Mines ParisTech A short personal view

Samuel Forest Centre des Matériaux, Mines ParisTech CNRS, PSL Research University, France

Mines ParisTech

- The last royal engineering school created in 1783
- 180 "general" engineers and 100 PhD students graduate each year
- 250 permanent researchers and professors
- Research towards industry in: Materials sciences, Geosciences, Applied mathematics, Energy, Social sciences (Economics, sociology...)
- Several locations: Luxembourg garden, Evry, Fontainebleau, Sophia-Antipolis
- Member of ParisTech: A network of 10 graduate schools
- Member of PSL Research University, a community of 10 universities/schools
 Paris Sciences Lettres, 17000 students, 4500 researchers

Theory and practice

Déodat de Dolomieu gave its name to the Dolomites, a mountain range of northeastern Italy, to its building sedimentary rock, *dolomite*, and to a crater of the volcano *Piton de la Fournaise*.

René-Just Haüy: Founder of crystallography

ESSAI D'UNE THÉORIE sur la structure DES CRYSTAUX,

APPLIQUÉE A PLUSIEURS GENRES DE SUBSTANCES CRYSTALLISÉES;

Par M. l'Abbé HAÜY, de l'Académie Royale des Sciences, Profeffeur d'Humanités dans l'Univerfité de Paris.

A PARIS, Chez Goguž & Nže DE LA ROCHELLE, Libraires, Quai des Augufins, près le Pont Saint-Michel.

M. DCC. LXXXIV. sous le privilége de l'AcAdémie.

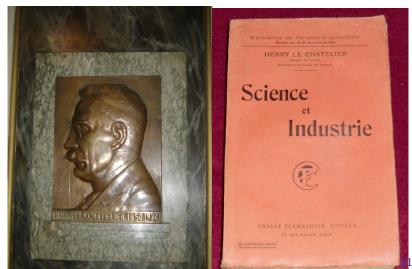
Mineralogy museum

One of the largest collection in the world: 100000 samples, 4000 exposed (British museum, Freiberg museum) in connection with *Museum d'histoire naturelle*

A president in the mineralogy museum

A president in the mineralogy museum

A president in the mineralogy museum

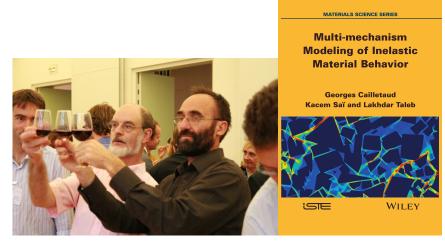


A president among the engineering students

Henry Le Chatelier

Maurice Allais: Nobel prize in economic sciences (1988)

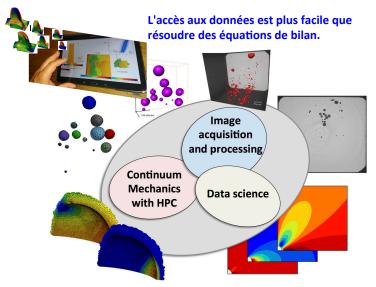
M. Allais wanted a Nobel prize in Physics!


Local approach to fracture

Fracture mechanics in nuclear engineering and aeronautics: Role of material microstructure


Dominique François, André Pineau and André Zaoui

Material modelling and computational mechanics


Georges Cailletaud and Jean-Louis Chaboche

Z-set Non-linear material & structure analysis suite

www.zset-software.com

Mechanics and materials at the age of Big Data

Full order models (FOM) - Reduced order models (ROM) - Data science

Thanks to Carlo Sansour!

with Gérard Maugin (CISM course in Udine, Italy, 2007)

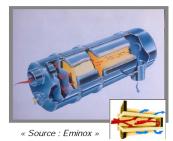
Modelling the mechanical behaviour of nickel base foams for DPF applications

A. Burteau, T. Dillard, J.D. Bartout, F. N'Guyen, S. Forest, Y. Bienvenu

Centre des Matériaux/UMR 7633 Mines Paris – ParisTech /CNRS Samuel.Forest@ensmp.fr

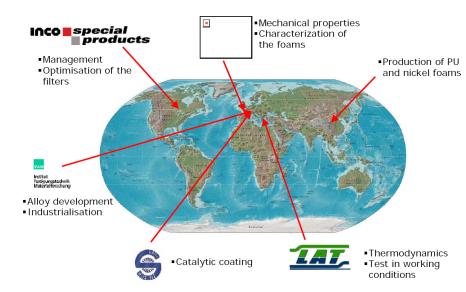
S. Saberi

INCO SP, Mississauga, Canada



Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

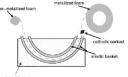

Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

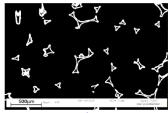
- Environment : protocol of Kyoto (1997)
- · Petrol engine vs. Diesel engine
- Reduction of greenhouse gas
 - => increase in the rejection of particles
- EURO V standard in 2008
- · Necessity of the PF: technology « ceramics » vs. « metals »
- · Advantage of metallic PF:
 - better catalytic efficiency
 - easier designed
 - easier recycled

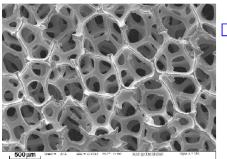
Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

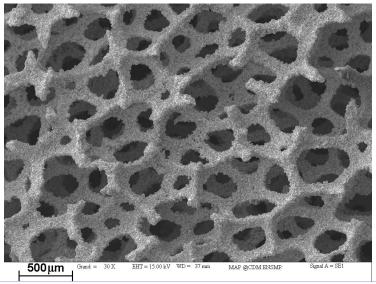

Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size


Processing of nickel foams

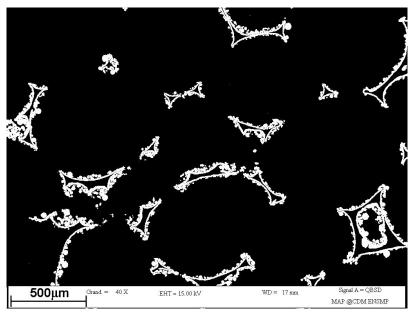

from PU template

electrolyte tank



Microstructure evolution during material processing and deformation

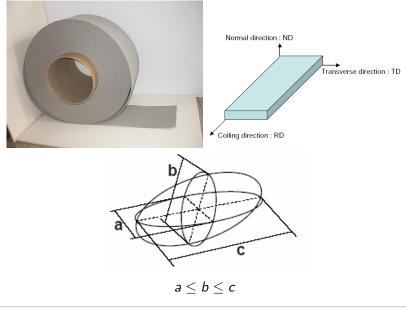
8/68


Microstructure of superalloy foam composition close to IN625

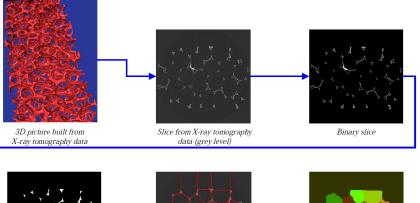
Microstructure evolution during material processing and deformation

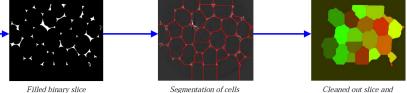
9/68

Microstructure of superalloy foam

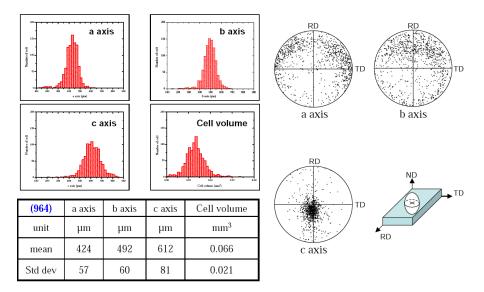


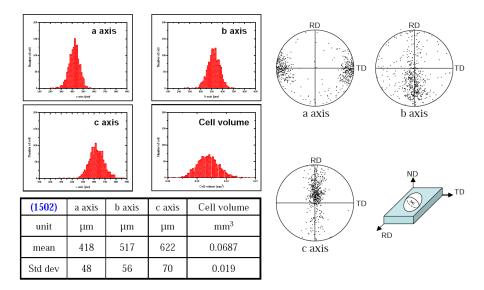
Microstructure evolution during material processing and deformation 10/68


Introduction

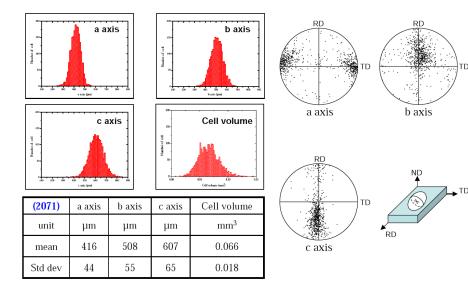

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

Foam sheet axes and cell shape


3D image analysis from X-ray microtomography experiments at ESRF

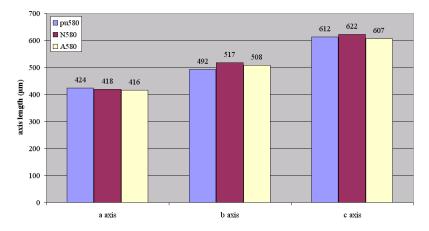

Microstructure evolution during material processing and deformation 13/68

Cell shape in PU580 template foam

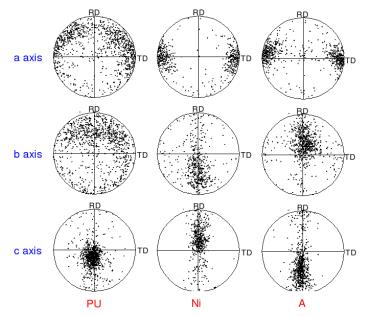

Microstructure evolution during material processing and deformation 14/68

Cell shape in Ni580 foam

Microstructure evolution during material processing and deformation 15/68


Cell shape in A580 foam

Microstructure evolution during material processing and deformation 16/68


Evolution of cell shape during the process

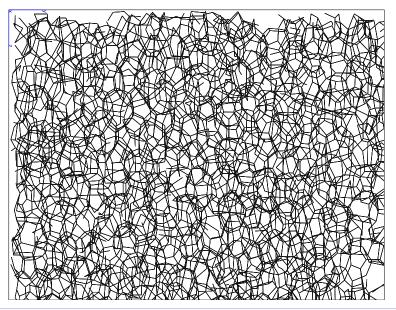
Microstructure evolution during material processing and deformation 17/68

Evolution of cell orientation during the process

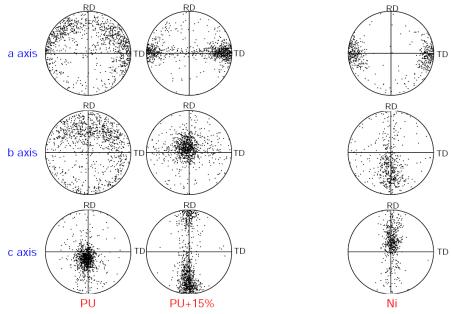
Microstructure evolution during material processing and deformation

18/68

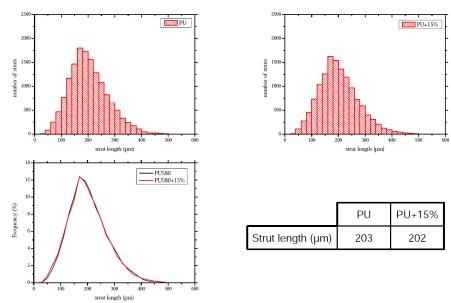
Deformation of PU foam


Microstructure evolution during material processing and deformation 19/68

Evolution of cell orientation after deformation


Microstructure evolution during material processing and deformation

Evolution of cell orientation after deformation


Microstructure evolution during material processing and deformation 21/68

Evolution of cell orientation after deformation

Microstructure evolution during material processing and deformation

Evolution of strut length after deformation

Plan

Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

5 Conclusions

Plan

Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

5 Conclusions

Anisotropic Compressible Continuum Plasticity Model

Yield criterion

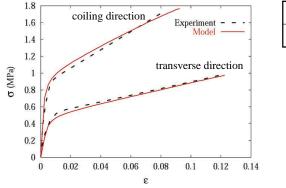
$$f(\underline{\sigma}) = \sigma_{eq} - R, \quad \sigma_{eq} = \left(\frac{3}{2}C\underline{\sigma}^{\text{dev}} : \underbrace{H}_{\infty} : \underline{\sigma}^{\text{dev}} + F(\underline{P} : \underline{\sigma})^2\right)^{\frac{1}{2}}$$
$$[H] = \begin{bmatrix} h_a & 0 & 0 & 0 & 0 & 0\\ 0 & h_b & 0 & 0 & 0 & 0\\ 0 & 0 & h_c & 0 & 0 & 0\\ 0 & 0 & 0 & h_d & 0 & 0\\ 0 & 0 & 0 & 0 & h_e & 0\\ 0 & 0 & 0 & 0 & 0 & h_f \end{bmatrix}, \quad [P] = \begin{bmatrix} p & 0 & 0\\ 0 & q & 0\\ 0 & 0 & r \end{bmatrix}$$

Normality rule

$$\dot{\varepsilon}^{p} = \dot{p} \frac{\partial f}{\partial \sigma} = \dot{p} \left(\frac{3}{2} C \underbrace{\mathsf{H}}_{\simeq} : \sigma^{\text{dev}} + F(\underbrace{\mathsf{P}}_{\sim} : \sigma) \underbrace{\mathsf{P}}_{\sim} \right)$$

Consistency condition (cumulative plastic strain p)

$$\dot{p} = \frac{\frac{\partial f}{\partial \sigma} : \mathbf{E} : \dot{\mathbf{E}}}{\frac{\partial f}{\partial \sigma} : \mathbf{E} : \dot{\mathbf{E}} : \frac{\partial f}{\partial \sigma} + \frac{\partial R}{\partial p}}$$


Nonlinear isotropic hardening

$$R = R_0 + Hp + Q(1 - \exp(-bp))$$

Phenomenological modelling of plasticity and fracture

Parameter identification

C	F	R ₀ (MPa)	Q (MPa)	b	H (MPa)	h _a	h _b	h _c	h _d	h _e	h _f
1	6,8.10-4	0,30	0,37	3,3	8,17	0,41	1,8	1,75	1,45	1	1

р	q	r		
1	37	23		

Phenomenological modelling of plasticity and fracture

Metal foam as a micromorphic continuum : The microfoam model

Degrees of freedom at material point

displacement vector $\underline{\mathbf{u}}$, microdeformation tensor $\boldsymbol{\chi}$

after [Mindlin, 1964] [Eringen, 1964] Deformation measures

strain tensor $\boldsymbol{\varepsilon} = (\underline{\mathbf{u}} \otimes \boldsymbol{\nabla} + \boldsymbol{\nabla} \otimes \underline{\mathbf{u}})/2$

relative deformation tensor $\mathbf{e} = \mathbf{\underline{u}} \otimes \boldsymbol{\nabla} - \boldsymbol{\chi}$

microdeformation gradient $\mathbf{K} = \chi \otimes \nabla$

Power density of internal forces / generalized stress tensors

$$p^{(i)} = \sigma : \dot{\varepsilon} + \underline{s} : \dot{\underline{e}} + \underline{\underline{M}} : \dot{\underline{K}}$$

Balance of momentum

Balance of micromorphic momentum

Boundary conditions (traction and double traction vectors)

$$\underline{\mathbf{t}} = (\underline{\sigma} + \underline{\mathbf{s}}) \cdot \underline{\mathbf{n}}, \quad \underline{\mathsf{T}} = \underline{\underline{\mathsf{M}}} \cdot \underline{\mathbf{n}}$$

Variational formulation for finite element implementation

$$\int_{V} p^{(i)} dV = \int_{\partial V} \left(\underline{\mathbf{t}} \cdot \underline{\dot{\mathbf{n}}} + \underline{\mathbf{T}} : \dot{\underline{\mathbf{x}}} \right) dS$$

Phenomenological modelling of plasticity and fracture

 $\begin{aligned} & (\underline{\boldsymbol{\sigma}} + \underline{\mathbf{s}}) \cdot \boldsymbol{\nabla} = \mathbf{0} \\ & \underline{\mathbf{M}} \cdot \boldsymbol{\nabla} + \underline{\mathbf{s}} = \mathbf{0} \end{aligned}$

The microfoam model : Constitutive equations

Strain partition

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{e} + \boldsymbol{\varepsilon}^{p}, \quad \boldsymbol{e} = \boldsymbol{e}^{e} + \boldsymbol{e}^{p}, \quad \boldsymbol{K} = \boldsymbol{K}^{e} + \boldsymbol{K}^{p}$$

Linear elasticity

simplified moduli as proposed by [Shu et al., 1999] $\underline{\mathbf{M}} = l_c^2 \underbrace{\mathbf{c}}_{\simeq} : \underbrace{\mathbf{K}}^e$ characteristic length l_c when $||\underline{\mathbf{a}}||$ is very large, and if $\underline{\mathbf{e}}^p = 0$, then $\underline{\mathbf{u}} \otimes \boldsymbol{\nabla} \simeq \boldsymbol{\chi}$ (second gradient theory)

The microfoam model : Constitutive equations

Yield criterion

$$f(\underline{\sigma}) = \sigma_{eq} - R$$

$$\sigma_{eq} = \left(\frac{3}{2}C\underline{\sigma}^{\text{dev}} : \underbrace{\mathbf{H}}_{\approx} : \underline{\sigma}^{\text{dev}} + F(\underbrace{\mathbf{P}}_{\approx} : \underline{\sigma})^2 + a_1\underline{\mathbf{s}}^{\text{dev}} : \underline{\mathbf{s}}^{\text{dev}} + a_2\underline{\mathbf{s}}^{\text{dev}} : \underline{\mathbf{s}}^{\text{devT}} + b_1\underline{\mathbf{M}} : \underline{\mathbf{M}}\right)^{\frac{1}{2}}$$

Normality rule

$$\dot{\varepsilon}^{p} = \dot{p} \frac{\partial f}{\partial \sigma}, \quad \dot{\mathbf{e}}^{p} = \dot{p} \frac{\partial f}{\partial \mathbf{s}}, \quad \dot{\mathbf{K}}^{p} = \dot{p} \frac{\partial f}{\partial \mathbf{M}}$$

Microfoam: $a_1 = a_2 = a_3 = b_1 = 0$, $||\underline{a}||$ very large constrained microdeformation (second gradient), linear relationship between gradient of microdeformation and hyperstress tensor

Microstrain continuum

degrees of freedom $(\underline{\mathbf{u}}, \underline{\chi}^s)$ strain measures : $(\underline{\varepsilon}, \underline{\varepsilon} - \underline{\chi}^s, \underline{\chi}^s \otimes \nabla)$

$$egin{aligned} & \sigma = \mathop{\mathbf{C}}\limits_{\sim}: (arepsilon - arepsilon^p) \ & \mathbf{s} = b(arepsilon - \chi^s) \ & \mathbf{s} = A \chi^s \otimes \mathbf{
abla} \end{aligned}$$

$$\operatorname{div}\left(\underline{\sigma}+\underline{s}\right)=0$$

$$\operatorname{div} \underline{\underline{S}} + \underline{\underline{s}} = 0$$

$$egin{aligned} S_{ijk,k}+s_{ij}&=0\ && A\chi^s_{ij,kk}+b(arepsilon_{ij}-\chi^s_{ij})=0 \end{aligned}$$

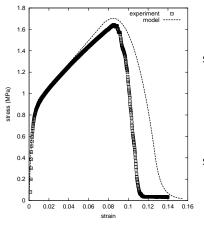
$$\varepsilon_{ij} = \chi^s_{ij} - l^2 \Delta \chi^s_{ij}$$

Link with "implicit gradient–enhanced elastoplasticity models" [Engelen *et al.*, 2003]

Boundary conditions : (u_i, χ_{ij}^s) or $(\sigma_{ij} + s_{ij})n_j, S_{ijk}n_k$

Plan

Introduction

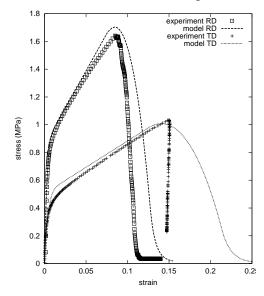

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation

4 Micromechanical approach

- Strut behaviour
- Representative Volume Element size

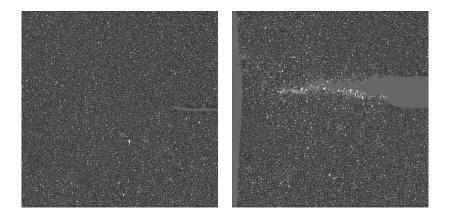
5 Conclusions

Fracture of nickel foams


simple fracture criterion $p = p_{crit} = 0.08$ limited scatter in p_{crit} softening law for $p > p_{crit}$

$$R = R(p > p_{crit})$$

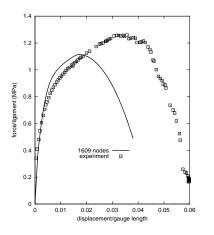
tensile test in direction RD

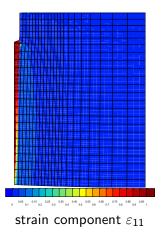

Fracture anisotropy of nickel foams

prediction of fracture stress for tension along TD

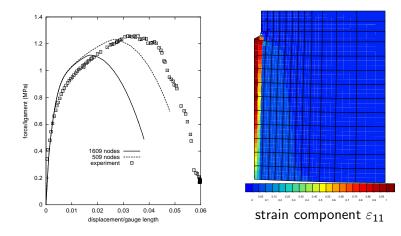
Phenomenological modelling of plasticity and fracture

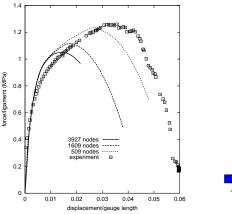
Tension of central crack nickel foam plate

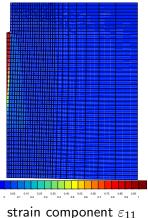



crack length : 10 mm

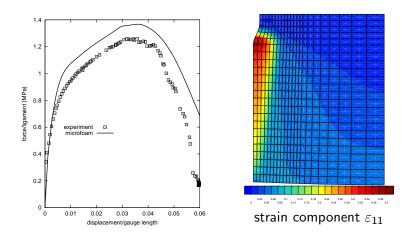
Phenomenological modelling of plasticity and fracture


Simulation with a classical compressible plasticity model


Phenomenological modelling of plasticity and fracture

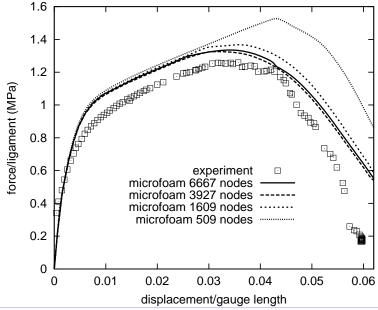

Simulation with a classical compressible plasticity model

Phenomenological modelling of plasticity and fracture


Simulation with a classical compressible plasticity model

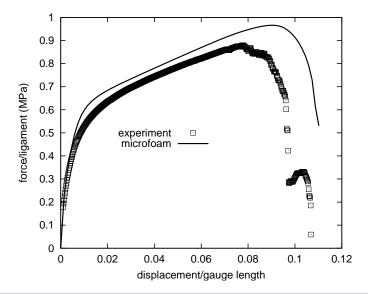
Phenomenological modelling of plasticity and fracture

Simulation with the micromorphic foam model



Damage zone size

Phenomenological modelling of plasticity and fracture


Convergence of the load-displacement curve

Phenomenological modelling of plasticity and fracture

Fracture anisotropy of nickel foams

prediction of fracture stress for tension along TD

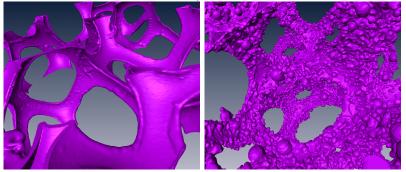
Phenomenological modelling of plasticity and fracture

Plan

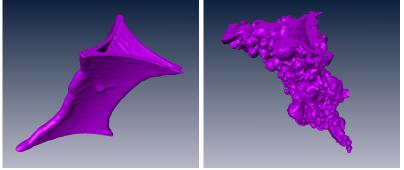
Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

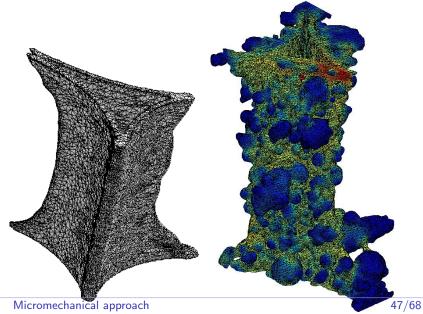
5 Conclusions

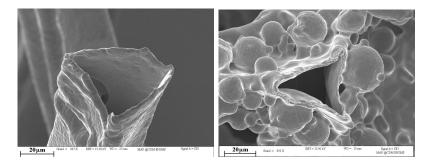

Plan

Introduction


- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

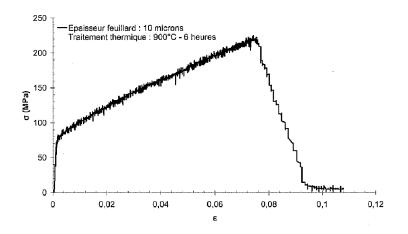
5 Conclusions


virtual machining a strut tensile/bending specimen out of the foam

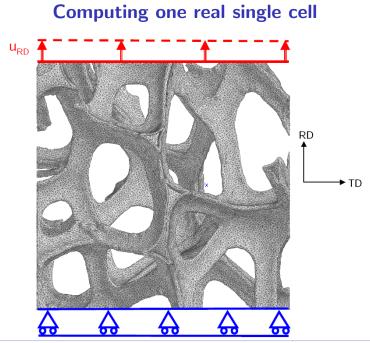

virtual machining of a strut specimen out of the foam

virtual tensile testing of a single strut

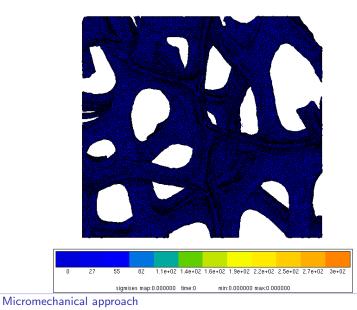
actual fracture surface of a strut

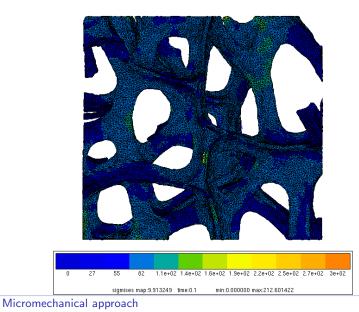

Plan

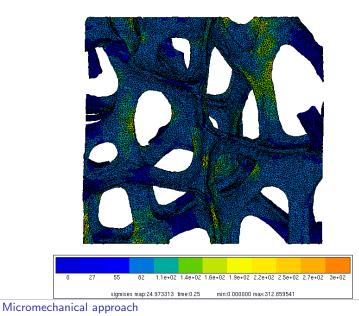
Introduction

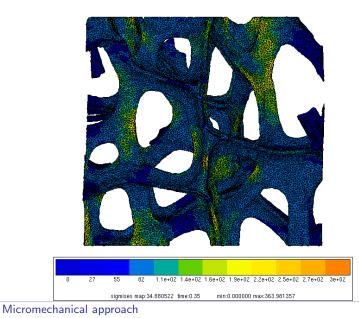

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size

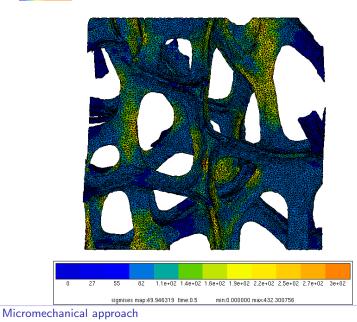
5 Conclusions

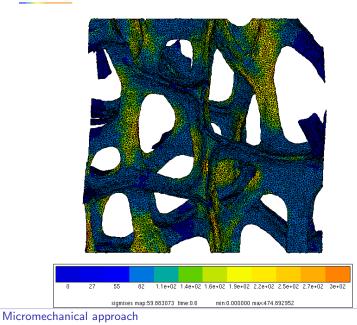

Behaviour of Nickel foils

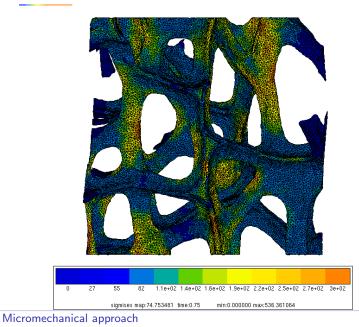


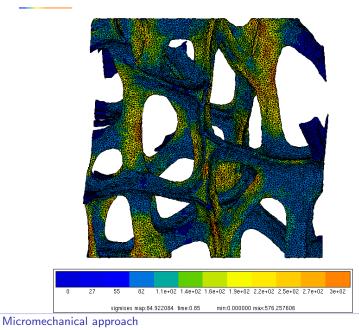

elastoplastic model with linear isotropic hardening

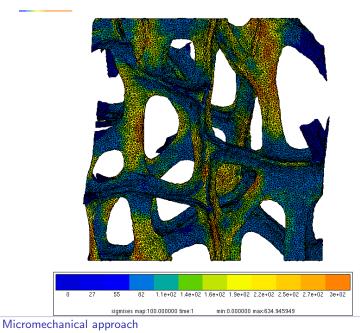


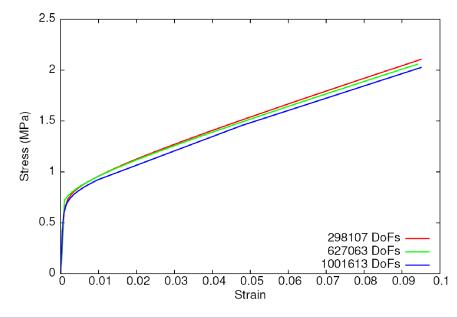

Micromechanical approach

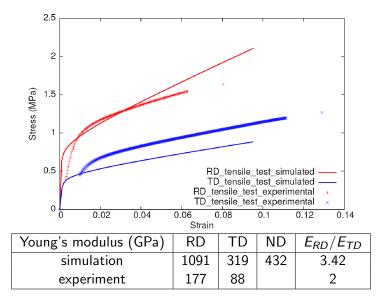


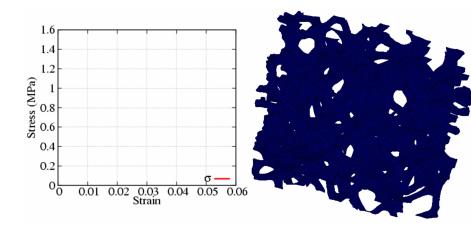




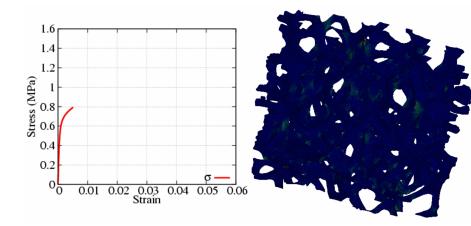




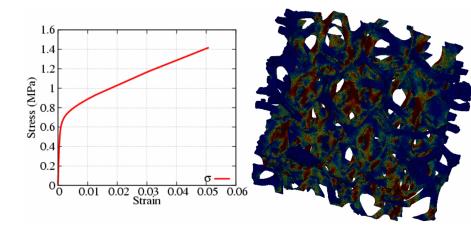



Mesh sensitivity

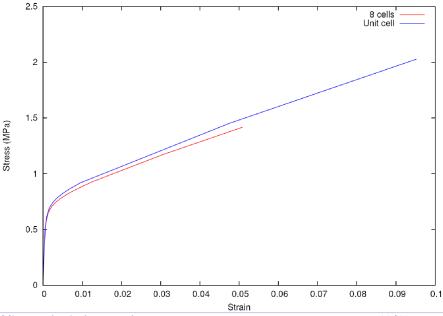
Prediction of elastoplastic properties


Eight cell volume element

3 600 000 DOF - 36 GB - 300 hours


Micromechanical approach

Eight cell volume element


3 600 000 DOF - 36 GB - 300 hours - red: p > 0.03

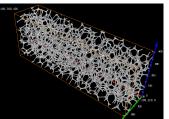
Eight cell volume element

3 600 000 DOF - 36 GB - 300 hours - red: p > 0.03

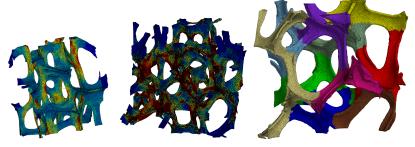
Eight cell vs. one cell volume element

Micromechanical approach

Plan


Introduction

- 2 Microstructure evolution during material processing and deformation
 - Nickel based open cell foams
 - Microtomography analysis
- 3 Phenomenological modelling of plasticity and fracture
 - Micromorphic anisotropic compressible plasticity model
 - Simulation of crack propagation
- 4 Micromechanical approach
 - Strut behaviour
 - Representative Volume Element size


5 Conclusions

Perspectives

Deformation of cells by 3D microtomography (3D correlation techniques)

Systematic determination of RVE size for elastoviscoplastic properties of nickel base foams: cyclic loading, creep...

effect of BCs, statistical approach, parallel computing...

Conclusions

