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Mines ParisTech

The last royal engineering school created in 1783

180 “general” engineers and 100 PhD students graduate each year

250 permanent researchers and professors

Research towards industry in: Materials sciences, Geosciences, Applied
mathematics, Energy, Social sciences (Economics, sociology...)

Several locations: Luxembourg garden, Evry, Fontainebleau,
Sophia-Antipolis

Member of ParisTech: A network of 10 graduate schools

Member of PSL Research University, a community of 10
universities/schools
Paris Sciences Lettres, 17000 students, 4500 researchers
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Theory and practice

Déodat de Dolomieu gave its name to the Dolomites, a mountain range
of northeastern Italy, to its building sedimentary rock, dolomite, and to a
crater of the volcano Piton de la Fournaise.
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René-Just Haüy: Founder of crystallography
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Mineralogy museum

One of the largest collection in the world: 100000 samples, 4000 exposed
(British museum, Freiberg museum)
in connection with Museum d’histoire naturelle
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A president in the mineralogy museum
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A president in the mineralogy museum

8 / 17



A president in the mineralogy museum
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A president among the engineering students
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Henry Le Chatelier
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Maurice Allais: Nobel prize in economic sciences
(1988)

M. Allais wanted a Nobel prize in Physics!
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Local approach to fracture

Fracture mechanics in nuclear engineering and aeronautics: Role of
material microstructure

Dominique François, André Pineau and André Zaoui
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Material modelling and computational mechanics

Georges Cailletaud and Jean-Louis Chaboche
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Z–set Non-linear material & structure analysis suite

www.zset-software.com
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Mechanics and materials at the age of Big Data

L'accès'aux'données'est'plus'facile'que'

résoudre'des'équa6ons'de'bilan.'

Full order models (FOM) – Reduced order models (ROM) – Data science
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Thanks to Carlo Sansour!

with Gérard Maugin (CISM course in Udine, Italy, 2007)
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Modelling the mechanical behaviour of nickel
base foams for DPF applications
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Processing of nickel foams
from PU template
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Microstructure of superalloy foam
composition close to IN625
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Microstructure of superalloy foam
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Foam sheet axes and cell shape

a ≤ b ≤ c
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3D image analysis from X–ray microtomography
experiments at ESRF
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Cell shape in PU580 template foam
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Cell shape in Ni580 foam
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Cell shape in A580 foam
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Evolution of cell shape during the process
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Evolution of cell orientation during the process
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Deformation of PU foam
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Evolution of cell orientation after deformation

x y

z
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Evolution of cell orientation after deformation

x y

z
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Evolution of cell orientation after deformation
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Evolution of strut length after deformation

Microstructure evolution during material processing and deformation 23/68
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Anisotropic Compressible Continuum Plasticity
Model

Yield criterion

f (σ∼) = σeq − R, σeq =

„
3

2
Cσ∼

dev : H∼∼
: σ∼

dev + F (P∼ : σ∼)2

« 1
2

[H] =

26666664
ha 0 0 0 0 0
0 hb 0 0 0 0
0 0 hc 0 0 0
0 0 0 hd 0 0
0 0 0 0 he 0
0 0 0 0 0 hf

37777775 , [P] =

24 p 0 0
0 q 0
0 0 r

35

Normality rule ε̇∼
p = ṗ ∂f

∂σ∼
= ṗ

“
3
2
CH∼∼

: σ∼
dev + F (P∼ : σ∼)P∼

”
Consistency condition (cumulative plastic strain p)

ṗ =

∂f

∂σ∼
: E∼∼

: ε̇∼

∂f

∂σ∼
: E∼∼

:
∂f

∂σ∼
+

∂R

∂p

Nonlinear isotropic hardening

R = R0 + Hp + Q(1− exp(−bp))
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Metal foam as a micromorphic continuum : The
microfoam model

Degrees of freedom at material point

displacement vector u , microdeformation tensor χ
∼

after [Mindlin, 1964] [Eringen, 1964]
Deformation measures

strain tensor ε∼ = (u ⊗∇ + ∇⊗ u )/2

relative deformation tensor e∼ = u ⊗∇− χ
∼

microdeformation gradient K
∼

= χ
∼
⊗∇

Power density of internal forces / generalized stress tensors

p(i) = σ∼ : ε̇∼+ s∼ : ė∼+ M
∼

:̇K̇
∼

Balance of momentum (σ∼ + s∼).∇ = 0
Balance of micromorphic momentum M

∼
.∇ + s∼= 0

Boundary conditions (traction and double traction vectors)

t = (σ∼ + s∼).n , T∼ = M
∼

.n

Variational formulation for finite element implementationZ
V

p(i) dV =

Z
∂V

“
t .ṅ + T∼ : χ̇

∼

”
dS
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The microfoam model : Constitutive equations

Strain partition

ε∼ = ε∼
e + ε∼

p, e∼ = e∼
e + e∼

p, K
∼

= K
∼

e + K
∼

p

Linear elasticity

σ∼ = c∼∼
: ε∼

e , s∼ = a∼∼
: e∼

e , M
∼

= A∼∼∼
:̇K
∼

e

simplified moduli as proposed by [Shu et al., 1999] M
∼

= l2c c∼∼
: K
∼

e

characteristic length lc
when ||a∼∼|| is very large, and if e∼

p = 0, then u ⊗∇ ' χ
∼

(second

gradient theory)
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The microfoam model : Constitutive equations

Yield criterion
f (σ∼) = σeq − R

σeq =

(
3

2
Cσ∼

dev : H∼∼
: σ∼

dev + F (P∼ : σ∼)2 + a1s∼
dev : s∼

dev + a2s∼
dev : s∼

devT + a3(Tr s∼)
2

+b1M∼ :̇M
∼

) 1
2

Normality rule

ε̇∼
p = ṗ

∂f

∂σ∼
, ė∼

p = ṗ
∂f

∂s∼
, K̇

∼

p
= ṗ

∂f

∂M
∼

Microfoam: a1 = a2 = a3 = b1 = 0, ||a∼∼||very large
constrained microdeformation (second gradient), linear relationship
between gradient of microdeformation and hyperstress tensor
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Microstrain continuum

degrees of freedom (u ,χ
∼

s)
strain measures :

(ε∼, ε∼− χ
∼

s ,χ
∼

s ⊗∇)

σ∼ = C∼∼
: (ε∼− ε∼

p)

s∼ = b(ε∼− χ
∼

s)

S
∼

= Aχ
∼

s ⊗∇

div (σ∼ + s∼) = 0

div S
∼

+ s∼ = 0

Sijk,k + sij = 0

Aχs
ij ,kk + b(εij − χs

ij) = 0

εij = χs
ij − l2∆χs

ij

Link with “implicit
gradient–enhanced

elastoplasticity models”
[Engelen et al., 2003]

Boundary conditions :
(ui , χ

s
ij) or

(σij + sij)nj ,Sijknk
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Fracture of nickel foams
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Fracture anisotropy of nickel foams
prediction of fracture stress for tension along TD
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Tension of central crack nickel foam plate

crack length : 10 mm
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Simulation with a classical compressible plasticity
model
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Simulation with a classical compressible plasticity
model
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Simulation with the micromorphic foam model
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Damage zone size
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Convergence of the load–displacement curve
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Fracture anisotropy of nickel foams
prediction of fracture stress for tension along TD
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Ductility of nickel and alloyed foams

virtual machining a strut tensile/bending specimen out of the foam
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Ductility of nickel and alloyed foams

virtual machining of a strut specimen out of the foam
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Ductility of nickel and alloyed foams
virtual tensile testing of a single strut
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Ductility of nickel and alloyed foams

actual fracture surface of a strut
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Behaviour of Nickel foils

elastoplastic model with linear isotropic hardening
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Computing one real single cell
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Computing one real single cell
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Computing one real single cell
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Mesh sensitivity
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Prediction of elastoplastic properties

Young’s modulus (GPa) RD TD ND ERD/ETD

simulation 1091 319 432 3.42
experiment 177 88 2

Micromechanical approach 62/68



Eight cell volume element

3 600 000 DOF – 36 GB – 300 hours

Micromechanical approach 63/68



Eight cell volume element

3 600 000 DOF – 36 GB – 300 hours – red: p > 0.03
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Eight cell volume element

3 600 000 DOF – 36 GB – 300 hours – red: p > 0.03
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Eight cell vs. one cell volume element

=⇒ Statistical analysis needed to confirm...
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Perspectives

Deformation of cells by 3D
microtomography (3D cor-
relation techniques)

Systematic determination of RVE size for elastoviscoplastic
properties of nickel base foams: cyclic loading, creep...

effect of BCs, statistical approach, parallel computing...
Conclusions 68/68


