Strain Localization at the crack tip in single crystals : Classical/generalized crystal plasticity solutions vs. experimental results for nickel-base superalloys

> Sylvain Flouriot, Samuel Forest, Georges Cailletaud, Luc Rémy

samuel.forest@ensmp.fr Centre des matériaux/UMR 7633 Ecole des Mines de Paris/CNRS http://www.mat.ensmp.fr

Contents

- 1. Single crystal nickel–base superalloys
- 2. Rice's solution for the crack tip stress field
- 3. Cosserat crystal plasticity : application to crack tip fields
- 4. Difficulties arising when comparing predictions with experimental results
- 5. Computations and experiments on CT specimens
- 6. Consequences for fatigue crack propagation

Single Crystal Superalloys

Chemical composition of AM1											
		Ni	Со	Cr	Мо	W	Та	Al	Ti	С	Fe
mass fraction	min	balance	6.	7.	1.8	5.	7.5	5.1	1.0		
%	max		7.	8.	2.2	6.	8.5	5.5	1.4	0.01	0.2

Typical morphology of AM1 Two phases :

- the γ matrix is a F.C.C. disordered phase
- coherent γ' precipitates

($\sim 70\%$)

Slip systems in Nickel-base superalloys

- 12 octahedral slip systems
- slip planes $\{111\}$
- slip directions < 110 >
- 6 cube slip systems
- slip planes $\{001\}$
- slip directions < 110 >

Schmid law : $\tau^s = \sigma : \underline{m}^s = \tau_c$ resolved shear stress on the system s $\underline{m}^s = \frac{1}{2} (\underline{m}^s \otimes \underline{n}^s + \underline{n}^s \otimes \underline{m}^s)$ \underline{m}^s the slip direction n^s the normal to the slip plane

AM1 behavior

experimental & simulation tension test on AM1 <111> at $650^{\circ}C$

 \Rightarrow Existence of cube slip systems

Continuum Crystal Plasticity Framework

[Mandel, 1973] [Asaro, 1983] [Méric & Cailletaud, 1991]

multiplicative decomposition of the deformation gradient Viscoplastic strain :

Flow rule :

Isotropic Hardening :

Kinematic Hardening

$$oldsymbol{F}_{\sim}=oldsymbol{F}_{\sim}^{e}oldsymbol{F}_{\sim}^{p}$$

$$\begin{split} \dot{\mathbf{F}}^{p} \mathbf{F}^{p-1} &= \sum_{s} \dot{\gamma^{s}} \underline{m}^{s} \otimes \underline{n}^{s} \\ \dot{\gamma^{s}} &= \langle \frac{|\tau^{s} - x^{s}| - r^{s}}{K} \rangle^{n} sign(\tau^{s} - x^{s}) \\ r^{s} &= r_{o} + Q \sum_{r=1}^{N} h^{sr} (1 - exp(-bv^{r})) \\ \dot{v}^{s} &= |\dot{\gamma}^{s}| \\ \dot{\alpha}^{s} &= \dot{\gamma}^{s} - d\dot{v}^{s} \alpha^{s} \\ x^{s} &= c \alpha^{s} \end{split}$$

Rice's solution

[Rice, 1987] [Rice, Hawk & Asaro, 1990]

- Mode I crack in a single crystal
- Plane strain :

$$\begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & 0 \\ \varepsilon_{12} & \varepsilon_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix}_{X_1, X_2, X_3} \to \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{12} & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{pmatrix}_{X_1, X_2, X_3}$$

- Elastic-ideally plastic crystals
- Small strains
- Octahedral slip systems cube slip systems
- Schmid Rule

 $(001)_{X_2}[110]_{X_1}\&[110]_{X_2}(001)_{X_1}$ crack orientations

 $(001)_{X_2}[110]_{X_1}$ & $(110)_{X_2}[001]_{X_1}$ crack orientation

$(001)_{X_2}[100]_{X_1}$ crack orientation

$(001)_{X_2}[100]_{X_1}$ crack orientation

$(001)_{X_2}[100]_{X_1}$ crack orientation

Finite Element Simulations ($(001)_{X_2}[110]_{X_1}$ crack orientation)

Finite Element simulations ($(001)_{X_2}[100]_{X_1}$ crack orientation)

$(001)_{X_2}[110]_{X_1}$ & $(110)_{X_2}[001]_{X_1}$ crack orientations

Non local models at the crack tip in single crystals

Introduction of the influence of Nye's dislocation density tensor on material hardening into continuum crystal plasticity modelling [Nye, 1953] [Kröner, 1958], GNDs [Ashby, 1970]

- Gradient of internal variable approach [Aifantis, 1987] [Steinmann, 2000] [Gurtin, 2000]
- 2. Higher grade media [Xia, Hutchinson, 1996] [Fleck, Hutchinson, 1997]
- 3. Higher order media [Kröner, 1963] [Mura, 1966] [Eringen, 1970] [Forest, 1996]

Cosserat continuum

kinematics d.o.f. $\underline{u}, \underline{\Phi}$ Cosserat deformation :

$$e_{ij} = u_{i,j} + \epsilon_{ijk} \Phi_k$$

curvature tensor :

$$\kappa_{ij} = \Phi_{i,j}$$

statics balance of momentum :

$$\sigma_{ij,j} + f_i = 0$$

balance of moment of momentum :

$$\mu_{ij,j} - \epsilon_{ijk}\sigma_{jk} + c_i = 0$$

isotropic elasticity :

$$\begin{split} \boldsymbol{\sigma} &= \lambda \, \mathbf{1} \operatorname{Tr} \boldsymbol{\varrho}^{e} \,+\, 2\mu \, \{ \boldsymbol{\varrho}^{e} \} \,+\, 2\mu_{c} \, \{ \boldsymbol{\varrho}^{e} \} \\ \boldsymbol{\mu} &= \alpha \, \mathbf{1} \operatorname{Tr} \boldsymbol{\kappa}^{e} \,+\, 2\beta \, \{ \boldsymbol{\kappa}^{e} \} \,+\, 2\gamma \, \{ \boldsymbol{\kappa}^{e} \} \\ \end{split}$$

Cosserat crystal plasticity

hardening law

 \boldsymbol{n}

$$r^{s} = r_{0} + q_{1} \sum_{r=1}^{n} h^{sr} (1 - \exp(-b_{1}v^{r})) + H' \mid \theta^{s} \mid, \qquad r_{c}^{s} = r_{c0}$$

 $(001)_{X_2}[110]_{X_1}$ crack orientation

lattice rotation (classical)

 $(001)_{X_2}[110]_{X_1}$ crack orientation

plastic slip (Cosserat)

 $(110)_{X_2}[001]_{X_1}$ crack orientation

lattice rotation (classical)

 $(110)_{X_2}[001]_{X_1}$ crack orientation

plastic slip (Cosserat)

Control of the intensity of kink bands

 $(100)_{X_2}[001]_{X_1}$ crack orientation

Confrontations with experimentals results

Rice's solution was compared with several experimental results on metal single crystals

[Crompton, 1984] [Shield, 1996] [Crone, Shield, 2001] [Kysar, Briant, 2002]

 $crack \iff notch$

plane strain \iff surface observation (3D effect)

perfect plasticity \iff strong hardening (copper...)

3D effects [Cuitiño, Ortiz, 1996] [Flouriot, 2003]

Single crystal nickel–base superalloys at room temperature are good candidates for such a comparison

3D effects ($(110)_{X_2}[001]_{X_1}$ crack orientation)

The experimental procedure

- Compact Tension Specimen CT16, thickness=6mm
- Polishing
- Precrack at $650^{o}C$
 - R=0.1
 - $\Delta K \searrow$
 - f=10Hz
- EBSD reference
- monotonous traction at $20^{\circ}C$
- SEM observation
- interferometric and confocal observations
- EBSD on the surface and in the bulk of the specimen

Experimental results $(110)_{X_2}[001]_{X_1}$ *crack orientation*

$$K = 30MPa\sqrt{m}$$

Experimental results ($(110)_{X_2}[001]_{X_1}$ crack orientation)

Comparison experiment/simulation

2D F.E. simulation

Comparison experiment/simulation ($(110)_{X_2}[001]_{X_1}$ crack orientation)

Surface of the specimen 3D F.E. Simulation

EBSD analysis ($(110)_{X_2}[001]_{X_1}$ crack orientation)

Fatigue crack growth

$(110)_{X_2}[001]_{X_1}$ crack orientation

Fatigue crack growth

Conclusions

- 1. Kink bands exist at the crack tip in single crystal superalloys
- 2. Classical crystal plasticity provides a correct description of the crack tip field in single crystal superalloy CT specimens
- 3. Quantitative agreement is reached regarding the lattice rotation field around the crack tip
- 4. Generalized crystal plasticity makes it possible to control the intensity of kink bands
- 5. The type of localization bands plays a significant role in subsequent fatigue crack propagation

Notched Specimens

