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M. Samuel FOREST Directeur de thèse MINES ParisTech, France
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Abstract

During thermo-mechanical processing, the strain energy stored in the microstucture of an FCC
polycrystalline aggregate is generally reduced by physical mechanisms which rely, at least partially,
on mechanisms such as dislocation cell or grain boundary motion which occur during recovery,
recrystallisation or grain growth. The aim of this work is to develop a constitutive framework
capable of describing the microstructural evolution driven by grain boundary curvature and/or stored
energy during recrystallisation and grain growth. As recrystallisation processes depend primarily
on the nature of the microstructural state, an accurate prediction of such phenomena requires that
the microstructural heterogeneities which develop just before recrystallisation be properly described.
These heterogeneities may consist of structures such as dislocation cells and pile-ups, shear and twin
bands. The microstructural characteristics present in a polycrystal aggregate just before the onset of
thermal recrystallisation are first reproduced numerically. The constitutive behaviour of each grain
in the aggregate is described using a dislocation mechanics-based crystallographic formulation which
accounts for non-local effects through the introduction of geometrically necessary dislocations. The
single crystal model is implemented into the finite element method using a finite-strain kinematics
framework. Different measures of stored internal strain energy are determined based on the dislocation
density distribution in the aggregate. The minimisation of stored and grain boundary energies
provides the driving force for grain boundary motion. To describe the interface motion, a phase
field model taking into account the stored energy distribution is formulated and implemented within
a continuum mechanics framework. A weak coupling between the grain boundary kinematics and
the crystal plasticity model is made through the dislocation densities and the grain orientations.
Furthermore, the parameters of the free energy are calibrated based on published Read-Shockley
boundary energy data. To validate the proposed model, a polycrystalline aluminium aggregate is first
cold deformed under plan strain conditions and then annealed. The predicted recrystallised material
volume fraction evolution with respect to time was found to have the same dependence on deformation
level and temperature as that reported in the literature. The implications of such findings for future
developments are discussed.
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beaucoup apporté durant cette période et qui a su rester disponible malgré ses nombreuses
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2 CHAPTER I. INTRODUCTION

I.1 Aims

During metal forming, engineering properties of metallic alloys are affected by a combination
of thermal/mechanical processes. For example, a series of deformation and recrystallisation
processes is used to improve the deep drawing characteristics of aluminium sheet for beverage
can fabrication, as shown in Figure I.1. Nevertheless, fracture toughness of high strength
aluminium alloys is better for an unrecrystallised material than for a recrystallised material
of comparable yield strength.

(a) (b)

Figure I.1 : Schematics of (a) deep drawing, (b) sheet rolling

In a more general view, the physical phenomena induced by the thermo-mechanical processes
infers complex microstructure changes which improve or not the final product properties.
Among the physical phenomena responsible for microstructure changes, extensive care
has been carried out on recrystallisation and related annealing phenomena. The typical
recrystallisation process during heat treatment of a cold worked metal is referred to as static
primary recrystallisation. Sometimes it is also referred to as discontinuous recrystallisation,
since it proceeds locally and thus does not affect the entire volume concurrently. The
term static recrystallisation is used to distinguish the thermal recrystallisation after cold
work deformation under subsequent heat treatment, from the recrystallisation phenomena
occurring concurrently with deformation at elevated temperatures, which is referred to as
dynamic recrystallisation. The dynamic recrystallisation will not be discussed in this thesis.
The static recrystallisation phenomena can be divided in two steps. First, the recrystallisation
nuclei appear and grow in highly defective material as seen in Figure I.2. This is called the
primary recrystallisation. After this first step leading to a microstructure made of small
grains, the grain growth occurs to reduce the large grain boundary quantity.

Recrystallization processes depend on features that span scales from the polycrystalline
topology to atomic arrangements around interfaces such as grain boundaries. Important
factors over length scales of decreasing size include: (a) grain interactions, which set up
stress fields that persist over grain dimensions, (b) stress variations within grains due to
the presence of dislocation structures, which perturb the longer range field across the grain,
(c) energies and mobilities of interfaces, which control their kinetics, and (d) particles and
solutes, interacting with interfaces and modifying their kinetics.

Current industrial control of recrystallisation mainly focuses on control of texture for
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(a) Deformed, t = 0 min (b) t = 3 min

(c) t = 10 min (d) t = 20 min

Figure I.2 : EBSD snapshots during recrystallisation phenomenon at 350◦

formability, control of grain size and degree of recrystallisation for surface appearance and
damage related properties. However, this method provides only quantitative measures and no
qualitative understanding. Theories for recrystallisation that provide quantitatively correct
predictions of crystallographic orientation, grain size distributions and mechanical properties
have long been sought to model material processing from start to finish. Such a model requires
a detailed understanding of both deformation and recrystallisation.

A large number of studies has been successful at predicting the mechanical behaviour of
polycrystalline aggregates subjected to large deformations, including texture evolution. Ever
since the work of Taylor, crystallographic models have tended to account for micro mechanical
and physical aspects of deformation through appropriate microstructure evolution laws. On
the other hand, extensive researches have been carried out on recrystallisation phenomenon.
There have been several computational approaches to studying recrystallisation and grain
growth in materials; the Monte Carlo method, phase field model, vertex dynamics and
cellular automaton methods. A Few works have been done in order to couple the mechanical
behaviour and the microstructure evolution. For instance, (Raabe and Becker, 2000) presents
a two-dimensional approach for simulating primary static recrystallisation based on coupling
a viscoplastic crystal plasticity finite-element model with a probabilistic kinetic cellular
automaton. (Battaile et al., 1999) proposed to simulate the microstructural evolution of
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heavily deformed polycrystalline Cu by coupling a constitutive model for polycrystal plasticity
with the Monte Carlo Potts model for grain growth. However, Monte Carlo and Cellular
Automaton methods are both probabilistic techniques. Furthermore, in its standard form,
CA does not allow for curvature as a driving force for grain boundary migration while the
MC model does not result in a linear relationship between migration rate and stored energy.
Recently, (Bernacki et al., 2008) proposed a level set framework for the numerical modelling of
primary static recrystallisation in a polycrystalline material which has been found promising.
Nevertheless, contrary to level set method, phase-field method is a physically-based technic
for simulating microstructural evolution. It has been applied to solidification, precipitate
growth and coarsening, martensitic transformations and grain growth and, more recently,
also to other solid-state phase transformations like the austenite to ferrite transformation in
steels. Therefore, the aim of this work is to develop a coupled crystal plasticity-phase field
formulation to describe the microstructural evolution in polycrystalline aggregates driven by
grain boundary curvature and/or stored energy during recrystallisation and grain growth.

This thesis is part of a larger framework; the European project Digimat. The project entitled
multiscale modelling of recrystallisation in metals based on a digital material framework has
been done in collaboration with two US teams. The principal objectives are summarized
below within 6 main sub-projects (the partners are cited with brackets):
• Development of a digital material framework (Mines Paris - ParisTech (CEMEF), Carnegie
Mellon University)
• Modelling of the deformation of the microstructure (Mines Paris - ParisTech (CDM,
CEMEF), Imperial College)
• Boundary interaction with dislocation and other defects through dislocation dynamics
(Eotvos Lorend University, Princeton University)
• Atomistic arrangement with atomistic modelling (Princeton University)
• Modelling of recrystallisation (Mines Paris - ParisTech (CDM, CEMEF), Carnegie Mellon
University)
• Experimental program (Eotvos Lorend University, Mines Paris - ParisTech (CDM,
CEMEF), Imperial College)

I.2 Outline

As recrystallisation processes depend primarily on the nature of the microstructural state,
an accurate prediction of such phenomena requires that the microstructural heterogeneities
which develop just before recrystallisation be properly described. Therefore, chapter II
contains a short review of existing models to describe the constitutive behaviour of the
FCC polycrystalline aggregates. The single crystal elasto-viscoplastic model proposed by
(Cheong and Busso, 2004) is detailed and will be used in the following sections. The
constitutive behaviour of each grain in the aggregate is described using a non-local dislocation
mechanics-based crystallographic formulation and finite-strain kinematics. The associated
finite element implementation with an implicit integration is explained.

Chapter III proposed to study the possibilities and the limits of the elasto-viscoplastic
model to describe the deformation behaviour of Al polycrystals. First, main deformation
features in aluminium are reviewed. Then, the elasto-viscoplastic model is calibrated
on single crystal and then validated on polycrystal aggregates with different grains sizes
with data available in the literature. The model is utilized to reproduce numerically the
microstructural characteristics present in a polycrystal aggregate just before the onset of



I.2. OUTLINE 5

thermal recrystallisation during a channel die compression test. Channel-die compression
tests are used to achieve plane strain compression, corresponding to the idealized conditions
of sheet rolling. Non-local effects through the introduction of geometrically necessary
dislocations (GND) are analysed.

During thermo-mechanical processing, energy stored in the microstructure of an FCC
polycrystalline aggregate through dislocations accumulation is the main driving force in
recrystallisation phenomena. Previous work in this area has focused on investigating the
influence of strain gradients on the macroscopic behaviour of polycrystal aggregates, rather
than on the stored energy distributions. Therefore, the objective of this work is to investigate
the stored energy and dislocation density distributions found at the onset of recrystallisation.
In chapter IV, different measures of stored internal energy based on the dislocation density
distribution in the aggregate obtained from elasto-viscoplastic model the are proposed. The
partition of plastic work into heat and stored energy are examined in single crystals and in
polycrystalline aggregates.

In order to describe the interface motion, grain boundary properties are outlined in chapter
V. Since the minimisation of stored and grain boundary energies provides the driving force for
grain boundary motion, a phase field model taking into account the stored energy distribution
is formulated and implemented within the continuum framework. The parameters of the free
energy are calibrated based on published Read-Shockley boundary energy data.

Chapter VI studies the model abilities to predict grain boundary motion during grain growth
and recrystallisation. General aspects of recrystallisation and grain growth are recalled.
Driving forces due to curvature and due to stored energy are studied separately in order
to see the effect on grain boundary velocity. First, misorientation and temperature effects
are reported in curved bicrystals where curvature is considered as the only driving force
for grain boundary motion. A particular attention is carried out on triple and quadruple
junctions evolution. Topology and kinetics of a polycrystal aggregate during grain growth are
scrutinized. Then, bicrystal velocity with flat grain boundary and stored energy difference
between grains are examined. To compare their amount, stored energy and curvature are
introduced as competing driving forces in curved grain. Since, in materials having high
stacking fault energy such as Al, the sources of nuclei are the existing subgrains or cells in
the deformed microstructure, a simple case of recrystallisation without the introduction of
the ’classical’ nuclei is detailed. Finally, a weak coupling is proposed between the phase field
and the single crystal models.
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I.3 Notations

Type Notation

b Burger vector
a,b,c,d,e phase field free energy coefficients
Ce flow rule parameter
Cs flow rule parameter
e internal energy density
η crystal order at the macroscopic scale
Ed stored energy based on dislocaion density
Ep stored energy based on plastic work
Et stored energy based on thermodynamic consideration
Ee Green-Lagrangian strain tensor
F otal deformation gradient tensor
F0 Helmhotz free energy of activation
Fe elastic part of deformation gradient tensor
Fp plastic part of deformation gradient tensor
Ḟ total deformation gradient tensor rate
γgb grain boundary energy
γSFE stacking fault energy
γ̇α crystallographic slip rate on slip system α

hαβ dislocation interaction matrix
µ shear modulus
L spatial velocity gradient
Lp plastic part of spatial velocity gradient
L anisotropic elasticity tensor
M grain boundary mobility
Mα Schmid factor
mα slip system direction
nα normal to the slip plane
ν poisson coefficient
P grain boundary driving force
Pα generalised schmid tensor
Q activation energy for grain boundary energy
θ grain orientation
T second Piola-Kirchoff stress tensor
r averaging spacing between dislocation
R universal gas constant
ρα dislocation density on the slip system α

ρα
G geomtrically dislocation density on the slip system α

ρα
S statistically dislocation density on the slip system α
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ρα
Se edge statiscally dislocation density on the slip system α

ρα
Ss screw statiscally dislocation density on the slip system α

ρα
T total dislocation density on the slip system α

σ Cauchy stress tensor
s entropy energy density
Sα slip resistance on the crystallographic slip system α

T absolute temperature
τ shear stress
τα shear modulus in the slip system α

τ̂0 lattice friction at 0K
U Helmholtz free energy density
v grain boundary velocity
ω̇p plastic power per unit volume
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As recrystallisation processes depend on the nature of the deformed state, a first step
of an accurate modelling of recrystallisation involves a prediction of the microstructural
heterogeneities which develop within grains just before recrystallisation takes place. The
deformation process (tension, wire extrusion, extrusion, compression, torsion, shear, rolling...)
and, the nature of the material play, an important role in the nature of the deformation
state. In this work, the deformation state of cold deformed FCC metals with medium to high
stacking fault energy (SFE) is studied. A range of materials and their SFE data which fall into
this category are shown in Table II.1. Therefore, chapter II contains a short review of existing
models to describe the constitutive behaviour of the FCC polycrystalline aggregates. The
single crystal elasto-viscoplastic formulation in a finite-strain kinematics framework proposed
by (Cheong and Busso, 2004) is detailed and extended to include non-local effect. The finite
element implementation associated to the model with an implicit integration is exposed.

Table II.1 : Stacking fault energy of metals (Murr, 1975)

Metal γSFE (mJm−2) Metal γSFE (mJm−2)

Aluminium 166 Zinc 140

Copper 78 Magnesium 125

Silver 22 Zirconium 240

Gold 45 304 stainless steel 21

Nickel 128 Cobalt (FCC) 15

II.1 Introduction

II.1.1 Crystallographic Slip Systems

Metals of high or moderate stacking fault energy such as aluminium alloys and copper deform
by slip. Therefore, in continuum mechanics, an accurate prediction of the deformed state
requires the modelling of the behaviour of the material by a crystallographic formulation.
For FCC crystals, in general at low temperatures, slip takes place on most densely packed
planes {111} and in the most densely packed directions <110>. Therefore, crystallographic
is assumed to occur on the 12 octahedral {111}<110> slip systems. The Schmid and Boas
slip system labelling convention is used to identify the individual slip systems in Table II.2.
For each slip system α, the unit vectors, mα and nα, representing, the slip direction and the
normal to the slip plane, respectively.

II.1.2 Characteristics of Cold Deformed Microstructure

When an aggregate made of a large number of grains with an assumed random crystal-
lographic orientation plastically deforms, deformation is essentially inhomogeneous even
under simple loading conditions, as the interaction between neighbouring grains leads to the
formation of a complex microstructure. During metal-forming processes, crystals generally
change orientations. As a result, a general state of anisotropy appears at the macroscopic
scale, and, at lower scales, regions of different orientations develop within the original grain.
The texture development during deformation has an impact on the formability and mechanical
properties of alloys while the grain subdivision or fragmentation due to misorientation within
the grain, plays a dominant role in recrystallisation phenomena and, in particular the
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Table II.2 : Schmid-Boas slip system notation of the octahedral slip system family

Notation : α b ≡ mα nα

A2 [1̄11] (01̄1)
A3 [1̄11] (101)
A6 [1̄11] (110)
B2 [111] (01̄1)
B4 [111] (1̄01)
B5 [111] (1̄10)
C1 [1̄1̄1] (011)
C3 [1̄1̄1] (101)
C5 [1̄1̄1] (1̄10)
D1 [11̄1] (011)
D4 [11̄1] (1̄01)
D6 [11̄1] (110)

nucleation phenomena. Therefore, numerous studies have been carried out to control the
crystallographic textures in order to improve product performance (Kalidindi et al., 1992,
Becker and Panchanadeeswaran, 1995, Zhao et al., 2004). Furthermore, considerable work
has also focused on the description of the nature of the deformed state, especially
intragranular misorientations, (Hughes and Hansen, 1997, Merriman et al., 2008) and their
prediction (Seefeldt et al., 2001, Butler and Hu, 1989). It is now known that there is a
wide range of length scales, from nanometres to millimetres, at which the microstructure
is heterogeneous during deformation.

Figure II.1 summarises the main features of the deformed state according to their length-
scale. The shear bands in Figure II.2 a, are non-crystallographic and may extend through
several grains. The deformation or transition bands in Figure II.2 b are the consequences
of subdivision within grain into large regions of different orientations. At a lower scale, the
deformed polycrystalline aggregate is made of cells or subgrains. These cell structures are
essentially low-angle grain boundaries which subdivide each grain to produce inhomogeneities
at the intragranular level. This is the result of having a non-uniform dislocation distribution
where each boundary contains a rich density of entangled dislocations, separated by regions
which are almost dislocation free, see Figure II.3.

II.1.3 Representative Volume Element Definition

A polycrystalline aggregate is a heterogeneous material where the mechanical properties
vary over a characteristic distance (cell size, deformation band, grain). The volume element
needs to have the proper size, small enough to be macroscopically considered as a material
point and large enough to represent the macroscopic material properties, see Figure II.4. In
general, homogeneous or periodic boundary conditions are prescribed to the volume element
to satisfy the averaging procedure. In this case, two polycrystalline aggregates with a change
of microstructure have the same macroscopic mechanical properties. Such a volume element
is called a representative volume element (RVE). Several studies have been carried out to find
the minimum RVE size for specific mechanical properties. A first approach of the size of RVE
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Figure II.1 : The hierarchy of microstructure in a polycrystalline metal deforming by
slip. The various features are shown at increasing scales: (a) dislocations, (b) dislocation
boundaries, (c) deformation and transition bands within a grain, (d) specimen and grain-
scale shear bands (Humphreys and Hatherly, 2004)

Figure II.2 : (a) Shear bands in Al-Zn-Mg alloy cold rolled 90%, (b) deformation bands (B)
in a grain (A) in Al-1%Mg (Humphreys and Hatherly, 2004)

Figure II.3 : TEM bright field images of an Al alloy (5005) deformed at (a) 2% and (b)
10% (Trivedi et al., 2004)
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(a) (b) (c) (d)

Figure II.4 : Macro continuum and micro polycrystal structures: (a) macro continuum, (b)
micro structure, (c) RVE, (d) crystal lattice (Nakamachi et al., 2007)

for polycrystals can be found in (Quilici et al., 1998). (Ren and Zheng, 2002) showed that
the minimum RVE size for the effective shear modulus G has a roughly linear dependence
upon the degree of anisotropy of single crystals with a minimum RVE size of 20 or less for all
cubic materials. (Kanit et al., 2003) considered the RVE size as a function of five parameters:
the studied physical property, the contrast of properties, the volume fractions of components,
the wanted relative precision for the estimate of the effective property and the number of
executions of the microstructure associated with computations that one is ready to carry out.

The polycrystalline aggregate considered as a RVE ensures the reproducibility of the
macroscopic behaviour. However, a good description of the grain morphology is required
to predict an accurate localisation, for instance, of strain to study nucleation or stress driven
fracture problems. Polycrystalline aggregates contain a large number of grains of various
shapes and one of the main difficulties is to discretise the microstructure. Most of the
characterisation techniques rely on grain-surface observations such as orientation imaging
microscopy (OIM). The main drawbacks of the measurements is the destruction of the
sample to obtain a 3D characterisation of the aggregate. New methodologies such as X-
ray microtomography (Madi et al., 2007) and synchrotron hard X-ray (Baruchel et al., 2008),
allow the full characterisation of the aggregate. The meshing of the aggregates obtained
by experimental techniques imply some difficulties due to the non-convexity of the grains.
One of the simplest method is to consider the grain shape as cuboidal in order to get the
main deformed features and the macroscopic stress-strain response of the aggregates. On
the other hand, more realistic three-dimensional grain morphologies have been produced
containing a large number of random grains generated using Voronoi polyhdra model
(Barbe et al., 2001a), while dodecahedral-shaped crystals have been used to built up realistic
polycrystals (Mika and Dawson, 1998).

II.1.4 Mechanical Behaviour Transition: From Single Crystal to
Polycrystalline Aggregate

Numerous models have been developed to describe the transition from the mechanical
behaviour of a single crystal to that of a polycrystalline. The main approaches are described
in this section, namely:
• Taylor Type
• Self-Consistent
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Figure II.5 : Schematic representative microstructure (Van Houtte et al., 2005)

• Finite Element
• Fast Fourier Transformation

II.1.4.1 Taylor Type Models

One of the first models proposed to take the texture of the material into account was that
proposed by Taylor (Taylor, 1938). It is still used to study the constitutive response of
polycrystalline aggregates due its low numerical cost. It is capable of accurately predicting the
macroscopic stress-strain response and texture evolution of FCC polycrystals with medium
to high stacking fault energies through an averaging procedure. It provides an upper-bound
solution by ensuring the compatibility between individual grains within an aggregate. The
compatibility condition is satisfied by assuming that the strains are the same in all grains
and equal to the macroscopic strain. However, grain interactions are ignored and as a result
it is not able to describe the features of the deformed state.

To improve the deformation behaviour of polycrystalline aggregates, other models such as
relaxed-constraint (Honeff and Mecking, 1981, Kocks and Chandra, 1982) and multi-grains
relaxed-constraint models (Van Houtte et al., 2002) have been developed. Relaxed-constraint
models satisfy selected compatibility relations and ignore some intergranular equilibrium
components. The deformation of individual grains is partly relaxed based on geometrical
considerations. In multi-grains relaxed-constraint models, such as the ALAMEL model
(Van Houtte et al., 2005), the local gradient deformation tensor is not constant within the
grain and the approach accounts the interaction of a cluster of two grains, see Figure II.5.

II.1.4.2 Self-Consistent Models

In contrast with relaxed-constraint models, the self-consistent models satisfy both compat-
ibility and equilibrium between grains in average sense (Eshelby, 1957). The constitutive
laws are solved by different methods: incremental formulation (Hill, 1965), first order
methods (Molinari et al., 1987), second order methods (Ponte Castaneda, 1996) etc. The self-
consistent scheme has been extended to elasto-plastic behaviour in a small deformation frame-
work (Hill, 1965), in a large strain framework (Nemat-Nasser and Obata, 1986), to elasto-
viscoplastic behaviour (Weng, 1982) and to viscoplastic behaviour (Lebensohn and Tomé, 1993).
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Figure II.6 : Finite element modelling of a polycrystal (Kocks et al., 2000)

II.1.4.3 Finite Element Methods

Both Taylor type and self-consistent models assume that individual grains deform
homogeneously which makes impossible the prediction of grain nucleation during
recrystallisation. Finite element models are able to describe non-homogeneous deformation
at both the intragranular and intergranular levels. When using finite-element (FE) to model
polycrystalline aggregates, the constitutive response at each integration points of a finite-
element is determined using a single crystal constitutive model. In this approach, the
transition from the constitutive response of each crystal to the response of a polycrystalline
aggregate is shown in Figure II.6. Typically, the single crystal accounts for deformation and
for the associated lattice rotations through crystallographic slip. The distinct advantage
of finite-element models compared to the other polycrystal plasticity models is that
morphological effects such as grain size, shape and topology can be accounted for.

II.1.4.4 Fast Fourier Transformation (FFT)

The FTT method has been used to describe the mechanical behaviour of polycrystalline
aggregates with periodic boundary conditions (Lebensohn, 2001). (Lebensohn, 2001) showed
that the FTT method is numerically less costly than the finite element method for problems
of same size. However, the limits of the method are in the required periodic boundary
conditions.

II.1.5 Constitutive Law

II.1.5.1 Dislocations Interaction

The idea of a dislocation as a 1D crystal defect was first proposed in the 1930s to explain
the lower shear strength measured in crystalline materials than theoretical estimates based
on atomic bonding considerations (Frankel, 1926). It was predicted that defects had
to exist to explain the reduction of the mechanical strength. A breakthrough arrived
when the concept of an edge dislocation was introduced to explain this discrepancy
(Orowan, 1934, Polanyi, 1934, Taylor, 1934). The screw dislocation was later introduced
by (Burgers, 1939). It assumes that each dislocation moves when the shear stress,τ , reaches
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Figure II.7 : Inverse pole figure showing the number of active slip systems; A:1, B:2, C:2,
D:2, E:4, F:6, G:8

a specific value necessary to overcome obstacles such as other dislocations, solute atoms
or precipitates, grain boundaries, or the periodic lattice friction. It is the interaction of
potentially mobile dislocations which determines the flow rate and the yield strength. For
single-phase metals, forest dislocations (usually defined as dislocations on other slip systems
threading the slip plane of a moving dislocation) constitute the main resistance to dislocation
motion. Considering forest dislocations as the only obstacles and since the shear strain and
stress fields around a dislocation are proportional to 1/r, where r is the distance from the
dislocation core, the shear stress requires to move per unit length of dislocation past another
of opposite sign is,

τ ∝ µb2

2πr
(II.1)

where µ being the shear modulus. The average spacing r between dislocations is inversely
proportional to ρ1/2 based on the assumption that there exists a regular arrangement of
dislocations in space. This situation was first describe by (Orowan, 1940) which suggested
that

τ ∝ µb2ρ1/2 (II.2)

The dislocations move, in general, along specific directions, defined as slip systems, see Section
II.1.1. The number of activated slip systems in which dislocation motion occurs is determined
by Schmid Law,

τα = Mασ (II.3)

where τα is the shear stress in the slip system α, Mα is the Schmid factor and σ is the
applied stress. During a tensile test in the direction t, the Schmid factor is defined as
Mα = (nα.t)(mα.t) where nα and mα are, respectively, the unit vector normal to the slip
plane and parallel to the slip direction. For instance, eight slip systems are active for tensile
loading along the [001] direction, six systems are active for a uniaxial tensile loading along
the [111] direction..., see Figure II.7

The Orowan relationship has been modified to describe the slip resistance on the
crystallographic slip system, α,

Sα ∝ µb

√√√√ N∑
β=1

hαβρβ (II.4)
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Here, ρβ is the crystallographic dislocation density on an arbitrary slip system β, while
δαβ is a dislocation interaction matrix detailing the possible reactions between dislocations
on different slip systems. Typically, the hαβ matrix contains two coefficients, one for the
diagonal terms representing the self hardening interaction strength between dislocations
on the same slip system, and another for the off-diagonal terms to describe the latent-
hardening interaction strength between dislocations on dissimilar slip systems. The nature
of each interaction depends on the character of the dislocation and leads to a complex
interplay between the dislocations. Evidence of latent-hardening anisotropy during single
slip obtained in latent hardening experiments (Kocks and Brown, 1966, Franciosi et al., 1980)
and dislocation dynamic works (Devincre et al., ) showed that each element of the interaction
matrix describes the cross-interaction between dislocations on two different slip systems.

II.1.5.2 Rate Dependent Flow Rule

The strain-rate is determined almost entirely by the waiting time of the density ρ of mobile
dislocations at pinning obstacles with a mean velocity v̄ (Orowan, 1940) :

γ̇ = ρbv̄ (II.5)

At steady state, ρ is a function of the shear stress and temperature only. For this case, Eq.II.2
gives:

ρ = α
( τ
µb

)2
(II.6)

where µ is the shear modulus. The rate dependent Viscoplastic flow rule is based on the
thermally activated motion of dislocations. The mean velocity of a dislocation segment, v̄, is
given by the following kinetic equation (Frost and Ashby, 1982):

ν̄ = βbν exp−∆G(τ)
kT

(II.7)

where β is a dimensionless parameter, b is the magnitude of the Burgers’ vector, and ν is a
frequency. The quantity ∆G(τ) depends on the distribution of obstacles and on the pattern
of internal stresses. Assuming that random obstacles are seldom box-shaped, (Kocks, 1977)
described the quantity ∆G(τ) by the general equation:

∆G(τ) = F0

(
1−

〈τ
τ̂

〉p)q
(II.8)

Here, F0 is an activation energy which depends on obstacle type. The quantity τ̂ is the
”athermal flow strength”, the shear strength in the absence of thermal energy.The parameters
p and q define the shape of the energy-barrier profile. The quantities p, q and F0 are bounded:

0 ≤ p ≤ 1 (II.9)
1 ≤ q ≤ 2 (II.10)

0.2 ≤ F0

µb3
≤ 2 (II.11)

Combining Eqs.II.5, II.6, II.7 and II.8, the rate-equation for discrete-obstacle controlled
plasticity becomes

γ̇ = γ̇0exp
[
− F0

kT

(
1−

〈τ
τ̂

〉p)q]
(II.12)

where γ̇0 is a constant. The kinetic equation for each slip system rate, γ̇α, represents the flow
characteristics on an arbitrary slip system α, and can be derived from Eq.II.12:

γ̇α = γ̇0exp
[
− F0

kT

(
1−

〈τα

τ̂

〉p)q]
(II.13)
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Figure II.8 : Generalised flow curve for FCC single crystals

The majority of most physics based flow rules used in single crystal models are based on this
theory (Busso, 1990, Balasubramanian and Anand, 2002, Ma and Roters, 2004).

More phenomenological viscoplastic flow rule have been developed. (Cailletaud, 1992)
proposed a single crystal model containing isotropic and kinematic hardening by means of
the two internal variables, rα and xα for each slip system while in physically-based flow rule,
dislocation densities are, in general, the internal variables, see details in the following section.

γ̇α = 〈 |τ
α − xα| − rα

K
〉 (II.14)

II.1.5.3 Hardening Description

For more accurate modelling of deformation behaviour in single and polycrystals, an accurate
understanding of the material hardening behaviour is necessary. Hardening phenomena is
due to the obstacles that dislocations overcome during their motion in the microstructure.
In single-phase alloy, the main obstacles are other dislocations. For most single crystals,
three stages of plastic deformation are observed in the flow curve, see Figure II.8. Stage I
of the plastic deformation is characterised by the easy-glide of dislocations of the primary
slip system, predominantly edge dislocations. The low-hardening of Stage I is due to the
activation of only one slip system. The linear Stage II is due to forest hardening, and its
slope increases with the number of active slip systems. Dislocation structures observed in
Stage II consist mainly of rectangular dislocation networks extended parallel to the primary
glide plane. The dislocation density is further increased in Stage III. A cell structure is
observed, which consists of dense dislocation networks surrounding regions nearly free of
dislocations. The subsequent decrease in strain hardening rate stems from dynamic recovery.

For FCC polycrystals, four deformation stages are observed, see Figure II.9 a. The three
first stages correspond to those described in the single crystal case under simple shear.
On the flow curve of polycrystals, the Stage I is hardly observed. The work hardening
rate decreases with increasing stress and strain at small to medium deformations (Stage III
regime), whereas at large stresses and strains the strain hardening rate is almost constant
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Figure II.9 : Schematic (a) hardening rate curve for FCC polycrystals and (b) hardening
curve for FCC polycrystals (Driver and Chenal, 2000)

(Stage IV regime), see Figure II.9 b. Currently, there is not a single theory which can
explain Stage IV, even though several theories have been proposed (Prinz and Argon, 1984,
Rollet et al., 1987, Argon and Haasen, 1993, Hughes and Hansen, 2000).

Two main kinds of models have been developed to describe the hardening behaviour in crystal
plasticity: models with phenomenological internal state variables and models with dislocation
densities as internal state variables. For instance, in the first category, see (Busso, 1990,
Kumar and Yang, 1999) use slip resistances as state variables. (Cailletaud, 1988) transferred
macroscopic laws to the single crystal scale and showed a good ability for predicting cyclic
behaviour. These models have a distinct disadvantage in that the material state cannot
be directly observed and the validation of these quantities would require difficult latent
hardening experiments to be conducted (Bassani and Wu, 1991). For more detailed modelling
of deformation behaviour in single and polycrystals, an appropriate description has to be
based on microstructural state variables which are affected by the deformation history of
the material. Therefore, models which rely on an internal-state variable approach are
developed based on the understanding of microstructural evolution and the interaction of
dislocations with short and long-range obstacles. Polycrystals plasticity models developed to
describe cell-forming polycrystalline aggregates at large strains typically use dislocation cell
walls and cell interiors (Estrin et al., 1998) as well as boundaries which separate cell walls
(Peeters et al., 2000) as internal state variables. (Zikry and Kao, 1996) defined a constitutive
formulation where mobile and immobile dislocation densities are used as the internal state
variables. Similarly, (Roters et al., 2000) defined mobile and immobile dislocations in cell
interiors and immobile dislocations inside cell walls to be the internal state variables. Defining
dislocations in cell interiors and in cell walls enables to specify different mobility for each
dislocation type. Alternatively, dislocation can be also discretised into edge and screw
dislocations. When dislocations intersect, jogs and kinks are formed. A kink is a step in
the dislocation line in the slip plane where the dislocation moves while a jog is a step in
dislocation line onto another slip plane. Kinks form on edge dislocations after intersection,
are always glissile and consequently do not affect the subsequent glide of dislocation. In
contrast, jogs with edge character formed in screw dislocations cannot glide since the glide
plane for the jog is different from that for the main dislocation line. The jog is pinned
and the dislocation is said to be sessile. In this case, motion can only occur by the
dislocation line moving out of its existing glide plane, this is known as non-conservative
motion. Here, the length of the dislocation line is not conserved. Therefore, the mobility of
screw dislocations is markedly lower than that of an edge dislocation since its movement is
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Figure II.10 : Crystal under a shear gradient (Ashby, 1970)

more severely impeded. (Arsenlis and Parks, 2002, Cheong and Busso, 2004) used edge and
screw dislocations densities as internal state variables and assigned them different mobilities.

II.1.6 Incorporation of Strain Gradient Concepts

Size-dependent effects have been observed in a wide range of experiments. The more
typical examples are the grain size dependence of initial yielding and work-hardening
in polycrystalline aggregates, a behaviour known as the Hall-Petch effect (Hall, 1951,
Petch, 1953, Hansen, 1977). In these examples, for a given strain, the smaller the grain
size, the harder the material response is. A phenomenological expression of the Hall-Petch
effect is

σ(ε) = σ0(ε) + kd−1/2 (II.15)

where d is the grain size, σ0 is the friction stress and k is the Hall-Petch factor. The length-
scale dependency results from the presence of strain gradients due to lattice incompatibilities
associated with inhomogeneous plastic deformation. When strain gradients are of the order
of the dominant microstructural length scale (small grain size), the macroscopic stress-strain
response is affected. (Nye, 1953) was the first to give a measure of the plastic deformation
incompatibility through the Nye’s tensor which will be defined later in the section. In order
to better understand the interplay and mechanism of dislocations in macroscopic hardening,
(Ashby, 1970) considered that dislocations can be composed of statistically-stored dislocations
(SSDs) and geometrically necessary dislocations (GNDs). The SSDs are considered to be
inherently present in a homogeneously deforming material, where they accumulate in numbers
by randomly impeding and trapping other moving dislocations. On the other hand, GNDs are
considered to be ’necessary’ in order to accommodate lattice incompatibilities in regions where
deformation is inhomogeneous, resulting in the curvature of the crystal lattice. Therefore,
GNDs are essentially localised in grain boundaries where the lattice discontinuity is found.

Figure II.10 illustrates the formation of GNDs (Ashby, 1970). A crystal split in several
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Figure II.11 : From a polycrystal assembly, each crystal is decomposed into constituent
parts, representing its core and its boundaries (Evers et al., 2002)

blocks is under shear gradient. Dislocations of the same type but opposite sign annihilate.
The dislocations excess resulting from this annihilation process, is proportional to the slip
gradient with respect to x,

ρG =
1
b

∂γ

∂x
(II.16)

Classical crystal plasticity models are enhanced to take into account the length-scale
dependency. (Weng, 1983) proposed to link the threshold stress on each slip system and
the grain size d by introducing explicitly the Hall-Petch relation in the self-consistent
theory for plastic deformation of metals developed in (Weng, 1982). However, this approach
is questionable since that the Hall-Petch relation is only a macroscopic relation. As
mentioned in II.1.4.1, the first Taylor-type models assume deformation uniformity within
grains and across grain boundaries, violating the stress equilibrium condition at the
interfaces. (Evers et al., 2002) proposed an alternative intermediate model whereby each
grain is fictitiously subdivided into a core and several grain boundary fractions. The
crystal interior is modelled by one single crystal volume element, whereas several bi-
crystal volume elements represent the grain boundaries, see Figure II.11. The average
plastic deformation discrepancy between the core and the interior bi-crystal parts represents
heterogeneous intragranular deformations accommodated by GNDs. From the measure of
plastic deformation incompatibility given by Nye’s dislocation tensor (Nye, 1953), defined as
the curl of the plastic part of the deformation gradient (curl of Fp) by (Dai and Parks, 1997),
the GNDs density are estimated and included in the slip resistance.

In the single crystal framework, (Fleck and Hutchinson, 1997, Shu and Fleck, 1999),
(Gurtin, 2002) proposed a second gradient theory including a higher order stress tensor. The
length scale arises from the curvature of the crystal lattice controlled by the deformation
gradients. Higher order theories such as Cosserat media have also been developed in a
single crystal framework incorporating coupled stress to take into account the length scale
dependency (Forest et al., 2001). Although motivated from concepts in dislocation theory,
an approach to describe strain gradient effects without additive higher order stresses has been
developed by (Acharya et al., 2003, Busso et al., 2000, Arsenlis and Parks, 1999). These
non-local theories rely on an internal state variable approach to determine the macroscopic
response of the material whereby strain gradient effects are introduced directly into the
evolutionary laws of the state variables. The strain gradient effects are incorporated by
determining the GND population using Nye’s tensor, which gives a measure of the plastic
deformation incompatibility. Physically, Nye’s tensor can be interpreted as a measure for the
closure failure of Burger’s circuit enclosing an infinitesimal surface, where the inner product



II.2. SINGLE CRYSTAL CONSTITUTIVE EQUATION 23

of Nye’s tensor Λ with the unit normal vector n of surface S is integrated over that surface,

G =
∫

S
Λ.ndS (II.17)

That closure failure is equivalent to a cumulative Burger’s vector G, and is related to the
density and character of GNDs piercing the enclosed surface. Strain gradient theories based
on the Nye’s tensor show good agreement with experimental work (Dai and Parks, 1997,
Busso and McClintock, 1996, Acharya and Beaudoin, 2000). Contrary to the second gradient
and Cosserat theories, they are relatively easy to implement numerically and do not require
higher order stresses and additional boundary conditions.

II.2 Single Crystal Constitutive Equation

The single crystal model based on dislocation mechanics used here was proposed by
(Busso and Cheong, 2001). After its initial implementation in the finite element code
Abaqus, it has been successfully used in a series of studies (Cheong and Busso, 2004,
Cheong et al., 2005, Cheong and Busso, 2006). In the model, dislocations are discretised into
edge and screw components with intrinsically different relative mobilities and are subject
to different dynamic recovery processes. The individual roles played by each dislocation
type in contributing to the overall deformation behaviour, are distinguished. Furthermore,
discretising the dislocations into edges and screws enables to take into account their different
energy per unit length of dislocation line in the strain energy formulation.

II.2.1 Finite Strain Formulation

The foundations of the constitutive model for single crystal elasto-plastic finite strain
kinematics used here, follow the approach proposed by (Mandel, 1973). The basic feature
is the distinction between two physical mechanisms, represented by the multiplicative
decomposition of the total deformation gradient tensor F, see Figure II.12. The
total deformation gradient can be multiplicatively decomposed into Fp, associated with
crystallographic slip, and Fe which describes the stretching and the rotation of the crystal
lattice

F = FeFp (II.18)

As the deformation history is important, it is essential to express the total deformation
gradient F in rate-form

Ḟ = LF, (II.19)

where Ḟ is the rate of the total deformation gradient and L is the spatial velocity gradient.
From eqs. II.18 and II.19, L can be additively decomposed into its elastic Le and plastic Lp

counterparts,
L = ḞeFe−1 + FeḞpFp−1Fe−1 = Le + FeLpFe−1. (II.20)

The plastic flow is assumed to be the result of crystallographic slip. Lp is the sum of
crystallographic slip rates on N number of activated slip systems (Asaro and Rice, 1977)

Lp =
N∑

α=1

γ̇αPα (II.21)
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Figure II.12 : Single crystal kinematics showing the decomposition of the total deformation
gradient F into a plastic part Fp due to crystallographic slip and an elastic part associated
with lattice strains and rotation. The crystallographic axes are represented by slip direction
mα and slip plane normal nα.

where γ̇α is the crystallographic slip rate of an arbitrary α slip system, Pα is the dyadic
product of the crystallographic slip direction vector mα and slip plane normal unit vector nα

in the reference configuration :
Pα = mα ⊗ nα (II.22)

The time rate of change of the plastic deformation gradient, Ḟp, is defined by :

Ḟp = LpFp (II.23)

Let us consider a hyperelastic behaviour. It relies on Green-Lagrangian strain tensor with
respect to the intermediate configuration:

Ee =
1
2
(FeTFe − I) (II.24)

The term T defined as the second Piola-Kirchoff stress pushed forward to the intermediate
configuration is the work conjugate stress measure to the Green-Lagrange strain tensor Ee,
(Meissonnier et al., 2001). T and σ, the Cauchy stress tensor, are related through,

T = (detFe)Fe−1σFe−T (II.25)

Since T is the work conjugate stress measure related to the Green-Lagrange strain tensor Ee,
a hyperelastic constitutive law referred to the intermediate configuration is used to describe
the mechanical response of the single crystal, thus allowing a total stress-strain relationship
to be derivable from the Helmholtz free energy density U of the lattice per unit reference
volume,

T =
∂U

∂Ee
(II.26)

Differentiating Eq. II.26 with respect to Ee yields a fourth order tensor κ,

∂T
∂Ee

= κ (II.27)

where

κ =
∂2U

∂Ee2 (II.28)
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In most crystalline metals, the elastic deformation range is infinitesimal when compared to the
plastic strains. Therefore, κ can be approximated by the fourth order anisotropic elasticity
tensor L and the final constitutive law from Eq. II.26 becomes,

T ≈ L : Ee (II.29)

With the single crystal kinematics established, it is now necessary to link it to the evolution
of the dislocation density state variables through the crystallographic slip rates γ̇α introduced
in eq. II.21

II.2.2 Dislocation Mechanics-based Crystallographic Formulation

II.2.2.1 Kinetics of Inelastic Flow

The associated flow rule governing the kinetics of inelastic flow is rate-dependent since
the flow rate due to dislocation motion (Orowan, 1940) is inherently rate dependent even
at low-temperatures. The obstacles to dislocation motion can be broadly classified to be
either short or long-ranged types. As described in Section II.1.5.2, short-range obstacles
are thermally activated and can be interpreted as representing local barriers which can be
overcome by thermal fluctuations alone. The long-range obstacles are considered to be
athermal in nature as they present themselves as energy barriers which can be overcome
by thermal activation. Here, the kinetic equation used for the crystallographic slip rate
describes the flow characteristics on an arbitrary slip system α, for a given temperature,
structure and applied stress taking into account the thermal and athermal components
(Busso, 1990, Busso and McClintock, 1996). From eq. II.13 and extrapolating the slip
resistance and lattice stress at 0K, the kinetic equation for the crystallographic slip rate
γ̇α has the following expression:

γ̇α = γ̇0 exp

[
− F0

kT

{
1−

〈
|τα| − Sα

0 µ/µ0

τ̂0µ/µ0

〉p}q]
sign(τα) (II.30)

F0 is defined as the Helmholtz free energy of activation, which is the total free energy needed
to overcome short-range obstacles without the aid of an applied shear stress. The term τ̂0
represents the lattice friction at 0 K and Sα

0 is the total athermal slip resistance to dislocation
motion. The shear moduli ratio at T , µ and at 0 K, µ0 are introduced to extrapolate the
lattice friction stress and the slip resistance at T (K). The constants p and q are parameters
defining the shape of the energy-barrier profile. The term sign(τα) accounts for positive and
negative slip on the slip system.
For a slip system α, the plastic power per unit volume, ω̇p, is defined through the relation,

ω̇p =
N∑
α

ταγ̇α (II.31)

Making reference to the intermediate configuration, an alternative definition can be obtained
in terms of Ee and T,

ω̇p = FeTFeT : Lp (II.32)

The resolved shear stress τα can be approximated (for small elastic stretches) as

τα ≈ T : Pα (II.33)

The crystallographic slip only occurs when the effective driving stress is greater than zero.
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II.2.2.2 Evolution of Dislocation Densities

Recalling the definition of Ashby (1970) postulated that the total dislocation density in
a metal can be classified into two categories, statistically stored dislocations (SSDs) and
geometrically necessary dislocations (GNDs). The GNDs are distinguished from the SSDs
as they are only present in regions of non-homogeneous plastic deformation to accommodate
geometric incompatibilities or strain-gradients within. Therefore, the total dislocation density
can be additively decomposed into statistically-stored and geometrically necessary parts,

ρα
T = ρα

S + ρα
G (II.34)

Both categories contribute to the total athermal slip resistance Sα
T defined as,

Sα
T =

√
(Sα

S )2 + (Sα
G)2 (II.35)

with,

Sα
S = λSµb

α
S

√√√√ N∑
β=1

hαβρβ
S (II.36)

Sα
G = λGµb

α
G

√√√√ N∑
β=1

hαβρβ
G (II.37)

Here, µ is the shear modulus while λS and λG are statistical coefficients which accounts for the
deviation from regular spatial arrangements of the SSD and GND populations, respectively.
The terms bαS and bαG are their corresponding Burgers vector magnitude. In what follows, it
will be assumed for simplicity that λ = λS = λG and b = bαS = bαG. Furthermore, hαβ

S and
hαβ

G are the respective SSD and GND dislocation interaction matrices.

hαβ
k = ωk1 + (1− ωk2)δαβ for k = S,G (II.38)

Here, ωk1 and ωk2 are the interaction coefficients and δαβ is the Kronecker Delta.

Both categories are additively separated into pure edge and screw types,

ρα
S = ρα

Se + ρα
Ss (II.39)

ρα
G = ρα

Gen + ρα
Get + ρα

Gs (II.40)

ρα
Se and ρα

Ss represent the statistical edge and screw dislocation density components. The
subscripts en and et refer to edge components resolved along the slip direction mα and
perpendicular to it, tα = mα×nα. Edge and screw dislocations act as obstacles to dislocation
motion in the form of forest dislocations. As ρα

e and ρα
s represent edge dislocations density

and screw dislocations density respectively. They contribute to the athermal slip resistance
in the following way:

Sα
S = λµbα

√√√√ N∑
β=1

hαβρβ
e + ρβ

s (II.41)

The statistically stored dislocations densities evolution equations are formulated as balance
equations between dislocation generation and dislocation annihilation. The generation or
multiplication of SSDs is due mainly to the resistance to dislocation motion posed by forest
dislocation acting as random obstacles, forcing the moving dislocation to percolate through
a combination of dislocation bowing and expansion. Dislocation generation is assumed to
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Figure II.13 : Dislocation multiplication - schematic diagram of an idealised expanding
dislocation loop during a time interval dt (Cheong and Busso, 2004)

Figure II.14 : Dislocation annihilation - Schematic diagram of the annihilation region for
a screw dislocation after a time interval dt (Cheong and Busso, 2004)

be associated with the expansion of dislocation loops originating from existing Franck-Read
type sources. Figure II.2.2.2 shows an idealised, expanding dislocation loop on a arbitrary
active slip system α during a time dt. The loop is assumed to be rectangular, with straight
edge and screw sides of lengths Lα

e and Lα
s , respectively. Here, Y α

e is the mean free path of
the edge dislocation segment, defined to be the distance travelled by the segment before its
motion is arrested by forest dislocations. Derivation with respect to time yields the rate of
generation of edge dislocation density,

ρ̇α
e,gen =

Ce

bαY α
e

γ̇α (II.42)

and similarly for the generation of screw dislocations,

ρ̇α
s,gen =

Cs

bαY α
s

γ̇α (II.43)

Ce and Cs are parameters which scale the magnitudes of the slip rate contributions from the
edge and screw segments, respectively.

Mutual annihilation between parallel dislocations of the same character but opposite signs is
assumed to be the predominant annihilation mechanism. An annihilation event occurs when
two dislocations are drawn towards each other by their attractive forces in order to reduce
their line energies. Through this combination process, the opposing dislocations mutually
annihilate. The probability of such an event occurring is determined by the cross sectional
area for annihilation, see Figure II.2.2.2. Such a region is illustrated by the dash line around
a gliding screw dislocation, which moves from the position at time ”t” to ”t+dt”.
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Figure II.15 : Cross-slip in FCC crystal: a screw dislocation at z can glide in either the
(111) or the (11̄1) close-packed planes.

The symbol ds represents the critical distance for mutual annihilation between two anti-
parallel screw dislocations to take place (Kubin et al., 2009). Since screw dislocations have
the ability to cross-slip even at low temperatures, Figure II.3, they will inevitably encounter
more annihilation events than edge dislocations and the critical distance is larger. The screw
dislocation density annihilation rate is:

ρ̇α
s,ann =

Cs

bα

[πd2
s

Y α
s

+ 2ds

]
ρα

s γ̇
α (II.44)

The edge dislocation density annihilation rate is different because of their inability to cross-
slip:

ρ̇α
e,ann =

Cs

bα

[
2ds

]
ρα

s γ̇
α (II.45)

To express the previous laws in terms of dislocations densities, Y α
e and Y α

s can be linked to
the mean obstacle spacing lαm, where the dominant obstacles for a pure single crystal are the
forest dislocations.

Y α
i =

lαm
Ki

; i = e, s (II.46)

The mean dislocation spacing is linked to the total dislocation density as in
(Basinski and Basinski, 1979),

lαm =
1√∑N
β=1 ρ

β
T

(II.47)

From eqs. II.42 to II.47, the dislocation density evolution equations are formulated as balance
equations between dislocation generation and dislocation annihilation.

ρ̇α
e =

Ce

bα

[
Ke

√√√√ N∑
β=1

ρβ
T − 2deρ

α
e

]
|γ̇α| (II.48)

ρ̇α
s =

Cs

bα

[
Ks

√√√√ N∑
β=1

ρβ
T − ρα

s

(
πd2

sKs

√√√√ N∑
β=1

ρβ
T + 2ds

)]
|γ̇α| (II.49)

II.3 Polycrystal : Non-local Effects

The strain gradient theory here follows the work of (Busso et al., 2000), where the evolution
of the GND structure is linked to local slip rate gradients. During plastic deformation of
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Figure II.16 : Local orthogonal coordinate system of reference for a generic geometrically
necessary dislocation line in an arbitrary slip system α

crystalline materials, GNDs accommodate orientation gradients within single crystals in the
material. This dislocation structure is necessary to maintain lattice continuity. By definition,
the density of the GNDs is related to the net Burgers’ vector of all dislocations piercing an
infinitesimal surface (S) with normal n, and enclosed counterclockwise by a circuit (G) in the
intermediate configuration associated with Fp. The resulting discontinuity G on completion
of a Burgers’ circuit around the path can then be defined through Nye’s dislocation density
tensor Λ (Nye, 1953) using Stoke’s Theorem,

G = −
∫

Γ
FpdX =

∫
S

Λ.ndS, where Λ = curl{Fp} = ∇× Fp (II.50)

The evolution of GNDs can be then obtained by differentiating Eq. II.50 with respect to
time. Here,

G =
∫

S
Λ̇.ndS =

∫
S

∑
α

Λ̇α.ndS, where Λ̇α = curl{(γ̇αmα ⊗ nα)Fp} (II.51)

Considering that there exists a vectorial field of GNDs for every slip system, the GNDs can
be represented by a generic GND line vector ρα

G with Burger’s vector b. This dislocation line
vector can be further discretised into its edge and screw components by solving along axes
of the coordinate system defined in terms of the slip directions mα, its slip plane normal nα

and a third orthogonal direction tα = mα × nα

ρα
G = ρα

Gsm
α + ρα

Genn
α + ρα

Gett
α (II.52)

Here, ρα
Gs refers to its screw component parallel to mα while ρα

Gen and ρα
Get are the edge

components parallel to nα and tα, respectively. The Burgers’ vector discontinuity associated
to the density of the GNDs crossing a unit area (S) with normal r is given by

G =
∫

S
(bα

G ⊗ ρα
G).ndS (II.53)

Differentiating eq. II.53, a second expression of the rate of G is obtained

Ġ =
∫

S
(bα

G ⊗ ρ̇α
G).ndS (II.54)

By equating eqs. II.51 and II.53, the final expression for the GND evolution written in
tensorial form is

ρ̇α
Gsw

(bα
G ⊗mα) + ρ̇α

Get
(bα

G ⊗ tα) + ρ̇α
Gen

(bα
G ⊗ nα) = curl{(γ̇αmα ⊗ nα)Fp} (II.55)
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II.4 Methodology: Finite Element Implementation

Two integration methods are generally used to solve highly non-linear constitutive equations;
explicit or implicit integration. In an implicit integration, an iterative approach is employed
in solving the non-linear equations to achieve convergence. In the case of the explicit FE
method, the equations can be solved directly to determine the solution without iteration.
(Harewood and McHugh, 2007) developed a rate-dependent crystal plasticity algorithm using
the explicit FE package, ABAQUS/explicit. The subroutine and an equivalent implicit version
were used in a series of comparative boundary value problem analysis. They recognised the
advantages that the explicit method has in solving certain loading conditions; however, the
implicit procedures are best suited for quasi-static computations allowing larger time steps.
In the FE Zebulon code (Besson et al., 1998), the implicit integration method is used to
solve the global mechanical equations. However, an explicit local integration or implicit local
integration will be employed.

II.4.1 Local Integration Methods

Two local integration methods have been used for this model: an explicit Runge-Kutta
method, and an implicit mid-point method resolved by a Newton-Raphson local convergence
loop (Besson et al., 2001a). For both methods, the following set of variables of integration is
defined, taking into account the number of slip systems N :

Vint = {Ee, (γα, ρα
Ss, ρ

α
Se, α = 1..N)} (II.56)

For the Runge-Kutta method, the rate of each variable has just to be prescribed. In the
implicit case, residuals have to be defined. Therefore, only local implicit integration will be
detailed in this work.

II.4.2 Finite Strain Formalism in a Local Implicit Integration Scheme

An implicit time integration procedure using a Newton-type algorithm is employed to
determine the material state variables. Given a list of known variables at the beginning of the
time increment, Fn, Fp

n, ρα
Se,n and ρα

Ss,n, together with an estimate of the total deformation
gradient, Fn+1. a finite strain formalism in a local implicit integration scheme proposed in
(Musienko, 2005) is used to calculate the material state variables at the next iteration.

The time rate of change of the plastic deformation gradient, Ḟ∼
p
, is defined by:

Ḟp = LpFp (II.57)

Integrating Eq. II.57, we have the following integration scheme:

Fp
n+1 = Fp

n exp(Lp∆t) = Fp
n exp(∆γαPα

n+1) (II.58)

Let us consider:
F∗ = Fn+1Fp−1

n (II.59)

Also, by definition:
Fe

n+1 = Fn+1F
p−1
n+1 (II.60)

We then obtain,
F∗ = Fe

n+1 exp(∆γαPα) ≈ Fe
n+1(I + ∆γαPα

n+1) (II.61)
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In order to write a relation in term of the elastic strain, we obtain

F∗TF∗ = (I + ∆γαPα
n+1)

TFeT
n+1F

e
n+1(I + ∆γαPα

n+1) (II.62)

Eq. II.62 is developed at the first order:

F∗TF∗ = FeT
n+1F

e
n+1 + 2∆γα(Pα

n+1C
e
n+1) (II.63)

Using the expression of the Lagrangian strain, an equation with elastic and plastic parts can
be found. There,

E∗ = Ee
n+1 + ∆γα(Pα

n+1C
e
n+1) (II.64)

II.4.3 Theta Method (θ-method)

Let us consider Vt
int, N-dimensional vector containing the variables to be minimised and its

increment on the time step ∆t, ∆Vint, its estimation at t+ θ∆t, Vθ
int is

Vθ
int = Vt

int + θ∆Vint (II.65)

where 0 ≤ θ ≤< 1. A generalised form of the problem at t+ θ∆t can be written as

F(Vθ
int,∆Vint) = F0 (II.66)

The reduced form of eq. II.66 at the kth iteration is

Rk = Fk −F0 (II.67)

where Fk is the evaluation of F at kth iteration. The Newton-Raphson expression for the
(k+1)th iteration is. Thus,

∆Vk+1
int = ∆Vk

int − [J k+1
θ ]−1Rk. (II.68)

where J k+1
θ is the jacobian matrix. The dimension of Vint for the single crystal model with

12 slip systems is 42. Thus,

Vint = {Ee, (γα, ρα
Ss, ρ

α
Se, α = 1..12)} (II.69)

The method provides the most robust integration schemes for θ = 1. The residual system for
θ = 1 is written as

Rk =


rEe

rγα

rρα
Se

rρα
Ss


where

rE = −E∗ + Ee
n+1 +

N∑
α=1

∆γα(Nα
n+1C

e
n+1) (II.70)

rγα = ∆γα − γ̇0 exp

[
− F0

kT

{
1−

〈
|τα

n+1| − Sα
n+1

τ̂

〉p}q]
sign(τα)∆t (II.71)

rρα
Se

= ∆ρα
Se −

Ce

bα

[
Ke

√√√√ N∑
β=1

ρβ
Tn+1

− 2deρ
α
Sen+1

]
∆γαsign(τα) (II.72)

rρα
Ss

= ∆ρα
Ss −

Cs

bα

[
Ks

√√√√ N∑
β=1

ρβ
Tn+1

− ρα
Ssn+1

(
πd2

sKs

√√√√ N∑
β=1

ρβ
Tn+1

+ 2ds

)]
∆γαsign(τα)(II.73)
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In what follows, the expressions of the Jacobian operator are written for the crystal plasticity
model previous described. The Jacobian matrix, J k, contains the partial derivatives of the
residuals, Rk, with respect to the unknowns:

J k
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II.4.4 An Algorithm For the Evaluation of the Tangent Operator

In the same way as for the resolution of the local non-linear equations, a consistent tangent
matrix is required to solve the global equation with a fully implicit method, namely

∂σ
∂Etot . (Simo and Hughes, 1997) developed an algorithm which is briefly described. Once
convergence has been achieved, one finds

d∆Ee

d∆γα

d∆ρα
Se

d∆ρα
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 =
[
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θ

]−1
.


d∆Etot

0
0
0


so that the top left subcomponent of the inverted Jacobian matrix

[
J k+1

θ

]−1

e
relates the

variation of ∆Ee with respect to the variation of ∆Etot :[
J k+1

θ

]−1

e
=

∂∆Ee

∂∆Etot
(II.74)

The elastic constitutive equations can then be used to evaluate the partial derivatives of ∆σ
with respect to ∆Etot. Therefore, the non-linear tangent matrix consistent with the ∆Etot

integration algorithm is (Simo and Hughes, 1997):

D =
∂∆σ
∂∆Etot

= C
[
J k+1

θ

]−1

e
(II.75)

A more detailed description of the formulation can be found in (Besson et al., 2001a).

II.4.5 Determination of Slip-Rate Gradients for Non-Local Constitutive
Behaviour

As explained in a previous section, the strain gradient formulation is incorporated through
the introduction of GND densities which evolve according to the spatial slip-rate gradients
defined by (Busso et al., 2000),

bα
G(ρ̇α

Gsw
mα + ρ̇α

Get
tα) + (ρ̇α

Gen
nα) = curl{γ̇αnαFp} = curl{A} (II.76)

In order to determine the evolution of the GNDs, the quantity curl{A} has to be calculated.
Given that the spatial variation of the quantity {A} is necessary to estimate its curl, a
spatial interpolation needs to be done at each Gauss point with its neighbours. A post-
processing method is used to evaluate the gradients. Firstly, the quantity {A} is calculated
after each each time step. Then, the quantity {A} at each integration points is extrapolated
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at the nodes using the shape functions of the element. Subsequently, the spatial gradients
{A} at each integration point are obtained directly from the spatial derivatives of the shape
functions and interpolated back to the integration points. In contrast to the method used by
(Busso et al., 2000), the shape functions employed to extrapolate the variable are the same in
all the FE resolution. Once the quantity curl{A} is estimated, it is used in the next iteration
to explicitly updated the GNDs using a forward Euler scheme,

ρα
Gi,n+1 = ρα

Gi,n + ∆tρ̇α
Gi,n (II.77)

In view of the fact that the GNDs are explicitly updated, the accuracy of the solution is
ensured only if a sufficiently small time step is used.

II.5 Conclusions

The deformation state of cold deformed pure FCC metals with medium to high stacking fault
energy is briefly reviewed so as to underline its intergranular and intragranular heterogeneities.
Among the different methods used to describe the mechanical behaviour of polycrystalline
aggregate in continuum mechanics, finite element models have been opted for their ability
to describe non-homogeneous deformation at both intragranular and intergranular levels.
The single crystal model proposed by (Cheong and Busso, 2004) have been preferred for
its distinction between screw and edge dislocation densities. Since the grain size change
during recrystallization and grain growth, non-local effects have been introduced through
geometrically necessary dislocations. An implicit integration scheme of the single crystal
model in a finite strain formalism has been detailed for its implementation in the FE code
Zebulon.
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Bernard D., and Jeulin D. (2007). Finite element simulations of the deformation of
fused-cast refractories based on X-ray computed tomography. Comput. Mat. Sci., vol. 39,
pp 224–229.

Mandel J. (1973). Equations constitutives et directeurs dans les milieux plastiques et
viscoplastiques. International Journal of Solids and Structures, vol. 9, pp 725–740.

Meissonnier F.T., Busso E.P., and O’Dowd N.P. (2001). Finite element
implementation of a generalised non-local rate-dependent crystallographic formulation
for finite strains. International Journal of Plasticity, vol. 17 n◦ 4, pp 601–640. (7th
International Symposium on Plasticity and Its Current Applications, Cancun, Mexico,
Jan, 1999).

Merriman C.C., Field D.P., and Trivedi P. (2008). Orientation dependence of
dislocation structure evolution during cold rolling of aluminum. Materials Science and
Engineering A, vol. 494, pp 28–35.

Mika D.P. and Dawson P.R. (1998). Effects of grain interaction on deformation in
polycrystals. Materials Science and Engineering A, vol. 257, pp 62–76.



38
CHAPTER II. CONSTITUTIVE BEHAVIOUR OF THE FCC POLYCRYSTALLINE

AGGREGATES

Molinari A., Canova G.R., and Azhi S. (1987). A self-consistent approach of the large
deformation polycrystal viscoplasticity. Acta Metallurgica, vol. 35, pp 2983–2994.

Murr L.E. (1975). Interfacial phenomena in metals and alloys. Addison-Wesley.
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III.1 Introduction

Aluminium alloys and pure aluminium have been widely studied for 70 years,
(Burgers and Snoek, 1935, Crussard et al., 1950). Aluminium alloys are often used to form
sheet metal by common manufacturing processes such as cold rolling, see Figure III.1. For
instance, beverage cans are closed by rolling, and steel food cans are strengthened by rolling
ribs into their sides. Rolling mills are also commonly used to precisely reduce the thickness
of strip and sheet metals. In cold strip rolling, the width of the strip is much greater than
its thickness, so the spread of the width is much less than the deformation in the rolling
direction. Therefore, the deformation process is usually regarded as a problem of plain strain
compression. To enable more accurately controlled deformation, channel-die compression
device, equivalent to plane strain conditions, are employed instead of a laboratory rolling mill
(Sue and Havner, 1984, Butler and Hu, 1989, Becker et al., 1991, Driver et al., 1994), see
Figure III.1. The deformation textures deformed by rolling and by channel-die compression
are largely similar, but significant differences develop with increasing thickness reduction
(Hammelrath et al., 1991). Thus, in the chapter, experimental and numerical samples will
be tested under channel die compression up to 60% height reduction.

Figure III.1 : Schematic (a) rolling process and (b) a channel die compression test

III.1.1 Rolling Texture

Deformation processes in polycrystalline metals are always accompanied by a change of
crystallographic orientation of each grain, which is often referred to as texture evolution.
Most of the texture data available in the literature refers to IPF and ODF data. These
analyses reveal the presence of texture components characteristic of metal forming process
used, see Figure III.1. For instance, the {100} and {111} pole figures for 95% cold rolled
aluminium are shown in Figure III.2.

III.1.2 Single Crystal - Rotation Path

The orientation changes that take place during deformation are not random. They
are a consequence of the fact that deformation occurs on the most favourably oriented
slip or twinning systems and it follows that the deformed metal acquires a preferred
orientation or texture. For example, the response to plane strain compression of
various orientations have been studied by various researchers (Akef and Driver, 1991,
Becker et al., 1991, Butler and Hu, 1989, Driver et al., 1994, Theyssier et al., 1995). Most
crystal orientations, in channel die compression test, are accompanied by greater spread
along the TD than ND and RD directions, see Figure III.2(b). However, the deformation
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Table III.1 : Aluminium alloys characteristic texture components (Driver and Chenal, 2000)

Figure III.2 : Pole figures of 95% cold rolled aluminium; (a) {100} pole figure; (b) {111}
pole figure showing positions of several ideal orientations (Grewen and Huber, )
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Figure III.3 : (111) pole figures of the deformation texture produced after plane
strain compression of cube oriented crystals at room temperature measured using EBSD
(Stanford et al., 2003b)

texture of a deformed single crystal is generally distinguished as being either stable or
unstable (Maurice et al., 1992). The rolling texture components such as Copper {112}111,
Brass {110}112, S {123}412 and Goss {110}001 are stable orientations and undergo minimal
macroscopic lattice rotations with only a few degrees from the starting orientation. The
disorientation axes are either close to the transverse direction, TD ({112}111, {110}112) or
near random as in the {123}412 orientation (Godfrey et al., 1998b, Godfrey et al., 1998a).
Unstable orientations undergo much greater lattice rotations during deformation and often
break up into deformation bands. Examples are typical recrystallisation components, Cube
{100}001 (Akef and Driver, 1991), see Figure III.3.

III.1.3 Inter et Intragranular Misorientations

III.1.3.1 Deformation Bands

During plastic deformation of polycrystalline materials, individual grains are sometimes
subdivided into areas rotating independently of one another to accommodate the imposed
strain. The reason for such grain fragmentation is that the number and selection of
simultaneously acting slip systems differs between neighbouring areas within a grain. This
leads to differences in lattice rotations between neighbouring areas within a grain and depends
on the initial lattice orientation of the grain and its interaction with neighbouring grains. The
deformation bands are most clearly observed in single crystals, bicrystals and very coarse grain
polycrystals are separated by transition bands in the TD/RD plan (Liu et al., 1998).

III.1.3.2 Dislocation Cells

In alloys with a high stacking fault energy and low solute content, such as dilute aluminium
alloys, the microstructures after deformation at ambient or elevated temperatures can usually
be described as a cellular or subgrain structure. Dislocation structure evolution during cold
deformation of FCC polycrystals has been extensively investigated over the past couple
of decades with primary emphasis on a qualitative description of the evolving structures
and their relation to mechanical properties. As deformation increases in a material, grains
begin to break into substructures. These substructures are characterized by two different
types of boundaries: incidental dislocation boundaries (IDB) and geometrically necessary
boundaries (GNB), see Figure III.4. The GNBs surround groups of cells in elongated cell
blocks, itself surrounding regions that are almost dislocations free. This duplex structure
persists throughout Stage II-IV. With increasing strain, the average GNB misorientation
increases while the cell size decreases and the cell walls collapse into sub-boundaries, micro-
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Figure III.4 : Schematics of cell-block boundaries and ordinary cell boundaries
(Liu et al., 1998)

Figure III.5 : Schematic three dimensional drawing of the deformed microstructure.
Sheets of extended GNBs with stippled low angle IDBs bridging between them. High
angle GNBs are represented by thick lines and medium angle by medium thick lines
(Hughes and Hansen, 2000)

shear bands appear and finally the cell and micro-band structures evolve into a lamellar
structure. GNBs tend to be aligned at about 40° to the rolling direction RD (Liu et al., 1998).

These two boundary types form differently. IDBs do so by the random trappings of glide
dislocations and GNBs form between regions with one or more different operating slip systems
to accommodate the accompanying difference in lattice rotations. These boundaries contain
both statistically stored dislocations which do not contribute significantly to a net lattice
rotation, and essentially in GNBs, excess dislocations which are geometrically necessary
dislocations, contribute to the net lattice rotation (Merriman et al., 2008). The GNBs which
accommodate the lattice mismatch, will acquire much larger misorientation angles at a
higher rate with increasing strain than IDBs. Those heterogeneities of the microstructure
widely characterised by 2D techniques consist of nearly two-dimensional morphologies, see
Figure III.5. The dislocation cells have been mainly characterised by transmission electron
microscopy (TEM) (Ananthan et al., 1991, Hughes and Hansen, 1997, Liu et al., 1998), see
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Figure III.6 : (a) transmission electron micrograph showing substructures after 20% rolling
and (b) EBSD relative Euler orientation map showing substructures after 20%rolling with
0.5° boundaries superimposed (Hurley and Humphreys, 2003)

(1) (b) (c) (d)

Figure III.7 : TEM micrograph of (a) Type 1, (b) Type 2, (c) Type 3 microstructures and (d)
Inverse pole figure showing the tensile axis orientation of grains embedded in polycrystalline
specimens strained up to 14%

Figure III.6 a, and more recently by scanning electron microscopy and high resolution electron
backscatter diffraction (EBSD) (Driver et al., 1994, Wilkinson, 2001, Hurley et al., 2003), see
Figure III.6 b. The use of EBSD enables more quantitative but less qualitative measurements
than with the TEM (Winther et al., 2004). The main measurable structural parameters with
respect to the cell blocks are the spacing of dislocation boundaries and misorientation angles.

Grain orientations are known to have a strong influence on the dislocation substructures
of plastically deformed metals, with obvious implications for work-hardening rates,
stored energies, and recrystallisation. Consequently, the relations between deformation
microstructures and crystal orientation, particularly of FCC metals, have been the subject
of several investigations. Observations of cell block structures in deformed polycrystals
under tension have revealed that the boundary plane for GNBs varies with location
of the crystal orientation of the tensile axis within a standard stereographic triangle
(Huang and Hansen, 1997). In Figure III.7, Type 1 represents microstructures subdivided by
extended, crystallographic dislocation boundaries, defining cell blocks which contain ordinary
cells while Type 3 represents microstructures with extended, non-crystallographic dislocation
boundaries. A boundary is defined as crystallographic when is parallel to within 5° with a
slip plane, whereas non-crystallographic boundaries make a larger angle with a slip plane.
Type 2 depicts microstructures subdivided by ordinary dislocation boundaries defining a three
dimensional cell structure (Hansen and Huang, 1998).
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Table III.2 : Flow rule parameters for Al

τ̂0(MPa) p q γ̇0(s−1) F0(J)

8.0 0.141 1.1 1.73× 106 3.00× 10−19

Table III.3 : Single crystal model parameters for Al

Ci Ki/b
α(mm−1) di(nm) Y α

i (µm)

Edge 0.5 55× 103 7.0 162
Screw 0.5 110× 103 35.0 81

µ = 45.0 GPa λ = 0.3 bα = 0.286 nm ω1 = 1.5 ω2 = 1.2

III.2 Calibration of the Single Crystal Model

The material constants for Al come from published values (Cheong et al., 2005). The
anisotropic elasticity tensor for cubic crystals is defined by three independent parameters,
C11, C12 and C44. All three parameters are temperature-dependent and each have been
approximated by a polynomial relation (Simmons and Wang, 1971) in GPA units.

C11 = 123.32 + (6.70× 10−8)θ3 − (1.13× 10−4)θ2 − (7.88× 10−3)θ (III.1)
C12 = 70.65 + (4.41× 10−8)θ3 − (7.55× 10−5)θ2 − (4.00× 10−3)θ (III.2)
C44 = 31.21 + (7.05× 10−9)θ3 − (1.22× 10−5)θ2 − (8.33× 10−3)θ (III.3)
µ = 29.16 + (9.00× 10−9)θ3 − (2.00× 10−5)θ2 − (73.00× 10−4)θ (III.4)

The flow rule defined by Eq. II.30 contains a total of five parameters (γ̇0, F0, τ̂0, p, q) which
have been determined by (Balasubramanian and Anand, 2002). The hardening-recovery laws
defined by Eqs. II.48 and II.49 contain six parameters (Ce, Cs, Ke, Ks, de, ds) which
have been identified by (Cheong et al., 2005) from experimental data previously obtained by
(Hosford et al., 1971). The flow rule parameters are listed in Table III.2 and the single crystal
model parameters in Table III.2.

In order to verify the validity of the calibrated parameters, finite-element (FE) calculations of
single crystals under uniaxial tensile loading are performed in Zebulon (Besson et al., 1998)
using a FE mesh of identical dimensions to that of (Hosford et al., 1971). As shown in
Figure III.8, the mesh consists of 44×4×4 elements. Quadratic brick elements with reduced
integration (C3D2r) are used. Boundary conditions are described in Figure III.8. Nodes
on each side of the opposite top and bottom faces are constrained from moving laterally to
reproduce the grip constraints. As measured in (Hosford et al., 1971), initial misalignment
of 0.5◦ in the Al single crystals from the [100], [111] and [112] ideal orientations is introduced
in the simulations carried out, see Tab. III.2. A true strain rate of 7.5× 10−5s−1 was applied
at a temperature of 273K. FE calculation performed by Abaqus (Cheong et al., 2005) and
Zebulon are shown in the form of stress-strain curves in Figure III.9. Curves obtained by
both FE codes are identical and are in good agreement with experimental data.
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x y

z

U1 = 0

U1 imposed

Figure III.8 : Specimen geometry and FE mesh used to simulate uniaxial tensile tests

Table III.4 : Euler angles (Bunge notation) with 0.5◦ misorientation from the tensile axis

Orientation φ1 (deg.) θ (deg.) φ2 (deg.)

[111] 54.8 135.01 180.0

[100] 0.4 10.0 0.0

[112] 61.1 69.7 281.0
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Figure III.9 : Comparison of true-stress true-strain prediction along [100], [111] and [112]
with experiment data at 273°K
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(a)

x y

z

(b)

Figure III.10 : Microstructure generated using Voronoi tessellation: (a) regular mesh and
(b) ’free’ mesh (Osipov, 2007)

III.3 Single Crystal Model Validation for a Polycrystal

III.3.1 Impact of GNDs on Deformation Heterogeneities

This section reports the differences in the deformed features predicted by the introduction or
not of the GNDs in the model. The RVE used to describe Al polycrystalline aggregates have
an initial cubic geometry with different grain shape, see Figure III.10. The polycrystalline
aggregate is obtained from a digital microstructure generated from mathematical models
based on Poisson’s distribution of the grains nuclei. This kind of aggregate generated by
Voronoi tessellation has been extensively used in ((Barbe et al., 2001a, Barbe et al., 2001b,
Kanit et al., 2003, Zeghadi, 2005, Osipov, 2007) for different applications. Voronoi
tessellation allows to obtain a grain morphology closed to the experimentally observed grain
shape. The mesh generation procedure adopted in the present work introduces tetrahedra
which are generated in two successive operations, skin construction and 2.5D mesh generation
(Laug and Borouchaki, 2003), followed by the generation of the solid elements (George, 1997).
This method avoids step phenomenon at grain boundaries as illustrated in Figure III.10.
Furthermore, as each element belongs to only one grain, numerical singularities arising from
behaviour discrepancies in the same element are avoided (Osipov, 2007). The mesh with 100
randomly-oriented grains is made of 97693 10-nodded isoparametric tetrahedral elements.
Grains are defined by group of elements with randomly assigned orientations, as illustrated
by the {111} pole figures shown in Figure III.12.

The boundary conditions are described in Figure III.11. A true strain rate of 0.7× 10−4s−1

was applied on the top surface at a temperature of 273K. Parallel computations have been
carried out to resolve the resulting non linear system. The FE code Zebulon used is fully
parallelised (Feyel, 1998). The algorithm is based on a subdomain decomposition method
called FETI (Finite Element Tearing and Interconnecting method (Fahrat and Roux, 1991)).
After the decomposition of the structure into subdomains, the sub-problems into each domain
are solved independently and an iterative scheme is employed to obtain the solution of the
global problem, and to merge the results of all subdomains.
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(a)

Figure III.11 : Polycrystalline Aggregate used to simulate uniaxial compression test

(a) (b) (c)

Figure III.12 : {111} Pole figures of (a) randomly assigned grain orientations, (b) after
10% height reduction and (c) after 10% height reduction when GNDs are included in the
polycrystal
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(a) with only SSDs (b) with SSDs and GNDs

0 2.4 4.8 7.2 9.6 12 14.4

Figure III.13 : Accumulated grain rotations distribution after 10% height reduction

As seen in Figure III.12(a), no initial misorientation mosaicity has been assumed inside
each grain. Figure III.12(b) shows the pole figures {111} after 10% deformation. The
spread of orientations seen in the figures underlines the misorientation development, which
results in a significant increase of GNDs to accommodate these misorientations. However, the
orientations spread in the pole figure where GNDs are accounted for seems more significant
those observed where only SSDs are taken into account. In order to quantify grain rotation,
the accumulated rotations distributions, defined by β = arccos(Tr(Re)−1

2 ) obtained from the
polar decomposition of the elastic part of the gradient tensor, Fe = ReUe, where Re is
the elastic lattice rotation and Ue are the elastic lattice stretching, are shown on Figure
III.13. In both cases, rotations inside grain are inhomogeneous. However, the rotation
heterogeneities are stronger when GND hardening is accounted for. Rotations are mainly
localised at aggregate edges and in lesser extent at grain boundaries. In addition to the
misorientation development, grains undergo lattice rotations as illustrated in Figure III.14,
where only a small fraction of polycrystalline aggregates kept the initial orientation. Figure
III.13 shows similar rotation distributions while the average grain rotation increases with the
introduction of GNDs.

The accumulated plastic strain distribution for both aggregates shown on Figure III.15 reveals
heterogeneous areas with peaks in corners and edges. In contrast to the accumulative plastic
strain, the Von Mises stress distribution is localized at grain boundaries as shown in Figure
III.16, especially when GNDs are introduced. Figure III.17 shows the total dislocation
density distribution. The accumulation of dislocations at the grain boundary is strengthened
by GNDs introduction due the significant quantity of GNDs necessary to accommodate the
lattice incompatibilities.

III.3.2 Representative Volume Element of Aggregates

In this section, grain morphology dependency is investigates. Two RVEs are used to describe
Al polycrystalline aggregates. Both have an initial cubic geometry with different grain shapes,
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Figure III.14 : Statistics of the accumulated grain rotations after 10% deformation

(a) with only SSDs (b) with SSDs and GNDs

0.014 0.067 0.120 0.174 0.227 0.280 0.333

Figure III.15 : Accumulated plastic strain distributions after 10% height reduction
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(a) with only SSDs (b) with SSDs and GNDs

15 25 34 43 52 62 71 32 70 110 146 186 223 263

Figure III.16 : Von Mises stress distribution after 10% height reduction

(a) with only SSDs (b) with SSDs and GNDs

5.7e+06 1.3e+07 2e+07 2.8e+07 3.5e+07 4.2e+07 8.7e+07 5.0e+08 9.0e+08 1.3e+09 1.7e+09 2.3e+09

Figure III.17 : Distribution of all dislocation densities after 10% height reduction



54 CHAPTER III. DEFORMATION BEHAVIOUR OF AL POLYCRYSTALS

(a) (b)

Figure III.18 : Polycrystalline aggregates used to simulate uniaxial tensile tests with (a) a
free mesh and Voronoi tessellation, and with a (b), regular mesh

see Figure III.18. In both cases, grains are defined by groups of elements with randomly
assigned orientations.

Boundary conditions are described in Figure III.18. A true strain rate of 0.7 × 10−4s−1

was applied at a temperature of 273K on the top surface. No initial misorientation has been
assumed inside each grain. The resulting stress-strain response can be seen in Figure III.19 for
both polycrystals. From this figure, it can be seen that the macroscopic stress-strain response
is hardly affected by the grain morphology. The accumulated plastic strain distribution for
both aggregates is given in Figure III.20. It consists of heterogeneous areas with peaks at the
corners and edges of the RVE.

The predicted accumulated grain rotation is shown in Figure III.21. As underlined previously,
rotations are heterogeneous inside each grain giving a misorientation development. Only a
small fraction of the grains keep their initial orientation as seen in Figure III.22. Grain
rotation is higher in the 64 grains aggregate cases due to a higher fraction of grains belonging
to the free surfaces and thus not constrained by other grains to rotate.

In Figure III.19, both polycrystalline aggregates predicted similar stress-strain curves.
Cuboidal grain shape aggregates are appropriate to predict macroscopic behaviour while
the Voronoi shapes provides a more accurate local stress-strain state. We also notice the
tetrahedral elements did not enhance the local heterogeneities compared to the cubic elements.

III.3.3 Grain Size Effect

The effect of grain size on the tensile behaviour and ductility of aluminium has been
investigated at room temperature. The polycrystal responses predicted for three grain
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Figure III.19 : Predicted stress-strain responses of both polycrystalline aggregates
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Figure III.20 : Accumulated plastic strain distribution after 10% height reduction
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(a) (b)
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Angle map:15.000000  time:590.205      min:0.110719 max:16.556067

Figure III.21 : Grain rotation distribution after 10% height reduction
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Figure III.22 : Predicted grain rotations after 10% height reduction
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Figure III.23 : Comparison between the predicted macroscopic response of the 64-
grains polycrystal with the experimental Al polycrystalline true stress-strain curves by
(Hansen, 1977) for D = 34, 170 and 580 µm

sizes (34, 170 and 580 µm) are compared against the experimental data in Figure III.23.
It is observed that a reduction in the initial grain size from 580µm to 34µm strengthens
the polycrystal. The 580 µm grain size polycrystal response is in good agreement with
experimental results while the hardening is too high for the both other grain sizes. For
each grain size, the build up of strain gradients lead to the accumulation of GNDs during
deformation affecting significantly the hardening behavior of polycrystalline aggregates.

It was found that the grain size dependence of the flow stress, σ, follows a modified Hall-Petch
equation of the type,

σ = σ0(ε) + k(ε)D−1/2 (III.5)

where σ0 and k(ε) depends on the strain level. A linear interpolation of the FE results for
different grain sizes is done on the Hall-Petch relation, see Figure III.24. The stress variation
with grain size follows the Hall-Petch relation, however, the parameter k is overestimated.

III.4 Predictions

III.4.1 Channel Die Compression Test

In the present experiments, a channel die is used to simulate cold rolling of aluminum for
deformation smaller than 50%, see Figure III.25. The die imposes a nominally plane strain
deformation gradient on the metal similar to that experienced by the aluminum passing
through a rolling mill. In this test, the walls of the channel suppress the lateral flow and
develop heterogeneous lateral stresses at the walls which vary with crystal orientation. A
Teflon film was placed between the samples and the die walls to prevent galling. The studied
samples have been elaborated at ELTE (Budapest University), have been deformed by channel
die compression up to 15% and 30% strain at room temperature at Mines de Saint-Etienne
and have been observed at CdM.
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Figure III.25 : Schematic channel die compression test
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Figure III.26 : (a) Inverse pole figure [001] of undeformed sample and (b) initial sample
grain size
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Figure III.27 : (a) Pole figure [001] of the undeformed sample, (b) and initial misorientation
distribution

III.4.1.1 Materials Study

In this study, the material is an Al − 0.5%Mg. In order to characterise the microstructure,
EBSD measurements have been carried out on the undeformed sample. In Figure III.26,
the inverse pole figure map constructed from the EBSD measurements shows a non uniform
grain size distribution from 20µm to 300µm with an approximately isotropic texture in Figure
III.28. However, an initial orientation spread is observed in the pole figure with the fuzzy
points describing each grain orientation. In order to confirm this observation, a misorientation
diagram has been added to Figure III.28 (b). A peak is noticed for misorientations lower than
3◦ and a smallest one for misorientations around 45◦ as established by (Mackenzie, 1964)
for isotropic texture. Therefore, the commonly used assumption that each grain in a
polycrystalline aggregate can be uniquely described by a single lattice orientation is debatable.

With a large initial grain size (around 100µm), the aluminium alloy, which is a material
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(a) (b)

Figure III.28 : (a) Orientation deviation from the reference orientation and (b) inverse pole
figure [001] map with index quality of EBSD measures

with a high stacking fault energy, seems suitable for subgrain structure development.

III.4.1.2 Substructures Measurements

Grain fragmentation, local orientation gradients and substructures are characterised using
electron scanning backscatter diffraction (EBSD) in a field emission gun scanning electron
microscope (FEGSEM) for the samples deformed by channel die compression. To avoid the
problems associated with frictional conditions on the surfaces, the scanned region was an
internal interface corresponding to the ND-TD plane. The sectioned surfaces were prepared
by a fine metallographic polish after deformation. The orientation maps were made with
a step size of 0.2µm. A small step size enables a detailed analysis of the deformation
band distributions and their associated orientation spreads together with an analysis of the
substructure development (via the spatial distributions of low-angle boundaries).

Two random areas from a 15% deformed sample has been scanned. Since the grain size varies
from 20µm to 300µm, in the first area, four grains are observed while in the second, only
one grain is scanned. In Figure III.28, the orientation map reveals an inhomogeneities. The
centered grain breaks into a macroscopic deformation band strongly disoriented by rotation.
The crystal lattice undergoes major rotations inside the grain. In order to analyse more
accurately the lattice rotation inside the grains, misorientation lines are plotted from point
to points in Figure III.29. In Grain 1, no global orientation gradient is observed along the
line. The red line in grain one highlights rapid change of orientation (3◦) approximately every
4µm and, between each peak, the orientation is constant. This is the typical characteristic
of cell structure. In Grain 2, a global orientation gradient is observed with no localisation in
line. Line 3 exhibits a deformation band around 5µm, 15◦ disoriented from the orientation.
Grain 4 demonstrates only a weak tendency to lattice rotation while in Grain 5, orientation
change localisation occurs along the misorientation line. It was found that heterogeneities
depend strongly on the initial grain orientation.

EBSD measurements on the second area are shown in Figure III.30. The three lines across
the grain exhibit similar profile with a rapid change of orientation about6◦. For these specific
orientations, an average cell size of about 2.6 µm has been measured. (Hughes, 2001) found a
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Figure III.29 : (a) Inverse [010] pole figure after 15% deformation and (b, c, d, e, f)
misorientations across grains
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Figure III.30 : (a) Inverse pole figure [010] of a 15% deformed sample and (b, c, d)
misorientations across grains

value about 1.5 µm from TEM measurements while (Liu et al., 1998) found a value of about
2.2 µm for cold rolled pure aluminium.

One random area after 30% deformation sample has been scanned. No rapid change of
orientation has been observed across the misorientation lines 2 and 3 but rather large
orientation gradients. A significant misorientation is observed in line 3. However, no
substructure formation has been observed contrary to the 15% deformed sample. Subgrains
formation was found to occur for some specific grains orientations.

As it is well known, the initial orientation of the crystallites and the configuration of the
active slip systems clearly govern the different paths of the crystal lattice rotation. This
observation can explain the absence of cell structures for some grain orientations. It is also
known that additional solute prevent cell formation. For example solute additions like Mg
additions to Al that increase the friction stress result in deformation microstructures with a
more uniform distribution of dislocations (Hughes, 2001). Another reason can be linked to the
sample preparation where the mechanical and, chemical polishing may not have been suitable.
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Figure III.31 : (a) Inverse pole figure [010] of 30% deformed sample and (b, c, d)
Misorientations across grains
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Figure III.32 : Polycrystal aggregate consisting of 20 grains with mesh refinement

Once the main features of the deformed state have been measured by EBSD, abilities of
the FE model to predict them are studied in the next section.

III.4.2 Mesh Size Effect on Polycrystal Response

The presumption that 2D plane strain compression is essentially equivalent to 3D plane
strain compression by comparing the stress-strain curve and the deformation textures which
have been validated by (Erieau, 2004) on IF steel. Although IF steel is a BCC material, we
assumed the same conclusions for aluminium (FCC material). Therefore, 2D plane strain
compression can be used to simulate channel die compression test.

Since GNBs arises (by definition in the model equation) from the different activity of the
slip systems on either side of the boundary leading to a creation of misorientations, the goal
of the present investigation thorough mesh refinement is to investigate in-grain subdivision
and inter-grain misorientations leading to the geometrically necessary boundaries (GNB). The
polycrystal material used in this simulation has been assumed to have a random distribution
of grain orientations with different mesh sizes, 1263 nodes, 8895 nodes, 20161 nodes and 45443
nodes, see Figure III.32. The initial texture can be seen in Figure III.33. The polycrystal
model in Figure III.32, is generated using Voronoi tessellation algorithms. In this preliminary
study, only 20 grains are considered with a grain around 100µm which gives 1 elements,
respectively, equal to 28.0µm, 14.0µm, 10.0µm, 6.6µm and 4.5µm. A 30% height reduction
plane strain compression is imposed on the aggregate. Boundary conditions are applied
such that the sample deforms by compression along x2 (ND). The numerical results of the
aggregate deformed under plane strain compression are discussed in the next section.

Figure III.34 shows the effect of mesh refinement on the average strain-stress response of
the aggregate with GNDs introduction. The response increase with mesh refinement. It can
be seen that the predictions exhibit mesh sensitivity as soon as plastic deformation occurs.
This effect has been underlined in (Cheong et al., 2005) for Cu polycrystal from grain less
than 30 µm during tensile loadings. As GNDs build-ups are associated with gradients of
slip developing at adjacent grain boundaries, the mesh-sensitive response must be linked to
a significant increase in the number of GNDs relative to the SSD population. Thus mesh
sensitivity is expected to increase as the grain size decreases with more slip gradients, and
hence more GNDs, are generated.

Figures III.36 show the cumulated plastic deformation maps. The map of the deformed
polycrystal give the grain shape changes but also an insight into the more localized



III.4. PREDICTIONS 65

(a)

direction : 001
fichier grain : test             

1
2

3

5

6

9
4

11

13

16

15

18

1719

14
10

7
20

12 8

[001] [011]

[−111]

(b)

Figure III.33 : {111} pole figure and {001} inverse pole figure with corresponding grain
orientation
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(a)

Figure III.35 : {111} pole figure of 60% height reduction aggregates

deformation heterogeneities. Grains are observed to break up into macroscopic deformation
bands aligned to shear directions (40° towards the rolling direction, x1). With mesh
refinement, this process leads finally to the formation of a micro-band structure as straight
dense dislocation walls running parallel to each other along preferred directions. They are
especially highlight in macroscopic bands observed in the first figure. This results in the
multiplication of GNDs inside grains. Since GNDs accommodate lattice incompatibilities in
regions where deformation is inhomogeneous, resulting in the curvature of the crystal lattice,
Figure III.37 shows the cumulative lattice rotation from the initial orientation. The rotation
bands are localized in the same grains that the deformation bands. Only one grain is almost
free of heterogeneities, grain 15, where its orientation is closed to [001] directions. In order
to quantify the grain rotation, the total rotation for the initial rotation are plotted in Figure
III.38. For the coarsest mesh, the grain rotations are mainly between 5◦ and 20◦. With mesh
refinement, the rotation spreads in the small rotations as many as in large rotations. The mesh
refinement increases the lattice orientation heterogeneities. Another method to establish the
lattice heterogeneities consist in observing the accumulated slip. As seen in Figure III.39, slip
activation is heterogeneous inside grain which means lattice rotation occurs inside grains.

As well known, boundary conditions affected the macroscopic behavior of the polycrystalline
aggregates and the grain heterogeneities. The grains closed to the boundary may exhibit
different features. In order to verify this assertion, same previous conditions are applied for
a 46 grains polycrystalline aggregate. The mesh size is identical to the called mesh 3. Figure
III.40 shows the macroscopic response which is similar for both polycrystalline aggregates.
Same macroscopic and microscopic bands are observed in both case. Similar features have
been observed in both cases.

However, since the micro-bands size is limited to the element size and stress-strain response
is diverging with mesh refinement, the predicted micro-bands appear more as numerical
singularities than as physical heterogeneities.
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(a) 1263 nodes (b) 8895 nodes

(c) 20161 nodes (d) 45443 nodes

0 0.2286 0.4571 0.6857 0.9143 1.143 1.371

Figure III.36 : Accumulative plastic strain after 30%s height reduction
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(a) 1263 nodes (b) 8895 nodes

(c) 20161 nodes (d) 45443 nodes

0 6.53 13.1 19.6 26.1 32.7 39.2

Figure III.37 : Cumulative rotation distribution after 30%s height reduction
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Figure III.38 : Cumulative rotation diagram after 30% height reduction
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(c) 20161 nodes (d) 45443 nodes
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Figure III.39 : Accumulative Slip [1 1 1] {−101} after 30%s height reduction
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Figure III.40 : Effect of grain number on strain-stress response
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(a) 46 grains (b) 20 grains

0 0.2286 0.4571 0.6857 0.9143 1.143 1.371

Figure III.41 : Accumulative plastic deformation after 30% height reduction

(a) 46 grains (b) 20 grains

0 6.53 13.1 19.6 26.1 32.7 39.2

Figure III.42 : Grain rotation from initial orientation after 30% height reduction
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III.4.3 Substructures Description

III.4.3.1 Introduction of a Critical Distance in Determination of Slip-Rate
Gradients

During deformation, grains rotate and break into subgrains with different slip system activity.
As GNDs build-ups are associated with gradients of slip-rate, the number of GNDs increase
significantly inside the grains. Contrary to the second gradient and Cosserat theories, no
term in the free energy penalizes their development. Therefore, the determination of slip-rate
gradients with the method described in section II.4.5, is highly sensible to the mesh size.
The main factors increasing this phenomenon are small grain size, large deformation and 2D
modelling where strain localisations are accentuated. In order to avoid this phenomenon,
a different method for evaluating gradients of slip rate have been proposed. Instead of
evaluating slip-rate gradients over one element, an internal distance which defines the
neighbouring gauss points included in the determination of slip-rate gradients with the Gauss
point of interest has been introduced.

In order to solve the evolutionary laws for the GNDs density, the term A = γ̇αnαFp is
calculated at the Gauss point of interest as well as at neighbouring ones defined by the
critical distance. Then, this field of A is then used to compute curl(A) at that point through
a linear interpolation in which further gauss points from the gauss point of interest have less
weight in interpolation function determination. There is no extrapolation at the nodes using
the shape functions of the element. Consequently, the curl(A) is then used to evaluate the
evolution of each individual GND as per Eq. II.76.

With this method, the key point is the determination of the critical distance, which is linked
to the GNDs spread from the grain boundary (Liang and Dunne, 2009). In a first approach,
the critical distance is decided to be the average element size.

III.4.3.2 Inter and Intragranular Heterogeneities

The polycrystal material used in this simulation has been assumed to have a random
distribution of grain orientations with two different mesh sizes, 20366 nodes, 45885 nodes, see
Figure III.43. The initial texture can be seen in Figure III.33. Only 10 grains are considered
with a grain around 100µm which gives 1 elements, respectively, equal to 4.7µm and 3.2µm.
A 30% height reduction plane strain compression is imposed on the aggregate. Boundary
conditions are applied such that the sample deforms by compression along x2 (ND). As few
grains are considered, free boundary conditions are considered on left and right sides of the
polycrystal.

Figure III.44 shows the effect of mesh refinement on the average strain-stress response of
the aggregate with GNDs introduction. The response hardly decrease with mesh refinement.
The average strain-stress response converges although the mesh is finer than in the first study.
As in the first study, macroscopic bands crossing the grains are seen in Figure III.45 for both
cases. Furthermore, the rotation bands are also similar as seen in Figure III.46. Therefore,
the predicted microscopic and macroscopic behaviour are independent of the mesh size.

After making sure mesh independency, the same simulation for the finer mesh is run without
GNDs introduction. Accumulated grain rotation after 30% height reduction resulting from
both simulation are compared in Figure III.47. Grains 1 and 2 exhibited small rotation
angle when GNDs are introduced compared to the case where only SSDs are accounted for.



72 CHAPTER III. DEFORMATION BEHAVIOUR OF AL POLYCRYSTALS

(a) 20366 nodes (b) (c) 45885 nodes

Figure III.43 : Polycrystal aggregate consisting of 10 grains with mesh refinement
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Figure III.44 : Effect of mesh refinement for 10-grain polycrystal on strain-stress response
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Figure III.45 : Accumulated plastic strain after 30%s height reduction
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(a) 20366 nodes (b) 45885 nodes

0 4.24 8.48 12.7 17 21.2 25.5 29.7

Figure III.46 : Accumulated grain rotation after 30% height reduction

(a) only SSDs (b) SSDs + GNDs

0 4.24 8.48 12.7 17 21.2 25.5 29.7

Figure III.47 : Accumulated grain rotation after 30% height reduction

GNDs inibits the misorientation development. This observation is confirmed by the diagram
of accumulated grain rotation shown in Figures III.48 (a) (b) where large discrepancies are
exhibited for Grains 1 and 2. However, inside other grains, rotation angle is more important
when GNDs are taken into account as seen Figure III.48, excepted for Grain 4 where identical
results are found in both cases. In addition to the diagram of rotation for each grain, the
[001] initial inverse pole figure is shown in Figure III.48 in order to link the initial orientation
and the rotation angle observed. No evidence of any relation has been deduced since the
neigbhouring grain interaction play a significant role in heterogeneities development.

Inter and intragranular heterogeneities formation such grain fragmentation have been
exhibited in this study. However, although the mesh has been refined to leads to GNBs
development, no such observation has been done.

III.4.3.3 Cell Size Predictions

As dislocations gather in deformation induced boundaries, the grains become subdivided
into smaller regions of different, but similar orientations. The cell size depends on the
deformation level, the grain orientation and the loading path. However, in the literature,
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Figure III.48 : Cumulative rotation diagrams after 30% height reduction for each grain
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Figure III.49 : Inverse Pole Figure [001] of a 40% height reduction numerical polycrystal

Figure III.50 : Sketch of a grain which is subdivided in cell blocks. Each cell block is
further divided in cells (Winther et al., 1997)

for pure aluminium, cell size has always found less than 3µm while the smallest mesh used
in the FE simulation are more than 4µm. Consequently, the cells can not be discretely
described in the microstructure as seen in Figure III.50 even if or not the model would take
into account the physical phenomena responsible their formation. For instance, no discrete
cell is observed in the inverse pole figure of a 40% height reduction numerical polycrystal
(without taking into account GNDs), only grain fragmentation are underline through the
misorientation line superimposed on the inverse pole figure. Therefore, the cell size will be
determined statistically as for dislocations. Cell shape have been found to vary with the grain
orientation from TEM observations. However, cell shape will be considered as homogeneous
for all grain orientation.

In order to determine the cell size (distance between IDBs, see Figure III.4), the Holt relation
is used. Since IDBs form by the random trappings of glide dislocations, only statistically
stored dislocation are taken into accounts,

dIDB =
K

√
ρSSD

(III.6)

where K is fitted on experimental curves, K=8.5. IDBs distance for each gauss point is plotted
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(a)

Figure III.51 : Predicted (mesh 4) and experimental IDBs spacing

in Figure III.51(a). A large range of IDBs distance is found for the same equivalent strain
with different grain orientation. The associated average curve is found to have the same shape
than the experimental evolution. Since GNBs form between regions with one or more different
operating slip systems to accommodate the accompanying difference in lattice rotation, only
geometrically necessary dislocations are taken into accounts in the Holt relation,

dGNB =
K

√
ρGND

(III.7)

where K = 8.5. In Figure III.52(a), the predicted GNBs distance is in good agreement for
equivalent stress higher than 0.25. From experimental data (Hughes, 2001), GNBs distance
starts from 3.4µm for a strain at 0.12 to end at 0.25µm for a strain at 1.0. Therefore, GNBs
distance compared to the mesh size can be considered as a statistical value for low strain.

III.5 Conclusions

Electronic microscopy measurements have been done to quantify the formation of the subgrain
structures during deformation. However, substructure formation has not been observed in
most of grains. A critical distance has been introduced in the determination of slip rate to
avoid mesh dependency. The single crystal model has been employed to predict grain size
effect in aluminium 3D polycrystal aggregates. Computations modelling of an aluminium
aggregate under plane strain compression deformation, have underlined the formation of
different deformation bands morphologies and grain splitting occurrence. The model based
on dislocation densities as internal variables, developed in the framework of finite deformation
and implemented in the Finite Element Method, is able to capture the main characteristics
of different inhomogeneities from the determination of the active and latent slip systems,
and also from the quantification of their dislocation densities such as grain fragmentation.
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(a)

Figure III.52 : Predicted (mesh 4) and experimental GNBs spacing

The model has not been able to describe explicitly the GNBs and IDBs but statically. Good
agreement is found with literature results for cold-rolled aluminium.
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IV.1 Introduction

The mechanical energy W provided to the specimen during deformation can be decomposed
into an elastic energy We and non-elastic one Wp, expended on plastic deformation. The
inelastic energy Wp can also be decomposed into the energy dissipated as a heat Q and a
complementary part Es stored in the material,

W = We +Wp = We +Q+ Es (IV.1)

Most of the work expended in deforming a metal is given out as heat and only a
small amount remains as energy stored in the material. However, As explained in the
following chapter, the stored energy is a key factor in microstructure transformation, it
provides the source for recovery and recrystallisation during thermo-mechanical processes
and drives the kinetics of grain or subgrain boundaries. For instance, the energy difference
between grains supplies a driving force sufficient to overcome the pressure form by the
curvature of the boundary, which migrates into the grain with the higher stored energy.
Therefore, in order to simulate thermo-mechanical processes, there is a need to identify
the stored energy at any local point. In the common case of deformation at ambient
temperatures, the stored energy is derived from the point defects and dislocations generated
during deformation. Extensive researches have been carried out on the fraction of plastic
work converted into heating, commonly, denoted by β and consequently, the fraction into
stored energy. The first experiments investigating this issue are (Farren and Taylor, 1937,
Taylor and Quinney, 1937). Experimental measures on the stored energy presents a
main difficulty; its low amount compared to traditional energy controlling microstructure
changes as phase transformation. Various experimental methods have been used to
determine the stored energy; calorimetry (Verdier et al., 1997, Scholz et al., 1999), resistivity
(Verdier et al., 1997), X-ray diffraction (Rajmohan and Szpunar, 1999, Borbely et al., 2000,
Mohamed and Bacroix, 2000). Most of the experimental techniques to measure the
stored energy have been compared by (Hodowany et al., 2000). (Taylor and Quinney, 1937)
assumed the ratio of plastic work converted into heating is a constant around 0.9 in
deformed material while (Bever et al., 1973, Wolfenden and Appleton, 1968) reported the
ratio depends on the strain. This chapter is concerned with the fraction of the plastic
work converted into stored energy. We examine the status of the common assumption
that β is a constant with regard to the thermodynamic foundations and dislocation theory
under consideration. Since plastic deformation is heterogeneous in nature, the stored energy
distribution in numerically deformed sample is examined.

IV.2 Stored Energy Formulations

IV.2.1 Dislocation-Based Formulation

The final dislocation structure of a cold worked metal is heterogeneous. Dislocations in
even moderately worked metals are kinked and jogged and are found in pile-ups and in
intricate tangles. The energy of a dislocation depends on its environment and is for
example highest in a pile-up and lowest when in a cell or subgrain wall. Therefore, The
total energy of a microstructure is discretized in several contribution of the following term
(Biermann et al., 1993):

ED = Edis + Ehet + Emean (IV.2)

where Edis is the energy of statistically stored dislocations, Ehet is the energy arising from
their heterogeneous distribution corresponding to the elastic energy associated with the long-
range stress fields in cellular dislocation structures and Emean accounts for the polycrystalline
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nature of the material. It is well-known that the grain size of a material often affects its
mechanical properties. Emean represents the elastic energy contribution of means stresses of
the polycrystal due to the heterogeneity of deformation between grains.

First, the energy of a dislocation has been expressed from the dislocation theory. If the energy
of the dislocation core is neglected and if isotropic elasticity is assumed, then the energy Eunit

per unit length of dislocation line is given approximately by (Humphreys and Hatherly, 2004):

Eunit =
µb2f(ν)

4π
ln(

R

R0
) (IV.3)

where µ is the shear modulus, b is the Burgers vector, R is the upper cut-off radius (usually
taken to be the separation of dislocations (ρ−1/2)), R0 is the inner cut-off radius(usually taken
as between b and 5b) ans f(ν) is a function of Poisson’s ratio ν.

f(ν) = 1 for screw dislocation (IV.4)

f(ν) =
1

1− ν
for edge dislocation (IV.5)

Therefore, for a dislocation density ρS the stored energy is then

Edis = ρSEunit = ρS
µb2f(ν)

4π
ln(

R

R0
) (IV.6)

Since Emean accounts for the polycrystalline nature of the material, Emean will be
approximated from the geometrically necessary dislocation density as expressed for Edis.
Assuming there is no interaction between SSDs and GNDs,

Emean = EG = ρGEunit = ρG
µb2f(ν)

4π
ln(

R

R0
) (IV.7)

where Eunit corresponds to the energy of one dislocation.

Since dislocation theory shows that the energy of a dislocation depends on its environment,
Edis = ρEunit is a significant approximation. Ehet is introduced to take into account
the complex dislocation distribution. For instance, Ehet is negative in deformed structure
associated with wall, cell structure. However, an evaluation of this term is complex.
Consequently, in a first approach, the total energy of a microstructure is approximated by

Ed = Edis + Ehet + Emean ≈ cµb2(ρS + ρG) (IV.8)

where c is a constant of ≈ 0.5

IV.2.2 Thermodynamic Formulation

IV.2.2.1 Fundamentals of Continuum Thermodynamics

The crystallographic model formulation is expressed within a thermodynamics framework
resulting in a expression of the stored energy function only of the internal variables. The local
form of the law of thermodynamics requires the verification of the energy balance equation,

ρė = σ : L + ρr −∇.q (IV.9)

where e is the internal energy density, L is the strain rate tensor, σ the Cauchy stress
tensor, r is the heat supply and q the heat flux vector. The local form of the second law of
thermodynamics gives the entropy principle

ρṡ+∇.
(q
T

)− ρr

T
≥ 0 (IV.10)



86 CHAPTER IV. STORED ENERGY : FRACTION OF PLASTIC WORK

Replacing Eq. IV.9 in Eq. IV.10, the Clausius-Duhem inequality is obtained

−ρ(ε̇− T ṡ) + σ : L− q
T
.∇T ≥ 0 (IV.11)

The Helmholtz free energy density ψ = ε− T is introduced

−ρ(ψ̇ + sṪ ) + σ : L− q
T
.∇T ≥ 0 (IV.12)

The term −ρ(ψ̇+ ηṪ ) + σ : L represent the internal dissipation while − q
T .∇T represents the

thermal dissipation.

As explained in chapter II, the gradient of the transformation F is decomposed in

F = Fe.Fp (IV.13)

The elastic strain and stress tensor are defined with respect to the isoclinic configuration:

Ee =
1
2
(FeFeT − I), T = detFeFe−1σFe−T (IV.14)

The power power of internal forces makes the link between the different stress tensors:

σ : L = σ : (ḞF−1) =
1

detFe
(T : Ėe + (FeT .Fe.T) : (Ḟp.Fp−1)) (IV.15)

The free energy depends on the state variables (Ee, T, additional internal variable sα) and
the Clausius-Duhem inequality takes now the form

ρ(
T

ρdetFe
− ∂s

∂Ee
) : Ėe − ρ(s+

∂ψ

∂T
)Ṫ − ρ(

∂ψ

∂sα
− Sα

T ) : ṡα − q

T
.∇T ≥ 0 (IV.16)

where s are internal variables. The exploitation of the second principle provides the state
laws

T = ρi
∂ψ

∂Ee
(IV.17)

Sα
T = ρi

∂ψ

∂sα
(IV.18)

s = −∂ψ
∂T

(IV.19)

IV.2.2.2 Thermodynamics Single Crystal Framework

In the single crystal model, the critical resolved shear stress in a slip system α is given by

τα = Sα
T (IV.20)

where Sα
T are internal slip system variables which represent additive slip resistances associated

with non-directional hardening mechanisms.

Sα
T = λµbα

√√√√ N∑
β=1

hαβ(ρβ
e + ρβ

s ) (IV.21)
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where ρβ
e , ρβ

s are respectively the edge and screw dislocation densities. The slip
system hardening Sα

T variables can be explicitly expressed in terms of their corresponding
thermodynamical state variables, denoted sα which are adimensional variables.

sα = bα

√√√√ N∑
β=1

hαβ(ρβ
e + ρβ

s )

Consequently,
Sα

T = λµsα (IV.22)

As underlined in the previous section, the relations between the slip system internal variables
and their corresponding state variables, by definition, are linked through the free energy
derivatives,

Sα
T = ρ

∂ψ

∂sα
(IV.23)

Consequently, the inelastic part of the free energy function can be expressed in terms of sα

as follows:
ψ =

1
2
ρλµsα2 (IV.24)

From Eq.IV.12, the intrinsic dissipation is

Φ = −ρ(ψ̇ + ηṪ ) + σ : Lp (IV.25)

Replacing the expression of ψ in Eq.IV.12

Φ = −
N∑

α=1

(λµsαṡα)− ηṪ + σ : Lp (IV.26)

From Eq. II.21, Lp =
∑N

α=1 γ̇
αPα

Φ = −
N∑

α=1

(λµsαṡα)− ηṪ + σ :
N∑

α=1

γ̇αPα (IV.27)

which gives, with τα ≈ σ : Pα

Φ = −
N∑

α=1

(λµsαṡα)− ηṪ + γ̇ατα (IV.28)

= −
N∑

α=1

(Sα
T ṡ

α)− ηṪ + γ̇ατα (IV.29)

The intrinsic dissipated energy for an associated crystallographic model is given by the
difference between the plastic work and the internal dissipation due to non-directional and
directional (i.e. kinematic) hardening mechanisms. Since the plastic work is,

Ep =
∫ t

0

∑
α

(γ̇ατα)dt (IV.30)

therefore, the stored energy is expressed as

Et =
∫ t

0

∑
α

(Sα
T ṡ

α)dt (IV.31)
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Table IV.1 : Euler angles (Bunge notation) with 0.5◦ misorientation from tensile axis

Orientation φ1 (deg.) θ (deg.) φ2 (deg.)

[111] 54.8 135.01 180.0

[100] 0.4 10.0 0.0

[112] 61.1 69.7 281.0

IV.3 Stored Energy Predictions

Three quantities are proposed to evaluate the stored energy:

• based on dislocation theory:

Ed = 0.5µb2(ρS + ρG)

• based on thermodynamic consideration:

Et =
∫ t

0

∑
α

(Sα
T ṡ

α)dt

• based on a ratio of the plastic work:

Ep =
∫ t

0

∑
α

(γ̇ατα)dt

IV.3.1 Stored Energy of Single crystals

Firstly, the three stored energy quantities are calculated for the Al single crystals used in the
model calibration (chapter II). Their orientation are recalled in Table IV.3.1. The stored
energy evolutions with strain for the three single crystals are shown in Figure IV.1. As
seen in this figure, the stored energies and plastic work evolutions are strongly dependent on
crystal orientation. Both stored energies and plastic work increase with strain for the three
crystal orientation. However, the stored energies seem to saturate with strain while the plastic
work rate increases. Fraction of stored energies in the plastic work are shown in Figure IV.2.
This fraction decrease in both cases, as found in (Wolfenden and Appleton, 1968) where the
ratio of stored to expended energy for all the specimens tested was found to decrease with
increasing strain. The fraction calculated from thermodynamic considerations varies between
3% and 26% while in the case where stored energy is evaluated from dislocation theory, it
varies between 0.5% and 8%.

IV.3.2 Overall Stored Energy in polycrystal Aggregates

Both stored energies measures and plastic work have been evaluated for the previous
simulations of chapter II.

IV.3.2.1 GNDs effects on Stored Energy Distribution

Plastic work and stored energies distributions are shown in Figures IV.3, IV.4 and IV.5. The
plastic work and the stored energies do not present the same distribution in the polycrystal
aggregate. Stored energies distributions are more localised at the grain boundaries than the
plastic work. However, in all cases, the localisations at grain boundaries are more significant
when GNDs are included.
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Figure IV.1 : Stored energy evaluated from (a) the dislocation theory and (b) the
thermodynamics formulation and (c) plastic work evaluated during an uniaxial tensile tests,
Ep
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Figure IV.2 : Fraction of stored energies in plastic work during an uniaxial tensile tests
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(a) with only SSDs (b) with SSDs and GNDs

0.261 1.2 2.13 3.07 4.01 4.95 5.88 0.328 6.81 13.3 19.8 26.2 32.7 39.2 (Jmm−3)

Figure IV.3 : Plastic work distribution after 10% height reduction

(a) with only SSDs (b) with SSDs and GNDs

0.005933 0.015577 0.02522 0.034864 0.044507 0.054151 0.0637950.018109 0.088622 0.15913 0.22965 0.30016 0.37067 0.44119(Jmm−3)

Figure IV.4 : Stored energy evaluated from dislocation theories distribution after 10%
height reduction



92 CHAPTER IV. STORED ENERGY : FRACTION OF PLASTIC WORK

(a) with only SSDs (b) with SSDs and GNDs

0.020967 0.069789 0.11861 0.16743 0.21625 0.26508 0.3139 1.44 7.73 14 20.3 26.6 32.9 39.2 (Jmm−3)

Figure IV.5 : Stored energy evaluated from the thermodynamics formulation after 10%
height reduction

IV.3.2.2 Grain Size Effect on Global Stored Energy

The effect of grain size on the stored energy measures is shown in this section. It can be seen
in Figure IV.6 that the stored energy evolutions are non-linear and increase with considering
GNDs. A smaller grain size increase all stored energy measures. The stored energy fractions
of the plastic work are shown in Figure IV.7. They are also increasing with decreasing the
grain size.

IV.3.2.3 Variability of Stored Energy in Microstructure

The annealing behaviour of a deformed metal is dependent not only on the overall stored
energy, but more importantly on its spatial distribution. On a local scale, inhomogeneity
of stored energy will affect the nucleation of recrystallisation, and larger scale heterogeneity
will influence the growth of the new grains. In order to study accurately the stored energy
variation in polycrystalline microstructure, the plastic work and stored energy distributions
are calculated from a previous study done in the section III.4.3.2 where the mesh size was
small. As seen in Figure IV.8, the stored energy and the plastic work distributions exhibit
similar features. However, the localisation at grain boundary is more significant in case of
the stored energy measure.

The ratio between the average plastic work and stored energy estimated from the dislocation
theory and from thermodynamic consideration over the whole structure is shown in Figure
IV.9. In both cases, the fractions depend on the strain. Nevertheless, the fraction becomes
constant for strain greater than 0.3. In this situation, the stored energy calculated from
thermodynamic considerations represent about 5% of the plastic work while the stored energy
calculated from dislocation theory only 1%.
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Figure IV.6 : Stored energy evaluated from (a) the dislocation theory and (b) the
thermodynamics formulation and (c) plastic work evaluated during an uniaxial tensile tests
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Figure IV.8 : Plastic work and stored energy distribution after 30% height reduction
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IV.4 Conclusions

The aim of this chapter is to evaluate the strain energies associated with the dislocation
structure and elastic strains of each single crystal grain in the FE model of the RVEs. The
model is able of describing the distribution of the stored internal strain energy within the
grain. The stored energy of a polycrystal has been evaluated in three ways: (a) the first
one from the dislocation density predicted by the FCC single crystal model, (b) the second
one from the thermodynamics formulation associated to the single crystal model and (c) the
fraction of the plastic work. The measure where the stored energy is defined by a constant
fraction of the plastic work is not suitable. Indeed, the results show variations of the fraction
with strain. Furthermore, localisations in the stored energy distribution are different than
those obtained with plastic work. The measure, proportional to the predicted total dislocation
density, is found to be underestimated. The stored energy measure from thermodynamic
considerations varies around 10% of the plastic work. Therefore, it seems the more suitable
to describe the average stored energy evolution. In addition, since the stored energy is derived
from the point defects and dislocations generated during deformation and the distribution
of the stored energy measured from thermodynamic considerations is identical to the one
obtained from the dislocation theory, it seems to be the more appropriate.
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V.1 Introduction

Materials processing, including grain growth and recrystallisation, are affected by the grain
boundary properties. Consequently, a short summary of grain boundary properties is first
provided in this section. Since the minimisation of stored and grain boundary energies
provides the driving force for grain boundary motion, a phase field model taking into
account the stored energy distribution is formulated and implemented within the continuum
framework to describe the interface motion. Finally, the parameters of the free energy of the
phase field model are calibrated based on published Read-Shockley boundary energy data.

V.1.1 Grain Boundary Structure

V.1.1.1 Definition

A grain boundary separates two regions of the same crystal structure but of different
orientation. It is made of many crystal lattice defects with a thickness of a few atomic
layers, as illustrated in Figure VI.30, where the crystal orientation changes.

(a) (b)

Figure V.1 : (a) Crystal disorder at the grain boundary and (b) grain boundary observed
by T.E.M. (Quéré, 1987)

In order to describe mathematically a grain boundary, in a 3D case, eight parameters are
necessary : three to describe its misorientation, two parameters to describe its spatial
orientation by means of the normal to the grain boundary plane and three components to
describe the rigid body translation vector which gives coincidence of the grains separated
by the grain boundary. In 2D, the geometry of a boundary is defined by its misorientation
(∆θ) (one degree of freedom), the orientation of the boundary plane AB with respect to
one of the two crystals (ψ) (one degree of freedom), by rigid body translations parallel and
perpendicular to the boundary (two degrees of freedom) required to make the two crystals
coincident. There are thus four macroscopic degrees of freedom which define the geometry of
the boundary.

Usually, two different types of grain boundaries can be defined: tilt and twist boundaries. A
tilt grain boundary plane is parallel to the rotation axis while the twist grain boundary plane
is perpendicular to the rotation axis, see Figure V.3. It is also convenient to divide grain
boundaries into those whose misorientation is greater than a certain angle - high angle grain
boundaries (HAGBs), and those whose misorientation is less than this angle - low angle grain
boundaries (LAGBs). The angle at which the transition from low to high angle boundaries
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Figure V.2 : A 2D grain boundary between two crystals misoriented by ∆θ
(Gottstein and Shvindlerman, 1999)

(a) (b)

Figure V.3 : (a) a tilt and (b) a twist grain boundary
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Figure V.4 : A 2D grain boundary between two crystals misoriented by θ

occurs is typically taken between 10◦ and 15◦ for cubic materials. In this work, we will
consider only a 2D case. Also, the translation vector is usually not considered.

V.1.1.2 Low Angle Grain Boundaries

If the misorientation between adjacent grains is small, the boundary is entirely comprised
of a periodic crystal dislocation arrangements (Burgers, 1939, Shockley and Read, 1949).
Each dislocation accommodates the mismatch between the two lattices on either side of the
boundary. For example, in Figure V.4, symmetric tilt grain boundaries consist of a single set
of parallel edge dislocations of Burgers vector b, where the dislocation spacing D decreases
with increasing rotation angle ∆θ. The corresponding dislocation density is given by:

1/D = 2 sin(∆θ/2) ≈ ∆θ/b (V.1)

V.1.1.3 High Angle Grain Boundaries

For grain boundary angle greater than 15◦, the dislocation representation from Equation
V.1 is not longer valid. However, there are orientation relationships, where crystallographic
planes continue through the grain boundary from one crystal to an other and where there are
common atomic positions of both adjacent lattices. Such lattice points are called coincidence
sites. Since both crystal lattices are periodic, the coincidence sites must also be periodic, i.e.
they also define a lattice, the coincidence site lattice (CSL), see Figure V.5. As a measure of
the density of coincidence sites or for the size of the elementary cell of the CSL, the quantity
Σ is defined as following:

Σ =
volume elementary cell of CSL

volume elementary cell of crystal lattice
(V.2)

Table V.1 shows a list of Σ boundaries.
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Table V.1 : Rotation axes and angles for coincidence site lattices of Σ < 31
(Humphreys and Hatherly, 2004), Data from Mykura 1980. Column 4, list of frequencies
of the occurrence of the boundaries predicted for a random grain assemble (Pan and Adams
1994), using the Brandon criterion
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Figure V.5 : Schematic of CSL : Σ5 (Gottstein and Shvindlerman, 1999)

V.1.2 Grain Boundary Energy

V.1.2.1 Measurements

The local disorder between two grains creates an excess of energy which depends on the grain
characteristics. Figure V.6 shows a summary of methods used to measure grain boundary
energies. The method, with dihedral angles at triple lines, is most generally used in the case
of LAGB (Yang et al., 2001) as well as the surface grooving method in the case of HAGB
(Molodov et al., 1994).

The approach with dihedral angles at triple points relies on measurement of the geometry
and crystallography of grain boundary junctions. It is assumed that local equilibrium exists
at each triple junction so that the Herring relations may be applied (Herring, 1951). The
Herring relations, describing equilibrium at a triple junction, Figure V.7, result from the
requirement that a virtual displacement of the triple junction in any direction causes no first
order change in energy. If the interface energy is independent of interface orientation, the
Herring equations reduce to:

γ1

sinχ1
=

γ2

sinχ2
=

γ3

sinχ3
(V.3)

where, γi, is the excess free energy of the ith boundary and, χi, is the right handed angle
of rotation about the triple line of the jth boundary from a reference direction. After
characterising a sufficient number of triple junction geometries, relative boundary energies
can be extracted as a function of grain boundary misorientation through a statistical analysis,
see Equation V.3.

V.1.2.2 Low Angle Grain Boundaries

The free energy of a small angle grain boundary can be calculated from the Read-Shockley
theory. As shown by (Shockley and Read, 1949), the stress field of a dislocation core in an
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Figure V.6 : Methods of grain boundary surface tension measurement : (a) equilibrium
angle at triple function; (b) rotating ball method; sintering of small signal crystal balls to
single crystal substrate; (c) thermal groove method; (d) zero creep method; (e) method of a
”floating”wedge; (f) hypothetical method of an ”equilibrium”grain boundary thermal groove;
(g) balance of grain boundary surface tension and volume diving force

Figure V.7 : Labeling convention for the character of a grain boundary, showing dihedral
angles, χ, inclination angles, φ, boundary tangent vectors, b, boundary normals, n, and grain
orientations, g. Note that the triple junction line is perpendicular to the plane of the diagram
(Yang et al., 2001)
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Figure V.8 : Measured (symbols) and calculated (solid line) energy of low angle tilt
boundaries as a function of misorientation, for various metals, (Shockley and Read, 1949)

infinite periodic arrangements, is confined to a range in the order of the dislocation spacing,
d. The energy of an edge dislocation per unit length is,

Ed =
µb

4π(1− ν)
ln
d

r0
+ Ec (V.4)

where µ is the shear modulus, ν, the Poisson ratio, r0 ≈ b, radius of dislocation core and Ec,
the energy of dislocation core. For a symmetrical tilt boundary with a tilt angle ∆θ (infinite
array of edge dislocations), the number of dislocations per unit length is n ≈ 1/d = ∆θ/b,
and thus, the grain boundary energy per unit area is:

γ =
∆θ
b

( µb

4π(1− ν)
ln

1
∆θ

+ Ec

)
= ∆θ(A−B ln∆θ) (V.5)

where A = Ec/b and B = µ/4π(1 − ν). It is often convenient to use the above equation in
a form where the boundary energy and misorientation are normalised with the parameters
γm and θm. The parameters γm and θm are constant values of γ and θ when the boundary
becomes a high angle boundary (i.e. ∼ 15◦), see Figure V.8. Thus,

γ = γm
∆θ

∆θm

(
1− ln

∆θ
∆θm

)
(V.6)

According to Equation V.6, the grain boundary energy γ increases with the misorientation,
∆θ.

V.1.2.3 High Angle Grain Boundaries

For low angle boundaries, the Read-Shockley model with a logarithmic dependence has been
well established both experimentally and theoretically. For misorientations in excess of 15◦,
measurements of grain boundary energy reveal no further change with increasing rotation
angle. Dislocation cores tend to overlap, the dislocations lose their identity as individual
lattice defects, so the dislocation model fails. For instance, in Figure V.9, the grain boundary
energy is plotted for aluminium for a twist boundary with a <110> boundary plane. Deep
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Figure V.9 : Measured energies at 650◦ for symmetrical <110> tilt boundaries in aluminium
(Hasson and Goux, 1971)

Table V.2 : Measured grain boundary energies (mJm−2)(Murr, 1975)

Material High angle grain Coherent twin Incoherent twin
boundary energy boundary energy boundary energy

Ag 375 8 126

Al 324 75 -

Au 378 15 -

Cu 625 24 498

Ni 866 43 -

cusp exist for a few <110> CSL types in FCC (Σ3, Σ11). No universal theory exists to
describe the energy of HAGBs. Based on a disordered atomic structure for general high angle
boundaries, it is expected that the grain boundary energy should be at a maximum and
approximately a constant. Otherwise, on the basis of the CSL structural models, it might
be expected that the energy of the boundary would see a minimum for an exact coincidence
relationship and that it would increase as the orientation deviates from this, due to the energy
of the network of accommodating boundary dislocations. However, the correlation between
the geometry and the energy of a grain boundary is more complicated. Practically, high angle
boundaries energy is chosen in general constant. Typical values of grain boundary energies
for Al is taken as 0.32J.m−2, see Table V.2.

V.1.3 Grain Boundary Mobilities

The mechanism of boundary migration depends on several parameters including the boundary
structure. It also depends, in particular, on the temperature and the nature and magnitude
of the forces acting on the boundary. It is also strongly influenced by point defects in the
material such as solutes and vacancies. Lows angle grain boundary migration occurs during
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recovery and during the nucleation of recrystallisation while high angle boundary migration
occurs during and after primary recrystallisation.

V.1.3.1 Measurements

Extracting grain boundary motion data from the temporal evolution of grain size during
recrystallisation or grain growth data is very complicated. In order to succeed in estimating
grain boundary mobility, measurements are made by determining the velocity of a boundary
in response to a well defined driving force. The boundaries move in response to a driving force
(P) which generally arises from stored dislocations or from the energy of the boundaries in
the material. In most cases (Humphreys and Hatherly, 2004), it is expected that the velocity
of the moving boundary (v) is given by

v = MP (V.7)

where, M is the boundary mobility, usually assumed to vary with temperature according to

M = M0 exp(− Q

RT
) (V.8)

where M0 is a constant, T the absolute temperature, Q the activation energy for boundary
migration and R is the universal gas constant.

In the case of motion due to grain boundary geometry, research on boundary mobilities has
been carried out using bicrystal sample. In contrast to polycrystal experiments, bicrystal
experiments provide reliable and reproducible physical data on grain boundary mobility.
(Gottstein and Shvindlerman, 1992, Molodov et al., 1994) have extracted the mobility of
grain boundary of bicrystal under a capillary driving force. Figure V.10 shows the bicrystal
geometry with a constant curvature during the grain boundary motion. The main advantage
of this technique is a simple relation between the driving force P and the macroscopic grain
dimension (radius of curvature), R. Here,

P =
γgb

R
(V.9)

where γgb is the grain boundary energy. Therefore, the grain boundary mobility is deduced
from the measurement of velocity.

The driving force arising from the boundary geometry is very low in comparison to the driving
force arising from the minimisation of stored energy. In order to determine the grain mobility
in this situation, microstructural evolution has been followed by imaging with backscattered
electrons and a U-matic video recorder during annealing by (Huang and Humphreys, 1999).
Using this technique enables subgrain sizes and misorientations in well recovered materials
to be determined quite accurately. Furthermore, they assumed that in the recovered
microstructures, the density of free dislocations was negligible and that the stored energy
was entirely due to the subgrain boundaries of energy, γs. For subgrains of diameter, D, the
stored energy is given by, (Hurley and Humphreys, 2003),

ED =
3γs

D
(V.10)

The driving pressure is calculated from Equation V.10 and EBSD measurements and grain
boundary mobility is deduced from Equation V.7,.
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Figure V.10 : Bicrystal geometry for grain boundary motion measurement under a constant
driving force (Molodov et al., 1995)

V.1.3.2 Low Angle Grain Boundaries

Low angle grain boundaries migrate through climb and glide of dislocations. Therefore, many
aspects of LAGB migration may therefore be interpreted in terms of the theory of dislocations.
However, an empirical relationship is commonly used to describe the mobilities of boundaries
in dilute aluminium alloys,

M = Mm{1− exp[−B(∆θ/∆θm)N ]} (V.11)

where Mm is the mobility of a high angle boundary and generally N = 4 and B = 5.

V.1.3.3 High Angle Grain Boundaries

The fundamental process during the migration of high angle boundaries is the transfer of
atoms to and from the grains which are adjacent to the boundary. No relation exists to
describe the grain boundary mobility, see Figure VI.8, and highest grain boundary mobilities
are not necessary for Σ grain boundaries.

V.1.4 Existing Theories to Model Mobile Grain Boundaries

Efforts directed at modeling the evolution of grain boundaries have used a va-
riety of approaches, e.g., Monte Carlo (Srolovitz, 1986, Tavernier and Szpunar, 1991,
Rollett et al., 1992), cellular automaton (Marx et al., 1999, Gottstein and Sebald, 2001,
Geiger et al., 2001), Vertex method (Soares et al., 1985, Gill and Cocks, 1996), level set
method (Osher and Sethian, 1988, Bernacki et al., 2008), finite element (Serre, 2007) and
phase field approach (Chen and Fan, 1996, Steinbach et al., 1996, Ubachs et al., 2005). In
this section, only main phase field approaches will be detailed.

The phase field method has been successfully employed both as a tool to model heterogeneous
materials and as a numerical method for calculating the motion of interfaces and phase
boundaries without explicitly tracking those interfaces. In phase-field theories, the underlying
idea is to replace sharp grain-boundaries by interfacial layers associated with rapid changes
in variables that have a continuous spatial variation along the interface. The grain boundary
is considered as a layer of defined thickness comprising a phase with a specific atomic
arrangement. The first phase field models were developed to describe the evolution of a dual
phase (Chen and Fan, 1996, Khachaturyan, 1996, Chen and Wang, 1996), and multiphase
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Figure V.11 : Experimental variation of relative boundary energy with misorientation angle
(Gottstein and Shvindlerman, 1992)

problems (Steinbach et al., 1996, Nestler and Wheeler, 1998). The kernel of phase field
theories is the functional of the local free energy density, which depends on non-conserved
field variables (or order parameter fields) of the system and its spatial derivatives. In order to
apply these models to describe recrystallisation phenomena, each order parameter has been
used for defining grains instead of phases (Suwa et al., 2007, Takaki et al., 2009).

In the theory proposed by (Chen and Fan, 1996, Suwa et al., 2007), the microstructure of
polycrystalline materials is described by a set of orientation field variables, η1(r, t), η2(r, t),
..., ηq(r, t), that distinguish different grain orientations and are defined at a given time and at
each position r where q is the number of possible orientations. Within a grain labeled by η1,
η1(r, t) equals 1 or -1, while all other field variables equal 0. At a grain boundary, all ηi(r, t)
vary continuously between their equilibrium values in each neighbouring grain. From the
diffuse-interface theory (Cahn and Hilliard, 1959), the total free energy of an inhomogeneous
system can be written as :

F =
∫
V

[
f0(η1(r, t), η2(r, t), ..., ηQ(r, t) +

Q∑
i=1

κi

2
(∇ηi(r, t))2

]
d3r (V.12)

where f0 is local free energy density which is a function of the field variables, ηi and κi is
the gradient coefficient energy. The smaller the gradient energy coefficient κi, the thinner
the boundary region is. Note that ∇η2

i is the gradient energy term, namely, the origin of the
grain boundary energy. The spatial and temporal evolution of orientation field variables is
described by the Ginzburg-Landau equations :

dηi(r, t)
dt

= −Li
δF

δηi(r, t)
= −Li

(∂f0

∂ηi
− κi∇2ηi

)
, i = 1, 2, ..., p (V.13)

where Li is a kinetic coefficient related to grain boundary mobility, t is the time and F is the
total free energy of the system. To simulate grain growth kinetics, the following simple free
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energy density functional is assumed:

f0(η1(r, t), η2(r, t), ..., ηp(r, t)) =
p∑

i=1

(
− α

2
η2

i +
β

4
η4

i

)
+ γ

p∑
i=1

p∑
j 6=i

η2
i η

2
j , (V.14)

where α, β and γ are phenomenological parameters. The only requirement for f0 is that it
has 2q minima with equal well depth at η1, η2, ..., ηp = (1, 0, ..., 0), (0, 1, ...,0), ..., (0, 0, ...,
1), (-1, 0, ..., 0), (0,-1, ..., 0), ..., (0,0, ..., -1). The existence of the minima guarantees that
finite regions will be stabilized and separated by boundaries.

When L and κ are assumed to be constant, the above equations describe isotropic grain
growth. The mobility anisotropy is incorporated by making L misorientation-dependent
(Ma et al., 2004). The energy anisotropy can be introduced by making κ misorientation-
dependent. According to (Ma et al., 2004), the misorientation field corresponding to an
arbitrary distribution for grain boundary in system is characterised as

θ(r, t) =

∑Q
i,j 6=i ηi(r, t)2ηj(r, t)2θij∑Q

i,j 6=i ηi(r, t)2ηj(r, t)2
(V.15)

where, θij , is the misorientation angle between grain i and grain j with orientations ηi and ηj .
Equation V.15 assigns a constant misorientation angle in the grain-boundary region between
grain i and grain j with value of the angle θij , and yields a weighted-mean misorientation for
the junction.

In multi-phase-field models (Steinbach et al., 1996, Takaki et al., 2009), the free energy
functional takes the form of,

F =
∫

V
εa(φ,∇φ) +

1
ε
w(φ)dV (V.16)

where, a(φ,∇φ), is the gradient free energy density, w(φ), the potential and φ the N-
component phase field vector (φ1, ..., φα, ..., φN ) representing N different grain orientations.
The state variables satisfy∑

α

φα = 1 and 0 ≤ φα ≤ 1 (α ∈ {1...N}) (V.17)

The energy density contribution is chosen to be

w(φ) =
16
π2

∑
α<β

γαβφαφβ +
∑

α<β<δ

γαβδφαφβφδ (V.18)

where γαβ is the surface energy. The gradient free energy density, a(φ,∇φ) =∑
α<β γαβ |−→q αβ |2, is formulated as a function of generalised gradient vectors −→q αβ = φα∇φβ−

φβ∇φα. This allows different grain boundary energies depending on the misorientation angle
between neighbouring grains. The evolution of the grain structure is given by a set of N
kinetic equations for the phase fields, φα, which are derived from the variational derivative
of the free energy. This,

τε
∂φα

∂t
= −δF

δα
− λ (V.19)

= ε(∇.a,∇φα(φ,∇φ)− a,φα(φ,∇φ)− 1
ε
w,φα(φ)− λ, (V.20)
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where λ = 1N
∑

α[ε(∇.a,∇φα(φ,∇φ) − a,φα(φ,∇φ) − 1
εw,φα(φ)], accounts for the restriction∑

α φα = 1. Note that the parameters ε, γαβ and τ are related to physical grain boundary
properties.

In both models, a large set of non-conserved phase fields is used to represent the different
grain orientations. In the first model, the field variables are treated as being independent
while in the second, the phase fields are interpreted as volume fractions which are subject to
the constraint that the sum of the phase fields must equal one at each material position.
Furthermore, the thermodynamic free energy in the continuum-field model has multiple
degenerate minima, one for each grain orientation. The free energy of multi-phase-field
models has a single minimum for all phase fields equal to zero. From a mathematical point
of view, the evolution equations obtained in the two approaches, have different solutions.
Both models give essentially the same results, except for differences in the structure near
small shrinking grains which are most often locally and temporary for large grain structures
(Moelans et al., 2009).

These models have been shown to be effective at representing interfacial migration and
describing recrystallisation simulations (Suwa et al., 2007, Takaki et al., 2009). However,
these models are not invariant by rotation. In real materials, the number of orientations
is infinite (q = ∞). Even if it was shown that a finite number for q might be sufficient to
realistically simulate grain growth, it requires one phase field variable by orientation which
results in a lot of variables. In addition, these models prohibit grain rotation, a phenomenon
which has been observed experimentally, see V.12.

Figure V.12 : In-situ annealing of a thin Al − 6%Ni foil (Chan and Humphreys, 1984)

(Kobayashi et al., 2000) (KWC) proposed an alternative phase field model describing the
evolution of a collection of nearly perfect crystalline grains via a gradient flow using a
phenomenological free energy. The crystalline phase field model has two fields variables:
orientation, θ, and crystallinity (measure of the degree of the crystalline order at the macro-
scale), η. An upper bound, η = 1, is assigned to perfect crystallinity and a lower bound,
η = 0, implies no crystalline order on a coarse-grained scale. η may take values less than 1
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near a grain boundary, and, for certain configurations, there will be an equilibrium bicrystal
structure with η = ηmin within the grain boundary. The field parameter, θ, that measures
the local orientation of crystal with respect to a fixed coordinate system is sufficient for an
isotropic two-dimensional case. All crystals have a N-fold symmetry, thus all θ should lie in
the irreducible domain. In addition, the presence of mirror symmetries further reduces the
possible misorientations. The phenomenological free energy is

F(η, θ) =
∫

Ω

α2

2
|∇η|2 + f(η) + g(η)s|∇θ|+ h(η)

ε2

2
|∇θ|2dV (V.21)

where α, ε and s are positive constants.

The first term describes the penalty for gradients in the order parameter (grain boundaries
cost energy). The free energy density f(η) is chosen to be a single well with the minimum
at η = 1 and f(1) = 0 reflecting the fact that a disordered material has a higher free energy.
The third and fourth terms introduced in the free energy are functions of the gradient in
the orientation, θ, and account for grain boundary energy misorientation penalties. These
terms, in |∇θ|, are coupled to η with the positive definite functions g(η) and h(η). The linear
dependence on |∇θ| introduces a cusp into the total free energy density at |∇θ| = 0. The
presence of the linear term |∇θ| (as opposed to higher order powers |∇θ|) is required for
grain boundaries that are localised at equilibrium. Note that without this linear term, the
grain boundary regions (where θ is spatially varying) spread. In other words, stable grain
boundaries of finite width do not exist in the model unless the free energy density depends,
to lowest order, linearly on |∇θ| (Kobayashi et al., 2000). At least one higher order term
is essential for the dynamics of grain boundaries, that is why |∇θ|2 is included in the free
energy. Here, orientation term is not included in the homogeneous part of the free energy
because the free energy must be invariant with respect to orientation in the laboratory frame.
Assuming the relaxational dynamics for a non conserved set of order parameters, KWC finds
the following gradient flow equations:

Q(η,∇θ)τη
∂η

∂t
= −δF

δη
= α2∇2η − fη − gηs|∇θ| − hη

ε2

2
|∇θ|2 (V.22)

P (η,∇θ)τθη2∂θ

∂t
= −δF

δθ
= ∇.[hε2∇θ + gs

∇θ
|∇θ|

] (V.23)

The kinetic scaling factors τη and τθ are specified to be uniform and constant, while the inverse
mobility functions, P and, Q contain all the information concerning functional dependence of
the kinetic coefficients on the order parameters and anisotropy. Equation V.23 introduces the
possibility of grain rotation whereas θ can change as a function of time. The term ∇θ

|∇θ| yields
a singularity in the dynamic equations. The mobility functions P and Q must be positive
definite, continuous at |∇θ| = 0, but are otherwise unrestricted.

Also, f(η) is a single well with a minimum at η = 1, f(1)=0 reflecting the fact that disordered
materials have higher free energy. A simple choice for f is

f(η) =
ω2

2
(1− η)2 (V.24)
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(a) (b)

Figure V.13 : (a) Schematic drawing of a bicrystal and (b) typical profile of the equilibrium
solution η and θ

Figure V.14 : Schematics of a 2D grain boundary

V.2 Polycrystalline Microstructure Description Using a
Phase Field Approach

V.2.1 Review of the Kobayashi-Warren-Carter model

The KWC model is two dimensional, which considerably simplifies the description of a grain
boundary. In 2D cases, a grain boundary has only two geometrical degrees of freedom:
the inclination angle of the boundary plane between two crystals, and the crystallographic
misorientation ∆θ. Here, the free energy is independent of the grain boundary orientation,
see Figure V.14. Finally, the KWC phase field model has two field variables: orientation θ
and crystallinity η. Before deformation, we consider that the crystal lattice is perfect inside
the grains; the crystal order (measure of the degree of the crystalline order at the macro-
scale), η, is constant and equal to 1. At the grain boundary, the crystallinity varies with the
misorientation between grains, therefore between 0 and 1. The phenomenological free energy
invariant by rotation is expressed as:

F(η, θ) =
∫

Ω

α2

2
|∇η|2 + f(η) + g(η)|∇θ|+ h(η)|∇θ|2dV (V.25)

where α, ε and s are positive constants.
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V.2.2 Introduction of Stored Energy in the Free Energy

During the deformation process, the dislocation density increases inside the grains giving a
non periodic crystal lattice, and therefore, a lattice order η < 1. However, even in the large
strain regime, the lattice disorder inside the grain due to deformation remains smaller than
the disorder inside the high angle grain boundaries. Otherwise, the polycrystal will only be
one grain boundary phase. A measure of the lattice disorder due to deformation is the stored
energy. Therefore, to measure this phenomenon, the stored energy due to deformation is
introduced in the free energy. As the high angle grain boundary is the highest disorder area
in the polycrystal, we considered the stored energy due to deformation always less than the
high angle grain boundary energy. The stored energy density, Est, is normalized by a high
angle grain boundary energy, Egb in order to introduce it in the free energy formulation,
where the grain boundary energy between two grains of high misorientation is taken constant
(the Σ grain boundaries are not considered). The phenomenological free energy, an invariant
of the rotation, is expressed as follows:

F(η, θ) =
∫

Ω
ρψdV (V.26)

F(η, θ) =
∫

Ω

α2

2
|∇η|2 + f(η) + Ce

Est

Egb
η + g(η)|∇θ|+ h(η)|∇θ|2dV (V.27)

where α, ω and Ce are positive constants.

The second term in Equation V.27 is chosen so as to yield a single well with the minimum
at η = 1. This reflects the fact that disordered materials have higher free energies, f(η) =
ω2

2 (1− η)2. The third term represents the additional stored energy due to deformation. The
constant Ce is calibrated from experimental data.

V.2.3 Balance of Generalised Stresses

V.2.3.1 Principle of Virtual Power

A continuum-mechanics framework to describe dynamic problems has been proposed in
(Fried and Gurtin, 1996, Gurtin and Lusk, 1999, Ammar et al., 2009) based on a balance law
for generalised forces associated with the equilibrium of defect-structures. In the case of
recrystallisation, the short-range transport of atoms between adjacent mismatched lattices
occurring at the lattice length-scales is introduced via dissipative generalized forces that
perform work over the macroscopic motion of grain boundaries at continuum length-scales.
In this section, the same approach is used to determine the balance and constitutive laws
associated with the free energy. As explained in the previous paragraph, the microstructure
is represented by the phase-field variables η, the crystallinity, and θ, the crystal orientation.
The generalised forces associated with both fields are characterised by micro-stresses and by
micro-forces. Here, ξ

η
is the micro-stress associated to η and πη and πext

η are, respectively,
the internal and external micro-forces associated to η. ξ

θ
is the microstress associated to θ

and πθ and πext
θ are, respectively, the internal and external microforces associated to θ. The

method of virtual powers due to the work performed by the forces is used to determine the
balance law equations. The virtual power of internal forces is expressed as :

P(i) =
∫
D

(πηη̇ − ξ
η
.∇η̇ + πθθ̇ − ξ

η
.∇θ̇)dV, (V.28)

=
∫
D

(
(∇.ξ

η
+ πη)η̇ + (∇.ξ

θ
+ πθ)θ̇

)
dV −

∫
∂D

(
(ξ

η
.n)η̇ + (ξ

θ
.n)θ̇

)
dS. (V.29)
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The virtual power of external forces including distance and contact forces is given by :

P(e) =
∫
D

(πext
η η̇ + πext

θ θ̇)dV, (V.30)

P(c) =
∫

∂D
(πc

ηη̇ + πc
θθ̇)dS. (V.31)

The principle of virtual power then states (power of inertial microforces are neglected, P(a))
that

∀D ∈ V, ∀(η̇, θ̇), P(i) + P(e) + P(c) = 0 (V.32)

Therefore,

∀D ∈ V, ∀(η̇, θ̇),
∫
D

(∇.ξ
η

+ πη + πext
η )η̇ + (∇.ξ

θ
+ πθ + πext

θ )θ̇dV = 0 (V.33)

Assuming that the quantities, θ and η are continuous on V , the local equilibrium equations
are derived

∇.ξ
θ
+ πθ + πext

θ = 0 on V (V.34)

∇.ξ
η

+ πη + πext
η = 0 on V (V.35)

When external forces are neglected, the equations become

∇.ξ
θ
+ πθ = 0 on V, (V.36)

∇.ξ
η

+ πη = 0 on V. (V.37)

As a result, the principle of virtual power can be expressed as

∀D ∈ V, ∀(η̇, θ̇),
∫

∂D

(
(ξ

η
.n− πc

η)η̇ + (ξ
θ
.n− πc

θ)θ̇
)
dS, (V.38)

from which the boundary conditions are deduced

ξ
η
.n = πc

η on ∂V, (V.39)

ξ
θ
.n = πc

θ on ∂V. (V.40)

V.2.3.2 Constitutive Phase Field Equations

Neglecting power of acceleration, the energy conservation principle is written:

Ė = Pext +Q. (V.41)

Using the power principle,
Ė = −Pi +Q. (V.42)

Let e be the internal energy per unit mass, q the heat flux vector, ρ the current density. The
energy balance equation reads

ρė = ξ
η
.∇η̇ + ξ

η
.∇θ̇ − πηη̇ − πθθ̇ − div q; (V.43)

According to the thermodynamics of irreversible processes, the entropy principle is given by

ρṡ+ div
q

T
≥ 0 (V.44)
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where T denotes the absolute temperature and, s, the entropy per unit mass.
Introducing the free energy, ψ = e − sT , and combining the energy and entropy equations,
one derives the Clausius-Duhem inequality

−ρ(sṪ + ψ̇)− pi −
q

T
.(∇T ) ≥ 0 (V.45)

−ρ(sṪ + ψ̇) + ξ
η
.∇η̇ + ξ

η
.∇θ̇ − πηη̇ − πθθ̇ −

q

T
.(∇T ) ≥ 0 (V.46)

The free energy and entropy are only dependent on η,∇η, ∇θ. Therefore,

ψ̇(η, θ,∇η,∇θ) =
∂ψ

∂η
η̇ +

∂ψ

∂∇η
∇η̇ +

∂ψ

∂θ
θ̇ +

∂ψ

∂∇θ
∇θ̇ (V.47)

The Clausius-Duhem inequality gives:

(−ρ∂ψ
∂η
−πη)η̇+(−ρ∂ψ

∂θ
−πθ)θ̇+(−ρ ∂ψ

∂∇η
+ξ

η
).∇η̇+(−ρ ∂ψ

∂∇θ
+ξ

θ
)∇θ̇−(ρs+ρ

∂ψ

∂T
)−

q

T
.(∇T ) ≥ 0

(V.48)
The microstresses ξ

η
and ξ

θ
are assumed independent of η̇ and θ̇ and satisfy

ξ
η

= ρ
∂ψ

∂∇η
(V.49)

ξ
θ

= ρ
∂ψ

∂∇θ
(V.50)

s =
∂ψ

∂T
(V.51)

Therefore,

(−∂ψ
∂η

− πη)η̇ + (−∂ψ
∂θ

− πθ)θ̇ ≥ 0 (V.52)

πη =
∂ψ

∂η
+ πnon

η (V.53)

πθ = πnon
θ (V.54)

The functions πnon
η and πnon

θ represent non-equilibrium contributions to the internal forces,
πη and πθ. To be consistent with the second thermodynamic principle, πnon

η and πnon
θ should

satisfy the following condition,
πnon

η η̇ + πnon
θ θ̇ ≤ 0 (V.55)

V.2.3.3 Evolutionary Equations of the Field Variables η and θ

From the free energy expression, we deduce the constitutive equations:

ξ
η

= ρ
∂ψ

∂∇η
= α2∇η, (V.56)

ξ
θ

= ρ
∂ψ

∂∇θ
= g(η)

∇θ
|∇θ|

+ h(η)∇θ, (V.57)

πη = −ρ∂ψ
∂η

+ πnon
η = −f ′(η)− g′(η)|∇θ| − h′(η)|∇θ|2 + πnon

η , (V.58)

πθ = −ρ∂ψ
∂θ

+ πnon
θ = πnon

θ , (V.59)
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where

πnon
η = −τη exp(

Q

kT
)η̇, (V.60)

πnon
θ = −τθfm(η) exp(

Q

kT
)fr(η,∇η)θ̇. (V.61)

Here, fm(η) is an increasing positive function of η which controls the grain boundary migration
rate. Equation V.61 introduces the possibility of grain rotation. Since the multiplicative
term of η̇ and θ̇ are the inverse boundary mobility, the term exp( Q

kT ) is introduced in non-
equilibrium contributions to include the temperature dependence shown in section V.1.3.1.
The kinetic constant, τη, should be less than τθ in order to avoid grain rotations due to the
absence of mechanical stress. To prevent this phenomenon, the inverse mobility function
fr(η,∇η) is chosen to cancel grain rotations when the crystallinity variation is small that is
inside the grains. Also, fr is chosen so as to not affect the grain boundary migration rate.
Thus,

fr(η,∇η) = 1 + βr(1− exp(−βs
η

∇η
)). (V.62)

Replacing the stress and force expressions in the balance laws, the evolutionary equations for
the crystal order, η, and the crystal orientation, θ, become

τη exp(
Q

kT
)η̇ = α2∇2η − f ′(η)− Ce

Est

Egb
− g′(η)|∇θ| − h′(η)|∇θ|2 (V.63)

τθfm(η) exp(
Q

kT
)fr(η,∇η)θ̇ = ∇.[2h(η)∇θ + g(η)

∇θ
|∇θ|

] (V.64)

By considering the equilibrium solution inside the grains, namely where ∇η = 0 and ∇θ = 0,
Equation V.63 gives

0 = −f ′(η)− Ce
Est

Egb
= ω2(1− η)− Ce

Est

Egb
(V.65)

which yields the lattice order value inside the grain (see Figure V.15),

η = 1− Ce

ω2

Est

Egb
(V.66)

Since 0 ≤ η ≤ 1, Equation V.66 raises the following condition on the model parameters,

Ce

ω2

Est

Egb
< 1 (V.67)

V.2.3.4 Evolutionary Equations of the Stored Energy for Recrystallisation

In this section, the evolution of the stored energy is only considered for the recrystallisation
phenomena. During primary recrystallisation, the grain boundary migration rearranges the
crystal lattice, dislocations are annihilated, and after grain boundary motion, the stored
energy decreases, see Figure V.16. During deformation, stored energy increases inside the
grains and the metastable solution of η is deduced from Equation V.66: η decreases from
1, the perfect lattice order, to Ce

ω2
Est
Egb

, the disturbed lattice order. Consequently, the stored
energy Est must be constant when η̇ ≤ 0. Since η is minimal at the grain boundaries, after
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Figure V.15 : Profiles of (a) orientation and (b) lattice order with an initial constant stored
energy distribution

Figure V.16 : Migration of an existing grain boundary. The boundary between grains, in
the middle of the photo, has moved upwards leaving in its wake a region relatively free of
dislocation substructures (Gurtin and Lusk, 1999)
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Figure V.17 : Stored energy evolution with an initial value of E0 = 0.6

grain boundary motion, η increases to reach the stable state, 1 − Ce
ω2

Est
Egb

, which implies that
η̇ > 0. Finally, the evolutionary equations for the stored energy is expressed in a simple form
as,

Ėst = −CdEstη̇A(|∇θ|) if η̇ > 0 (V.68)
Ėst = 0 if η̇ ≤ 0 (V.69)

where Cd is a fitting parameter. The introduction of A(|∇θ|) in Equation V.68 is necessary
to localise stored energy annihilation in the grain boundary regions. Thus,

A(|∇θ|) = tanh(|∇θ|2) =

{
0 if |∇θ| = 0
1 if |∇θ| 6= 0

In order to study the stored energy evolutionary equation, we considered A(|∇θ|) = 1 which
gives,

Ėst = −CdEstη̇ if η̇ > 0 (V.70)

Integrating Equation V.70, the stored energy evolution is

Est = B exp(−Cdη) (V.71)

where B is a constant. With the initial conditions, Est/Egb = E0/Egb, and therefore, η =
1− Est/Egb, Thus, Equation V.71 becomes

Est = E0 exp(Cd(1− E0 − η)) (V.72)

Figure V.17 shows the stored energy evolution with an initial stored energy. The stored
energy evolves towards 0 at the same time as η tends to 1 (the slope is decreasing). It should
be noted that the stored energy annihilation rate increases with Cd.

V.3 Implementation of the Phase-Field Equations into the
Finite Element Method

The method is detailed in (Ammar et al., 2009) for phase transformation problem.
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V.3.1 Variational Formulation

The variational formulation of the phase field partial differential equations directly follows
from the formulated principle of virtual power, detailed in Section V.2.3.1. Here,

F(η∗,V) =
∫
V
(πηη

∗ − ξ
η
.∇η∗)dV +

∫
∂V

(ζηη∗)dS = 0 (V.73)

F(θ∗,V) =
∫
V
(πθθ

∗ − ξ
θ
.∇θ∗)dV +

∫
∂V

(ζθθ∗)dS = 0 (V.74)

The phase field problem to solve in FE admit the initials conditions at t = 0,

η(x, 0) = η0(x) (V.75)
θ(x, 0) = θ0(x) (V.76)

and at each instant, t>0,∫
V
(πηη

∗ − ξ
η
.∇η∗)dV +

∫
∂V

(ζηη∗)dS = 0 (V.77)∫
V
(πθθ

∗ − ξ
θ
.∇θ∗)dV +

∫
∂V

(ζθθ∗)dS = 0 (V.78)

V.3.2 FE Discretisation

In order to obtain a finite element solution, the spatial domain in discretised into N elements.
The nodal degrees of freedom are the values at the nodes of the lattice order and the crystal
orientation. The fields η and θ are approximated within each element and at every time, t,
in terms of nodal values by means of interpolation functions within each element. Here,

η(x, t) =
n∑

i=1

N e
i (x)ηi(t), θ(x, t) =

n∑
i=1

N e
i (x)θi(t) (V.79)

η∗(x, t) =
n∑

i=1

N e
i (x)η∗i (t), θ∗(x, t) =

n∑
i=1

N e
i (x)θ∗i (t) (V.80)

∇η(x, t) =
n∑

i=1

Be
i (x)ηi(t), ∇θ(x, t) =

n∑
i=1

Be
i (x)θi(t) (V.81)

where n is the number of nodes in the element, e, containing, x, and the shape functions are
denoted by N e

i . The matrix, Be
i , is defined by the first derivative of the shape functions,

which in 2D case, is

[Be] =

[
∂Ne

1
∂x

∂Ne
2

∂x ... ∂Ne
n

∂x
∂Ne

1
∂y

∂Ne
2

∂y ... ∂Ne
n

∂y

]
An implicit Euler scheme is applied for the time discretisation. Using the notation, η(t) and
θ(t), for the known values of the current time step, t, η(t+ δt) and θ(t+ δt) at time, t+ δt,
are estimated by solving the following equations:

η(t+ ∆t) = η(t) + ∆tη̇(t+ φ∆t) (V.82)
θ(t+ ∆t) = θ(t) + ∆tθ̇(t+ φ∆t) (V.83)
η(0) = η0 θ(0) = θ0 (V.84)
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∆t is the time increment, and η0, θ0 are the initial conditions for the lattice order and
the crystal orientation. We deduce the element residual after substituting the nodal
approximations in Equation V.77. Then,

{Re(η, θ)} =

{
Re

η(η, θ
Re

θ(η, θ

}
where Re

η and Re
θ are, respectively, the element residuals for the variational formulation of

the lattice order and crystal orientation,

(Re
η)i =

∫
Ve
N e

i (x)πηdV −
∫
Ve

[Be(x)]ij .ξηj
dV +

∫
∂Ve

N e(x)ζηdS = 0 (V.85)

(Re
θ)i =

∫
Ve
N e

i (x)πθdV −
∫
Ve

[Be(x)]ij .ξθj
dV +

∫
∂Ve

N e(x)ζθdS = 0 (V.86)

The global residual vector can be obtained by assembling the element residuals for all elements
using the matrix assembly [Ae]:

{R(η)} =
N∑

e=1

[Ae].{Re(η)} = {0} (V.87)

Given a known set of nodal degrees of freedom at time, t, and assuming that the residual
vanishes at the next time step, t + ∆t, a set of non-linear equations result for the nodal
degrees of freedom at t + ∆t. It is solved with the Newton-Raphson method in an iterative
method. This requires the computation of the generalised stiffness matrix which is obtained
by derivation of the residual vector with respect to the degrees of freedoms (η, θ):

[Ke
t ] =

[
[Ke

ηη] [Ke
ηθ]

[Ke
θη] [Ke

θθ]

]
Finally, the element generalised matrix is divided in four sub-matrix,

(Ke
ηη)ij = −∂(Re

1)i
∂ηe

j

=
∫
Ve
N e

i .(
πη

∂ηe
)jdV −

∫
Ve

[Be(x)]ik.
[∂ξη

∂ηe

]
kj
dV (V.88)

(Ke
ηθ)ij = −∂(Re

1)i
∂θe

j

=
∫
Ve
N e

i .(
πη

∂θe
)jdV −

∫
Ve

[Be(x)]ik.
[∂ξη

∂θe

]
kj
dV (V.89)

(Ke
θη)ij = −∂(Re

2)i
∂ηe

j

=
∫
Ve
N e

i .(
πθ

∂ηe
)jdV −

∫
Ve

[Be(x)]ik.
[∂ξ

θ

∂ηe

]
kj
dV (V.90)

(Ke
θθ)ij = −∂(Re

2)i
∂θe

j

=
∫
Ve
N e

i .(
πθ

∂θe
)jdV −

∫
Ve

[Be(x)]ik.
[∂ξ

θ

∂θe

]
kj
dV (V.91)

V.3.3 Validation of the FE Implementation

In order to compare analytical solution and FE results, cases where h(η) = 0 are considered,
that is |∇θ|2 is not included in the free energy.

V.3.3.1 Example of a Bicrystal

If we consider two semi-infinite grains with orientations indicated by θ+ and θ−, the free
energy of the bicrystal with h(η)) = 0 takes the following form :

F(η, θ) =
∫

Ω
(
α2

2
|∇η|2 + f(η) + g(η)|∇θ|)dV (V.92)
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Simple choices for f(η) and g(η), which satisfy the criteria stated above, are

f(η) =
1
2
(1− η)2 (V.93)

g(η) = η2 (V.94)

The form for g(η) is chosen for mathematical convenience. The resulting equations of motion
are

Pηη̇ = α2∆η + 1− η − 2η|∇θ| (V.95)

Pθη
2θ̇ = ∇.[η2 ∇θ

|∇θ|
], (V.96)

where Pη and Pθ are inverse mobilities. For the one-dimensional case, the equilibrium grain
boundary solutions, η(x) and θ(x) for a bicrystal, must satisfy the following equations :

0 = α2η,xx + 1− η − 2η|θ,x| (V.97)

0 = ∇.[η2 θ,x

|θ,x|
],x, (V.98)

where the subscripts, x indicates derivation with respect to x. Dirichlet boundary conditions
θ(±∞) = θ± are applied as well as the condition, 0 ≤ η(x) ≤ 1. Without loss of generality,
the center of the grain boundary is located at x = 0. If η(x) has only one minimum, it can
be shown that the solution for θ(x) is a step function at the point, where η takes minimum :

θ(x) =

{
θ−, −∞ < x < 0,
θ+, 0 < x <∞

Note that |θ,x| = ∆θδ(x), where ∆θ = |θ+ − θ−| and that δ(x) is the Dirac delta function.
Integrating Equation V.97 gives

η(x) = 1− (1− η0) exp
{
− |x|

α

}
(V.99)

where, η0 = η(0), and should be determined by integration of Equation V.98 through the
discontinuity in θ:

α2[η,x]x=0+

x=0− = 2η0∆θ, (V.100)

which gives

η0 =
1

1 + Θ
(V.101)

where Θ = ∆θ
α is a scaled misorientation.

The mesh used in the FE simulation is described in Figure V.18a. Boundary conditions and
the initial orientation, θ, are imposed as in the analytical study while the lattice order, η is
assumed to be constant (η = 1). Figure V.18b shows the equilibrium contour of η. In Figure
V.19, profiles of the lattice order and the crystal orientation obtained analytically and FE
are identical for several values of the parameter α. As h(η) = 0, ∇θ is singular.
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(a) (b)

Figure V.18 : Stable grain boundary of a bicrystal. Contour of (a) the lattice order (η) and
(b) the crystal orientation (θ)
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Figure V.19 : Superposition of the analytical and FE solutions for (a) the lattice order (η)
and (b) the crystal orientation (θ)

Figure V.20 : Analytical profiles of (a) the lattice order (η) and (b) the crystal orientation
(θ) (Kobayashi et al., 2000)
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(a) t=0s

(b) t=150s

(c) t=400s

(d)

Figure V.21 : Rotation of three grain crystals at different times. Contour of the crystal
orientation (θ)

V.3.3.2 Example of a Three Grain Polycrystal

We considered the case where a narrow band-shaped interior grain with thickness, l, lies
between two semi-infinite grains with orientations indicated by θ+ and θ−. Let the orientation
of the interior grain be θ0, and assume that l >> α. Then the system is described by η and
θ as shown in Figure V.20. The system can eliminate the interior grain by two independent
mechanisms: by moving the boundaries towards each other at fixed misorientations and by
adjusting the orientation(s) of the interior grain(s) at fixed boundary spacing. Since the grain
boundary is flat, there is no driving force due to the curvature. Therefore rotation should be
the dominant process to decrease the energy.

Assuming that θ− < θ0 < θ+, (Kobayashi et al., 2000) proposed an analytical solution to this
problem with the evolution of θ which is plotted in Figure V.22. The unconstrained grain(s)
rotate to lower the energy by adjusting the two boundary misorientations until the equilibrium
solution is attained. The mesh used in FE simulation is described in Figure V.21a. Dirichlet
boundary conditions and initial orientation, θ, are imposed as in the analytical study while
the lattice order, η is assumed constant (η = 1). Figures V.21b, c show the evolution of the
contour of θ where the middle grain is vanishing. Profiles of crystal orientation obtained by
the FE simulation for several mesh sizes and by analytical study are superimposed in Figure
V.22. As h(η) = 0, the change of the crystal orientation through the grain is in one element
for each boundary. Therefore, the size of the grain boundary decrease with decreasing the
mesh size and the FE simulation is highly mesh dependent. However, the rotation velocity
of the middle grain tends to the analytical solution with mesh decreasing size.
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V.4 Calibration of the Free Energy Parameters

The materials used for the simulation is Al. The Read-Shockley model is used to fit the
energy for small misorientation angles. For high misorientation angles, the grain boundary
energy is assumed to be independent of the misorientation and of the boundary plane. For an
aluminium foil, (Yang et al., 2001) found the grain boundary energy to be 0.37Jm−2. Apart
from special low Σ boundaries, the boundary properties remain effectively independent of
misorientation. Here,

γ = γm
∆θ

∆θm
(1− ln(

∆θ
∆θm

)) for ∆θ ≤ 15◦, (V.102)

γ = γm for ∆θ ≥ 15, (V.103)

where γm is the grain boundary energy if θm ≥ 15◦.

The change of θ and φ through the interface creates energy; the grain boundary energy. The
surface energy (for the h(η) = 0 case) for a bicrystal can be expressed analytically. Note that
the energy is localized in the α-neighbourhood of the grain boundary, the surface excess or
grain boundary energy, and will be referred to as γgb. The total free energy can be separated
into two terms: the contribution due to disordering, Edis (deviation of η from 1), and the
contribution from the singular incompatibility at x = 0 (the jump in θ), Einc. There is
no stored energy, Est = 0. The equilibrium grain boundary solution (θ and η) of a one
dimensional bicrystal centered in x = 0 must satisfy the following evolutionary equations :

α2η,xx − f ′(η)− sg′(η)|θ,x| = 0, (V.104)

s[g(η)
θ,x

|θ,x|
],x = 0. (V.105)

In the regions where x > 0 or x < 0,

0 = α2η,xx − f ′(η) (V.106)
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Integrating,
α2

2
η2

,x = f(η) (V.107)

αη,x = +
√

2f(η) for x > 0, αη,x = −
√

2f(η) for x < 0 (V.108)

and through the discontinuity in θ leaves:

s∆θ
α

=
2
√

2f(η0)
g′(η0)

(V.109)

Furthermore,

Edis =
∫ ∞

−∞
[
α2

2
η2

,x + f(η)]dx (V.110)

Edis = 2
∫ ∞

0
2f(η)dx = 2α

∫ ∞

0

√
2f(η)η,xdx = 2α

∫ 1

η0

√
2f(η)dη (V.111)

Einc =
∫ ∞

−∞
[sg(η)|θ,x|]dx = sg(η0)∆θ (V.112)

The energy can be expressed as a function of the misorientation. Then,

γgb = 2α
∫ 1

η0

√
2f(η)dη + g(η0)∆θ. (V.113)

As chosen by KWC, the function f exhibits a single well in 1, thus

f(η) =
ω2

2
(1− η)2, (V.114)

Therefore,
γgb = αω(1− η0)2 + g(η0)∆θ (V.115)

To fit the Read-Shockley curve, we take g(η) as a polynomial function of third order,

g(η) = a|η|+ bη2 + c|η|3 (V.116)

By replacing g(η) in Equation V.115, we found that

η0 =
αω

3c∆θ
(
− (

b∆θ
αω

+ 1) +

√
(
b∆θ
αω

+ 1)2 − 6c∆θ
αω

(
a∆θ
2αω

− 1)
)

(V.117)

Replacing η0 in equation V.109, the analytical solution of the energy is obtained, see Figure
V.23. As we can see in the expression of η0, the parameters α and ω appears only in the
product αω. To be independent of the mesh size, the θ change through the interface can’t
be sharp. To have a smooth interface, the term h(η)|∇θ|2 is taken into account in the free
energy.

h(η) = dη2 + e (V.118)

Adding h(η) to the free energy increases significantly the grain boundary energy as seen in
Figure V.24.
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V.5 Conclusions

The phase field model is based on two continuous field variables, the grain orientation,
θ and the lattice order, η, to describe the microstructure. The stored energy has been
introduced in the free energy of the phase field model to take into account its influence on
grain boundary motion. A finite element formulation for the phase field model has been
presented, based on the introduction of generalized stresses and their balance, and the
framework of the thermodynamics of irreversible processes. Three evolutionary equations,
for the grain orientation, θ, the lattice order, η, and the stored energy have been developed.
The parameters of the free energy have been calibrated on the Read-Shockley energy for low
angle grain boundaries.
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VI.1 Introduction

A driving force for grain boundary migration arises when a boundary displacement leads
to a reduction of the total energy. In recrystallisation phenomena, two kinds of energy are
responsible for the grain boundary motion; an excess of energy due to grain boundary itself
and a free energy difference between the adjacent grains due to the energy stored during
deformation. Both driving forces participate in the recrystallisation process. First, at the
early beginning, when the recrystallisation nuclei appear, their kinetics are controlled by
curvature, then by stored energy. This is the primary recrystallisation. After leaving the
crystal free of dislocations, the microstructure is made of small grains. To reduce its energy
due to the large grain boundary quantity, grain growth occurs driven by curvature effects.

VI.1.1 Nucleation of Recrystallization

Nucleation is a major factor in determining both the size and orientation of the grains of
final microstructure. Two phenomena have been identified for describing the nucleation
process; the classical nucleation and the strain induced boundary migration (SIBM). In the
classical nucleation, nuclei originates from small volumes which pre-exist in the deformed
microstructure (Humphreys and Hatherly, 2004). Nuclei are highly misoriented from the
deformed matrix while in SIBM, the new grains have similar orientations to the old grains from
which they have grown, see Figure VI.1. SIBM involves the bulging of part of a pre-existing
grain boundary, leaving a region behind the migrating boundary with a lower dislocation
content as shown schematically in Figure VI.2. The SIBM mechanism identified first by
(Beck and Sperry, 1950) is essentially at low strain and is replaced by the classical nucleation
at higher strain. For instance, SIBM phenomena are observed only at reductions < 40% in
pure aluminium.

Figure VI.1 : TEM micrograph of SIBM in copper deformed 14% in tension and annealed
5 min at 234◦C, (Bailey and Hirsch, 1962)

VI.1.2 Growth of Nuclei

As explained in the chapter IV, the boundary velocity (v) which arises from stored dislocations
or the grain boundary geometry was found to be proportional to the driving force (P).

v = MP (VI.1)
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Figure VI.2 : (a) SIBM of a boundary separating a grain of low stored energy (E1) from
one of higher energy (E2), (b) dragging of the dislocation structure behind the migrating
boundary, (c) the migrating boundary is free from the dislocation structure, (d) SIBM
originating at a single large subgrain (Humphreys and Hatherly, 2004)

where the boundary mobility, M, is a quantitative measure of the kinetic properties of a grain
boundary. It is generally assumed that boundary mobility is controlled by a single activated
process with an Arrhenius relation,

M = M0 exp(−Q/kBT ) (VI.2)

where Q is the activation energy (enthalpy) for migration, kB is Boltzmann’s constant and
M0 is a temperature independent factor and T is the temperature.

The driving force due to stored energy provided by the dislocation density responsible for the
growth of new grains is given by

P = ∆Est (VI.3)

where ∆Est is the difference of energy between new grains and deformed grains. The stored
energy of the new grains is considered null. However, these new grains of radius R create
grain boundary energy due to their expansion. Therefore, an opposing driving force is arising
from the curvature of their boundary,

P ≈ γ

R
. (VI.4)

where γ is the grain boundary energy. Therefore, below a critical grain size there would be
no net driving force for recrystallisation.

VI.1.3 Kinetics of Primary Recrystallization

The progress of recrystallisation with time during isothermal annealing is commonly
represented by a plot of the volume fraction of material recrystallized (Xv) as a function
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Figure VI.3 : Typical recrystallisation kinetics during isothermal annealing

of log(time), see Figure VI.3. Johnson-Mehl-Avrami-Kolmogorov proposed a model based on
randomly distributed nucleation sites to describe the curve in Figure VI.3. A more generally
relationship between the volume fraction of material recrystallized (Xv) and the time (t),
called usually the JMAK equation, is obtained from their model,

Xv = 1− exp(−Btn) (VI.5)

where B and n are fitting parameters. Numerous investigations found values of n of the order
of 1 for aluminium.

VI.1.4 Grain Growth Following Recrystallization

After recrystallisation process, most of dislocations have been annihilated, stored energy has
vanished. However, the microstructure is not stable because of the large of grain boundary.
Grain growth may occur in order to reduce this excess of grain boundary area. Assuming
that the radius of curvature is proportional to the mean radius (R) of an individual grain
and the grain boundary energy γgb is the same for all boundaries, (Burke and Turnbull, 1952)
proposed a parabolic law to describe the mean grain size evolution,

R = Bt1/n (VI.6)

where n, the grain growth exponent is theoretically 2.
Experimentally, (Gordon and El-Bassyouni, 1965) found the grain growth exponent to be 4
for isothermal grain growth in high purity aluminium.

In this chapter, the kinetics of grain boundary motion due to both phenomena, curvature
and stored energy, are studied. In both cases, variation of the grain boundary mobility
with grain boundary misorientation is examined. Since motion of grain boundary systems
are also controlled by junctions (Mattissen et al., 2005), triple and quadruple junction will
be explored. Finally, the phase field model is applied to a microstructure. Parameters are
scrutinized to see the effect on the grain morphology, the misorientation and the grain size
evolution.
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(a) (b) (c) (d)

Figure VI.4 : Shrinking of a grain (θ = −π
4 ) embedded in a large grain (θ = π

4 )

VI.2 Curvature as a Driving Force

VI.2.1 Grain Boundary Mobility

VI.2.1.1 Misorientation Dependency

In the applications to be described in the section, there is no stored energy. Since grain
boundary motion does not occur in bicrystal with planar grain boundary, curvature is
introduced in order to investigate grain boundary motion dependency on misorientation.
In numerical simulations, in order to drive the grain boundary due to geometrical curvature,
the cusp profile of η and the discontinuous profile of θ have to be smoothed, and this is
achieved by inclusion of higher order terms in |∇θ| in Equation V.27. Thus, in addition to
the terms already described, h(η) 6= 0. The introduction of the higher order term, |∇θ|2,
induces finite gradients in θ in contrast to the step profile found in the analytical solutions
presented in the chapter IV.

To analyse the motion, we consider a grain embedded in a large grain. The curvature is
considered as the only driving force for grain boundary motion. The initial grain size is
1mm. Neumann boundary conditions is imposed on η and Dirichlet on θ. The results of the
circular grain motion is shown in Figure VI.4. The grain shrinks and therefore, reduction in
grain boundary area is found. In Figure VI.5, the velocity of the interface between the grains
associated with the decrease in the free energy of the system by a reduction in grain boundary
area was found to be proportional to the curvature of the interface which is coherent with
experimental observations (Upmanyu et al., 1999),

Ṙ =
Mγgb

R
(VI.7)

where R is the radius of a circular grain, M is the mobility and γgb is the grain boundary
energy (per unit area). While the curvature of the grain boundary is a purely geometrical
variable, the mobility M and the grain boundary energy γgb are intrinsic material parameters.
Grain boundary energy γgb has been studied in chapter V and high angle grain boundary
energy was found to be constant when the term |∇θ|2 is not included and does not vary more
than a factor of two when it is introduced.

To see the effect of misorientation on grain boundary kinetics, several grain embedded in
a large grain are considered with different misorientations. Since the grain boundary energy
γgb is difficult to extract from experimental measures, reduced mobility defined by the product
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Figure VI.5 : (a) Numerical and (b) Experiment measurements (Upmanyu et al., 1999) of
grain boundary velocity vs boundary curvature for a general grain boundary in high purity
Al,

of the mobility and the grain boundary energy Am = Mγgb is introduced. Eq.VI.7 becomes

Ṙ =
Am

R
. (VI.8)

The reduced mobility which is calculated by taking the slope of the curve Ṙ− 1/R shown in
Figure VI.5 for each misorientation, is plotted in Figure VI.6. The ability of grain boundaries
(GB) to move has been found to be strongly dependent on misorientation of the adjacent
grains as in experimental observation (Yang et al., 2001, Gottstein and Sebald, 2001). The
reduced mobility is increasing with the misorientation and approaches a constant.

LAGBs are distinguished from HAGBs in order to compare more in detailed FE and
experimental results. Figure VI.7 shows relative boundary mobility of LAGBs over HAGBs
mobility. In both cases, there is a misorientation value where the mobility increases
significantly, 11◦ in experimental and 6◦ in FE results. The LAGBs mobility over HAGBs
mobility have similar values with a more significant gap at the transition misorientation in the
numerical predictions. In both cases, the grain boundary mobility evolves in a non-monotonic
way with respect to the misorientation angle. However, the model does not describe the cusps
observed in Figure VI.8 for Σ grain boundaries.

VI.2.1.2 Parameter Study of the Model

The previous results have been obtained from specific parameters, e = 0.015(J/m) and
βη = 10−4(s). Several grain embedded in a large grain with the same previous boundary
conditions are considered with different misorientations for different values of the parameter
e (term in front of |∇θ|2). Results are in Figure VI.9. The reduced mobility approaches a
constant value with increasing e and the dependency of the reduced grain boundary mobility
on misorientation angle decreases.

The parameter e controls the interface size and therefore the grain boundary energy. As
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Figure VI.6 : Reduced mobility dependency on grain boundary misorientation
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Figure VI.7 : (a) Experimental (Yang et al., 2001) and (b) numerical variation of relative
boundary mobility with misorientation angle
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Figure VI.8 : Experimental and Numerical reduced mobility dependency on grain boundary
misorientation at 300◦ C
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Figure VI.9 : Interface size variation: (a) reduced mobility (b) relative reduced mobility
dependency on grain boundary misorientation
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Figure VI.10 : βθ variation : (a) reduced mobility (b) relative reduced mobility dependency
on grain boundary misorientation

the grain boundary energy is responsible for the grain boundary motion, the parameter e has
an impact on the grain boundary velocity. However, without changing the grain boundary
energy, the relaxation parameters, βη and βθ, play a role in the grain boundary mobility. In
order to avoid grain rotation, βθ > βη is imposed. To see the effect of βη on the grain boundary
mobility, several grains embedded in a large grain are considered with different misorientations
for e = 0.0075 and βθ = 100.0. By taking βθ > βη, the relaxation parameter, βθ controls
the average mobility of the grain boundary while, βη, controls the mobility dependency on
the misorientation, see Figure VI.10. However, the fluctuation of the reduced mobility on
misorientation angle keeps less than a factor 10 while in experimental data, fluctuations
greater than 100 are observed, see Figure VI.8.

VI.2.1.3 Temperature Effect

In the evolutionary equations V.63 and V.64, temperature dependencies have been introduced
in the inverse boundary mobility. Under the conditions described previously, several grains
embedded in a large grain are considered with 35◦ misorientation under different temperatures
with parameters Q = 1.7eV and M0 = 4.03m2s−1. Predicted reduced mobilities with respect
to the inverse temperature are shown in Figure VI.11. The predicted reduced mobilities show
a linear dependency on inverse T and verify the experimental relation

Mγ = M0γ exp(
Q

RT
) (VI.9)

However, in the model the activation enthalpy Q and the pre-exponential factor M0 are
constant while for special misorientations (low − Σ boundaries), they assume minima. The
experimental misorientation dependence of these parameters is exhibited in Figure VI.12.
Since the predicted high angle grain boundary mobility does not take into account the cusp
due to (low − Σ boundaries), an average value of the reduced mobility in Figure VI.12 is
chosen for fitting the parameters (M0γ = 4.03 and Q = 1.7).
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Figure VI.11 : Reduced mobility vs inverse temperature for a series of simulations
corresponding to misorientation angle of 35◦
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Figure VI.12 : Experimental dependency of the activation enthalpy Q and the pre-
exponential factor M0 with misorientation angle (Gottstein et al., 2001)
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Figure VI.13 : Triple junction description with dihedral angle definition

VI.2.2 Triple Junction

The interfacial energies at the triple junctions of boundaries, see Figure VI.13, affect the
dihedral angles as described in Herring’s equation (Herring, 1951),

γ1

sinχ1
=

γ2

sinχ2
=

γ3

sinχ3
. (VI.10)

If the grain boundary energies are equal on the 3 grains boundaries, independent of
the misorientation and the crystallographic orientations, then the triple point will be in
equilibrium when the boundaries make angles of 120◦, χ1 = χ2 = χ3 = 120◦.

Let us consider three grains with identical misorientation between neighbours. Since the
grain orientation is 2π periodic, 120◦ misorientation gives equal energies for the three grain
boundary. The grain boundaries are initial set to form two dihedral angles of 90◦ and one
of 180◦ as shown in Figure VI.14 (a), and do not verify the Herring equation. Neumann
boundary conditions are applied. Figure VI.14 shows the evolution of the triple junction.
First, the triple junction tends to local equilibrium configuration with curved grain boundaries
where dihedral angles are identical and equal to 120◦, and, consequently, verify Herring’s
equation. Then, the triple junction moves so as to reduce one of the grain boundary surface
keeping dihedral angles equal to 120◦. As expected by the variational formulation, the
free energy of the system is decreasing by eliminating grain boundaries. Finally, all grain
boundaries disappeared to leave only one grain.

The difference with the theoretical results is the curved moving grains. As seen in Figure
VI.15, after reaching the local equilibrium with curved grain boundary, the grain boundary
shape tends to a straight line. The Neumann boundary conditions are assumed not to be
correct and are replaced by Dirichlet boundary conditions. Therefore, grain boundary can
not move on the mesh boundary. Triple junction evolution shown in Figure VI.16 corresponds
to the theoretical analysis.

VI.2.3 Quadruple Junction

Let us consider four grains with different initial orientations, G1 (5.0◦), G2 (34.0◦), G3 (63.0◦)
and G4 (92.0◦). They form initially a quadruple junction with equal dihedral angles (90◦) and
with 2 kinds of grain boundary, three with misorientation angle of 29.0◦ and one with 87◦, as
shown in Figure VI.17. Figure VI.17 shows the four grain evolution for three different values
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(a) t=0.0s (b) t=5.5s (c) t=9.9s (d) t=10.4s

Figure VI.14 : Evolution of a triple junction formed with grains of equal boundary energies
(Neumann boundary conditions)

Figure VI.15 : Schematic motion of triple junction to reach equilibrium position

(a) t=0.0s (b) t=10s (c) t=90s (d) t=120s

Figure VI.16 : Evolution of a triple junction formed with grains of equal boundary energies
(Dirichlet boundary conditions)
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(a) e = 0.001

(b) e = 0.0025

(c) e = 0.01

0.0944 0.379 0.664 0.948 1.23 1.52

THETAd map:18.000000  time:0.0250289    min:0.038832 max:1.649959
Figure VI.17 : Evolution of a quadruple junction for three values of parameter e (term
|∇θ|2)
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Figure VI.18 : Schematic evolution of quadruple junction formed with equal grain boundary
energies

of parameter e (term of |∇θ|2), e=0.001, 0.002 and 0.01 (J/m). First, the quadruple junction
splits into two triple-fold junctions. Therefore, the total grain boundary length decreases so
does the free energy of the system, as expected for a quadruple junction with isotropic grain
boundary energies, see Figure VI.18. Since one of the grain boundary mobility is higher than
this other, an asymmetry appears; the length of the highest grain boundary energy (0D)
decreases more quickly than the other ones.

When the parameter e = 0.001, only the grain boundary (0D) is moving significantly while
the grain boundaries (0A), (0B) and (0C) keep their initial position. The length of the
grain boundaries (0A) is decreasing due to the triple junction migration imposed by the
grain boundary (0D). This results a significant higher mobility for (0D) illustrated in Figure
VI.6 in which grain boundary mobility increases with grain boundary misorientation. After
comparing the figures for different parameters e, motion of grain boundaries (0A), (0B) and
(0C) is more important with increasing the parameter e. For instance, in Figure VI.17
a, the size of grains G1 is reduced by the motion of the grain boundary (0D) while in
Figure VI.17 c, both grain boundaries (0A) and (OD) participate in its reduction. The
difference between the grain boundary mobility of (0A), (0B) and (OC) and these of (0D)
(higher misorientation), namely the grain boundary mobility dependency on misorientation,
is decreasing when increasing the parameter e, as underlined in Figure VI.10.

Let invert the grain orientation of G1 and G2, two kinds of grain boundaries are formed;
two grain boundaries 58◦ misoriented and two grain boundaries 29◦ misoriented. In Figure
VI.19, comparison of the quadruple junction are done w.r.t. the grain orientation distribution.
In the second case, the highest grain boundaries misoriented (0B) and (0D) controlled the
microstructure evolution while only one in the first case. This confirms the previous results
where the grain boundaries mobility dependency on misorientation has be shown.

VI.2.4 Microstructure

VI.2.4.1 Topological Aspects

We follow now the evolution of 2D polycrystals. The initial microstructure consists of
100 grains obtained according to a Voronoi algorithm and assuming periodic boundary
conditions. Initial grain orientations have been chosen randomly with a misorientation angle
between 12◦ and 62◦ for each neighbouring grains as found for isotropic FCC polycrystal
(Mackenzie, 1964). The mesh is made of 200 × 200 quadratic elements. The annealing
temperature is 315◦. The parameters are listed in Table VI.1. Figure VI.20 shows the
evolution of the microstructure by representing the lattice orientation θ and lattice order η.
As expected, some grains grow, others vanish to end up with higher average grain size.

The evolution of individual grains in these microstructures is compared to the initial
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0.0944 0.379 0.664 0.948 1.23 1.52

THETAd map:18.000000  time:0.0250289    min:0.038832 max:1.649959
Figure VI.19 : Evolution of a quadruple junction formed by grains with identical orientation
with two different distributions (e = 0.001)

Table VI.1 : Phase field model parameters

α(J/m)1/2 ω(J/m3) a(J/m2) b(J/m2) c(J/m2) d(J/m) βθ (s) βη (s)

0.04 7.50 1.00 0.95 1.35 0.45 100.0 0.01



150 CHAPTER VI. GRAIN BOUNDARY MIGRATION

(a) -0.492 0.0188 0.53 1.04 1.55 2.06

(b) -0.136 0.0909 0.318 0.545 0.773 1

PHId map:100.000000 time:88.7864      min:-0.246492 max:1.217079
Figure VI.20 : Evolution of (a) grain orientation θ and (b) lattice order η distributions.
From left to right, from top to bottom: t=0, 89, 18., 295, 553, 2770s
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distribution of the lattice order η. In order to analyse the topological variation, Figure
VI.21 shows microstructure evolution by representing η (red lines) superimposed with the
initial distribution (white lines). First, the triple junctions drag the boundaries when they
are close to equilibrium. Most of the grains move slightly from their initial position to reach
a pseudo-equilibrium respecting the dihedral law detailed in the triple junction section. The
dihedral angle obtained from this adjustment are not necessary 120◦ because of different grain
boundaries energies. Once the triple junctions have a configuration close to that required
for thermodynamic equilibrium and the boundaries have obtained their curvature, growth
mechanism begins with two grains (G2, 4 sides and G3, 5 sides) which vanish quickly as seen
in the third picture. Then, during microstructure evolution, generally, grains with less than 6
sides disappear as observed in the classical approach. Indeed, Von Neumann-Mullins relation
(Von Neumann, , Mullins, 1956) predicts for 2D polycrystals that grains with less than six
neighbours (n<6) (generally the smallest one) will shrink while those with n>6 will grow,
where n is the topological class. However, this theory is based on equal mobilities and surface
tensions for all grain boundaries. In our case, the grain boundary mobility gap between
low and high angle grain boundary interferes in the classical approach and, for instance,
grains with n=6 are not necessary stable grains (G4). Finally, for the last picture, they is no
superposition between the white lines and the red lines, all grain boundaries have left their
initial position. We should note that only one grain, marked as G1, kept its initial position
until the sixth picture. It can be noticed that it is a grain with 6 edges and with closed
120◦ dihedral angle. The use of orientations as a variable allow coalescence as seen from the
disappearance of junction Q1 and Q2 which gives a new grain formed by two grains of closed
initial lattice orientation.

As seen in the section VI.2.1.1, the parameter e (term |∇θ|2) plays a significant role in the
grain boundary reduced mobility. Two additional microstructures identical as the first one
are run with two values of parameter e, e = 0.0075(J/m) and e = 0.015(J/m). Figure VI.22
shows the lattice orientation θ and the lattice order η for the three parameters at different
time. These times have been chosen such that microstructure showed similar size for the
reddest grain. The grain shapes show significant differences, with increasing parameter e,
grains are more curved. The number of neighbours per grain appears similar in all three
cases. It can be observed that there is a greater proportion of smaller and larger grains when
the difference between low and high angle grain boundary is higher (e = 0.0025). This is
reminiscent of the abnormal grain growth where a few grains grow in the microstructure and
consume the matrix of smaller grains.

VI.2.4.2 Macroscopic Evolution

The number of grains considered in the simulations is probably too small to obtain reliable
grain growth statistics. However, some macroscopic properties and average values will be
extracted from the three microstructures in order to compare the influence of parameter e.
Figure VI.23 shows the evolution of the average grain radius, R, with time, t. The growth
rate of average radius of the grains is approximated by a simple power law by

R = Bt1/n (VI.11)

The growth exponents were found to be n = 3.3 for e=0.015 and e=0.0075, and n =
3.7 for e = 0.0025, which is far from the classical grain growth exponent (n = 2.0). The
classical grain growth exponent is obtained from a theory based on equal grain boundary
energy and mobility for misorientations. However, the growth exponents for pure aluminium
is approximately n = 4.0 which is closer to the predicted growth exponents. In pure
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Figure VI.21 : Superposition of the current (red line) and initial (white line) lattice order
η distributions where η is closed to 0. From left to right, from top to bottom: t=0, 21, 44,
61, 81, 108, 189, 242, 428, 956s
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(a) e=0.0025, t=553s (b) e=0.0075, t=112s (c) e=0.0150, t=220s

-0.492 0.0188 0.53 1.04 1.55 2.06

(d) e=0.0025, t=553s (e) e=0.0075, t=112s (f) e=0.0150, t=220s

-0.136 0.0909 0.318 0.545 0.773 1

PHId map:100.000000 time:88.7864      min:-0.246492 max:1.217079
Figure VI.22 : Evolution of (a-c) grain orientation θ and (d-e) lattice order η distributions
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Figure VI.23 : Mean grain size evolution
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Figure VI.24 : Linear interpolation of mean grain size
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Figure VI.25 : Average lattice order evolution

aluminium as many other materials, grain boundary energy and mobility strongly depends
on misorientation due to the presence of low misorientations and Σ grain boundary and the
classical grain growth theory can not be applied. As seen in Figure VI.6, the grain boundary
mobility is misorientation dependent especially for low misorientation and also for increasing
misorientation between grains. We also note that the misorientation dependency increases
by decreasing the parameter e. This can explain the higher value of the growth exponents
for e = 0.0025 which increases grain boundary mobility dependency on misorientation. For
identical relaxation parameters, βθ and βη, growth mechanism is retarded for e = 0.0025.

Figure VI.25 shows the average value of the lattice order of microstructure. As expected,
the thickness of the grain boundary increases with the parameter e, and therefore the grain
boundary area (average value of η decreases). The grain boundaries vanish and the average
value of the lattice order get closer to 1. In the same way, see Figure VI.26, the initial free
energy of the microstructure is higher for higher value of the parameter e and then tends
toward 0 with time.

The average grain orientation follows the same evolution for the three cases, as seen in Figure
VI.27. First, the lattice orientation increases then decreases with only 5◦ variation. However,
the decreasing part of the curve occurs sooner with decreasing parameter e. In order to have
more accurate idea on grain orientation evolution, grain orientation distributions are shown
in Figure VI.28. The orientation distribution is plotted when the three microstructures
have eighteen grain left. The initial grain orientation distribution is mainly comprised
between 0◦ and 90◦ because of initial imposed misorientation between grains. The resulting
microstructure obtained with e = 0.015 is centering in θ = 40◦ while with decreasing e, more
discrepancy between orientations is observed in the distribution. The resulting microstructure
obtained with e = 0.0025 is more heterogeneous as seen by the superimposition of the four
distributions, Figure VI.29.
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Figure VI.26 : Total microstructure free energy evolution
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(b) e=0.0025, t=2768s
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(c) e=0.0075, t=328s
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(d) e=0.0150, t=225s

Figure VI.28 : Grain orientation distribution when 18 grains are left
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Figure VI.29 : Superposition of grain orientation distribution
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Figure VI.30 : Schematic thickness of a grain boundary

VI.3 Stored Energy as a Driving Force

VI.3.1 High Angle Grain Boundary Energy as a Maximal Energy

As explained in the section V.2.2, the stored energy density, Est, is normalized by the grain
boundary energy of high angle misorientation, Egb in the free energy formulation, where
the grain boundary energy between two grains of high misorientation is assumed constant
(the Σ grain boundaries are not considered). In 3D space, the stored energy density, Est, is
expressed in Jm−3 while the grain boundary energy is described at the surface and therefore,
expressed in Jm−2. However, as seen in Figure VI.30, the thickness of a grain boundary is
around three-four atom layers. In pure FCC crystals, the distance between two atom centers
is about

a ≈ 4R√
2

(VI.12)

where R is the atom radius with R = 125 pm for aluminium. Therefore, the grain boundary
energy density with a grain boundary thickness about 3 - 4 atoms is

Egb ≈
γgb

δ
≈ 50Jm−3 (VI.13)

where δ = 3.5a = 600pm and γgb = 0.37Jm−2

VI.3.2 Stored Energy Effect on Grain Boundary Velocity

In a first step, a bicrystal is studied with a flat grain boundary in order to suppress the
curvature effect in interface motion. A stored energy distribution due to deformation is
initially introduced. Both grains, 40◦ misoriented, have a constant stored energy but different
in order to introduce an energy gradient between both grains. Figure VI.31 illustrates that
the grain boundary evolves in the direction of the grain of higher stored energy. After the
grain boundary motion, it leaves the way free of stored energy, Est = 0 and η = 1.

To study the effect of the stored energy gradient on the grain boundary velocity, several
flat grain boundaries with different stored energy gradients and with different relaxation
parameters βη, are simulated. Results are given in Figure VI.33. A phenomenon of
saturation is observed for all relaxation parameters βφ. The saturation part is suppressed
to obtain the curve in Figure VI.33. A linear relationship between the driving force
arising from stored dislocations and the velocity is found as in the experimental work of
(Huang and Humphreys, 1999), see Figure VI.34,

v = MP ∝M∆Est (VI.14)

where the grain boundary mobility M increases with decreasing inverse mobility parameter
βφ. This relation applies only under a critical value of the stored energy. After this critical
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Figure VI.31 : Profile of bicrystal with stored energy : (a) orientation , (b) crystallinity
and (c) stored energy
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Figure VI.32 : Profile of bicrystal with stored energy : (a) orientation , (b) crystallinity
and (c) stored energy

value, the velocity of the grain boundary stops increasing with additional stored energy and
fluctuates closed to the maximum velocity as if the additional stored energy was not taking
into account. In order to explained this phenomenon, we recall the annihilation equation,

Ėst = −CdEstη̇A(|∇θ|) if η̇ > 0 (VI.15)
Ėst = 0 if η̇ ≤ 0 (VI.16)

illustrated by Figure VI.32. Ahead of the grain boundary, η̇ < 0, no annihilation of the
stored energy occurs while after its motion, η̇ > 0, stored energy level decreases. However,
numerically, positive variation of η may occur ahead of the grain boundary due to the rapid
change of the η profile. This phenomenon is more pronounced above a critical value of stored
energy due to a crystal order, η, closer to 0.
We note that the critical stored energy value is higher for the inverse mobility parameter
βη = 10−1s. Indeed, since βη controls the mobility of the variable η, its variation affects the
annihilation rate. However, as seen in Figure VI.33, βη = 10−2 and βη = 10−6 gave similar
curves. Under a key value linked to βθ, βη does not affect the grain boundary velocity.
Furthermore, we must have βθ >> βηs for preventing from grain rotation. Therefore, the
range of possible βη values affecting the velocity of the grain boundary and inhibiting rotation
is narrow and, for instance, comprised between 10−1 and 10−2 for βθ = 100s. Consequently,
the inverse mobility parameter βη impact on the velocity is limited while the inverse mobility
parameter βθ serves as the main adjusting parameter to the experimental data.

Figure VI.35 shows the linear curves obtained by changing the parameter e in the free energy
(increasing e increases the thickness of the grain boundary). First, the figure depicts an
increasing in the slope with reducing the parameter e. It also emphasises an activation stored
energy difference between both grains for getting grain boundary motion. The activation value
is lower with increasing parameter e. For instance, it is found to be 0.03 for e = 0.0075(J/m)
while it is 0.23 for e = 0.0025J/m)1/2

Curves obtained by changing Cd, parameter which controls the annihilation of stored energy,
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Figure VI.33 : (a) Predicted dependence of the boundary velocity as a function of the
driving force, (b) its linear interpolation : variation of the relaxation parameter βη
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Figure VI.34 : Experimental dependence of the boundary velocity as a function of driving
force (Huang and Humphreys, 1999)
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are shown in Figure VI.36. The velocity of the grain boundary increases with the parameter
Cd to reach a maximal value, then varies in a non-monotonic way. The maximal velocity of
grain boundary motion with Cd = 50, 2 and 1 is respectively obtained for the normalized
stored energy difference, ∆Est/Eref = 0.45, 0.7 and 0.78. This phenomenon is more
pronounced for higher value of Cd since a raise parameter Cd increases the annihilation
rate of stored energy.

Figs.VI.37 (a) and (b) show the boundary velocity as a function of misorientation angle for
two different initial stored energy gradients and two values of parameters e. In both cases, the
boundary velocity increases until the misorientation angle reaches 20◦ as seen for the grain
boundary energy. Then, from 20◦ misorientation, the boundary velocity is approximately
constant. Some high angle grain boundaries do not move for the smallest value of e with a
small amount of stored energy differences.

VI.3.3 Nuclei Growth: Curvature vs Stored Energy

In a previous section, we considered a grain embedded in a large grain. In all events, the
interior grain reduced then vanished due to the driving force arising from the curvature
and grain boundary energy. Nevertheless, even with their small radius, nuclei grow inside
the deformed microstructure. This is due to the driving force arising from the stored energy
difference between the nuclei, free of dislocation and the deformed matrix, full of dislocations.
Let us consider a small grain free of dislocation, Est = 0, embedded a deformed grain,
Est/Eref = 0.8. Dirichlet boundary conditions are used on the top side and right side.
Nucleus growth is shown in Figure VI.38a by representing grain orientation distribution θ.
The associated stored energy evolution is shown in Figure VI.38b. After moving toward
higher stored energy area, the grain boundary leaves in its wake a region considered as a
deformed matrix free of energy.

The previous results have been obtained under specific conditions. The nuclei growth occurs
only with a sufficient amount of stored energy depending on the initial nucleus size. The
previous simulation has been run several times with different amounts of stored energy and
initial grain sizes in order to determine the critical amount of stored energy to obtain grain
growth. The critical curve with an exponential shape is shown in Figure VI.39 for two
parameters e (term |∇θ|2). Obviously smaller the initial grain size, the higher the amount
of stored energy is necessary to have grain growth. We note that the initial grain size is
large, between 10µm and 100µm. However, these numbers depend of the grain boundary size
parameter e and the associated mesh size. In the simulation, the element size is 5µm. For
instance, in the Figure VI.38, an initial size of 10µm has been used which corresponds to 2
elements.

VI.3.4 A First Step toward Strain Induced Boundary Migration (SIBM)

A bicrystal is studied with a flat grain boundary. A stored energy distribution due to
deformation is initially introduced. Both grains, 40◦ misoriented, have a constant stored
energy but different in order to introduce an energy gradient between both grains. In
addition to the case detailed in section VI.3.2, initial dislocation cells (or subgrains) are
imposed with an higher cell size for the grain with the lowest stored energy as described in
Figure VI.40a. Figure VI.40(a) shows the evolution of the microstructure by representing
the lattice orientation θ. A schematic theoretical evolution is also in the figure. Contrary to
the results of section VI.3.2 where the grain boundary remains flat, in this case, the grain
boundary motion is influenced by the substructure network. The figure specially displays the



164 CHAPTER VI. GRAIN BOUNDARY MIGRATION

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Ve
lo

cit
y 

(µ
m

s-1
)

Normalized Stored Energy Difference, ∆ Est/Eref

Cd = 50.0
Cd = 2.0
Cd = 1.0

(a)

 0

 1

 2

 3

 4

 5

 6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Ve
lo

cit
y 

(µ
m

s-1
)

Normalized Stored Energy Difference, ∆ Est/Eref

Cd = 50.0
Cd = 2.0
Cd = 1.0

(b)

Figure VI.36 : (a) Predicted dependence of the boundary velocity as a function of driving
force, (b) its linear interpolation: Variation of Cd (annihilation term)
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Figure VI.38 : Grain growth evolution (θ = −π

9 ) embedded in a large grain (θ = π
9 ) : (a)

grain orientation θ, (b) stored energy Est/Egb
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(a)

1.21 1.36 1.50 1.64 1.79 1.93 2.08

(b)

Figure VI.40 : (a) Predicted grain boundary motion in substructure network with a initial
stored energy difference, (e) schematic SIBM mechanism
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curved grain boundary shape evolving non homogeneously in the microstructure as for SIBM
mechanism, described schematically in Figure VI.40(e).

VI.3.5 Microstructure

VI.3.5.1 Stored Energy Effect on Distribution

As explained in chapter III, the energy stored in grains after deformation depends on the
lattice orientation which is non homogeneous inside grains. However, we assume a weakly
deformed microstructure (around 15%) where the orientation is approximately constant inside
grain. In this case, we consider SIBM as the single active recrystallisation mechanism; the
classical nucleation process does not occur. Since, in SIBM mechanism, the new grains have
orientations similar to those of the old grains from which they have grown, a simple approach
is to consider the new grains with similar orientations to the old grains where they grow.
Therefore, the new grains will be merely an extension of the old ones.

In order to study the stored energy effect on the microstructure, two initial distributions
of the stored energy were assumed. They vary between 0 and 0.4 (arbitrary unit) and depend
on grain orientations. Arbitrarily, in the first case, the higher value of grain orientation is
assumed to store more energy than the lower value of grain orientation. In a second case, we
study the opposite situation. We distinguish both cases by case 1 and case 2. Stored energy
distributions are depicted in the first map of Figure VI.42(a) and (b). Initial lattice order
distribution takes the stored energy due to deformation into account by having value less than
1 inside grains. Initial lattice order is set up to verify Eq.V.66 (η = 1− Ce

ω2
Est
Egb

). The first map
of Figure VI.41 shows the lattice order distribution where lighter color grains (yellow) stored
more energy than the darker one (red). Initial orientation distribution is identical to the
grain growth case. The parameter e is taken as 0.0025. All other parameters and boundary
conditions are the same than those applied in grain growth case.

Six figures, three for each case, summarize the results by following the variables evolution
through six distribution maps. Figs.VI.41(a) and (b) describe the grain orientation, θ and
the lattice order, η evolution for case 1. First, two grains, G1 and G3 vanish and 6 grains,
G2, G4, G5, G6, G7 and G8 shrink. In the microstructure, G1, G2, G3, G4 and G5 have
the highest stored energy (yellow). Since they are the first to vanish, the shrink rate is
assumed higher for G1 and G3 than for G2, G4 and G5. However, G3 is surrounded by G2,
G4 and G5. Therefore, their common sides move to shrink G3 while their other sides move
toward their center. As a result the three grains translate with a global reduction. Then, all
grains with higher stored energy vanish (only red and back red grains left). The resulting
shape is contorted, especially until map 4, since the driving force arising from curvature of
grain boundary is less than the stored energy driving force. Figure VI.42 (a) describes the
associated stored energy evolution. The grain boundaries move first through the area where
stored energy is greater. In order to compare stored energy distribution, its evolution for case
2 is exhibited in Figure VI.42(b). As observed in case 1, grain boundaries move first through
the highest area of stored energy. Figure VI.43 shows the microstructure evolution for case
2, by representing θ and η. Same previous comments apply for microstructure evolution in
case 2.

The significant difference is about the grain orientation distribution. The orientation maps
clearly exhibits a larger amount of blue color in case 1 than in case 2. Indeed, in case 1, low
values of orientation are promoted while in case 2 is high values of orientation are favoured.
This is merely due to the initial choice of associated higher energy for high value of orientation
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(a) -0.492 0.0188 0.53 1.04 1.55 2.06

(b) -0.136 0.0909 0.318 0.545 0.773 1

PHId map:100.000000 time:88.7864      min:-0.246492 max:1.217079
Figure VI.41 : (a) Grain orientation θ, (b) lattice order η evolutions : case 1 (increase of
the initial stored energy from blue to red grains). From left to right, from top to bottom:
t=0, 10, 28, 55, 209, 453s
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(a) 0 0.07273 0.1455 0.2182 0.2909 0.3636

E_stored1 map:29.999915  time:15.1973      min:0.000000 max:0.392152

(b) 0 0.07273 0.1455 0.2182 0.2909 0.3636

E_stored1 map:29.999915  time:15.1973      min:0.000000 max:0.392152
Figure VI.42 : Stored energy evolution : (a) case 1 : higher initial stored energy in high
value of θ, (b) case 2 : higher initial stored energy in low value of θ



VI.3. STORED ENERGY AS A DRIVING FORCE 171

(a) -0.492 0.0188 0.53 1.04 1.55 2.06

(b) -0.136 0.0909 0.318 0.545 0.773 1

PHId map:100.000000 time:88.7864      min:-0.246492 max:1.217079
Figure VI.43 : (a) Grain orientation θ, (b) lattice order η evolutions : case 2 (increase of
the initial stored energy from red to blue grains). From left to right, from top to bottom:
t=0, 4, 9, 28, 60, 167s
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in case 1 and inversely in case 2. In order to confirm this observation, microstructure
orientation distributions superimposed with the one obtained with only curvature as a driving
force are shown in Figure VI.44. We notice both diagrams are translated from the grain
growth case; to lower value of orientation in case 1 and higher value of orientation in case
2. The additional term in stored energy in the free energy allows to promote the grain
orientations with the lowest value of stored energy.

VI.3.5.2 Stored Energy Effect on Average Values

Figure VI.45 describes the evolution of the stored energy for both cases. As expected, the
total stored energy in the microstructure decreases slowly at the beginning, then faster tends
to 0. We note that the initial stored energy is higher in case 2. However, the gap between
both curves decreases quickly and both curves are quite similar after 10s. Obviously, same
observation are done for the average lattice order plotted in Figure VI.46. In Figure VI.47,
the average value of the grain orientation θ is plotted for case 1, case 2 and without initial
stored energy. As explained in a previous section, average variation of θ with no stored energy
is low, about 2◦ until t=100s, then about 5◦ due to only few grains left. In case 1 and 2, the
average orientation vary about 10◦ to reach a minimal or maximal value around 35s. Then,
the average orientation evolves in a opposite way. Therefore, two steps are distinguished: the
first step where the microstructure is driven by the stored energy, then the second step where
it is driven by curvature. The maximal or minimal values of orientation depicted in Figure
VI.47 clearly underline the end of the stored energy effect on the microstructure evolution.

VI.3.5.3 Kinetics

We define the recrystallized area by the region where there is no stored energy left.
Recrystallized areas evolution is shown for case 2 in Figure VI.48. They are represented
by a red color while blue zones represent deformed matrix. One grain had been chosen
initially with no stored energy, and therefore already considered as recrystallized (red grain
in map 1). First, recrystallized zones begin at grain boundary, then, spreads out toward
grains center. Some grains are quickly recrystallized compared to other ones. In the last
map, some grains are still not recrystallized which means that there is still stored energy left;
no grain boundary moves through them. By comparing with Figure VI.41(b), these grains
correspond to low values of stored energy. Therefore, the stored energy difference required
to activate the grain boundary motion is not reached in these grains.

In order to have an idea on transformation kinetics, the curve representing the volume fraction
of material recrystallized (Xv) as a function of log(time) is plotted in Figure VI.49 a. The
curve have a standard shape of kinetics transformation. The JMAK equation is usually used
to describe the recrystallisation kinetics,

Xv = 1− exp(−Btn). (VI.17)

The JMAK equation is fitted on the FE results by extracting the linear part of Figure VI.49a.
The results are highlighted in Figure VI.49b. The coefficient n is found to be 0.86 for case 1
and 0.88 for case 2. Considering all the assumptions which have been done, the results are
surprisingly close to the experimental value for aluminum, n=1.
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Figure VI.44 : Diagram of grain orientation distribution: superposition between results
obtained without initial stored energy and results obtained (a) in case 1 (b) in case 2 at t =
34s
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VI.4 Weak Coupling Between Mechanics and Grain Bound-
ary Kinetics Motion

VI.4.1 Method

A weak coupling between the grain boundary kinematics and the crystal plasticity model is
made through the stored energy and the grain orientations. The schematics of the method is
done in Figure VI.50.

In the classical FE method, grains of polycrystalline aggregates are defined by groups of
elements where each group of elements has a different orientation. In the phase field method,
grain orientations of polycrystalline aggregates are defined by the variation of one phase
field variable, θ. The first coupling consists of describing the orientation of the grains for
mechanical calculations by the phase field variable, θ. Therefore, instead of having sharp
grain boundaries, grain boundaries have a finite thickness. Furthermore, the deformed shape
of the grains obtained from the mechanical deformation are also taken into account in the
grain boundary curvature, which is a driving force for grain boundary motion in the phase
field. We note that a finite thickness for the grain boundary is not more physical than a
sharp grain boundary given that the physical thickness of a grain boundary is about 4 atoms
layers.

As detailed in the previous sections, the stored energy is introduced in the phase field free
energy to drive the grain boundary motion. The second coupling consists of using the stored
energy obtained from the single crystal plasticity to drive the grain boundary migration

VI.4.2 Application to a Polycrystalline Aggregate

In a preliminary study, the coupling method is used for a 2D polycrystalline aggregate made of
10 grains under 1% height reduction. In this simulation, GNDs are not included in the single
crystal model. The microstructure evolution is shown in Figure VI.51 by representing the
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Figure VI.48 : Recrystallized area evolution : deformed area in color blue and recrystallized
area in color red. From left to right, from top to bottom: t=0, 0.4, 0.9, 1.5, 4, 9, 14, 21, 33,
60, 105, 182s
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equation
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Figure VI.50 : Schematics of the coupling between mechanics and grain boundary kinetics
motion

grain orientation, θ. In addition to the phase field variable, the Von Mises stresses evolution
is also shown. In this study, we note especially the effect of the grain boundary thickness
on the stresses. A stress localisation is found at the grain boundaries similar to the results
obtained when GNDs are introduced. Therefore, the term |∇θ|2 in the free energy may be a
measure of the GNDs density. Thus, the GNDs introduction by the gradient of the slip rate
as estimated in the first chapters may not be necessary.

VI.5 Conclusions

This chapter gives an overview of the possibilities of a phase-field model. Phase field
simulations of grain growth and recrystallisation require only two order parameters while
a large number of order parameters are necessary to describe the individual grains in usual
phase field model. In addition to the curvature, the stored energy has been introduced in
the phase field model as a driving force for grain boundary motion. The grain boundary
energy has been calibrated on Read-Shockley energy. Simulations were performed for simple
two- and three-grain structures, for structures with a limited number of grains, and for
different values of the grain boundary energies. The effect of the diffuse interface width on
the numerical results was studied as well. Increasing the term |∇θ|2 diminishes the grain
mobility dependency on misorientation and decreases also the growth rate. This term is
rate-controlling and thus, affects microstructure evolution and resulting grain orientation.
Furthermore, the phase field model has been able to predict basic features of recrystallisation,
such as the nuclei growth and the SIBM mechanism in a bicrystal. Finally, a weak coupling
formulation between single crystal model and phase field model has been proposed. It consists
of describing the polycrystalline aggregate by the phase field variable θ and using the stored
energy obtained from the single crystal plasticity to drive the grain boundary migration.
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Figure VI.51 : Microstructure 2D under 1% deformation: θ and σmises. From left to right,
from top to bottom: t=0, 0.4, 1.3, 1.8, 3.0, 4.4, 5.5, 9.2, 10.4, 13.0s
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During thermo-mechanical processing, the strain energy stored during deformation in
the microstructure of a FCC polycrystalline aggregate is generally reduced by physical
mechanisms which rely, at least partially, on mechanisms such as dislocation cell formation or
grain boundary motion which occur during recovery and recrystallisation. The microstructure
resulting from the previous process is full of small grains, and consequently a large quantity of
grain boundary. Therefore, grain growth occurs to reduce the grain boundary energy driven
by grain boundary curvature. The first objective of this work is to quantitatively predict the
development of the stored energy just before the onset of thermal recrystallisation using a
dislocation based single crystal constitutive framework. The second objective is to describe,
from these predicted distributions, grain growth phenomena driven by stored and grain-
boundary energies, using a phase field model.

Main results

A successful prediction of the mechanical behavior depends on an accurate characterization
of the microstructure and its evolution (plastic deformation and lattice rotation). The
model based on dislocation densities as internal variables has shown to be able to describe
development of microstructural inhomogeneities during deformation. The single crystal
elasto-viscoplastic model has been applied for 3D polycrystalline aggregates. The GNDs
have been generally found to develop near the grain boundaries. However, it is shown that
they can also accumulate inside grains due to the complex interaction between neighbouring
grains. For all grain sizes, the GNDs generation has strengthened the polycrystal. The single
crystal elasto-viscoplastic model has also been applied for 2D polycrystalline aggregates under
channel die compression test. It allows to use plane strain compression conditions and finer
mesh to capture intragranular heterogeneities with a competitive computational time. It
has been underlined that the plane strain compression conditions in 2D promote localisations
compared to usual compression test by exhibiting kind of micro-bands inside the grains. These
sharp micro-bands are only observed with the GNDs introduction. The micro-bands size is
limited to the element size and thus, decreases with mesh refinement. Furthermore, stress-
strain response is diverging with mesh refinement due the multiplication of gradients and
consequently, GNDs. In order to avoid this phenomenon, a different method for evaluating
gradients of slip rate has been proposed. Instead of evaluating gradients over one element,
a critical distance have been introduced to define the neighbouring gauss points included in
the gradients evaluation with the Gauss point of interest. With this method, the stress-strain
curves is converging with mesh refinement. Dislocation density concentrates near the grain
boundary.

Since stored energy is of prime importance for an accurate prediction of the recrystallisation
phenomenon, specific care have been taken for its evaluation. Three measures of stored
internal strain energy have been obtained from the single crystal elasto-viscoplastic model.
The first measure based on dislocation theory is calculated from the dislocation densities
defined as internal variables in the single crystal model. The second one is obtained from
the thermodynamic formulation associated to the single crystal model. The third one which
is usually employed is defined as a fraction of the plastic work. Formulations based on
dislocation density and thermodynamics exhibited the same tendency, namely, decreasing
with respect the deformation while the plastic work amount increases with the deformation.
The partition of the plastic work between heat and stored energy is not constant. The
fraction of stored energy based on thermodynamic formulation decreases with strain up to a
minimum value between 5% and 10% reached for strain large than 0.3. Identical tendency is
observed for stored energy based on dislocation theory with a ratio ten time smaller which
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seems to be too low compared to experimental data. The stored energy obtained from
a thermodynamic formulation is the most accurate measure. Furthermore, differences in
distributions are observed between the plastic work and both stored energy formulations.
The introduction of GNDs increases the total stored energy in the polycrystal for the three
formulations. They also influence the stored energy distribution for the three grain sizes.
The stored energy increases with reducing the grain size, more significant the stored energy
increase is. However, the stored energy distribution based on plastic work was seen to be less
affected by the GNDs introduction than the one based on dislocation density as confirmed
by the fraction of the stored energy increases with the grain size.

Once the stored energy has been evaluated, a constitutive framework capable of describing
the microstructural evolution driven by grain boundary curvature and/or stored energy has
been developed using a phase field method. The model uses only two phase field variables
to represent the microstructure which continuously changing at the interfaces. However, in
reality the grain boundary is only the location of a discontinuity of crystal orientation. A finite
element formulation for the phase field model has been presented, based on the introduction
of generalized stresses and their balance, and the framework of the thermodynamics of
irreversible processes. The finite element implementation has been validated by comparing
FE results with analytical solution for simple cases. The phase-field model contains a large
number of phenomenological parameters, which have to be determined in order to obtain
quantitative results. The parameters of the free energy are calibrated based on published
Read-Shockley boundary energy data for aluminium.

An extensive study has been carried on the model. With only curvature as a driving
force, reduced grain boundary mobility has been found dependent on temperature and on
grain misorientation by distinguishing high and low angle grain boundaries. Furthermore,
increasing the parameter in front of |∇θ|2 in the free energy, reduces slightly the high
grain boundary mobility and therefore, the misorientation dependency. Triple and quadruple
junctions evolution follows the Hearing’s equation. The model has been applied to simulate
grain growth phenomena with periodic boundary conditions in pure aluminium. Although 100
initial grains may not be considered as statistically representative, transformation kinetics has
been found in good agreement with experiment. In a second step, the stored energy differences
is considered as introduced in bicrystal with flat grain boundary. A linear relation has been
predicted between the velocity and the stored energy difference as observed experimentally.
Finally, curvature and stored energy are introduced as opposing driving forces in the case
where a grain free of energy grows in a deformed grain. The stored energy necessary to
obtain grain growth is found to increase with the initial grain curvature in a non-linear way.
In materials having high stacking fault energy such as Al, the formation of new orientations
by recrystallisation twinning does not play an important role. Thus, the sources of nuclei are
the existing subgrains or cells in the deformed microstructure. A qualitative study has been
done in a bicrystal case with substructure network for modelling strain induced boundary
migration. The model has been applied on a simplified recrystallisation study. It has shown
that grains with the lowest stored energy are dominant at the end of the process. In spite
of all the assumptions, the predicted recrystallised material volume fraction evolution with
respect to time was found to be surprisingly closed to experimental data.

Since microstructural features such as the grain size and orientation determine the mechanical
properties of the material, a weak coupling between the grain boundary kinematics and the
crystal plasticity model is made through the stored energy and the grain orientations. It
allows to predict the evolution of stress distribution in the polycrystalline aggregate. The
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Figure VI.52 : Schematics: introduction of finite strain kinematics in the phase field model

main result of the preliminary study is the possible measure of the GNDs effect through the
term |∇θ|2 in the free energy.

Prospects

First, additional studies need to be carried out to validate the previous results.
• In chapter II, we assumed that a channel die compression test can be modelled by a 2D plane
strain compressions based on (Erieau, 2004). In order to verify this assumption, macroscopic
behaviour, texture, inter and intragranular heterogeneities characteristics obtained for 2D
calculations should be compared with those obtained for 3D calculations in the case of
aluminium.
• The calculated strain energy needs to be compared with experimental data through overall
values and distributions. The comparison has to be done with single crystal data and with
polycrystal aggregates with a given crystallographic texture.
• Concerning the phase field model, a mesh size and types of elements study need to be done
to insure the results independent of the element and have convergence solution with mesh
refinement.

Then, the model needs some improvement in order to model recrystallization phenomena.
• The weak coupling between single crystal model and phase field model needs to be extended
to finite strain kinematics in order to take into account subgrain formation for the SIBM
mechanism, see Figure VI.
• The nucleation phenomenon has to be included in the model to have a full description of
the ”classical” recrystallisation as seen in Figure VI.
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Figure VI.53 : Schematics: introduction of nucleation in the phase field model

The numerical solution and implementation of phase-field equations is, in principle, relatively
simple, as there is no need to track the interfaces. However, the resolution of the numerical
technique must be very fine to catch the steep transitions of the phase-field variables
at interfaces. Simulations for realistic system sizes and time scales necessitate excessive
computation times. An adaptive mesh has to be applied for simulating microstructure
evolution. Thus, the mesh is taken extremely fine at grain boundaries, to resolve the transition
of the phase-field variables, and coarse within the grains. For instance, the variable η varying
between 0 (grain boundary) and 1 (inside the grains) could be a suitable variable to control
the mesh size.

The model has to be extended to 3D description to describe accurately microstructure
evolutions.
• For instance, the main influences on texture development during recrystallisation are the
orientation of the nuclei or new grains, the growth rate of the new grains, the location of new
grains belonging to a given texture component relative to one another, the stored energy of the
grain into which the new grains grow. Therefore, the phase field model should be extended
from two to three dimensions (3D). θ must be replaced with a model which describes 3D
orientation.
• The grain boundary direction needs to be included in the model in order to predict the cusp
of Σ grain boundaries in the grain boundary energy, and thus, account for grain boundary
energy anisotropy. It is important because the anisotropic nature of most material properties
leads to anisotropic behaviour in textured polycrystals.

In the present coupled model, displacement and lattice orientation are degrees of freedom,
therefore, lattice rotation is also a degree of freedom. As in the Cosserat theories
where displacement and lattice orientation are regarded as independent degrees of freedom,
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(Forest and Sievert, 1997), we suggest to connect the displacement and the lattice rotation
on the constitutive level and by the balance equation in order to describe non-local effect in
the model without including explicitly GNDs.

In the thesis, we focused in particular on recrystallisation and grain growth. However, there
are two ways to reduce the stored strain energy associated with dislocations, recrystallisation
and recovery. Contrary to recrystallisation, recovery results in an annihilation or
rearrangement of dislocations in low energy dislocation structures to reduce the dislocation
density. Significant improvement needs to be done in the mechanical model through the
development of a non local approach describing explicitly the formation of substructures at
the grain scale.
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Appendix I.A : Implicit Implementation

The resolved shear stress can be expressed as:

τα = (F∼
eT F∼

eΛE∼
e) : N∼

α (.18)

However, since the elastic stretch for metallic materials is unsignificant, we can simplify the
resolved shear stress as:

τα = (ΛE∼
e) : N∼

α (.19)

Calcul steps : Zebulon Architecture

• PreStep at the beginning of each increment :

F∼
∗ = F∼ n+1

F∼
p−1
n

(.20)

E∼
∗ =

1
2
(F∼

∗T F∼
∗ − I∼) (.21)

At the beginning of the step, the plastic deformation gradient is used in order to obtain the
elastic strain. F∼

p need to be conserved during the increment, it is an auxiliary variable.

• StrainPart in order to calculate Cauchy Stress and to update the auxialiary variables
after convergence:

F∼
p
n+1

= F∼
p
n

exp(∆γαN∼
α) (.22)

F∼
e
n+1

= F∼ n+1
F∼

p−1
n+1

(.23)

T∼n+1
= Λ : E∼

e
n+1

(.24)

σn+1 = (1/J)F∼
e
n+1

T∼n+1
F∼

eT
n+1

(.25)

• CalcGradF enables the resolution by Newton’s method :

First, we calculate:
Ce

n+1 = 2E∼
e
n+1

+ I∼ (.26)

T∼n+1
= Λ : E∼

e
n+1

(.27)

Second, we calculate all the partial derivatives for each integration variables :
∗ elastic strain:

∂re
∂∆E∼

e = I∼ + 2
N∑

α=1

{
NαI∼∼

}
∆γα (.28)

∂re
∂∆γα

=
{
NαCe

n+1

}
(.29)

∂re
∂∆ρα

Se

= 0 (.30)
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∂re
∂∆ρα

Ss

= 0 (.31)

∗ slip:

∂rγα

∂∆γγ
= δαγ (.32)

∂rγα

∂∆E∼
e = − γ̇0 exp

[
− F0

kT

{
1−

〈
|τα
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τ̂

〉p}q]
F0pq
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Se
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We define the following variables:

glis = γ̇0 exp

[
− F0

kT

{
1−

〈
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〉p}q]
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We get:
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α (.42)



192 APPENDIX I.A

∂∆Sα
T

∂∆ργ
Se

=
λµbhαγ

2
√∑N

β=1 h
αβ(ρβ

Sen+1
+ ρβ

Ssn+1
)

(.43)

∂∆Sα
T

∂∆ργ
Ss

=
λµbhαγ

2
√∑N

β=1 h
αβ(ρβ

Sen+1
+ ρβ

Ssn+1
)

(.44)

∗ edge dislocation density :
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∗ screw dislocation density:
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