been simplified. However, they are in the right order
of magnitude. The parameters for the chemical energy and the mobility are

G = 0.96 · 10−6 J

mm
, L = 30nm, and M = 9.6 · 10−3 mm

N ns
. (75)

In Fig. 3, the time evolution of the martensitic transformation is shown, overlapping the solutions for a coarse,
a standard, and a fine mesh. The initial configuration in Fig. 3 (a) is followed by intermediate steps (b, c),
leading to the final configuration (d). First, a transformation from the martensitic to the austenitic phase takes
place. That means that both martensitic variants are energetically more stable than the austenitic phase. This
can be explained illustratively: Both the first and the second martensitic orientation variants are chemically
more stable than the austenitic phase. As the strain of the beam is in x1-direction, the transformation strain
entry

(
ε∗
α

)
11 is of importance. In terms of the elastic energy, the second orientation variant and the austenitic

phase are almost equal, as the transformation strain entries vanish (
(
ε∗
0

)
11 = (

ε∗
1

)
11 = 0). However, due to the

chemical energy, the second martensitic orientation variant is preferred to the austenite. The interface motion
between the time frames is indicated schematically by the lines connecting the contours of constant φ1 = 0.5,
and φ2 = 0.5.

The velocity of the M2A interface is marginally higher than the velocity of the M1A interface. That is
because the secondmartensitic orientation variant is, in terms of the elastic energy, slightly more favorable than
the first martensitic orientation variant. The phasesmove toward each other as depicted in Fig. 3 (b). Eventually,
they join, forming a mutual interface. Thereafter, they proceed to move toward the left as shown in Fig. 3 (c).
As both martensitic phases are chemically equally stable, equation (72) provides a good approximation for the
final configuration.

Considering the elastic energy only, with no lateral strain and without varying elasticity matrices, this leads
to an interface position of 70.4nm. The interface position in the simulations can be calculated by averaging the
x1-position where φ1 = φ2 over the x2-coordinate. The simulation has been conducted with three differently
refined meshes, termed coarse, standard, and fine. The standard mesh consists of 2880 elements, while the
coarse mesh is four times coarser amounting to 720 elements. The fine mesh is at 11520 elements. The
positions for the interface M1M2 are at 67.48nm for the coarse mesh, 67.54nm for the standard refined mesh,
and 67.55nm for the fine mesh. The digits below the atom width illustrate that the results obtained from all
mesh refinements are physically equivalent. Furthermore, they are well in line with the prediction in (72). The
results are summed up in table 2, where in addition to the number of elements in x1 and in x2 direction, nelx1 ,
and nelx2 , respectively, the mesh density as elements per specific interface width L is given (nelx1

L
l ). The

coarse mesh has about ten elements per interface width L , where the values for the standard and the fine mesh
are twofold and fourfold higher. As a result, the coarse mesh does not considerably vary from the fine mesh,
even less so the result obtained using the standard mesh. Therefore, a number of ten elements per interface
width L are sufficient.

9 Comparison of the Voigt/Taylor with the Khachaturyan approach

In the following,we compare theVoigt/Taylor approachwith a cubic interpolation function to theKhachaturyan
approach presented in [46] with a system of three phases. In the Khachaturyan case, a linear interpolation
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Fig. 4 Phase field for the parent phase φ0 (solid, dash-dot), and the martensitic orientation variants φ1 (dashes, dash-dot-dot) and
φ2 (small dashes, dots) for the Khachaturyan using a linear interpolation (K, blue) and the Voigt/Taylor approach using a cubic
interpolation (VT, red). The solution at t0 is shown on the left, the evolution after t1 = 4.5ns on the right (color figure online)

Fig. 5 Elastic energy fu (solid, dash-dot) and chemical energy fch (dashes, dots) for the Khachaturyan using a linear interpolation
(K, blue) and the Voigt/Taylor approach using a cubic interpolation (VT, red). The solution at t0 is shown on the left, the evolution
after t1 = 4.5ns on the right (color figure online)

function is used. The material moduli matrix for the austenitic C∼A and the martensitic C∼M phases are given by

C∼A =
⎡

⎣
2.2 1.5 0
1.5 2.2 0
0 0 0.3

⎤

⎦ 105Nmm−2 and C∼M =
⎡

⎣
2.9 1.6 0
1.6 2.9 0
0 0 0.4

⎤

⎦ 105Nmm−2. (76)

The mobility constant is M = 9.6 · 106Nmm−2, the length scale L = 3nm, and the parameter influencing
the characteristic energy density is G = 0.96Jm−1 [46,57]. The temperature is held constant at T = 300K.
In order to discuss the influence of the change in the elastic constant across the phases, the eigenstrain is
neglected. This is, for example, true in the habit plane with invariant plane strain [28]. For the geometry, a
beam of a = 176nm length and b = 1

5a width is chosen. The initial beam is initialized with no presence of
the first martensitic orientation variant φ1 = 0, where φ0 = 1 in the left half of the beam, and φ2 = 1 in the
right half of the beam. A distributed load of F = 10−3N is applied to the far ends of the beam, leading to a
total strain within the order of magnitude of 3%.

Fig. 4 shows the local order parameter field at time t0 = 0ns and after evolution at time t1 = 4.5ns. The
distribution of the elastic and the chemical energy is shown in Fig. 5, again at time t0 and after evolution at
time t1. Both the order parameter field, the elastic, and the chemical energy are equal in either of the two
(Khachaturyan and Voigt/Taylor) cases. The elastic energy fu reaches the elastic energy f0 and f2 in the bulk
phases given the local strain distribution. The chemical energy vanishes in the bulk child phases, where φ0 = 0
due to the nature of the Landau polynomial in equation (Eq. 11). In the austenitic phase (φ0 = 0) it reaches a
value of G

L = 0.32MJm−2. Both models rely on energy minimization. A transformation from any bulk phase



2090 S. Schmidt et al.

Fig. 6 Phase field for the parent phase φ0 (solid, dash-dot), and the martensitic orientation variants φ1 (dashes, dash-dot-dot) and
φ2 (small dashes, dots) for the Khachaturyan using a linear interpolation (K, blue) and the Voigt/Taylor approach using a cubic
interpolation (VT, red). The solution at t0 is shown on the left, and the evolution after t1 = 0.5ns on the right

to any other bulk phase introduces an interface, which is widened due to the gradient term, or in other terms the
gradient term is minimized by minimizing the gradient of the phase field, which is achieved by widening the
interface. Once the interface is established, the energy contribution of the chemical energy wants to minimize
the interface width, therefore counteracting the gradient term and thus stabilizing the interface. As the terms
counteract themselves on the interface and vanish for the bulk, we disregard them momentarily. The elastic
and the chemical energy in the bulk phases of the solution at t0 are an indicator for the stable solution of
this problem: The global minimum is a transformation from the austenitic to the martensitic variant. In the
Voigt/Taylor approach, the interface widens, while transforming to the martensitic variant as the phase field
in Fig. 4 indicates. At all times the energy for the bulk phase energies are assumed by the respective bulk
phases. Using the Khachaturyan approach, however, the chemical and elastic energy exceed the values for the
bulk phases. A comparison with the phase field in Fig. 4 at time t1 = 4.5ns shows that the order parameter
exceeds its valid range. This is due to the use of a linear interpolation function in the Khachaturyan model.
The combined elastic and chemical energy in Fig. 2 (right) offer an explanation. Both energies are in the same
order of magnitude, such that solutions of the phase field not representing a bulk value are possible. This issue
can be fixed by either using a nonlinear interpolation function like the cubic, which ensures that exceeding the
values for the bulk phase leads to a bigger contribution as staying in the interface or the bulk, by using a tanh
type interpolation function, limiting the phase field or by using an obstacle potential as in [51].

As a second test, in order to discuss the influence of the transformation strain the material moduli are
constant for all the phases

C∼A = C∼M =
⎡

⎣
2.2 1.5 0
1.5 2.2 0
0 0 0.3

⎤

⎦ 105Nmm−2, (77)

and a transformation strain of

ε∼
∗
2 =

[
0.05 0.0
0.0 0.0

]
(78)

is introduced for the martensitic orientation variant (φ2 = 1). A local total strain that is similar to the
transformation strain causes the transformation to be energetically beneficial. This example uses the same
geometry as in the example above, however, with no load but a strain of 0.05 applied to the far ends of the
beam in x-direction. In a similar fashion, we discuss the phase field shown in Fig. 6 right after the static
initialization at t0 = 0.0ns and after evolution at a time t1 = 0.5ns. The solutions at t0 of the Khachaturyan
and the Voigt/Taylor approach differ slightly. This leads to the difference in the elastic energies. Contrary
to what was shown for the uniform strain case in Fig. 2, the elastic energy of the Voigt/Taylor approach is
exaggerated in the interface. That is due to the mismatch of the transformational strain and the interpolation of
the elastic energy rather than interpolating the effective material parameters as in the Khachaturyan approach.
This excess energy is unfavorable for numerical implementations, as the interface needs to resolved with a
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Fig. 7 Phase field for the parent phase φ0 (solid, dash-dot), and the martensitic orientation variants φ1 (dashes, dash-dot-dot) and
φ2 (small dashes, dots) for the Khachaturyan using a linear interpolation (K, blue) and the Voigt/Taylor approach using a cubic
interpolation (VT, red). The solution at t0 is shown on the left, and the stable state after evolution is shown on the right (color
figure online)

finer discretization. A countermeasure would be to raise the constant L which is related to the interface width.
Additionally, a different interpolation such as the ones proposed in [11,48,49] could be used mitigating the
excess energy within the diffuse interface. However, the Voigt/Taylor approach remains convincing, because
the behavior of the phases can be chosen individually.

As the phases evolve, at the time of t1 = 0.5ns an intermediate state is obtained. In the Khachaturyan
approach, the interface is considerably wider. That is due to the lower and almost vanishing energy difference
in the elastic energy. However, the order parameters φ0 and φ2 exceed their valid range. This is not the case for
the Voigt/Taylor approach. Both phase field approaches end with the same solution φ2 = 1 across the whole
domain.

The two test cases presented here, while behaving differently during the evolution, reach the same solution
eventually. We modify the previously discussed test case to show that different solutions may be obtained.
Disregarding the chemical energy contribution for the sake of the argument, a beam with no strain applied
would favor the austenitic parent phase. On the other side, applying a strain of 0.05, the martensitic phase
would be obtained. A value in between should therefore favor a mix of the martensitic and the austenitic phase.
Accordingly, the strain on the boundary in x-direction is reduced to 0.025. Fig. 7 shows the solution of the
phase field at t0 and after converging to a stable solution. The solution for the Khachaturyan model is obtained
for tK1 = 14.5ns. The bulk phases on the left side slightly exceed the valid range by approximately 6%. The
Voigt/Taylor approach is converged at tVT1 = 19.5ns. The position of the interface between the austenitic parent
phase and the martensitic orientation variant is where φ0 = φ2 = 0.5. The interface in the Khachaturyan case
is at x = 60.7nm, and for the Voigt/Taylor case at x = 68.9nm.

In the previous cases, we compared the Khachaturyan approach with a scalar interpolation function to the
Voigt/Taylor approach with a cubic interpolation function. This can lead to a wrong solution. The example
presented in Fig. 8 shows the phase field at the initial and the stable state for the Khachaturyan and the
Voigt/Taylor approach. Here, a cubic interpolation function is used in both cases. The final configuration in
the Khachaturyan approach is reached at 8.25ns. The interface is located at x1 = 71.5nm, which is close to
the interface in the Voigt/Taylor approach at x1 = 70.4nm.

10 Conclusions

We presented a comparison of the Voigt/Taylor approach and the Khachaturyan approach within a multi-
variant phase field for modeling the martensitic transformation. Here, both a chemical and a mechanical
energy contribution are considered. The flowchart for the Voigt/Taylor approach is depicted in Fig. 9. The
homogenization takes place after the material laws of the individual phases provide the elastic energy and
their respective derivatives. Therefore, the material behavior of the parent and the child phases can be chosen
independently. This stands in contrast to the Khachaturyan approach, where the effective material parameters
are derived from interpolation to form a single material law.



2092 S. Schmidt et al.

Fig. 8 Phase field for the parent phase φ0 (solid, dash-dot), and the martensitic orientation variants φ1 (dashes, dash-dot-dot) and
φ2 (small dashes, dots) for the Khachaturyan using a linear interpolation (K, blue) and the Voigt/Taylor approach (VT, red). The
solution at t0 is shown on the left, and the stable state after evolution is shown on the right (color figure online)
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Fig. 9 Flowchart of the Voigt/Taylor homogenization approach for a phase field for the martensitic transformation adapted from
[42]

Further, a potential drawback of the Khachaturyan approach is the unphysical drop in a uniform strain
setting of the elastic energy, which is mitigated by the Voigt/Taylor scheme used here. However, as shown in the
numerical examples, the mismatch of the austenitic parent phase introduces an elastic energy on the interface,
which is numerically unfavorable. The Khachaturyan and the Voigt/Taylor models have been implemented
in the Finite Element Analysis Program FEAP and the Non-linear Material and Structure Analysis Suite Z-
set independently. Both yield the same results. In a preliminary test, the two interpolation approaches, the
case-dependent and the analogous approach, have been tested for a varying number of phases using different
linear and nonlinear interpolation functions. The analogous approach is valid for at most two phases or a linear
interpolation function. That means the case-dependent approach has to be used when considering three or more
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phases while using a non-liner interpolation function. In the literature, the Khachaturyan approach here uses
a linear interpolation scheme which can cause the order parameter field to pass through inadmissible values
during the evolution and can lead in the worst case to an invalid solution. Different solutions can be obtained
for both approaches and the same set of parameters. As shown here, a possible solution is to use a at least
cubic interpolation function in the Khachaturyan approach, obtaining the same result as in the Voigt/Taylor
approach. The advantage of the Voigt/Taylor approach is the flexibility. The generalization to an arbitrary
number of martensitic phases is straightforward. Furthermore, different material laws for the martensitic child
phases can be employed. As a downside, the phases need to be solved independently. Employing parallelization
can mitigate this issue. Only a subset of the martensitic phases are present locally and changing actively. In the
future, a criterion determining the active phases can be introduced. Here, only elastic deformation is considered.
In the future, the model will be extended using plasticity.
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