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A B S T R A C T

A strain gradient void-driven ductile fracture model of single crystals is proposed and applied
to simulate crack propagation in single and oligo-crystal specimens. The model is based on a
thermodynamical framework for homogenized porous solids unifying and generalizing existing
thermodynamical formulations. This porous single crystal ductile fracture model relies on a
multi-surface representation of porous crystal plasticity in which the standard Schmid law is
enhanced to account for porosity, including void growth and void coalescence mechanisms. A
new criterion to detect the onset of void coalescence in porous single crystals is proposed and
validated by comparison to porous single crystal unit-cell simulations. This criterion can either
be used as an additional yield surface or it can be used to follow the well established Gurson–
Tvergaard–Needleman approach based on an effective porosity to model void coalescence. The
strain gradient formulation relies on a Lagrange multiplier based relaxation of strain gradient
plasticity. Material points simulations are performed in order to depict the elementary features
of the porous single crystal ductile fracture model without strain gradient effects. The model
is then applied to the simulation of plane strain single crystal specimen loaded in tension up
to failure. The regularization ability and convergence with mesh refinement are demonstrated.
Finally two- and three-dimensional simulations of ductile fracture of single and oligo-crystal
specimens are presented. The significant influence of plastic anisotropy on the crack path,
ductility and fracture toughness is highlighted.

. Introduction

Modelling ductile fracture of metallic alloys is a major topic in the field of mechanical engineering. Multiple mechanisms can
ead to ductile fracture (Noell et al., 2018) that is commonly characterized by significant local inelastic deformation prior to material
eparation and formation of free surfaces. One main mechanism is related to nucleation, growth and coalescence of voids in the
ulk material. The seminal works of McClintock (1968), Rice and Tracey (1969), Green (1972), Gurson (1977), Rousselier (1981)
nd Thomason (1985) paved the way to the derivation of continuum mechanics models of ductile fracture provoked by combined
lastic deformation and evolution of voids. The key ingredient of these models consists in introducing a damage scalar variable,
epresenting the volume fraction of voids. The evolution of the damage variable is driven by the local loading state of the material.
n order to efficiently reproduce failure after significant plastic deformation, these models rely on an elegant way of decreasing the
oad bearing capacity of the material when the amount of damage increases. This is accomplished by deriving yield potentials for
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which the elastic domain shrinks when damage increases. This approach encompasses two major requirements: (1) to define the
appropriate evolution of the damage variable and (2) to get the appropriate dependency of the yield criteria upon damage. In the
context of porous plasticity (see the reviews by Benzerga and Leblond, 2010; Besson, 2010; Pineau et al., 2016), increase of damage
is mainly governed by void nucleation, growth and coalescence. Some authors also proposed extensions involving contribution
of void shearing in the effective damage variable evolution (Nahshon and Hutchinson, 2008), although in that way, in general,
the link of the damage variable to the void volume fraction is lost. Deriving effective yield criteria of porous solids was achieved
by using mainly three techniques. The first, conducted by Gurson (1977), involves limit analysis of an idealized porous unit-cell.
The second, proposed by Rousselier (1981, 1987, 2001), calls upon thermodynamical considerations (Germain et al., 1983). The
third, followed for example by Danas and Castañeda (2009) is based on variational homogenization methods. Early models were
extensively enriched to improve their accuracy for instance by introducing fitting parameters (Tvergaard, 1981, 1982; Tvergaard and
Needleman, 1984). Extensions were also developed to account for shape (Gologanu et al., 1995), orientation (Cao et al., 2015) and
size of voids (Dormieux and Kondo, 2010; Gallican and Hure, 2017). In the homogenization procedure, the behaviour of the so-called
matrix material that surrounds the voids plays a paramount role. Gurson originally considered an isotropic rigid perfectly plastic
matrix material. Gurson’s approach was later generalized to take isotropic hardening and kinematic hardening into account (Mear
and Hutchinson, 1985; Besson and Guillemer-Neel, 2003; Morin et al., 2017). Other studies focused on deriving effective yield
criteria of porous materials with a plastic anisotropic matrix material (Benzerga and Besson, 2001; Morin et al., 2015; Keralavarma
and Chockalingam, 2016). Recent studies also investigate the role of size-effects in porous metals (Monchiet and Kondo, 2013; Holte
et al., 2019; Niordson and Tvergaard, 2019; Scherer et al., 2019).

In most metallic alloys voids nucleate at inclusions or precipitates by debonding or cracking (Babout et al., 2004). These
efects can be within the bulk of grains. In this case, voids are individually surrounded by single crystals at short or even
ntermediate distances. Recent model experiments were carried out on polycrystal stainless steel tensile specimens containing
oles drilled by focused ion beam (FIB) inside grains (Barrioz et al., 2019). These experiments confirmed the importance of
rystal orientation on the plastic behaviour of the material surrounding the voids. Although the anisotropic nature of plasticity
n single crystals could be captured to some extent by anisotropic yield criteria (Hill, 1948; Nouailhas and Cailletaud, 1992;
ambin, 1992), such approximations are known to fail for some complex loading paths. Furthermore, single crystal porous unit-cell

imulations (Potirniche et al., 2006; Ha and Kim, 2010; Yerra et al., 2010; Han et al., 2013; Ling et al., 2016; Selvarajou et al.,
019) have shown the strong effect of crystal plasticity anisotropy on void growth and coalescence. Nevertheless, since the early
ork by Mori and Meshii (1969), only a few studies were devoted to develop models for porous single crystals able to describe the
amage process up to failure. Single crystal void growth models were settled by Crépin et al. (1996), Han et al. (2013), Mbiakop
t al. (2015), Ling et al. (2016), Song and Castañeda (2017) and Paux et al. (2018). Even fewer studies deal with void coalescence
n single crystals (Yerra et al., 2010; Hure, 2019). A comprehensive model combining void growth and void coalescence criteria in
orous single crystals is still lacking. Such a model would permit to assess the role of crystal plasticity anisotropy on ductility and
oughness at the scale of the microstructure of metallic alloys.

Most ductile fracture models predict a softening regime at incipient final failure. Softening occurs in these models on account
f damage variable increase which in turn reduces the size of the elastic domain. As a result softening induces localization and
ocalization promotes damage acceleration. Although such a behaviour might be in agreement with underlying physical mechanisms
t also entails the major issue of causing ill-posedness of the boundary value problem as reported by Bažant et al. (1984) and Lorentz
nd Benallal (2005). From a numerical point of view, solving the governing equations, for example by finite elements, results in the
bsence of convergence of the results when the mesh size is decreased. Several approaches were followed to bypass or overcome this
ssue. In Xue et al. (2010) and Achouri et al. (2013) mesh size is treated as a material parameter used to control the characteristic
ength of post-localization regime. Another technique used to introduce a material length scale consists in using the intrinsically
ize-dependent phase field method as in Miehe et al. (2016). Alternatively, theories developed in the context of non-local continua
ere also successfully applied in order to regularize localization predicted in ductile fracture simulations. Non-local theories, based
ither on integral or gradient formulations, naturally incorporate one or several length scales. In the context of ductile fracture, these
engths can be used to drive the evolution of the size of the damaged area in the post-localization regime. Size-dependent modelling
f ductile fracture not only amounts to the choice of a non-local theory, but also to the choice of one or several appropriate non-
ocal variables. Some authors used the damage variable to carry non-local effects (Tvergaard and Needleman, 1995; Ramaswamy
nd Aravas, 1998; Håkansson et al., 2006). Alternatively others used as non-local variables strain quantities such as the volumetric
quivalent plastic strain in Zybell et al. (2014) and Nguyen et al. (2020), the equivalent plastic strain in Payet et al. (2012), Lorentz
t al. (2008) and Nguyen et al. (2020), the strain tensor in Enakoutsa and Leblond (2009) or the matrix equivalent plastic strain
n Nguyen et al. (2020). It is common that several non-local variables are used. Despite the more important numerical effort it
equires, it is mostly necessary in order to be able to regularize localization for all types of loading paths (Nguyen et al., 2016,
020).

The thermodynamics of continuum damage mechanics is extensively studied in the domain of geophysics and civil engineering,
here rocks and soils contain defects (pores, cracks, etc.) which may or not be filled with fluids influencing their mechanical
ehaviour (Chaboche, 1988; Coussy, 2004; Kachanov, 2013). However literature covering thermodynamics of porous metallic alloys
emains very scarce. Yet in his seminal work Rousselier (1981) was able to design a mechanical model of ductile failure based on very
imple thermodynamical considerations. Furthermore similarities between this model and models derived with different approaches
re remarkable. A few other thermodynamical settings were developed in Enakoutsa et al. (2007), Besson (2009), Bouby and Kondo
2017) and Pascon and Waisman (2020). Yet, these models rely on assumptions and have limitations discussed in Scherer (2020),
2

n which a unifying framework is also proposed.
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The first and foremost challenge tackled in the present work is to address the formulation, implementation and application of a
ewly developed ductile fracture model for porous crystals. The main novel achievements of this work are numerical simulations
erformed with this model to assess the significant role of crystal plasticity anisotropy on ductility and toughness at the scale
f the microstructure. The proposed model is implemented in a finite strain framework on the basis of the void growth model
eveloped in Han et al. (2013) and Ling et al. (2016) and also used and extended by Khadyko et al. (2021) and Frodal et al. (2021).
hen, an original coalescence criterion, adapted for intervoid necking in single crystals, is proposed and validated. In keeping
ith the multi-mechanism plasticity framework proposed by Besson (2009), void growth yield criteria will be combined to a void

oalescence criterion to obtain a so-called multi-surface model. This method is compared to the well established Gurson–Tvergaard–
eedleman (Tvergaard and Needleman, 1984) approach for void growth and coalescence which relies on an effective porosity. The
resent work takes advantage of the strain gradient crystal plasticity model developed (without damage) and compared to the
icromorphic approach in Scherer et al. (2020). This finite strain formulation of strain gradient plasticity is based on a Lagrange
ultiplier method already successfully applied by Zhang et al. (2018) for isotropic materials in the context of ductile fracture.

or numerical efficiency a single scalar non-local variable is used, although from a theoretical point of view a tensorial non-local
ariable could be considered. A sound thermodynamical framework for porous plasticity which unifies existing theories was derived
n Scherer (2020). This framework works as a prerequisite in order to be able to introduce strain gradient effects and couplings in
he constitutive equations of the proposed porous crystal plasticity model.

The outline is as follows. In Section 2 a thermodynamical framework designed for multi-mechanism strain gradient porous
lasticity is presented. The chosen gradient enhanced principle of virtual power, free energy potential and dissipation potentials
re exposed in order to derive an original comprehensive model of ductile fracture in single crystals. Void growth and the newly
roposed void coalescence flow potentials are described in Section 3 with their associated evolution equations. In Section 4 the single
rystal material behaviour is detailed and the void coalescence onset criterion is validated. Two different approaches to account
or void coalescence are then discussed on the basis of material points simulations. The ability of the proposed model to regularize
uctile fracture is then demonstrated. In Section 5 2D and 3D ductile fracture simulations of single and oligo-crystals structures are
resented. The main outcomes and prospects are listed in Section 6.

. Multi-mechanism based strain gradient porous plasticity framework

A multi-mechanism deformation framework for homogenized porous materials established at finite strain is presented in the
ontext of growth and coalescence of voids in materials with non-local gradient effects. Note that this framework is well suited for,
ut not restricted to crystal plasticity and can thus be used for other applications in which multiple plastic deformation mechanisms
re involved.

.1. Void growth and void coalescence in single crystals

A multiplicative decomposition of the deformation gradient 𝑭∼ = 𝜕𝒙 ∕𝜕𝑿 in an elastic part 𝑬∼ and a plastic part 𝑷∼ is assumed:
𝑭∼ = 𝑬∼ .𝑷∼ . The elastic deformation rate 𝑳∼

𝑒 = �̇�∼ .𝑬∼
−1 and plastic deformation rate 𝑳∼

𝑝 = �̇�∼ .𝑷∼
−1 are introduced such that 𝑳∼ = �̇�∼ .𝑭∼

−1 =
𝑳∼
𝑒 + 𝑬∼ .𝑳∼

𝑝.𝑬∼
−1. Following the work developed by Ling et al. (2016), a void growth deformation mechanism is considered for each

slip system of the crystal. An additional deformation mechanism is introduced to account for void coalescence. Coalescence is a
phenomenon which mostly involves activation of many slip systems inside the ligaments separating coalescing voids (Barrioz et al.,
2019). Coalescence is therefore not decomposed in a sum of contributions of individual slip systems. Therefore, for a crystal having
𝑁 slip systems, the inelastic deformation rate is

�̇�∼ .𝑷∼
−1 =

𝑁
∑

𝑠=1
𝑳∼
𝑝
𝑠 +𝑳∼

𝑝
𝑐 (1)

where the terms in the sum account for plastic slip and void growth on each slip system, and 𝑳∼
𝑝
𝑐 is the inelastic rate associated to

void coalescence. For each deformation mechanism a scalar deformation rate can be introduced. They will be denoted �̇�𝑠 for void
growth and �̇�𝑐 for void coalescence. Note that �̇�𝑐 is not to be interpreted as a slip rate, but more as an equivalent plastic strain rate,
since void coalescence is not a mechanism decomposed on slip systems. An accumulated inelastic deformation variable is introduced
as

𝛾𝑐𝑢𝑚 = ∫

𝑡

0

( 𝑁
∑

𝑠=1
|�̇�𝑠| + |�̇�𝑐 |

)

d𝑡 (2)

he flow rules for void growth and coalescence are presented in Section 3.

.2. Gradient enhanced principle of virtual power

In the spirit of the model developed by Wulfinghoff and Böhlke (2012) it is assumed that the gradient effects operate on the
ccumulated plasticity scalar variable 𝛾𝑐𝑢𝑚. Following Fleck and Hutchinson (1997), Forest and Sievert (2003) and Gurtin and
nand (2009), upon neglecting the contribution of body forces, for any material subset 𝐷0 and its boundary 𝜕𝐷0, in the reference
onfiguration, an enriched principle of virtual power is stated

(

𝑺∼ ∶ �̇�∼ + 𝑆�̇�𝛾𝑐𝑢𝑚 +𝑴 .�̇�
)

d𝑉0 =
(

𝑻 .�̇� +𝑀�̇�𝑐𝑢𝑚
)

d𝑆0 ∀�̇� , ∀�̇�𝑐𝑢𝑚, ∀𝐷0 (3)
3

∫𝐷0
∫𝜕𝐷0
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where d𝑆0 and d𝑉0 represent infinitesimal surface and volume elements respectively. 𝑺∼ is the first Piola–Kirchhoff (Boussinesq) stress
tensor related to the Cauchy stress tensor, 𝝈∼ , by 𝑺∼ = (𝜌0∕𝜌)𝝈∼𝑭∼

−𝑇 . Higher order stress scalar 𝑆 and vector 𝑴 are work conjugate
o 𝛾𝑐𝑢𝑚 and 𝑲 = Grad 𝛾𝑐𝑢𝑚. The power of internal forces on the left-hand side of Eq. (3) is in equilibrium with the power of contact
orces on the right-hand side. The traction vector is 𝑻 and a higher order traction scalar 𝑀 is dual to 𝛾𝑐𝑢𝑚. From Eq. (3) one can

develop the following balance equations and boundary conditions

Div𝑺∼ = 𝟎 ∀𝑿 ∈ 𝐷0 and 𝑻 = 𝑺∼ .𝒏 0 ∀𝑿 ∈ 𝜕𝐷0 (4)

Div𝑴 − 𝑆 = 0 ∀𝑿 ∈ 𝐷0 and 𝑀 = 𝑴 .𝒏 0 ∀𝑿 ∈ 𝜕𝐷0 (5)

where 𝒏 0 refers to the outward unit surface normal.

.3. Gradient enhanced free energy potential

The first step to the definition of the material behaviour is the choice of a specific free energy density potential which depends on
he state variables. For the present model the state variables are the elastic Green–Lagrange strain measure 𝑬∼

𝑒
𝐺𝐿 = (1∕2)

(

𝑬∼
𝑇 .𝑬∼ − 𝟏∼

)

,
the accumulated plastic deformation 𝛾𝑐𝑢𝑚, its Lagrangian gradient 𝑲 , one hardening variable 𝑟𝑠 per slip system 𝑠 and the porosity
𝑓 . The general form of the specific free energy potential can be written as follows

𝜓
(

𝑬∼
𝑒
𝐺𝐿, 𝛾𝑐𝑢𝑚, 𝛾𝜒 ,𝑲 , 𝑟𝑠, 𝑓

)

= 𝜓𝑒
(

𝑬∼
𝑒
𝐺𝐿, 𝑓

)

+ 𝜓ℎ𝑓
(

𝛾𝑐𝑢𝑚, 𝑟
𝑠, 𝑓

)

+ 𝜓𝑔
(

𝛾𝑐𝑢𝑚, 𝛾𝜒 ,𝑲 , 𝑓
)

+ 𝜓𝑓 (𝑓 ) (6)

where 𝜓𝑒, 𝜓ℎ𝑓 , 𝜓𝑔 and 𝜓𝑓 represent energy contributions of elasticity, strain hardening, strain gradient hardening and porosity
respectively. For the sake of simplicity the dependence to 𝑓 is dropped in the following. For a detailed discussion on this topic the
reader is referred to Enakoutsa et al. (2007), Besson (2009), Bouby and Kondo (2017), Pascon and Waisman (2020) and Scherer
(2020). Quadratic potentials are used for the elastic and strain gradient contributions as follows

𝜓
(

𝑬∼
𝑒
𝐺𝐿, 𝛾𝑐𝑢𝑚,𝑲 , 𝑟𝑠

)

= 1
2𝜌♯

𝑬∼
𝑒
𝐺𝐿 ∶ 𝑪

≈
∶ 𝑬∼

𝑒
𝐺𝐿 + 𝜓ℎ(𝑟𝑠, 𝛾𝑐𝑢𝑚) +

1
2𝜌0

𝑲 .𝑨∼ .𝑲 (7)

The scalar 𝜌0 and 𝜌♯ = 𝜌0∕det
(

𝑷∼
)

respectively represent the volumetric mass density in the initial and intermediate configuration
f the body. The intermediate configuration is defined as the configuration obtained after transformation by 𝑷∼ , while the current

configuration is obtained after transformation by 𝑭∼ . Note that in the context of porous plasticity det
(

𝑷∼
)

≠ 1 in general. 𝜌♯ is directly
linked to the porosity by the relation 𝜌♯∕𝜌0 = 1∕det

(

𝑷∼
)

= (1 − 𝑓 )∕(1 − 𝑓0), with 𝑓0 the initial porosity. Yet, since the dependence of
𝜓 with respect to 𝑓 is omitted, the volumetric mass density in the intermediate configuration 𝜌♯ enters Eq. (7) as a parameter, but
not as variable. The material parameter 𝑨∼ is a second order tensor of higher order moduli. For a material with cubic symmetry 𝑨∼
reduces to 𝐴𝟏∼, where 𝐴 is the single higher order modulus in this case. From a numerical perspective, the implementation of such
a formulation is challenging. The behaviour of a material point is no longer independent from the value of the internal variables in
its neighbourhood. The gradient of 𝛾𝑐𝑢𝑚 enters indeed the constitutive equations. In order to overcome this difficulty the variable
𝛾𝑐𝑢𝑚 can be duplicated in an auxiliary variable 𝛾𝜒 treated as an additional degree of freedom (Zhang et al., 2018). Both variables
have the same physical interpretation, but, in a finite element setting for instance, the former is defined at integration points while
the latter is defined at nodes. In order to enforce weakly the equality of these variables, the free energy density is extended with
two additional terms as

𝜓
(

𝑬∼
𝑒
𝐺𝐿, 𝛾𝑐𝑢𝑚, 𝛾𝜒 ,𝑲 𝜒 , 𝑟

𝑠, 𝜆
)

= 1
2𝜌♯

𝑬∼
𝑒
𝐺𝐿 ∶ 𝑪

≈
∶ 𝑬∼

𝑒
𝐺𝐿 + 𝜓ℎ(𝑟𝑠, 𝛾𝑐𝑢𝑚)

+ 𝐴
2𝜌0

𝑲 𝜒 .𝑲 𝜒 + 𝜆
𝜌0

(𝛾𝑐𝑢𝑚 − 𝛾𝜒 ) +
𝜇𝜒
2𝜌0

(𝛾𝑐𝑢𝑚 − 𝛾𝜒 )2 (8)

where 𝜆 is a Lagrange multiplier which enforces 𝛾𝜒 and 𝛾𝑐𝑢𝑚 to be equal and 𝜇𝜒 is a Lagrangian penalization modulus enhancing
coercivity of the model. The gradient of 𝛾𝑐𝑢𝑚 is now replaced by the gradient of the auxiliary variable 𝑲 𝜒 = Grad 𝛾𝜒 . This formulation
can be interpreted as a way of imposing an internal constraint on 𝛾𝜒 (Bertram and Glüge, 2016). From the 1st and 2nd principle of
hermodynamics the Clausius–Duhem inequality is written

𝑑 =
𝑺∼
𝜌0

∶ �̇�∼ + 𝑆
𝜌0
�̇�𝜒 +

𝑴
𝜌0
.�̇� 𝜒 − �̇� ≥ 0 (9)

The first term of equation Eq. (9) can be decomposed into elastic and plastic contributions. The mechanical dissipation therefore
becomes

𝑑 =
(𝜫∼

𝑒

𝜌♯
−

𝜕𝜓
𝜕𝑬∼

𝑒
𝐺𝐿

)

∶ �̇�∼
𝑒
𝐺𝐿 +

(

𝑆
𝜌0

−
𝜕𝜓
𝜕𝛾𝜒

)

�̇�𝜒 +

(

𝑴
𝜌0

−
𝜕𝜓
𝜕𝑲 𝜒

)

.�̇� 𝜒

+
𝜫∼
𝑀

𝜌♯
∶
(

�̇�∼ .𝑷∼
−1) −

𝑁
∑

𝑠=1

𝜕𝜓ℎ
𝜕𝑟𝑠

�̇�𝑠 −
𝜕𝜓
𝜕𝛾𝑐𝑢𝑚

�̇�𝑐𝑢𝑚 −
𝜕𝜓
𝜕𝜆
�̇� ≥ 0

(10)

where 𝜫∼
𝑒 is the second Piola–Kirchhoff stress tensor defined by 𝜫∼

𝑒 = (𝜌♯∕𝜌)𝑬∼
−1.𝝈∼ .𝑬∼

−𝑇 = (𝜌♯∕𝜌0)𝑬∼
−1.𝑺∼ .𝑷∼

𝑇 with respect to the
intermediate configuration and 𝜫∼

𝑀 is the Mandel stress tensor defined by 𝜫∼
𝑀 = 𝑬∼

𝑇 .𝑬∼ .𝜫∼
𝑒. The following state laws are adopted

𝜫∼
𝑒 = 𝜌♯

𝜕𝜓
𝑒 = 𝑪

≈
∶ 𝑬∼

𝑒
𝐺𝐿 (11)
4

𝜕𝑬∼ 𝐺𝐿
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𝑆 = 𝜌0
𝜕𝜓
𝜕𝛾𝜒

= 𝜆 − 𝜇𝜒 (𝛾𝑐𝑢𝑚 − 𝛾𝜒 ) = 𝛥𝜒 − 𝜇𝜒 𝛾𝑐𝑢𝑚 (12)

𝑴 = 𝜌0
𝜕𝜓
𝜕𝑲 𝜒

= 𝐴𝑲 𝜒 (13)

or convenience the scalar stress 𝛥𝜒 = 𝜆+𝜇𝜒 𝛾𝜒 is introduced. By definition 𝜕𝜓∕𝜕𝜆 must vanish when the constraint 𝛾𝑐𝑢𝑚 = 𝛾𝜒 is met
therefore

𝜕𝜓
𝜕𝜆
�̇� = (𝛾𝑐𝑢𝑚 − 𝛾𝜒 )

�̇�
𝜌0

= 0 (14)

and the residual mechanical dissipation follows

𝑑 =
𝜫∼
𝑀

𝜌♯
∶
(

�̇�∼𝑷∼
−1) −

𝑁
∑

𝑠=1

𝜕𝜓ℎ
𝜕𝑟𝑠

�̇�𝑠 −
(𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒

𝜌0
+

𝜕𝜓ℎ
𝜕𝛾𝑐𝑢𝑚

)

�̇�𝑐𝑢𝑚 (15)

Here it is postulated that rates of hardening variables are proportional to slip rates on each slip system, i.e. �̇�𝑠 = 𝑔𝑠(𝑟𝑠)|�̇�𝑠|. The
hermodynamic forces are defined as

𝑅𝑠
𝜌♯

=
𝜕𝜓ℎ
𝜕𝑟𝑠

𝑔𝑠(𝑟𝑠) (16)

𝑅𝑐𝑢𝑚
𝜌♯

=
𝜕𝜓ℎ
𝜕𝛾𝑐𝑢𝑚

(17)

The strain gradient term 𝛥𝜒 plays therefore the role of an isotropic hardening or softening contribution to the mechanical dissipation.

2.4. Gradient enhanced dissipation potentials

In the present framework the dissipation potential is a function of thermodynamical forces and the state variables can intervene
as parameters. For the void growth and void coalescence mechanisms the individual potentials for the mechanisms 𝑖 = [[1, 𝑁 + 1]]
are

𝛺𝑖 = 𝛺𝑖

(

𝜫∼
𝑀

𝜌♯
,
𝑅𝑖
𝜌♯
,
𝑅𝑐𝑢𝑚
𝜌♯

;𝑬∼
𝑒
𝐺𝐿, 𝑟𝑖, 𝛾𝑐𝑢𝑚, 𝛾𝜒 , 𝜆

)

= 𝛬(𝜙𝑖) (18)

where 𝛬 is the viscosity function and 𝜙𝑖 is the flow potential associated to mechanism 𝑖. Flow potentials for void growth and void
coalescence in porous (visco-)plastic single crystals are described in following section.

3. Porous crystal (visco-)plasticity

3.1. Void growth

For void growth mechanisms in single crystals, an extension of the implicit definition of effective resolved shear stresses 𝜏𝑠∗
established at small strains for porous single crystals by Han et al. (2013) and extended to finite strains by Ling et al. (2016) is
adopted

𝜏𝑠∗ such that 𝜙𝑠 =
(

𝜏𝑠

𝜏𝑠∗

)2
+ 𝛼 2

45
𝑓

(

𝛱𝑀
𝑒𝑞

𝜏𝑠∗

)2

+ 2𝑞1𝑓 cosh

(

𝑞2

√

3
20
𝛱𝑀
𝑚
𝜏𝑠∗

)

− 1 − (𝑞1𝑓 )2
def
≡ 0 (19)

where 𝜫∼
𝑀 = 𝜫∼

𝑀 ′
+𝛱𝑀

𝑚 𝟏∼, with 𝜫∼
𝑀 ′ and 𝛱𝑀

𝑚 𝟏∼ the deviatoric and hydrostatic part of 𝜫∼
𝑀 respectively, and 𝜏𝑠 = 𝜫∼

𝑀 ∶ (𝒎 𝑠 ⊗ 𝒏 𝑠)
ith 𝒎 𝑠 and 𝒏 𝑠 the gliding direction and normal to slip plane for system 𝑠 respectively (with 𝒎 𝑠 ⟂ 𝒏 𝑠). 𝛱𝑀

𝑒𝑞 is defined as the von

Mises norm of 𝜫∼
𝑀 , i.e. 𝛱𝑀

𝑒𝑞 =
√

(3∕2)𝜫∼
𝑀 ′ ∶ 𝜫∼

𝑀 ′ . With this definition, the effective stresses 𝜏𝑠∗ are positive. The flow potentials
re then chosen as

�̃�𝑠 = (1 − 𝑓 )
(

𝜏𝑠∗ − 𝑅𝑠 − 𝑅𝑐𝑢𝑚 −
𝜌♯
𝜌0

(

𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒
)

− 𝜏𝑠0

)

(20)

where 𝜏𝑠0 is the initial critical resolved shear stress of system 𝑠. The terms 𝑅𝑠 and 𝑅𝑐𝑢𝑚 correspond to conventional hardening
contributions. 𝑅𝑠 can for example be used to model dislocations based hardening. 𝑅𝑐𝑢𝑚 can for instance be used to introduce an
additional phenomenological hardening. The term 𝜌♯∕𝜌0(𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒 ) corresponds to the strain gradient contribution. Note that,
in general, it cannot be excluded that, for large strain gradient effects, the effective flow stresses, defined by 𝜏𝑠0 + 𝑅𝑠 + 𝑅𝑐𝑢𝑚 +
(𝜌♯∕𝜌0)(𝜇𝜒 𝛾𝑐𝑢𝑚−𝛥𝜒 ), become negative (Ling et al., 2018). In practice, the positive part of the effective flow stress is used in the flow
potentials. The evolution laws for void growth follows

𝑳∼
𝑝
𝑠 = − d𝛬

d�̃�𝑠
𝜕�̃�𝑠

𝜕
(

−
𝜫∼

𝑀 )
= (1 − 𝑓 )�̇�𝑠𝑵∼

𝑠
∗ (21)
5

𝜌♯



Journal of the Mechanics and Physics of Solids 156 (2021) 104606J.-M. Scherer et al.

a

s
i
d
t
T
w

T

�̇�𝑠 = − d𝛬
d�̃�𝑠

𝜕�̃�𝑠

𝜕
(

𝑅𝑠
𝜌♯

) = −�̇�𝑠
𝜕�̃�𝑠

𝜕
(

𝑅𝑠
𝜌♯

) (22)

with 𝑑𝛬∕𝑑�̃�𝑠 = �̇�𝑠 and where the normal tensor 𝑵∼
𝑠
∗ already derived in Ling et al. (2016) is introduced as

𝑵∼
𝑠
∗ =

𝜕𝜏𝑠∗

𝜕
(

−
𝜫∼

𝑀

𝜌♯

)
= −

(

𝜕𝜙𝑠

𝜕𝜏𝑠∗

)−1 𝜕𝜙𝑠

𝜕
(

𝜫∼
𝑀

𝜌♯

)
(23)

with

𝜕𝜙𝑠

𝜕𝜏𝑠∗
= −2 𝜏

𝑠2

𝜏𝑠3∗
− 4

45
𝛼𝑓

𝛱𝑀2
𝑒𝑞

𝜏𝑠3∗
− 2

√

3
20
𝑞1𝑞2𝑓

𝛱𝑀
𝑚

𝜏𝑠2∗
sinh

(

𝑞2

√

3
20
𝛱𝑀
𝑚
𝜏𝑠∗

)

(24)

nd

𝜕𝜙𝑠

𝜕
(

𝜫∼
𝑀

𝜌♯

)
= 2 𝜏

𝑠

𝜏𝑠2∗
(𝒎 𝑠 ⊗ 𝒏 𝑠) + 2

15
𝛼𝑓 1

𝜏𝑠2∗
𝜫∼
𝑀 ′

+ 2
3

√

3
20
𝑞1𝑞2𝑓
𝜏𝑠∗

sinh

(

𝑞2

√

3
20
𝛱𝑀
𝑚
𝜏𝑠∗

)

𝟏∼ (25)

3.2. Void coalescence

A criterion to detect onset of coalescence by intervoid necking in single crystals was proposed by Yerra et al. (2010). This criterion
is based on the well known criterion by Thomason (1985) which can be expressed with the function

𝜙𝑐 = 𝜎𝐼 − 𝐶𝑓𝜎
𝑔
∗ (26)

where 𝜎𝐼 is the stress orthogonal to the coalescence plane defined by its normal vector 𝒆
𝐼
, while 𝜎𝑔∗ represents the effective flow

tress of the matrix during void growth which will be discussed in the following. 𝐶𝑓 is a concentration factor. In general, the plane
n which coalescence takes place is not known a priori. Therefore it is usually necessary to test the criterion over a wide range of
irections in order to determine the plane in which coalescence will initiate at first. To alleviate this difficulty, it is assumed that
he normal to the coalescence plane coincides with the direction of the largest eigenvalue of the symmetric Cauchy stress tensor 𝝈∼ .
he scalar 𝜎𝐼 is therefore interpreted as the maximum principal Cauchy stress and 𝒆

𝐼
is the associated eigenvector. This assumption

as also proposed by Nguyen et al. (2020). The principal stress 𝜎𝐼 satisfies 𝜎𝐼 = 𝝈∼ ∶ (𝒆
𝐼
⊗ 𝒆

𝐼
), with 𝝈∼ = (1∕det

(

𝑬∼
)

)𝑬∼
−𝑇 .𝜫∼

𝑀 .𝑬∼
𝑇 .

As for the void growth model presented above, the derivation of a coalescence criterion as in Eq. (26) relies on the analysis of the
behaviour of a porous unit-cell. In the following we consider an initially orthorhombic unit-cell containing a centered spherical void.
Due to the applied deformation, the cell and void shapes evolve and that affects the coefficient 𝐶𝑓 which is a function of cell and
void geometries. To characterize these geometries, the cell aspect ratio 𝜆𝑐 , void aspect ratio 𝑊 and normalized intervoid ligament
size 𝜒 are often introduced. For a spheroidal void of semi-axes 𝑎1 and 𝑎2 in a tetragonal unit-cell of dimensions 𝐿1 and 𝐿2 they are
respectively expressed as

𝜆𝑐 =
𝐿1
𝐿2

𝑊 =
𝑎1
𝑎2

𝜒 =
2𝑎2
𝐿2

(27)

he porosity can be expressed in terms of these geometrical quantities

𝑓 =
4
3𝜋𝑎1𝑎

2
2

𝐿1𝐿2
2

= 𝜋
6
𝑊𝜒3

𝜆𝑐
(28)

Since 𝐶𝑓 depends on these quantities, equations characterizing their evolution with loading are needed. Deriving an accurate
evolution equation for the void aspect ratio 𝑊 in porous single crystals is out of the scope of the present study. A first proposal
based on variational limit analysis was provided by Mbiakop et al. (2015). However, for the sake of simplicity, the void aspect ratio
𝑊 will be fixed to 1, which corresponds to voids remaining spherical. For an arbitrary small porous unit-cell, the cell aspect ratio
𝜆𝑐 can be expressed with respect to its initial value 𝜆0𝑐 , initial porosity 𝑓0 and the cell normalized elongation 𝐿1∕𝐿0

1 which depends
upon the deformation gradient tensor 𝑭∼ as follows

𝑭∼
−1.𝑳 1 = 𝑳 0

1 (29)

𝐿1𝑭∼
−1.𝒆

𝐼
= 𝐿0

1𝒆 𝐼 (30)
𝐿1

𝐿0
1

= 1
√

(𝑭∼
−1.𝒆

𝐼
).(𝑭∼

−1.𝒆
𝐼
)

(31)

𝜆𝑐 = 𝜆0𝑐

(

𝐿1
0

)
3
2
√

1 − 𝑓 (32)
6

𝐿1
1 − 𝑓0
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To derive this expression it was assumed that the principal direction of the homogenization unit-cell coincides with the direction
of the maximum principal Cauchy stress oriented by the eigenvector 𝒆

𝐼
. It appears from Eq. (28) that, assuming 𝑊 = 1, applying

equation (32) and having an evolution equation for 𝑓 allows to compute 𝜒 with

𝜒 =
( 6
𝜋
𝜆𝑐𝑓

)

1
3 (33)

A particular form of 𝐶𝑓 as a function of 𝑊 and 𝜒 will be chosen in Section 4.2.2.
In Eq. (26) 𝜎𝑔∗ represents the effective flow stress of the matrix during void growth. In Yerra et al. (2010) the authors account for

hardening of the matrix by determining an effective flow stress in the vicinity of the void in the coalescence plane. They propose to
perform an auxiliary computation on a single Gauss point with an identical crystal orientation and under an equibiaxial straining
loading state which is representative of the loading during coalescence in the coalescence plane. The effective flow stress is then
derived as the equivalent stress when the actual equivalent plastic deformation is reached in the auxiliary computation. Such a
method is an elegant way to introduce hardening in Thomason’s coalescence criterion. Nevertheless, the computational cost of
performing these auxiliary simulations in order to determine the effective flow stress of the crystal matrix can become significant.
In principle, at each iteration of the constitutive integration such a simulation should be done. Therefore two new approaches are
proposed and described as follows. The main ingredient of these methods is to consider that at initiation of intervoid necking many
slip systems are activated in the intervoid ligament and that hence the flow stress can be determined from an isotropic criterion.
The Thomason criterion is reformulated as

𝜎𝑐∗ such that 𝜙𝑐 = 𝜎𝐼 − 𝐶𝑓𝜎𝑐∗
def
≡ 0 (34)

�̃�𝑐 = (1 − 𝑓 )
(

𝜎𝑐∗ − 𝑅𝑐𝑢𝑚 −
𝜌♯
𝜌0

(

𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒
)

− 𝜎𝑔∗

)

(35)

Eq. (34) defines an equivalent coalescence stress 𝜎𝑐∗, while Eq. (35) is the effective coalescence flow potential. These equations
are the coalescence counterpart of Eqs. (19) and (20) defined previously for void growth. Since many slip systems are active, the
effective flow stress 𝜎𝑔∗ of the crystal matrix can hence be approximated by the effective flow stress of an isotropic matrix. The latter
can for instance be defined implicitly by a GTN-like equation

𝜎𝑔∗ such that 𝜙𝑔 =
(𝛴𝑒𝑞
𝜎𝑔∗

)2

+ 2𝑞𝑐1𝑓 cosh
(

𝑞𝑐2
3
2
𝛴𝑚
𝜎𝑔∗

)

− 1 − (𝑞𝑐1𝑓 )
2 def
≡ 0 (36)

here 𝑞𝑐1 and 𝑞𝑐2 are parameters to be calibrated. 𝜎𝑔∗ represents the effective flow stress of the matrix during void growth, thus it must
e updated while coalescence is not taking place. However, once coalescence sets on, 𝜎𝑔∗ is kept constant or follows a hardening
aw that will be discussed in Section 4.3. Once more, it cannot be excluded that, for large strain gradient effects, the effective flow
tress, defined by 𝜎𝑔∗ + 𝑅𝑐𝑢𝑚 + (𝜌♯∕𝜌0)(𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒 ), becomes negative. In practice, the positive part of the effective flow stress is

therefore used in the flow potential.

3.2.1. Void coalescence deformation mechanism
In the spirit of previous section, void coalescence can be interpreted as an independent deformation mechanism having its own

yield surface and flow rule. Therefore, the coalescence criterion Eq. (35) can be regarded as a flow potential and it follows the
evolution laws for void coalescence

𝑳∼
𝑝
𝑐 = − d𝛬

d�̃�𝑐
𝜕�̃�𝑐

𝜕
(

−
𝜫∼

𝑀

𝜌♯

)
= (1 − 𝑓 )�̇�𝑐𝑵∼

𝑐
∗ (37)

with 𝑑𝛬∕𝑑�̃�𝑐 = �̇�𝑐 and where the normal 𝑵∼
𝑐
∗ is introduced such that

𝑵∼
𝑐
∗ =

𝜕𝜎𝑐∗

𝜕
(

−
𝜫∼

𝑀

𝜌♯

)
= −

(

𝜕𝜙𝑐

𝜕𝜎𝑐∗

)−1 𝜕𝜙𝑐

𝜕
(

𝜫∼
𝑀

𝜌♯

)
(38)

with
𝜕𝜙𝑐

𝜕𝜎𝑐∗
= −𝐶𝑓 (39)

and

𝜕𝜙𝑐

𝜕
(

𝜫∼
𝑀

𝜌♯

)
=

𝜕𝜙𝑐

𝜕
(

𝝈∼
𝜌♯

) ∶
𝜕
(

𝝈∼
𝜌♯

)

𝜕
(

𝜫∼
𝑀

𝜌♯

)
=
𝜕𝜎𝐼
𝜕𝝈∼

∶

(

1
det

(

𝑬∼
)𝑬∼

−𝑇⊗𝑬∼

)

(40)

=
(

𝒆
𝐼
⊗ 𝒆

𝐼

)

∶

(

1
det

(

𝑬∼
)𝑬∼

−𝑇⊗𝑬∼

)

(41)

according to the derivation rules given in Bertram (2012).
7
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The overall macroscopic plastic dissipation finally becomes

𝜫∼
𝑀 ∶

(

�̇�∼ .𝑷∼
−1) = (1 − 𝑓 )

𝑁
∑

𝑠=1
�̇�𝑠𝜫∼

𝑀 ∶ 𝑵∼
𝑠
∗ + (1 − 𝑓 )�̇�𝑐𝜫∼

𝑀 ∶ 𝑵∼
𝑐
∗

= (1 − 𝑓 )
𝑁
∑

𝑠=1
�̇�𝑠𝜏𝑠∗ + (1 − 𝑓 )�̇�𝑐𝜎𝑐∗ (42)

This equation states the equivalence between macroscopically and microscopically dissipated energies. Combining Eqs. (15) and
(42), the mechanical dissipation can eventually be formulated as a sum over all deformation mechanisms

𝑑 =
1 − 𝑓
𝜌♯

𝑁
∑

𝑠=1

(

𝜏𝑠∗ −
𝜌♯
𝜌0

(

𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒
)

− 𝑅𝑠 − 𝑅𝑐𝑢𝑚

)

|�̇�𝑠|

+
1 − 𝑓
𝜌♯

(

𝜎𝑐∗ −
𝜌♯
𝜌0

(

𝜇𝜒 𝛾𝑐𝑢𝑚 − 𝛥𝜒
)

− 𝑅𝑐𝑢𝑚

)

|�̇�𝑐 | (43)

= 1
𝜌♯

𝑁
∑

𝑠=1

(

�̃�𝑠 + (1 − 𝑓 )𝜏0
)

|�̇�𝑠| + 1
𝜌♯

(

�̃�𝑐 + (1 − 𝑓 )𝜎𝑔∗
)

|�̇�𝑐 | ≥ 0 (44)

According to Eq. (44), positivity of the flow potentials �̃�𝑘 associated to non-zero flow rates �̇�𝑘 (with 𝑘 ∈ {𝑠, 𝑐}) is a sufficient
ondition to ensure positivity of the dissipation. The viscoplastic flow rules chosen in the following (see Eq. (50) for instance)
atisfy this condition and thus guaranty the positivity of 𝑑.

.2.2. 𝑓 ∗-type void coalescence
Void coalescence was described in previous sections as an individual plastic mechanism having its own yield surface. This

pproach is relatively straightforward from a modelling point of view. However, from a numerical perspective the implementation
ffort and computational costs associated to this approach can be significant. Another common approach in the literature consists in
odelling void coalescence without extending the set of yield criteria. The method proposed by Tvergaard and Needleman (1984)

ntroduces an effective definition of the porosity 𝑓 ∗ once a critical porosity 𝑓𝑐 is reached

𝑓 ∗ =

{

𝑓 for 𝑓 ≤ 𝑓𝑐
𝑓𝑐 +

𝑓∗𝑢 −𝑓𝑐
𝑓𝑅−𝑓𝑐

(𝑓 − 𝑓𝑐 ) for 𝑓 > 𝑓𝑐
(45)

where 𝑓𝑐 , 𝑓𝑅 and 𝑓 ∗
𝑢 are material parameters. 𝑓𝑐 describes the porosity at the onset of void coalescence. 𝑓𝑅 denotes the standard

porosity at fracture, while 𝑓 ∗
𝑢 is the effective porosity at fracture. With adequate numerical values of material parameters, Eq. (45)

allows to artificially increase the effective porosity 𝑓 ∗ once coalescence sets on. As a consequence, the yield surfaces associated to
void growth shrink at a greater rate leading to an accelerated stress drop. The advantage of utilizing Eq. (45) is that void coalescence
can straightforwardly be incorporated in a numerical implementation of a void growth model. On the other hand, some drawbacks
are the lack of physical foundation for the effective porosity and the necessity to know a priori the critical porosity at coalescence
𝑓𝑐 . Furthermore, in such a formulation this parameter is assumed no to depend on the loading state.

In order to alleviate these two last drawbacks an hybrid formulation was proposed by Zhang et al. (2000). They proposed to
revoke the ad hoc choice of 𝑓𝑐 and define it as the porosity reached when Thomason’s coalescence onset criterion is met. In that
manner, 𝑓𝑐 is continuously updated upon loading and becomes constant when void coalescence is reached. 𝑓 ∗-type void coalescence
will rely on the coalescence criterion defined at Eq. (34) in order to obtain 𝑓𝑐 locally.

In the context of the strain gradient porous plasticity model presented in Section 2, assuming an effective porosity as in Eq. (45)
does not involve major difficulties. The main point consists in replacing 𝑓 by 𝑓 ∗ in every equation, but one. The only equation in
which 𝑓 is not replaced by 𝑓 ∗ is the evolution law of the porosity Eq. (48). However, it should be noted that since void coalescence
is not treated as an independent plastic mechanism with its own yield surface, 𝛾𝑐 is not defined anymore. As a consequence the
accumulated plastic slip 𝛾𝑐𝑢𝑚 defined at Eq (2) and the auxiliary variable 𝛾𝜒 do not account for void coalescence explicitly. However,
since void growth criteria are affected by 𝑓 ∗, void coalescence still has an indirect effect on 𝛾𝑐𝑢𝑚 and 𝛾𝜒 .

It is well established in the literature that 𝑓 ∗
𝑢 can be adjusted in order to obtain an adequate acceleration of the porosity when

a 𝑓 ∗-type coalescence model is used (Zhang et al., 2000). In Fig. 2, the numerical value chosen for 𝑓 ∗
𝑢 , namely 67%, leads to a

relatively weak acceleration of porosity increase. Increasing 𝑓 ∗
𝑢 would result in a sharper acceleration of porosity and thus in a

faster drop of the stress. When coalescence is treated as an additional yielding mechanism it is less straightforward to control the
slopes of porosity increase and decrease of stress in the coalescence regime. In particular, void coalescence can be sensitive to the
void shape, which was considered to be fixed as a sphere in the present work. Deriving evolution equations for the void shape
for strain hardening materials is a difficult task. Here, a phenomenological approach is considered in order to control the decrease
of the stress during void coalescence. In the model presented in Section 3.2, the flow stress for void coalescence noted 𝜎𝑔∗ was
considered constant once coalescence has set on. Approaches to account for hardening were proposed by Scheyvaerts et al. (2011)
and Vishwakarma and Keralavarma (2019). Here a formulation is proposed in order to be able to control the acceleration of porosity
and stress decrease in the spirit of the work of Brepols et al. (2017). The coalescence flow stress now writes

𝜎𝑔∗ ← 𝜎𝑔∗ + 𝜔
(

1 − exp
(

−
𝛾𝑐

𝛽

))

(46)

where 𝜔 and 𝛽 are additional material parameters that can be adjusted to control the rate of void coalescence. Their role will be
further discussed on the basis of material point simulations in Section 4.3.
8
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Table 1
Summary of equilibrium equations, state laws and evolution equations.

Equilibrium equations State laws Evolution equations

Div𝑺∼ = 𝟎 ∀𝑿 ∈ 𝐷0 𝜫∼
𝑒 = 𝑪

≈
∶ 𝑬∼

𝑒
𝐺𝐿 �̇�∼ = �̇�∼ .𝑭∼

−1 .𝑬∼ − 𝑬∼ .

(

∑

𝑘∈{𝑠;𝑐}
�̇�𝑘𝑵∼

𝑘
∗

)

Div𝑴 − 𝑆 = 0 ∀𝑿 ∈ 𝐷0 𝑴 = 𝐴𝑲
𝜒

�̇�𝑘 = �̇�0
⟨

�̃�𝑘

𝜏0 (1−𝑓 )

⟩𝑛
with 𝑘 ∈ {𝑠; 𝑐} and 𝑠 = [[1, 𝑁]]

𝑻 = 𝑺∼ .𝒏 0
∀𝑿 ∈ 𝜕𝐷0 𝑆 = 𝛥𝜒 − 𝜇𝜒 𝛾𝑐𝑢𝑚 �̇�𝑠 = 𝑔𝑠(𝑟𝑠)|�̇�𝑠| with 𝑠 = [[1, 𝑁]]

𝑀 = 𝑴 .𝒏
0

∀𝑿 ∈ 𝜕𝐷0 �̇�𝑐𝑢𝑚 =
∑

𝑘∈{𝑠;𝑐}
|�̇�𝑘|

̇𝑓 = (1 − 𝑓 )tr
(

�̇�∼ .𝑷∼
−1)

3.3. Evolution equations

The evolution of the elastic part of the deformation gradient 𝑬∼ is deduced from the total and plastic deformation rates and is
ritten as

�̇�∼ = �̇�∼ .𝑭∼
−1.𝑬∼ − 𝑬∼ .

(

∑

𝑘∈{𝑠;𝑐}
�̇�𝑘𝑵∼

𝑘
∗

)

(47)

The evolution law for porosity used in the context of ductile fracture of porous materials usually writes

̇𝑓 = (1 − 𝑓 )tr
(

�̇�∼ .𝑷∼
−1) (48)

Note that this equation holds during void growth as well as during void coalescence. Eq. (48) can be time-integrated and leads to
the following explicit expression of the porosity

𝑓 = 1 −
1 − 𝑓0
det

(

𝑷∼
) (49)

where 𝑓0 denotes the initial void volume fraction.
In addition, a viscoplastic flow rule is adopted for each deformation mechanism (void growth mechanisms and void coalescence

echanism). In that way evolution of the plastic slip variables �̇�𝑠 and �̇�𝑐 are indistinguishably governed by the following Norton
type flow rule

�̇�𝑘 = �̇�0

⟨

�̃�𝑘

𝜏𝑘0 (1 − 𝑓 )

⟩𝑛

𝑘 ∈ {𝑠; 𝑐} (50)

where �̇�0 and 𝑛 are materials parameters controlling the rate sensitivity of the material behaviour. The Macaulay brackets are defined
such that ⟨∙⟩ = max(∙, 0). Distinct values of these viscosity parameters can be selected for growth and coalescence, if necessary. Note
that the term (1 − 𝑓 ) at the denominator accounts for the fact that the slip rates �̇�𝑘 are power conjugate to the effective matrix
stresses 𝜏𝑠∗ and 𝜎𝑐∗ as depicted in Eq. (42).

3.4. Summary of constitutive equations and material parameters

Equilibrium equations, state laws and evolution equations are summarized in Table 1. Four categories of material parameters
can be identified:

1. Material parameters for elasto-viscoplasticity
2. Initial void characteristics
3. Porous criteria GTN-like parameters
4. Strain gradient plasticity parameters

They are listed in Table 2 with their corresponding unit and signification.

4. Model implementation, calibration and assessment

4.1. Material behaviour

In this study a face-centered cubic (FCC) crystal composed of 𝑁 = 12 octahedral slip systems of the {111}⟨110⟩ family is
onsidered. The hardening behaviour used is a standard dislocation density based law following Kubin et al. (2008). The critical
esolved shear stress of a given system 𝑠 is composed of a thermal component due to lattice friction 𝜏0 and an athermal component
𝑠 due to dislocations interactions

𝜏𝑠𝑐 = 𝜏0 + 𝑅𝑠 = 𝜏0 + 𝜇

√

√

√

√

𝑁
∑

𝑎𝑠𝑢𝑟𝑢 (51)
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Table 2
Summary of material parameters involved in the strain gradient porous crystal plasticity model.

Category Parameter Unit Signification

1

𝐶𝑖𝑗𝑘𝑙 MPa Elastic moduli
𝜏0 MPa Initial critical resolved shear stress
�̇�0 s−1 Reference slip rate
𝑛 – Viscosity exponent
𝜓ℎ/𝑅𝑠, 𝑅𝑐𝑢𝑚 MPa Hardening potential/Hardening functions
𝑔𝑠 – Hardening variables evolution functions

2 𝑓0 – Initial porosity
𝜆0𝑐/𝜒0 – Initial cell aspect ratio/intervoid distance

3 𝑞1, 𝑞2, 𝛼 – Void growth GTN-like parameters
𝑞𝑐1 , 𝑞

𝑐
2 , 𝑓𝑅, 𝑓 ∗

𝑢 , 𝑞𝜒 – Void coalescence GTN-like parameters

4 𝐴 MPa.mm2 Strain gradient modulus
𝜇𝜒 MPa Penalization modulus

Table 3
Numerical values of material parameters corresponding to a 316L stainless steel.
𝐶11 𝐶12 𝐶44 𝜏0 𝑛 ̇𝛾0
200GPa 136GPa 105GPa 88MPa 15 1014 s−1

𝜇 𝐺𝑐 𝜅 𝑟𝑠0 𝑏𝑠𝑢 (𝑠 ≠ 𝑢) 𝑏𝑢𝑢

65.6GPa 10.4 42.8 5.38 × 10−11 1 0

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6
0.124 0.124 0.07 0.625 0.137 0.122

𝑓0 𝜆0𝑐 𝑞1 𝑞2 𝛼 𝑞𝑐1
1% 1 1.471 1.325 6.456 1

𝑞𝑐2 𝑓𝑅 𝑓 ∗
𝑢
def
≡ 1∕𝑞1 𝜇𝜒 𝐴 𝓁𝑐

def
≡
√

𝐴∕𝜏0
1.5 0.35 0.67 500MPa 1N 106.6 μm

where 𝜇 is the shear modulus and 𝑎𝑠𝑢 a matrix describing interactions between dislocations. 𝑟𝑢 denotes the adimensional dislocation
density (𝑟𝑢∕𝑏2 = 𝜌𝑢 is the usual dislocation density, i.e. the length of dislocation lines per unit volume, 𝑏 being the norm of the
dislocation Burgers vector 𝒃 ). The evolution of dislocation densities is given by the following rate equations

�̇�𝑠 = |�̇�𝑠|
⎛

⎜

⎜

⎝

1
𝜅

√

√

√

√

𝑁
∑

𝑢=1
𝑏𝑠𝑢𝑟𝑢 − 𝐺𝑐𝑟𝑠

⎞

⎟

⎟

⎠

(52)

Numerical values of material parameters corresponding to a 316L stainless steel and used throughout this work are listed in Table 3.

4.2. Validation of the coalescence criterion

4.2.1. Single crystal porous unit-cell simulations
In order to validate the capability of the criterion given by Eq. (34) to detect onset of coalescence the following procedure

is proposed. Porous unit-cell finite element simulations are performed for several crystal orientations, stress triaxiality ratios and
hardening behaviour. Onset of void coalescence can then be identified in each unit-cell simulation. Finally, the value of 𝜎𝐼 at onset of
coalescence (𝜎𝑛𝑢𝑚𝐼 ) is compared to the theoretical value (𝜎𝑡ℎ𝐼 ) predicted by the proposed criterion Eq. (26). The boundary conditions
applied to the single crystal porous unit-cells are described in Appendix.

Cubic unit-cells composed of a FCC single crystal matrix material and a centered spherical void are considered. The initial porosity
is equal to 1%. Two sets 1 and 2 of crystal orientations (given with respect to the unit-cell lattice periodicity directions 𝑿 1 - 𝑿 2
- 𝑿 3) are considered

1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[100] − [010] − [001]
[1̄25] − [12̄1] − [210]
[111] − [2̄11] − [01̄1]
[110] − [1̄10] − [001]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[210] − [1̄20] − [001]
[1̄25] − [05̄2] − [29 2 5]
[100] − [011̄] − [011]
[100] − [021̄] − [012]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(53)

For the first set 1 unit-cell simulations were performed in Ling et al. (2016) with the material parameters corresponding to a 316L
stainless steel listed in Table 3. To broaden the range of considered orientations, in this study additional unit-cell simulations are
performed for all orientations in  and  with the same materials parameters but 𝑎𝑠𝑢 = 0, i.e. in the absence of hardening.
10
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4.2.2. Coalescence onset
Onset of coalescence by intervoid necking is characterized by the transition to a uniaxial straining mode (pure extension)

uring which plastic deformation localizes in the intervoid ligament. This transition is marked by the saturation of transverse (in
he coalescence plane) deformation. In other words, if the coalescence plane is normal to 𝑿 1, the components 𝐹 22 and 𝐹 33 of

the deformation gradient will saturate. Therefore, for an increment 𝛥𝑭∼ of the macroscopic deformation gradient, onset of void
oalescence can be detected when the ratios 𝛥𝐹 22∕𝛥𝐹 11 and 𝛥𝐹 33∕𝛥𝐹 11 become lower than an arbitrary low value. Onset of

coalescence will be considered when these two ratios are simultaneously lower than 5%. During the post-processing of a unit-cell
simulation, the lowest deformation 𝐹

𝑐
11 at which this condition is met, is considered as the onset of coalescence and the maximum

principal Cauchy stress at coalescence is recorded as 𝜎𝑛𝑢𝑚𝐼 = 𝜎11(𝐹
𝑐
11). At the same time the value of 𝐶𝑓𝜎𝑐∗ is computed. For that

purpose, the form of 𝐶𝑓 derived for isotropic materials in Thomason (1985), Benzerga et al. (1999) and Pardoen and Hutchinson
(2000) is adopted

𝐶𝑓 (𝜒,𝑊 ) = (1 − 𝜒2)

(

0.1
(

1 − 𝜒
𝜒𝑊

)2
+ 1.2

√

1
𝜒

)

(54)

where 𝜒 and 𝑊 respectively represent effective normalized intervoid distance and void aspect ratio. The limit load formula in
Eq. (54) has been thoroughly revisited in the recent literature (Benzerga and Leblond, 2014; Morin et al., 2015). In particular, a
remedy to the singularity in the limit of a penny-shape crack (𝑊 → 0) was proposed (Hure et al., 2016; Torki et al., 2017). In
addition, the validity of Eq. (54) for porous single crystals is not straightforward, because it was derived in the context of isotropic
plasticity. A derivation of the limit load of a porous unit-cell was extended recently to the crystal plasticity framework (Hure,
2019). Yet, for the sake of simplicity, it remains interesting to evaluate the validity of the limit load in Eq. (54) in presence of
plastic anisotropy. Extensions to possibly more accurate and more complex coalescence criteria is left for further studies. Thomason’s
original criterion was derived on an orthorhombic unit-cell containing an orthorhombic void. However the orthorhombic unit-cell
considered here contains a spherical void. As discussed by Scherer and Hure (2019) a parameter 𝑞𝜒 can be introduced in order to
account for this difference. In that way, 𝐶𝑓 is still expressed as in Eq. (54), but the intervoid ligament ratio 𝜒 defined in Eq. (33)
is replaced by

𝜒 ← 𝑞𝜒𝜒 (55)

A straightforward geometrical analysis shows that the transition from an orthorhombic void to a spherical void yields to 𝑞𝜒 =
√

𝜋∕6.
Yet, 𝑞𝜒 could also be considered as an additional coefficient to be identified in the same vein as 𝑞1, 𝑞2 and 𝛼 for the void growth
model. For the sake of simplicity, the analytical value of

√

𝜋∕6 is used in the present study. To estimate 𝜒 and 𝑊 it is assumed for
simplicity that the initially cubic cell remains orthorhombic and that the initially spherical voids remain ellipsoidal when deforming.
Although these assumptions might be crude for highly deformed cells at coalescence, especially at low triaxialities, it is the simplest
way to obtain estimates of 𝜒 and 𝑊 . With these assumptions a deformed unit-cell is characterized by 𝐿1, 𝐿2 and 𝐿3 which are
espectively computed by following the displacements of the nodes initially located at the middle of each face of the unit-cell. The
oid is characterized by three semi-axes 𝑟1, 𝑟2 and 𝑟3 which are respectively computed by following the displacements of the nodes
nitially located at the intersection of the void with the three major axis of the cube (void poles). The geometrical parameters 𝜒 and
𝑊 are then computed as follows

𝜒 =
√

𝜒2𝜒3 =

√

2𝑟2
𝐿2

2𝑟3
𝐿3

𝑊 = 2
𝑊12𝑊13
𝑊12 +𝑊13

= 2

𝑟1
𝑟2
𝑟1
𝑟3

𝑟1
𝑟2

+ 𝑟1
𝑟3

𝜆𝑐 =
𝐿1

√

𝐿2𝐿3
(56)

which boil down to their usual definition when the void is a sphere and the cell a cube (𝜒 = 2𝑅∕𝐿 and 𝑊 = 1). Yet, the choice
made in Eq. (56) to define 𝜒 , 𝑊 and 𝜆𝑐 is not unique. Neglecting viscous effects, the value of 𝜎𝑐∗ should be equal to 𝜎𝑔∗ at onset of
coalescence, hence 𝜎𝑔∗ is computed by solving Eq. (36) where 𝑞𝑐1 = 1.5 and 𝑞𝑐2 = 1 are chosen. The theoretical coalescence stress is
herefore 𝜎𝑡ℎ𝐼 = 𝐶𝑓 (𝜒,𝑊 )𝜎𝑔∗ .

In Fig. 1, the numerical coalescence stresses are plotted against the theoretical coalescence stresses for all the simulations for
hich coalescence was attained. If the criterion were to be exact the points would be located on the ’𝑦 = 𝑥’ bisector. As it is only an
pproximation the points may not exactly lay on this line. Almost all the predicted coalescence stress values are less than ±%20 apart
rom the values predicted by the unit-cell simulation. It can be seen that the criterion is capable of well predicting the coalescence
nset with or without hardening of the matrix material surrounding the void. A more refined tuning of the function 𝐶𝑓 in Eq. (56)
nd the parameters in Eq. (36) could lead to a more precise prediction of coalescence onsets. This is however beyond the scope of
he present study.

.3. 𝑓 ∗-type coalescence vs void coalescence mechanism

Several variations of the model presented above are compared in this section. Ductile fracture by void growth only is compared
o ductile fracture by void growth and void coalescence, with either the 𝑓 ∗-type treatment of coalescence or its yield mechanism
ased treatment. A single hexahedral element with eight nodes and reduced integration with one Gauss point is loaded with a
onstant stress triaxiality similarly to the periodic porous unit-cells in Section 4. Triaxialities of 1 and 3 are applied. Three different
rystal orientations are considered and correspond to the three first orientations in set 1. An initial porosity of 1% is considered
nd numerical values of other material parameters used are listed in Table 3. Since a single Gauss point is used, no gradients of
11
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Fig. 1. Numerically computed principal Cauchy stress in unit-cell simulations vs theoretical prediction of the principal Cauchy stress at onset of coalescence.
Dashed lines represent the ±20% error from the case were the theoretical prediction matches the numerical value.

accumulated plastic slip can form and therefore the non-local moduli 𝐴 and 𝜇𝜒 do not influence the results presented hereafter. Stress
vs strain responses and porosity evolution are plotted in Fig. 2. Solid lines correspond to cases at a triaxiality 𝑇 = 1 and dashed lines
to cases at 𝑇 = 3. Reference behaviours of the pristine void-free single crystal are plotted in black. The prediction of the model with
void growth mechanisms only, i.e. without accounting for void coalescence, is plotted in the same graphs. The respective curves of
𝑓 ∗-type coalescence and void coalescence mechanism depart from one another only once coalescence sets on. In addition, since the
same coalescence criterion is used for 𝑓 ∗-type coalescence and void coalescence mechanism, simulations accounting for coalescence
start deviating from the void growth model at the same moment. When only void growth mechanisms are accounted for, stress and
porosity evolution with respect to strain remain smooth all the way until fracture. However, when coalescence is taken into account,
a corner appears at onset of void coalescence. That corner marks an acceleration of porosity increase which simultaneously triggers
a sharp stress drop. In all cases presented in Fig. 2 but one , the acceleration of porosity increase is more pronounced with the void
coalescence mechanism than with the 𝑓 ∗-type treatment of coalescence. As a consequence, stresses also drops faster.

The respective influence of parameters 𝜔 and 𝛽 in the coalescence induced hardening Eq. (46) is brought to light in Fig. 3 in
which both parameters were independently varied. 𝜔 is taken in the range 1.5 to 100 GPa, while 𝛽 is in the range 0.1 to 10. In
the present example the coalescence flow stress 𝜎𝑔∗ was equal to 615MPa. Increasing 𝜔 results in a slower porosity growth and
stress softening. On the contrary increasing 𝛽 has opposite effects, namely a faster porosity augmentation and a sharper stress drop.
Fig. 4 shows how 𝜔 affects the void growth and coalescence inelastic variables after coalescence. As 𝜔 increases, void growth plastic
variables increase more and more in the coalescence regime (∃𝑠 �̇�𝑠 > 0), whereas for 𝜔 = 0 void growth mechanisms are completely
inactive in the coalescence regime (∀𝑠 �̇�𝑠 = 0). In contrast, as 𝜔 increases, the contribution of void coalescence 𝛾𝑐 to the inelastic
activity decreases in the post-coalescence regime. The role of Eq. (46) is thus to introduce strain hardening associated to the void
coalescence mechanism. In that way, the softening rate can be calibrated from experiments or computational unit-cell results.

4.4. Numerical aspects

The model presented in previous sections was discretized using an Euler-backward (implicit) scheme and implemented in the
finite element software Z-set (Besson and Foerch, 1998). Details on the finite element implementation of the Lagrange multiplier
formulation were described in Scherer et al. (2020). In the subsequent finite element simulations, 20-node brick finite elements are
used. Quadratic shape functions for displacement degrees of freedom (DOF) and linear shape functions for the Lagrange multiplier
𝜆 and micro-slip 𝛾𝜒 DOF are used. Reduced integration is performed by using eight Gauss points per element.

Highly damaged elements are suppressed from the finite element mesh during the computation. An element is considered as
being ‘‘broken’’ when at least half of the Gauss points (4 out of 8) satisfy at least one of the following criteria

𝜒 > (1 − 𝜀) or 𝑓 > (1 − 𝜀)𝑓𝑅 or 𝐸𝐺𝐿,𝐼 > 𝐸
𝑐
𝐺𝐿,𝐼 (57)

where 𝜀 is a small tolerance parameter set to 10−2 and 𝐸𝐺𝐿,𝐼 is the largest eigenvalue of the Green–Lagrange strain tensor
𝑬 = (1∕2)(𝑭 𝑇 .𝑭 − 𝟏). The critical value 𝐸𝑐 is set to 4. At the Gauss point level, if one of these criteria is met, the stress
12
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Fig. 2. Stress–strain behaviour and porosity evolution at imposed stress triaxialities of 1 (solid lines) and 3 (dashed lines) on a single Gauss point with three
different versions of the porous single crystal ductile failure model: void growth mechanisms only (red), void growth mechanisms and 𝑓 ∗-type coalescence (blue),
and void growth and void coalescence mechanisms (orange).
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Fig. 3. Influence of material parameters 𝜔 and 𝛽 from Eq. (46) on the post-coalescence regime of the tensile stress and the porosity. 𝜔 varies from 1.5 to
100 GPa and 𝛽 varies from 0.1 to 10. 𝜎𝑔∗ = 615MPa in this example.

Fig. 4. Influence of material parameter 𝜔 on the post-coalescence regime of void growth and void coalescence plastic slip variables. 𝜔 varies from 1.5 to 100
GPa and 𝛽 is fixed to 1. 𝜎𝑔∗ = 615MPa in this example.
14
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Fig. 5. (a) Sketch of the plate geometry and applied plane strain boundary conditions. (b) Finite element meshes used in the mesh convergence analysis. From
top to bottom, meshes are respectively composed of 80, 320, 1280, 5120 and 13184 elements.

tensor is fixed to 0 and the tangent matrix is set to 10−6𝑪
≈

, with 𝑪
≈

the elasticity stiffness tensor. The last criterion on 𝐸𝐺𝐿,𝐼 is an ad
hoc criterion used in order to remove elements that are highly sheared or elongated. Elements of this kind are typically observed
in regions of low stress triaxiality for which damage due to void growth remains very low. A possible way to get rid of this ad
hoc criterion would consist in considering an effective porosity evolution law that accounts for shear induced damage (Nahshon
and Hutchinson, 2008). Alternatively shear induced void coalescence could also be considered (Torki and Benzerga, 2018). This is
however out of the scope of the present study and is left for a future work.

4.5. Mesh convergence analysis

A mesh convergence analysis is carried out in order to validate the regularization capacity of the model. A thin rectangular plate
of initial length 𝐿0, width 𝑊0 = 𝐿0∕5 and thickness 𝑇0 = 𝑊0∕10, as depicted in Fig. 5, is loaded in plane strain tension by applying
the following boundary conditions

𝑈1(𝑋1 = 0, 𝑋2, 𝑋3) = 0 𝑈1(𝑋1 = 𝐿0, 𝑋2, 𝑋3) = 𝑈1(𝑡) (58)
𝑈2(𝑋1 = 0, 𝑋2, 𝑋3) = 0 𝑈2(𝑋1 = 𝐿0, 𝑋2, 𝑋3) = 0 (59)

𝑈3(𝑋1, 𝑋2, 𝑋3) = 0 (60)

The plate is discretized with 𝑚 ∈ {80, 320, 1280, 5120, 13184} finite elements. The most dense mesh thus totals 280683
displacement DOF and 53756 Lagrange multiplier and micro-slip DOF. The mesh convergence analysis is performed on a single
crystal with the crystal directions [100], [010] and [001] initially oriented along the orthonormal basis vectors 𝑿 1, 𝑿 2 and 𝑿 3
respectively. For the sake of simplicity of this benchmark example hardening is discarded. The critical resolved shear stress is
therefore constant and equal to 𝜏0 for all slip systems. Void coalescence is accounted for by using the effective porosity 𝑓 ∗ defined
at Eq. (45) once the coalescence onset criterion is met as discussed in Section 3.2.2. Numerical values of material parameters are
listed in Table 3.

In Fig. 6 the normalized engineering stress 𝐹∕(𝑆0𝜏0) is plotted against the normalized width extension −𝛥𝑊 ∕𝑊0. The predictions
of the model without regularization in Fig. 6(a) are compared to the predictions with strain gradient regularization in Fig. 6(b). At
small strains all meshes produce identical results regardless of regularization. In this regime gradients of plastic strain are absent
hence no size effects due to gradients arise. At large strains the coarse meshes display spurious oscillations of stress and strain due to
insufficient mesh refinement in the region of interest. Nevertheless, no convergence is attained when mesh size is decreased in the
post-localization regime in the absence of gradient contributions. On the contrary, when regularization is active, the localization of
plastic strain is balanced by gradient-induced hardening. Convergence of numerical stress–strain curves with respect to mesh density
is thus achieved with the strain gradient plasticity model as expected.

Fig. 7 displays the fields of the normalized intervoid distance 𝜒 which is the relevant damage variable during coalescence. 𝜒
strongly localizes in the necked region for both conventional and strain gradient porous crystal plasticity. It can be noted that with
a conventional plasticity theory, i.e. not accounting for strain gradient hardening, the most dense mesh displays the most localized
damage field. When mesh size is decreased a smaller volume needs thus to be completely damaged to reach failure. This explains
why less energy is required for failure when mesh size is decreased and the absence of convergence with mesh size reduction. In
contrast, with the strain gradient regularization, the damage variable spans over a similar volume for the five different meshes.
Therefore macroscopic stress–strain curves are nearly mesh-size independent. Even though the macroscopic stress vs strain curves
and the damage fields are almost mesh-size independent with the strain gradient plasticity model, the local field of the damage
15



Journal of the Mechanics and Physics of Solids 156 (2021) 104606J.-M. Scherer et al.
Fig. 6. Stress vs normalized width reduction for conventional (a) and strain gradient (b) porous single crystal plasticity for the several mesh densities. Vertical
dashed lines represent the strain level at which contours of damage variable 𝜒 are plotted in Fig. 7.

variable 𝜒 still localizes ultimately to the thickness of one Gauss point. Eventually a one-element-thick discrete crack is nucleated
in the middle of the specimen and propagates towards both edges of the specimen.

5. Fracture toughness of porous crystals

5.1. Specimen geometry, mesh and boundary conditions

A CT specimen geometry is meshed with a single element across the thickness (along 𝑿 3). The notch front of the CT specimen
is located at 𝑋1 = 𝑎0. The notch is infinitely sharp, so that the notch radius is equal to zero. A vertical displacement 𝑈𝐺

2 (𝑡) is applied
to the nodes denoted by the letter 𝐺 in Fig. 8 (three nodes aligned along direction 𝑿 3 through the thickness of the specimen). Plane
strain conditions are imposed by enforcing 𝑈3 = 0 to all nodes of the finite element mesh. Numerical values of material parameters
used for the simulation of the CT specimen are listed in Table 3. The crack mouth opening displacement (CMOD) is defined as the
vertical opening of the crack as shown in Fig. 8. In contrast to the plane strain tension simulations of previous section, hardening
is now taken into account. The initial porosity 𝑓0 is taken as 1% in most cases and as 0.1% in a few cases that will be indicated.
Similarly the strain gradient modulus 𝐴 is taken equal to 1 N for most simulations apart from a few cases, specified later on, where it
takes values equal to 0.1 and 10 N. These values of 𝐴 can be related to an intrinsic material length scale by introducing the quantity
𝓁𝑐

def
≡

√

𝐴∕𝜏0. The values of 0.1, 1 and 10 N for the parameter 𝐴 correspond to internal lengths 𝓁𝑐 equal to 31.6 μm, 106.6 μm and
316.2 μm respectively. These lengths are to be compared to the specimen characteristic size which is of the order of 𝑊 = 40 mm.
The size of elements within the refined region of the mesh is equal to 𝓁0 = 66.7 μm. The mesh size is therefore sufficient to resolve
strain localization phenomena and obtain mesh size independent results with the strain gradient plasticity model. In the following,
the conventional and strain gradient plasticity versions of the porous single crystal model are compared.

5.2. Single crystal specimens

Figs. 9 and 10 show the accumulated plastic slip fields in the vicinity of the notch front of the CT specimen for several crystal
orientations. Results obtained with the conventional model are shown in Fig. 9 while those obtained with the strain gradient
plasticity model are presented in Fig. 10. The crystal orientations inverse pole figures are shown in Fig. 9(g). In all these simulations,
some extent of crack propagation was reached. With the conventional model, striking variations of crack paths are observed between
different orientations. For two highly symmetric orientations 9(c) and 9(d) the crack propagates straight in the middle symmetry
plane of the specimen. The highly symmetric orientation 9(a), the low symmetry orientation 9(e) and the non-symmetric orientation
9(b) display crack paths that deviate from the middle plane. In the case of orientation 9(e) the crack starts to propagate out of the
middle plane and later bifurcates back to an horizontal plane of propagation. Orientations 9(f) displays the most serrated crack
path. For this orientation the crack oscillates around the middle symmetry plane of the specimen.

As shown in Fig. 10, crack paths obtained with the strain gradient plasticity model remain closer to the middle plane than those
obtained with the conventional model. Furthermore it is particularly clear from Figs. 9(a), 9(b) and 10(a), 10(b), that the strain
gradient plasticity model predicts much smoother plastic strain fields than the conventional model. This less localized plastic activity
could explain why crack paths predicted by the strain gradient plasticity model are less influenced by the crystal orientation. The
strain gradient regularization indeed prevents intense strain localization from occurring along directions that are preferential for
plastic slip. As a consequence, the role of the applied mechanical loading on the crack path evolution is emphasized at the detriment
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Fig. 7. Field of damage variable 𝜒 at −𝛥𝑊 ∕𝑊0 = 0.4 for conventional (left) and at −𝛥𝑊 ∕𝑊0 = 0.75 for strain gradient (right) porous single crystal plasticity
for the several mesh densities.

of less influence from crystal orientation. Fig. 11 displays the curves of applied load 𝐹 at point 𝐺 against the CMOD. The predictions
of the conventional model are shown in Fig. 11(a) and those of the strain gradient plasticity model in Fig. 11(b). It is recalled that
loading curves obtained with the conventional porous model are mesh size dependent so that presented results are for a given mesh
size. Yet, results with the conventional model already highlight the difference in terms of ductility that exist between different crystal
orientations. Taking strain gradients into account postpones the crack propagation and the associated load decrease. As pictured in
Fig. 10, damage is indeed smeared over several Gauss point layers, thus requiring a larger amount of energy to be supplied in order
to drive the crack forward. Although still significant, the difference of the loading curves and ductility is smaller with the strain
gradient plasticity model than with the conventional model. This observation echos the fact that the strain gradient plasticity model
predicts less serrated and more similar crack paths between crystal orientations than the conventional model does.

The CT single crystal simulations were post-processed in order to determine the crack extension 𝛥𝑎 = 𝑎(𝑡) − 𝑎0, where 𝑎(𝑡) is
the crack length along 𝑿 1 at time 𝑡. The plastic component 𝐽𝑝𝑙 of the fracture toughness 𝐽 was computed according to the ASTM
Standard E1820 (2017) which gives the following expression

𝐽𝑝𝑙 =
𝜂𝑝𝑙𝐴𝑝𝑙
𝐵𝑁𝑏0

(61)

where 𝐴𝑝𝑙 is the plastic part of the area located below the load vs CMOD curves, 𝐵𝑁 = 66.7 μm is the net specimen thickness,
𝑏0 = 𝑊 − 𝑎0 = 15.6mm is the uncracked ligament length and 𝜂𝑝𝑙 = 2 + 0.522𝑏0∕𝑊 = 2.20358. Note that the crack growth correction
proposed in ASTM Standard E1820 (2017) was not applied when computing 𝐽 . Fig. 12 shows the evolution of 𝐽 with the crack
17
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Fig. 8. Finite element mesh of a CT specimen geometry of width 𝑊 = 40mm with initial crack length 𝑎0 = 24.4mm and applied load 𝐹 . The mesh is composed
of 5440 20-node brick elements containing 8 Gauss points each. In the refined region of the mesh, elements are cubes of size 𝓁0 = 66.7 μm.

extension 𝛥𝑎 for the different single crystal specimens. The predictions of the conventional model are shown in Fig. 12(a) and those
of the strain gradient plasticity model in Fig. 12(b). An important difference between crystal orientations is also observed. The
less ductile orientations display a nearly flat evolution of 𝐽𝑝𝑙 with the crack extension. On the contrary, orientations which display
appreciable ductility show a fast increase of 𝐽𝑝𝑙 with 𝛥𝑎. For all orientations, the strain gradient plasticity model predicts a larger
value of 𝐽𝑝𝑙 at initiation of crack propagation (𝛥𝑎 > 0) than the conventional model. In addition, the increase of 𝐽𝑝𝑙 with 𝛥𝑎 is
steeper with the strain gradient plasticity model.

In order to quantify simultaneously the effect of the void volume fraction and the internal length, [100]-[010]-[001] single crystal
CT specimens with initial porosity 𝑓0 = 0.1% and 1% and with strain gradient modulus 𝐴 = 0.1 N, 1 N and 10 N were simulated. The
fields of damage variable 𝜒 defined at Eq. (33) for the specimen with the initial porosity of 1% are shown in Fig. 13. It can be noticed
that even a very small internal length (e.g. 𝐴 = 0.1 N corresponding to 𝓁𝑐 =31.6 μm) can significantly affect the crack path. The mesh
size is indeed small enough to capture strain gradient effects at this scale. For the conventional model’s prediction in Fig. 13(a) and
the strain gradient prediction with 𝐴 = 0.1 N in Fig. 13(b), the crack paths are not straight. Nevertheless the conventional model
displays a crack initially bifurcating towards the bottom of the specimen, while the strain gradient plasticity model leads to a crack
propagating towards the top of the specimen. As the internal length increases the crack path becomes straight (see Figs. 13(c) and
13(d)). Simulations with the lower initial porosity of 0.1% (not shown here for conciseness) display a straight crack path whatever
the internal length, even for the conventional model. A possible reason for this observation is that a large initial porosity allows
to reach sooner the critical stress for the onset of coalescence. Regions located out of the horizontal symmetry plane can hence
undergo coalescence more easily and lead to crack bifurcation. However, it cannot be excluded that the bifurcation observed with
the conventional model and the strain gradient plasticity model at very small internal length is not an artefact due to the dependency
to the finite element discretization.

For the small internal length, the damage variable does not spread much around the crack lips and front. In contrast, the larger
internal length leads to damage fields smeared over multiple rows above and below the crack lips, but also smeared over multiple
columns of elements ahead of the notch front. It is important to recall that the smoothing of the damage variable profile observed
here is an indirect result of the strain gradient regularization of the accumulated plastic slip variable 𝛾𝑐𝑢𝑚. The damage variable is
not explicitly regularized in this model. In the context of brittle fracture the damage variable is often used as the variable bearing
gradient effects (Aslan et al., 2011; Lindroos et al., 2019). Recently Lindroos et al. (2020) compared brittle fracture models based on
the regularization of accumulated slip, or accumulated damage or an additive combination of both. In the context of ductile fracture,
a damage variable was used for regularization for instance in Reusch et al. (2003), Ramaswamy and Aravas (1998) and Håkansson
et al. (2006), which was either the porosity or the effective porosity. However, as already discussed by Nguyen et al. (2020), at the
final stage prior to failure, non-local models based on a damage indicator must satisfy that local and non-local variables eventually
coincide. Decreasing internal lengths were considered in Poh and Sun (2017) to overcome this shortcoming.

Fig. 14 shows the load vs CMOD and 𝐽𝑝𝑙 vs 𝛥𝑎 curves for the different internal lengths and initial porosities. As expected, as the
strain gradient modulus increases, the CT specimen displays an increased ductility characterized by a larger maximum load and a
slower load decrease in Fig. 14(a). This behaviour translates into a larger value of 𝐽𝑝𝑙 at onset of crack propagation (𝛥𝑎 > 0) and a
steeper rise of 𝐽𝑝𝑙 with the crack extension in Fig. 14(b). In addition, a smaller initial porosity leads also to a greater ductility. The
conventional model with an initial porosity of 𝑓 = 0.1% predicts a quasi-brittle behaviour similarly to what predicts the same model
18
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Fig. 9. Accumulated plastic slip fields in the vicinity of single crystal CT specimen notch front for several initial crystal orientations obtained with the conventional
porous crystal plasticity model. The last computed time steps are shown.
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Fig. 10. Accumulated plastic slip fields in the vicinity of single crystal CT specimen notch front for several initial crystal orientations obtained with the strain
gradient porous crystal plasticity model (𝐴 = 1 N). The last computed time steps are shown.

Fig. 11. Load vs CMOD for conventional (a) and strain gradient (b) porous single crystal CT specimens.
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Fig. 12. 𝐽𝑝𝑙 plastic component of 𝐽 vs crack extension 𝛥𝑎 for conventional (a) and strain gradient (b) porous single crystal CT specimens.

Fig. 13. Fields of damage variable 𝜒 (see Eq. (33)) for conventional and strain gradient porous [100]-[010]-[001] single crystal CT specimens with an initial
porosity of 1%. The last computed time step is shown.

with an initial porosity of 1%. Nevertheless, a higher load is reached before onset of crack propagation with 𝑓0 = 0.1%. The value
of 𝐽𝑝𝑙 reached at onset is hence much larger for an initial porosity of 0.1% than for an initial porosity of 1%. These results echo the
study of Pardoen and Hutchinson (2003) who have shown that the fracture toughness is a decreasing function of the initial void
volume fraction and an increasing function of the intervoid distance. In the present work, the strain gradient modulus 𝐴 controls
the internal length of the material. Therefore, it can be put in parallel to the characteristic intervoid distance 𝑋0 used by Pardoen
and Hutchinson (2003).

To study the propagation of cracks at the single crystal scale is a difficult task for materials such as austenitic stainless steels
with conventional grain sizes of a few tenth of microns. The reason for that is that the standardized specimens sizes are usually
much larger than the grain size. For such polycrystal specimens, the crystal orientation can be measured on the surface but can
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Fig. 14. Load vs CMOD (a) and 𝐽𝑝𝑙 vs crack extension 𝛥𝑎 (b) for conventional and strain gradient porous single crystal [100]-[010]-[001] CT specimen with initial
porosity 𝑓0 of 0.1% and 1.0%.

hardly be obtained in the bulk of the specimen with non-destructive methods that would allow for subsequent mechanical testing.
In addition the fact that such specimens are composed of numerous grains and grain boundaries makes it difficult to interpret the
role of the crystal anisotropy on ductility and toughness. These shortcomings can be overcome for instance by designing model
experiments. Small scale experiments can be considered in order to focus the observation on a few number of grains. However such
kind of investigations do not come without additional complexity, since they involve the use of small scale experimental techniques
and size effects can arise when the specimen size gets closer to the characteristic size of the deformation mechanisms. Alternatively,
model materials which can naturally grow large grains (e.g. aluminum alloys) can be used to produce specimens composed of a few
number of grains. These specimens can in turn be used to unravel the role of the crystal anisotropy in the ductile failure process.
Studies of this kind for ductile materials are very scarce in the literature and are therefore work in progress by the authors in order
to confront their numerical results to experimental data. Some studies have investigated experimentally the crack-tip stress–strain
field in ductile materials (Shield and Kim, 1994; Kysar and Briant, 2002; Marchal et al., 2006) and validated the associated theory
of stress sectors developed by Rice (1987). Following on from this work, current efforts are thus devoted to the characterization of
the role of crystal plasticity on void growth and coalescence at the crack tip in order to assess the influence of crystal orientation
on fracture toughness.

5.3. Oligo-crystal CT specimen

In order to investigate the interaction between the crack front and grain boundaries, a CT specimen composed of an artificial grain
microstructure is studied. The specimen is divided in six rectangular grains along the 𝑿 1 direction. Grain boundaries are therefore
orthogonal to the direction of crack propagation. Fig. 15 shows the propagation of a crack in this ideal oligo-crystal specimen with
the conventional and the strain gradient plasticity models. Each color shown in Figs. 15(a) and 15(c) indicates a different initial
crystal orientation, while Figs. 15(b) and 15(d) display the accumulated plastic slip contour in the polycrystal specimen. Initial
crystal orientations of the six different crystals where selected randomly and are presented in the form of Euler angles in Table 4
following the Bunge convention (ZXZ). The inverse pole figures of the six grains are shown in Fig. 15(e). With the conventional
model, the crack propagates first out of the middle plane when advancing in grain #2. Then, after reaching the grain boundary
between grains #2 and #3, the crack moves straight along a horizontal plane until it reaches a second grain boundary. Ultimately,
the crack bifurcates again when it starts propagating in grain #4. In grains #2 and #4, in which the crack path is slanted with respect
to the specimen horizontal symmetry plane, large levels of accumulated plastic slip are reached and cover wide areas above and
below the crack lips. On the contrary, in grain #3, in which the crack propagates horizontally, much less plastic activity is present
in the vicinity of the crack lips. This observation demonstrates again that all crystal orientations are not equivalent in terms of crack
propagation. The crack path predicted with the strain gradient plasticity model is also slanted in grain #2, although the angle with
respect to the horizontal axis is smaller than with the conventional model. The plastic activity covers an even wider area below
and above the crack lips as compared to the conventional model. Interestingly, a pronounced shielding of plastic activity seems to
occur at the grain boundary between grains #2 and #3. In addition, the plastic field is much more non-symmetric with respect to
the horizontal symmetry plane than the plastic field predicted by the conventional model.

The load vs CMOD and 𝐽𝑝𝑙 vs 𝛥𝑎 graphs shown in Fig. 16 display three very distinct regimes for the conventional model. A
different color is used in these plots in order to indicate the grain in which the crack front is located at the current time step. After
the elastic phase, the two grains displaying substantial plastic activity are characterized by regimes during which the load increases
or decreases slowly with the CMOD. During these two regimes the crack propagates at a slow pace and the 𝐽𝑝𝑙 vs 𝛥𝑎 curves are
thus steep. On the other hand, in between grain #2 and grain #4 the crack propagates at a fast rate in grain #3. The load drops
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Fig. 15. Accumulated plastic slip fields in the vicinity of a polycrystal CT specimen notch front obtained with the conventional and strain gradient porous
crystal plasticity model. The last computed time step is shown. In Figures (a) and (c) each color represents a different initial crystal orientation reported in the
inverse pole figure (e).

therefore rapidly and the plastic component of 𝐽 increases slowly. The strain gradient plasticity model predicts a tougher mechanical
behaviour of the polycrystal. Since the crack displays more blunting than with the conventional model, the crack extension 𝛥𝑎 is
smaller. The applied load and measured values of 𝐽𝑝𝑙 are consequently larger with the strain gradient plasticity model.

The microstructure used here is obviously very simplistic and is not meant to be representative of any real material. Nevertheless,
such an idealized situation allows to highlight more precisely the paramount role of the crystal plasticity anisotropy on the
crack propagation and orientation-dependent ductility. Although it is not the objective of the present work, such oligo-crystal
microstructure could, to some extent, be relevant for materials obtained by directional solidification such as for example columnar
nickel-based superalloys (Giamei, 2013; Coudon et al., 2019). More importantly, with the advent of recent manufacturing processes
(for instance additive manufacturing) design of complex microstructures are now within reach. The model and simulations presented
in this work are a step forward towards designing and optimizing microstructures in order to fulfil engineering needs. Future work
will be devoted to the simulation of real microstructures and to the comparison of numerical predictions with experimental data.
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Table 4
Euler angles (𝜙1 , 𝛷, 𝜙2) in degrees defining the initial crystal
orientation of the six grains of the polycrystal CT specimen.

Grains 𝜙1 𝛷 𝜙2

#1 ∙ 3.48 53.17 315.41
#2 ■ 310.96 84.69 136.94
#3 ⧫ 335.60 112.22 83.99
#4 ◀ 76.48 40.56 139.94
#5 ▶ 19.49 111.84 171.00
#6 ▴ 34.35 34.17 267.59

Fig. 16. Load vs CMOD (a) and 𝐽𝑝𝑙 vs crack extension 𝛥𝑎 (b) for porous oligo-crystal CT specimens.

5.4. 3D single crystal specimen

Finally, a 3D [100]-[010]-[001] single crystal CT specimen was simulated. In this example, the plane strain boundary condition
(𝑈3 = 0) was relaxed. The specimen thickness is equal to 12.5mm. The 3D CT specimen mesh, shown in Fig. 17(a), is refined
in the area of interest in order to have 18 elements across the thickness. The full 3D mesh contains 79980 quadratic elements
composed each of 8 Gauss points and totals 1017249 DOF. An initial porosity of 1% and the same hardening material parameters
as in previous section were used. Figs. 17 shows the finite element mesh, loading curves for the conventional and strain gradient
plasticity models and several mechanical fields in the horizontal symmetry plane of the specimen for the conventional model. Since
the stress triaxiality is greater inside the bulk of the specimen than on its surface, a curved crack front is observed as expected. The
undamaged region is separated from the broken region by a layer of few elements undergoing void coalescence. In the broken region
the stress vanishes. Therefore the crack front can also be noticed on the equivalent and mean stress contour plots. Interestingly the
crack path is completely straight in this 3D specimen, while it was slanted with respect to the horizontal axis for the same crystal
orientation in the 2D-plane strain simulation shown in 9(a). The large number of elements used in these simulations suggests that
simulations of reasonably large and densely discretized microstructures are within reach with affordable computation times.

6. Conclusions

The main achievements and conclusions of this work can be listed as follows:

• A strain gradient porous crystal plasticity model was developed in a thermodynamically consistent framework at finite strains.
The strain gradient approach relies on a Lagrange multiplier based extension of the free energy potential in order to account
for gradients of an accumulated plastic slip scalar field.

• A new criterion for void coalescence onset in single crystals was proposed and validated by means of porous unit-cell
simulations. The criterion relies on a revisited version of Thomason’s criterion, in which the effective coalescence flow stress
is implicitly defined by the stress satisfying a GTN criterion.

• An alternative formulation to model void coalescence involving an effective porosity 𝑓 ∗ was compared to the plastic mechanism
based void coalescence model. Both approaches were tested on single Gauss point simulations at fixed triaxiality and up
to failure. An extension of the plastic mechanism based model was shown to enable control of the softening rate in the
post-coalescence regime.
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Fig. 17. Finite element mesh composed of 79980 quadratic elements (1017249 degrees of freedom) (a), 𝐽𝑝𝑙 vs 𝛥𝑎 for conventional and strain gradient models
(b) and contour plots in the crack plane (c–f) for a three dimensional single crystal CT specimen with the conventional model. The crystal directions [100], [010]
and [001] initially coincide with the orthonormal basis vectors 𝑿

1
, 𝑿

2
and 𝑿

3
respectively.

• The convergence with respect to mesh size when gradient terms are accounted for was demonstrated in simulations of a plate

under plane strain tensile loading conditions. For sufficiently dense meshes the macroscopic stress vs strain curves and local

damage fields become indeed mesh size insensitive.
• First of a kind simulations of ductile fracture in porous single- and oligo-crystal plane strain CT-like geometries were performed.

The strain gradient plasticity model allows to regularize the width of the damaged area at the periphery of the crack.
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• A strongly anisotropic orientation-dependent failure behaviour is highlighted. Ductility and fracture toughness display a strong
dependence on crystal orientation. Toughest orientations display the highest level of plastic activity in the vicinity of the crack
lips and front.

• Crack bifurcation is observed with the conventional model for symmetric and non-symmetric crystal orientations. Decreasing
the initial porosity or increasing the internal length scale in the strain gradient plasticity model leads to straight cracks for all
orientations.

• Large scale simulations of a 3D single crystal CT specimen suggest that simulations of polycrystal microstructures are within
reach with a satisfying resolution of intragranular mechanical fields.

The model and first simulations presented in this work open the way to the regularized simulation of ductile fracture in
olycrystal microstructures. The framework which was developed can inherently account for the anisotropy due to crystal plasticity.
nisotropy due to morphological or crystallographic texture could also be incorporated without additional difficulties. The prospects
f this work include the acquisition of experimental data at the scale of the microstructure. Microscale digital image correlation or in

situ tomography tests would be appropriate techniques to obtain data to which numerical results could be confronted to. Moreover,
numerical performance of implementation of this sort of models could still be enhanced. Special attention should be given to the
treatment of crystal plasticity constitutive equations, to the conditioning of the differential system in the context of strain gradient
plasticity and to the handling of fully damaged elements within the framework of fracture. These issues are possible tracks to further
explore in order to enhance the computational efficiency of this numerical tool.
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Appendix. Single crystal porous unit-cell boundary conditions

Periodic porous unit-cell finite element simulations are performed by prescribing a macroscopic deformation gradient 𝑭∼ to a cubic
cell containing an initially centered spherical void such that initial porosity 𝑓0 = 1%. Periodic displacement boundary conditions
are applied

𝒖 = 𝑭∼ .𝒙 + 𝒗 𝒗 (𝒙 +) = 𝒗 (𝒙 −) 𝑻 (𝒙 +) = −𝑻 (𝒙 −) (A.1)

where 𝒖 is the displacement field and 𝒗 the periodic fluctuation. The vectors 𝒙 + and 𝒙 − denote homologous nodes on opposite
aces of the unit-cell. In keeping with Ling et al. (2016) the macroscopic deformation gradient 𝑭∼ and first Piola–Kirchhoff stress 𝑺∼
re related to their microscopic counterpart by volume averages

𝑭∼ = 1
𝑉 𝑡𝑜𝑡
0

∫𝐷0

𝑭∼ d𝑉 𝑺∼ = 1
𝑉 𝑡𝑜𝑡
0

∫𝐷0

𝑺∼ d𝑉 (A.2)

where 𝑉 𝑡𝑜𝑡
0 denotes the total volume (including the void) of the unit-cell domain 𝐷0 in the reference configuration. It follows that

the macroscopic Cauchy stress is given by

𝝈∼ = 1
𝑉 𝑡𝑜𝑡 ∫𝐷

𝝈∼d𝑉 = 1

det
(

𝑭∼
)𝑺∼ .𝑭∼

𝑇
(A.3)

where 𝑉 𝑡𝑜𝑡 denotes the total volume (void included, with suitable extension of the fields within the voids) of the unit-cell domain
𝐷 in the current configuration. Macroscopic hydrostatic (𝜎𝑚), equivalent (𝜎𝑒𝑞) stresses are defined by

𝜎 =
tr (𝝈∼ ) 𝜎 =

√

3𝝈′ ∶ 𝝈′ 𝝈′ = 𝝈 − 𝜎 𝟏 (A.4)
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𝑚 3 𝑒𝑞 2 ∼ ∼ ∼ ∼ 𝑚∼
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Only axisymmetric loading conditions are considered for which the macroscopic stress tensor and stress triaxiality ratio can be
written as

𝝈∼ =
⎛

⎜

⎜

⎝

𝜎11 0 0
0 𝜂𝜎11 0
0 0 𝜂𝜎11

⎞

⎟

⎟

⎠

𝑇 =
𝜎𝑚
𝜎𝑒𝑞

=
1 + 2𝜂
3(1 − 𝜂)

(A.5)

The simulations are performed at fixed macroscopic Cauchy stress triaxialities 𝑇 ∈ {1; 1.5; 2; 3}. The reader is referred to Ling et al.
(2016) for the numerical implementation of such a condition.
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