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Abstract
We are exploring the idea of data pruning via hyperreduction modeling. The main novelty of this paper is a lossy data
compression/decompression approach for ploycrystalline data, which is based on a hyperreduction scheme that preserves
data driven modeling capabilities after compression. We assume to know a mechanical model whose equations are satisfied
by the data. It is shown that the proposed reconstruction of the data performs an oblique projection of selected original data.
This is achieved by the solution of reduced mechanical equations. High resolution crystal plasticity finite element simulations
demand computational and storage resources that are unusual, especially in cases where hundreds of grains are interacting
under cyclic loading. The development of image-based modeling via computed tomography highlights the problem of long-
term storage of simulation data by using data pruning. The present paper focuses on modeling cyclic strain-ratcheting as
an example of numerical modeling that the proposed algorithm preserves. The size of the remaining sampled data can be
user-defined, depending on the needs concerning storage space. The relevance of the pruned data is tested afterwards for
statistics on the predicted strain, as if full finite element data were available. The proposed method is compared to the Gappy
POD method, when no additional modeling step is expected after data pruning.

Keywords Model order reduction · CPFEM · Ratcheting · Data compression · Pruning algorithm · Material database

1 Introduction

With the development and the generalization of Com-
puted Tomography (CT), the volume of data acquired has
drastically increased. This raises new challenges, such as
data storage, data mining or the development of relevant
experiments-simulations dialogue methods such as model
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calibration and model validation. When material microstruc-
tures are under consideration, continuum models can be an
attractive approach to assess mechanical properties. Cou-
pling micro-mechanical laws with complex geometries has
in present times gained massive popularity [22,23]. This is
followed by a numerical procedure to solve the boundary
value problem. One of the most popular methods to dis-
cretize the weak form of balance equations is the Finite
Elementmethod,which is also employed in this article.Using
this method, the constitutive equations can be integrated at
each material point and insight can be gained as to what is
happening locally at certain geometric locations for various
parameter variations. In this context, of particular interest
are strain-ratcheting simulations for polycrystalline materi-
als, where plasticity accumulates at certain locations during
cycling loading. Analyzing such a problem is crucial for life-
time assessment of engineering components. This requires
considerable computational and storage resources for direct
numerical simulations. The current state of computer science
is considerably advanced, with numerous parallel computing
strategies available [47,53]. But, full resolution simulations
are now related to massive microstructural data. As a result,
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finite element simulations using X-ray CT data or synthetic
microstructures [45] lead to an explosion of the volume of
data to be stored.

Recently, databases of simulation data have demonstrated
their viability and computational advantages for facilitating
crystal plasticity predictions [1]. Obviously, much more can
be expected from a database for crystal plasticity. It should
foster: reproducibility as in other scientific domains [2], the
training of artificial neural networks [18] or Bayesian net-
works [40], the exploration of new physical parameters or
new assumptions, the detailed comparison between various
materials, and additional model updating [25,46] when new
observational data are available. Therefore, the long-term
storage of a database in crystal plasticity is nowadays an
issue. Data compression/decompression schemes are already
available in the framework of high performance computing
[33]. Lossy compression allows the precision of the data to be
reduced in a way that has an insignificant impact on the data.
In [33], when applying their proposed compression scheme
to data produced by the CHIME experiment, the data are
compressed to 28% of their original size.

The present paper aims to explore the idea of data prun-
ing via numerical modeling in order to release more storage
space when needed, as a complementary approach to usual
data compression techniques. The main novelty of this paper
is a lossy data compression/decompression approach based
on ahyperreduction scheme that preserves data drivenmodel-
ing capabilities after compression of data in crystal plasticity.
Models are designed to incorporate the relevant information
contained in data by using less storage space. In a sense
they compress these data, and model predictions enable their
reconstruction. But models may have a very complex recon-
struction algorithm. In this paper we consider hyperreduced
order modeling, with low computational complexity, for the
decompression task. An additional novelty of this paper, is
the proof that the displacements computed via hyperreduc-
tion fulfill the equation of an oblique projection of the original
data. The method is based on feature extraction from data,
which is an other way for lossy compression. It can be per-
formed via clustering [30], linear dimensionality reduction or
via autoencoders [18]. In [25], data pruning via linear dimen-
sionality reduction and hyperreduction is shown to preserve
simulation capabilities for sandmaterials, while reducing the
storage resources. In the present paper, this data pruning strat-
egy is evaluated for polycrystalline materials (Face Centered
Cubicmaterials in the present case for instance). The pruning
algorithm can be supplemented by usual data compression.
The decompression step fosters extrapolation of pruned data
and preserves modeling capabilities after data reduction. In
this paper the input data are: (i) a user-defined region of inter-
est, (ii) simulation data related to 10 loading cycles applied
to a finite element model of a polycrystalline aggregate, (iii)
hyperreduction parameters, (iv) modeling parameters. The

output pruned data are empirical reduced bases and a reduced
integration domain in order to setup the equations for the
reconstruction of the original data in the decompression step.
We show accurate modeling capabilities by using the pruned
data when considering the extrapolation of the cyclic simula-
tion over 190 additional cycles. Because of the cyclic strain
ratcheting, approximation errors may be accumulated over
cycles.

Hyperreductionmethodsbelong toprojection-basedmodel
order reduction methods (PBMORs) via linear dimensional-
ity reduction. PBMOR methods pertain to problems where
the simulation data that we wish to produce belong to a
small vector space (i.e. having a small dimension) when
the quantity of interest is not well established prior to any
numerical prediction, and may require more data extrapo-
lation or exploration. Several authors [34] have proposed
model reduction techniques for the approximation of plas-
ticity problems. For instance [6,7,10,38,50,52] proposed to
use the LATIN method to iteratively approximate the solu-
tion, without using simulation data forecast by any finite
element model. Fritzen et al. [19,20] use a space–time tech-
nique where a low number of nonlinear equations is solved
in the reduced setting but full spatial information can be
reconstructed at any given time. Access to reconstructed data
enables to define quantities of interest as if finite element
simulations had been performed.Michel and Suquet [36] and
Franciosi andBerbenni [17] have proposed to use the nonuni-
form transformation field analysis (NTFA) approach where
they consider nonuniform plastic strain fields with the aim
of reducing the number of macroscopic internal variables.
Another model order reduction technique used frequently
is the proper orthogonal decomposition (POD), first pro-
posed by [27,31] developed initially for statistical analyses.
This POD basis comprises of the state subspace which are
related to different time steps of a simulation or even different
mechanical problems altogether. Using POD bases to predict
mechanical models was first done by [32] for weather fore-
casts. In the above PBMOR methods, except for NTFA, the
reduced equations are setup on the full finite element mesh.
In addition, these model order reduction methods produce
their own compressed representation of the simulated data.
The issue here, is to compress simulation data that have not
been produced by a model reduction method.

In PBMOR, a reduced basis is substituted for the usual
finite element shape functions. Therefore dedicated numer-
ical cubature schemes have been developed and named
hyperreduction methods [13,41]. In hyperreduction PBMOR
methods, the original mesh is sampled either at the level of
integration points or at the level of elements. The idea of
mesh sampling for reduced basis approximations has its ori-
gin in theGappyPODmethod [12]. In [24], integration points
are sampled for hyperreduced multiscale homogenization
problems. In [41,42], the cubature is restricted to a reduced
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integration domain (RID). The RID is a subdomain of the
original domain where the finite element equations are set
up. This original domain can also be the one observed via
CT. In [25], the reduced integration domain method has been
used to prune tomographic data and related simulation data in
the framework of model calibration for homogeneous mate-
rials undergoing strain localizations. The pruning procedure
simply consists in deleting the data outside the RID, where
the RID contains the finite elements connected to interpola-
tion points computed by the discrete empirical interpolation
method (DEIM) [9] by considering the primal (displacement)
reduced basis as well as the reduced basis generated using
the strain field.

We restrict our attention to representative volume ele-
mentswhere a virtualmicrostructural realization is generated
and appropriate boundary conditions are prescribed [28,39,
49,55]. These boundary conditions usually represent an aver-
age stress or strain state of the material, which conforms to
the macroscopic averaged response of the material.
The paper is organized in the following manner. Section 2
presents the crystal plasticity material model, the finite ele-
ment mesh description as well as the material parameters
used. In Sect. 3 the hyperreduction framework is explained,
as well as the Gappy PODmethod. Section 4 shows the setup
of a cyclic simulation. It contains the results of the analysis
and a comparison of the proposed method with the Gappy
POD. This is followed by the conclusions in Sect. 5.

2 Crystal plasticity model and finite element
mesh description

Data pruning is relevant for simulation data of complex
physics-based computational models. In the present work,
a small strain crystal plasticity formulation is used for the
computation as most local strains remain below 5%. Hence,
nonlinear contributions to the mechanical balance equation
are local in space. But they are highly nonlinear, with pos-
sible contribution of the local strain history. Hence the time
instant t has to be introduced in the following equations, and
the related partial derivative is denoted by an upper dot (i.e.
ε̇ for strain rate). In a polycrystalline aggregate, the domain
occupied by the material is split into subdomains termed
grains, having the same crystal orientation. The displacement
fields are supposed to be continuous at the grain bound-
aries. To ease the interpretation of the numerical results,
a rate independent single crystal plasticity model recently
proposed by [16] is used. Also, the model exclusively uses
kinematic hardening because it governs ratcheting effect. In
Nickel-baed superalloys for instance, kinematic hardening
dominates isotropic hardening under cyclic loading condi-
tions [11]. Face CenteredCubic (FCC) single crystalmetallic
materials are considered that are characterized by N plastic

slip systems, each having a slip system direction ls and the
normal to the slip plane ns . The partition of the strain tensor
introduces an elastic and a plastic part, denoted by εe and ε p

respectively:

ε = εe + ε p (1)

The Hooke law relates the stress tensor, denoted by σ , to
the elastic strain tensor. For cubic elasticity, a fourth rank
tensor of elasticity moduli C , involving three independent
parameters, governs the elastic behavior.

σ = Cεe (2)

The plastic strain rate results from the slip processes with
respect to all active slip systems,

ε̇ p =
N∑

s=1

γ̇ sms (3)

with ms being the orientation tensor

ms = l ⊗ ns + n ⊗ ls

2
(4)

The amount of slip rate on each slip system is denoted by the
variable γ̇ s . The driving force for plastic slip on slip system
s is the resolved shear stress, computed using Cauchy stress
according to:

τ s = σ : ms = σi jm
s
i j (5)

The yield criterion is a generalization of Schmid’s law involv-
ing scalar hardening stresses rs and xs according to [35].

f s(σ , xs, rs) = |τ s − xs | − rs (6)

Here, rs denotes the radius of the elastic domain in terms of
the resolved shear stress and xs is a scalar back-stress charac-
terizing the center of the elastic range in the one-dimensional
space of resolved shear stresses. In slip based crystal plastic-
ity, there are N such elastic ranges. Plastic slip can occur only
if the function f s becomes positive. In [16], the rate of slip
on each slip system follows a rate-independent formulation
of the form:

γ̇ s = ε̇

〈
f s

P

〉
sign(τ s − xs) (7)
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where P is a positive constant having the units of stress and
ε̇ is a non-negative homogeneous function of order one in
the total strain rate. The Macauley brackets 〈•〉 = Max(0, •)

are used to distinguish the elastic range from the plastic one,
depending on the sign of the yield function f s . In this model,
ε̇ is taken to be the total equivalent distortional strain rate:

ε̇ =
√
2

3
ε̇′ : ε̇′, ε̇′ = ε̇ − 1

3
(tr(ε̇))I (8)

where ε̇′ is the deviatoric part of the total strain rate tensor
ε̇ and : is the inner product for second order tensors. Since
the rate of inelasticity is linear in the total equivalent strain
rate ε̇, all the evolution equations in the proposed theory
are homogeneous of order one in time, characterizing a rate-
independent response. Also the rate of inelasticity is used
for all states entailing no need for special treatment of load-
ing and unloading conditions. Also the functional form of f
and the evolution equations for isotropic (rs) as well as kine-
matic (xs) hardening remain unchanged. The cumulative slip
variable vs is defined for each slip system by the following
evolution equation:

v̇s = |γ̇ s | (9)

Evolution equations for the kinematic hardening variables
are taken from [8,35]. The nonlinear kinematic hardening
evolution law

ẋ s = C γ̇ s − D v̇s xs (10)

depends on two material parameters,C and D. In the present
paper, there is no isotropic hardening so that the stress rs has
a constant value r0, which is the value of the initial resolved
shear stress.

Here, the stress is estimated via the finite element approx-
imation of the strain tensor:

εεε ≈
Nd∑

i=1

εεε(ϕϕϕi ) ai , εεε(ϕϕϕi ) = 1

2

(
∇Tϕϕϕi + ∇ϕϕϕi

)
(11)

according to the finite element approximation of the dis-
placement field:

u(x, t) =
Nd∑

i=1

ϕϕϕi (x) ai (t) ∀ x ∈ � (12)

Table 1 The crystal plasticity parameter set being used

Cubic elasticity C1111 = 259,600 MPa

C1122 = 179,000 MPa

C1212 = 109,600 MPa

Critical resolved shear stress R0 = 320 MPa

Kinematic hardening C = 100,000 MPa

D = 1000

Overstress P = 9 MPa

We denote by σσσ(a) the stress predicted by the finite ele-
ment method. The finite element balance equation reads (in
absence of body forces) :

c(a, t) = 0 with (13)

ci (a, t) =
∫

�

εεε(ϕϕϕi ) : σσσ(a) dV −
∫

∂F�

ϕϕϕi F(t) d	 i ∈
{1, . . . , Nd (14)

where F(t) is a Neumann boundary condition imposed at
the boundary ∂F�, (ϕϕϕi (x))i=1,...Nd are the shape functions
of the FE model, Nd is the number of degrees of freedom
in the finite element model, and a the vector of degrees of
freedom.

Literature findings show that the macroscopic represen-
tation of a micro-heterogeneous metallic material can be
achieved with as few as one hundred grains [26], but match-
ing macroscopic properties is not the goal here. Rather, the
aim here is to have a large enough statistical pool of infor-
mation so that local material response can be analyzed. Of
course computational limitations have to be acknowledged
and extremely large polycrystals cannot be used. The crys-
tal plasticity parameter set employed in this paper is given
in Table 1. This is the same parameter set as the one used
in the statistical analysis performed in [14] for Nickel-based
superalloy IN718.
An implicit finite element code [54] is used to solve the prob-
lem where the global equilibrium is solved using a Newton–
Raphson algorithm. Integration of constitutive equations at
the Gauss points is performed using the second order Runge-
Kutta method with automatic time stepping [5].

� is the spatial average of tensor σ :

� = 1

V

∫

�

σd� (15)

We restrict our attention to representative volumes of cubic
shape.The six faces of� are denoted Face+

i , Face
−
i , for i=1,

2, 3. Face+
i and Face−

i are opposite faces. Load controlled
mixed boundary conditions were imposed on the geometry
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such that the traction vector: ˜σ .−n is prescribed as:


11 = constant onFace+
1

u1 = 0 ∀x ∈ Face−
1

Homogeneous Neumann boundary conditions (free bound-
ary conditions) are imposed on all opposing faces i.e.

σ21n1 = σ31n1 = 0 ∀x ∈ Face+
1 ∪ Face−

1

σ12n2 = σ22n2 = σ32n2 = 0 ∀x ∈ Face+
2 ∪ Face−

2

σ13n3 = σ23n3 = σ33n3 = 0 ∀x ∈ Face+
3 ∪ Face−

3

These boundary conditions are complemented by suitable
additional Dirichlet conditions to fix the overall rigid body
motion.

3 Hyperreductionmethod for data pruning
in computational mechanics of materials

In the above mechanical model, the original data that require
large storage ressources are:

– the internal variables of the constitutive equations
((γ s, xs)s=1,...N , ε p),

– the primal variable u,
– the dual variable σ and the strain field ε,

The following data are less memory demending:

– the finite element mesh of �,
– the crystal orientations at all Gauss points of the mesh,
– all constitutive parameters (C, C , D, rs , P),
– and the boundary conditions.

The internal variables, the primal variable, the dual variable
and the crystal orientations are stored as series of large vec-
tors. The sizes of these vectors scale linearly with the number
of elements or with the number of nodes, in the mesh of �.

The proposeddata pruning aims at restricting somemodel-
ing data to a reduced domain. This reduced domain is denoted
by �R ⊂ �. In practice, it is the union of the supports of the
finite element shape functions (ϕϕϕi )i∈F , where F is a set of
indices introduced for the matrix formulation of the pruning
method:

�R = ∪i∈F sup(ϕϕϕi ) (16)

The detailed construction of the set F is given below. Since
modeling capabilities must be preserved by the method, the

original data that are saved after data pruning are the consti-
tutive parameters (C , C , D, rs , P), the finite element mesh
restricted to�R , the crystal orientations in�R and the bound-
ary conditions restrained to �R . Additional data have also to
be saved in order to enable the lossy reconstruction of all the
original data in the decompression step. This additional data
are related to the hyperreduction scheme introduced in this
section. A two steps decompression scheme is performed:
it starts with a modeling step, where the original data are
estimated in �R ; then the Gappy POD method [12] interpo-
lates the estimated data from �R to the full domain �. In
this paper, this interpolation step solely concerns the total
strain ε.

In the Gappy POD method [12], any vector a belong-
ings to the column space of V , denoted by colspan(V ), can
be estimated by using few entries of a denoted by a[F], if
V [F , :] is a full column rank matrix. Here, colspan(V ) is
a linear latent space. It is usually obtained via the Snapshot
POD [48] or a truncated singular value decomposition of a
snapshot matrix containing training data. Let us denote by
Q ∈ R

Nd×m the snapshot matrix of finite element predic-
tions for displacement a: Qi j = ai (t j ) where snapshots are
selected at computational time instants {t j }mj=1. Its truncated
singular value decomposition reads:

Q = V S WT + R, V T V = WT W = IN ,

V T R = 0 (17)

where S is a diagonal matrix than contains the NR largest
singular values in decreasing order, V ∈ R

Nd×NR and
W ∈ R

m×NR are orthogonal matrices, and INR is the iden-
tity matrix of size NR . R ∈ R

Nd×m is the residual of this
truncated decomposition.

In this paper, a[F] is considered as pruned data when
considering the Gappy POD method as a compression/
decompression scheme for the original data a. Knowing V ,
F and a[F], the decompression step related to the Gappy
POD reads:

aG = V (V [F , :]T V [F , :])−1 V [F , :]T a[F] (18)

When F = P , where P is the set of interpolation points
for the columns of V by following the discrete empirical
interpolationmethod [3,9], then V [P, :] is a square invertible
matrix and the decompression procedure can be simplified
as:

aDE IM = V V [P, :]−1 a[P] (19)

By using this discrete empirical interpolation method, the
GappyPODis a rigorous interpolation scheme: aDE IM [P] =
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a[P]. WhenF contains interpolation points,P ⊂ F , the sub
matrix V [F , :] is full column rank [15].

Property: The Gappy POD decompression of the pruned
data is the following oblique projection:

a ∈ R
Nd , aG = V (ZT V )−1 ZT a, ZT = V [F , :]T

INd [F , :] (20)

Therefore, if a ∈ colspan(V ), and if V [F , :] is full rank, the
reconstructed vector aG is exact: aG = a.

Some remarks are due at this stage on dimensionality
reduction in the litterature. Dimensionality reduction is an
interesting approach to save memory space when consider-
ing data storage. The singular value decomposition as well
as the principal component analysis enable dimensionality
reduction of data. This is a first step of the proposed data
pruning procedure. Recently, autoencoders have been pro-
posed for nonlinear dimensionality reduction schemes of
time-dependent finite elementmodels [21,29]. Autoencoders
can capture nonlinear latent spaces when the singular value
decomposition fails to sufficiently reduce the dimension of
data. We can also mention the extension of the Gappy POD
to simulation data having tensor format of arbritary order in
[37].

Unfortunately, the pruning algorithm via the Gappy POD
does not enable data extrapolation via mechanical modeling.
Hence, we propose to compute a[F] by using the hyperre-
duction method [44], as a first decompression step before
using the Gappy POD. It aims at predicting a[F] by using
physical governing equations set up on a reduced integration
domain (RID) and a projection on a vector subspace related
to displacement field.

In essence, to set up the hyperreduced equations for a
given FE model, this approach accounts for the low rank
approximation of the reduced balance equations. For the sake
of simplicity this can be elaborated using the linear step of a
Newton Raphson algorithm, where the FE balance equation
reads:

aFE(n)(t) =
n−1∑

j=1

δaFE( j)(t) (21)

K (n)δaFE(n)(t) = −c(aFE(n), t) (22)

where n is the iteration index of the Newton Raphson algo-
rithm, δaFE(n) is a linear correction for the approximate
displacement vector aFE(n) ∈ R

Nd , and K (n) ∈ R
Nd×Nd

is the tangent stiffness matrix of the FE model, whereas
c ∈ R

Nd is the residual of the balance equation. Newton
Raphson iterations stop when ‖c(aFE(n), t)‖ < εtol for a
given tolerance εtol . Let us introduce reduced order model
variables denoted by bR(n) = ∑n−1

j=1 δbR( j) ∈ R
NR . The

product VbR(n) has to approximate aFE(n). In order to find

unique solutions δbR(n) the rank of K (n)V needs to only
be NR . Since Nd is usually larger than NR , a few rows of
K (n)V can be selected to preserve the rank of the submatrix.
As proposed in [43], the hyperreduced balance equations are
restricted to the RID using convenient test functions such
that:

bR(n)(t) =
n−1∑

j=1

δbR( j)(t) (23)

(V [F , :])T K (n)[F , :]VδbR(n)(t)

= −(V [F , :])T c[F](VbR(n), t) (24)

Here, the Newton Raphson iterations stop when ‖(V [F , :
])T c[F](VbR(n), t)‖ < εtol . The hyperreduced solution is
denoted by aHR(n), aHR(n) = VbR(n).

Also, theRIDmust be large enough tohave rank(K (n)[F , :
]V ) = NR ; hence cardinality of the number of degrees of
freedom in the RID should be greater than or equal to NR .

According to the two steps decompression procedure of
the proposed method, the extent of the RID must enable the
reconstruction of full fields, via the Gappy POD. This con-
cerns the finite element displacement fields and the finite
element strains. These reconstructions have to be exact if
displacement and strain fields both belong to colspan(V )

and colspan(V ε) respectively, where V ε is a reduced order
basis for strain approximation. (For the sake of simplicity the
reduced basis dedicated to the displacement does not have a
superscript). So, by construction, the RID contains theDEIM
interpolation points for both V and V ε . The set of interpo-
lation points related to V ε is denoted by Pε . The number
of interpolation points is equal to the number of empirical
modes in the reduced basis. By following the k-SWIM algo-
rithmproposed in [25], the setsP andPε , are not restrained to
interpolation points of reduced bases. The number of points
in this set is extended by a factor k. The k-SWIM points are
more spread on � than the DEIM points. This algorithm is
described in the “Appendix 1”. When k = 1 the k-SWIM
points are the DEIM points themselves. In addition, for each
set of pointsP andPε built by k-SWIM, we extract from the
finite element mesh the degrees of freedom of the elements
that contain the points in P and in Pε . These sets of degrees
of freedom are denoted P+ and Pε+ respectively. In many
practical situations, F also includes the degrees of freedom
of a zone of interest. These degrees of freedom are denoted
by Fo. Therefore, we obtain the following set of degrees of
freedom:

F = Fo ∪ P+ ∪ Pε+ (25)

Hence, the parameters of the proposed pruning algorithm are
those of the hyperreduction method: the number of empirical
modes in the reduced bases V and V ε , the parameter k and
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the set Fo. The smaller the number of these parameters, the
better the compression.

Property: If the hyperreducedmatrix (V [F , :])T K (n)[F , :
]V is full rank, and if δaFE(n) ∈ colspan(V ) for all n, then
the hyperreduced prediction δaHR(n) is the following oblique
projection of δaFE(n):

δaHR(n) = V (AT V )−1 AT δaFE(n) (26)

where AT = (V [F , :])T K (n)[F , :].
Thus, the proposeddecompressionprocedure is an implicit

projection, performed via hyperreduced balance equations,
without knowing δaFE(n). Such an approach enables data
extrapolation via mechanical modeling.

We need to prove that δbR(n) = (AT V )−1 AT δaFE(n)

for all n. We propose a recursive proof. Let’s assume that
aHR(n) = aFE(n). This is true for n = 1. We also
assume it exists δbFE(n) such that δaFE(n) = VδbFE(n).
According to the balance equation (22) of the finite ele-
ment model, the following equation holds: AT δaFE(n) =
−(V [F , :])T c[F](aFE(n), t). So AT δaFE(n) = −(V [F , :
])T c[F](aHR(n), t), which is the right hand side term of
Eq. (24). AT V is the hyperreduced tangent matrix in balance
equation (24).Hencewe get δbR(n) = (AT V )−1AT δaFE(n).
Since δaFE(n) = VδbFE(n), thus we also have δbR(n) =
δbFE(n) and therefore δaFE(n+1) = δaHR(n+1). This ends
the proof.

Once the hyperreduced prediction is known, we have
access to local strain tensors for points in �R :

ε(x, t) = 1

2
(∇T uHR + ∇uHR), uHR(x, t)

=
∑

i=F∪I
aHR
i (t)ϕϕϕi (x), ∀ x ∈ �R (27)

These strain tensors are usually evaluated at the Gauss points
of the reduced mesh that covers �R . Let α denote the vector
of all Gauss point values of strain tensor for the original
finite element mesh. The hyperreduction predicts only few
rows of this vector: α[Fε] where Fε contains the indices of
strain components at Gauss points of the reduced mesh. The
reduced basis V ε is obtained by the truncated singular value
decomposition of a snapshot matrix that contains a collection
of full vectors α for the same selected computational time
instants {t j }mj=1 introduced for displacements. This snapshot
matrix is denoted by Qε . It reads: Qε

i j = αi (t j ). The Gappy
POD for the decompression of the full strain field, at Gauss
points of the original finite element mesh, reads:110.5

αG = V ε (V ε[Fε, :]T V ε[Fε, :])−1 V ε[Fε, :]T α[Fε] (28)

1 8.5

Such kind of rule can be obtained for any variable equipped
with a reduced basis.

We have to pay attention to the interface between the RID
and its counterpart. Let�\�R denote the counterpart of�R .
We call 	 I the interface between �R and �\�R . Next, we
introduce I, the set of degrees of freedom indices related to
the interface 	 I :

I =
{
i ∈ {1, ..., Nd} |

∫

	 I
ϕϕϕT
i . ϕϕϕi d	 
= 0

}
(29)

The matrix K (n) is sparse. In the sequel, we assume that
non zero entries in K (n)[F , :] are only in the submatrix
K (n)[F ,F ∪ I] and these entries can be computed by using
solely the reduced mesh that covers �R . This assumption is
too strong in case of contact problems as shown in [15]. So
we restrict our attention to contactless problems for the sake
of simplicity. More details on the hyperreduction of contact
problems are available in [15]. The solution of the hyperre-
duced balance equation requires to save V [F ∪ I, :] which
is the restriction of the reduced basis to the RID. The recon-
struction of the full strain field over � by using the Gappy
POD requires to save the full strain modes V ε and Fε . Once
the full strain field is reconstructed, the solution of the consti-
tutive equations gives access to all mechanical variables. In
practice, the memory size required to save the strain modes
V ε is one order of magnitude larger than the mechanical
data required for the setting of the hyperreduced equations.
The smaller the number of strain modes, the higher the data
pruning, but the larger the approximation error in the decom-
pression step.

4 Example of data extrapolation from
pruned data in cyclic crystal plasticity

4.1 Feature selection for data pruning

A thousand grains polycrystal was chosen as an example
where Fig. 1 shows a meshed finite element geometry with
mixed traction boundary conditions. This finite elementmesh
was generated using the Voronoi tessellation technique with
the help of the software VORO++ [45]. The mesh consists of
1,174,719nodes and859,848 reducedC8D10quadratic tetra-
hedral elements. Each element consists of four Gauss points.
The crystallographic orientations chosen were randomly dis-
tributed throughout the polycrystal. The stress loading 
11

follows a triangular signal where maxt 
11 = 1000 MPa and
R
 = mint 
11(t)

maxt 
11(t)
= −0.85. These boundary values have

been chosen carefully in order to simulate strain-ratcheting,
which is a strain accumulation during loading cycles.

In order to show the extrapolation capabilities of the
pruning algorithm via hyperreduction, the reduced bases
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Fig. 1 A 1000 grains meshed
microstructure with the inverse
pole figure. Colors are related to
grain orientations

are trained with simulation data related to the first ten
loading cycles only. In the sequel, we show the ability of
these reduced bases to predict up to 200 cycles. Figure 2
shows the local Euclidian norm for each displacement mode∑Nd

i=1 ϕi (x) Vik for k = 1, . . . 6. Figure 3 shows for each

strain mode, the local von Mises strain εvM =
√
2

3
ε′
i jε

′
i j ,

where ε′ is the deviatoric part of the local strain tensor. As
anticipated, the magnitude of singular values exponentially
decreases with the number of modes. For displacement 9 and
for strain 20 modes are considered to get projection errors
of simulation data on reduced bases around 2%. This cut-
off is arbitrary and dependent on the user. By looking at the
contour plot of the modes in both cases it can be seen that
the first few modes are homogeneously distributed while the
later ones are high gradient modes.
Figure 4 shows the reduced meshes constructed using the
selected PODmodes. A small RID (RID1) has been obtained
by the k-SWIM algorithm with k = 1 in Algorithm 1. With
this settingP andPε are the interpolation point of the DEIM
algorithm. A larger RID (RID2), with k = 3 in Algorithm 1,
has been also generated. It contains twice as many elements
that are more spread out in �. The part of the finite element
mesh provided in the zone of interest depends on which part
of the mesh is the most critical according to the user. In
the present case, a small central part of the boundary where
pressure is being applied is included in the zone of interest.
Before pruning the data it has beeen observed that this region
experiences the largest strain values under a tensile load. It is
therefore a zone of interest. One can notice that the smaller
the zone of interest, the number of modes and k, the higher
the pruning of the original data.

The data to save in a storage system are summarized
in Table 2, for three approaches: the original data set, the
Gappy POD, the hyperreduction. The data pruning using
hyperreduction consists in saving a physical model. No FE
simulation data is stored, only reduced bases. These reduced
bases can obviously be supplemented by saving the reduced
coordinates bR related to displacement and also the one

Table 2 Data pruning summary

Data to save for m time steps

FE {αFE (t j )}mj=1

Gappy POD {αFE (t j )[Fε ]}mj=1, V
ε

Hyperreduction Constitutive parameters, grain orientations in
�R , V ε , V [F ∪ I, :]

related to the strain field. These coordinates occupy a negli-
gible memory size.

4.2 Data extrapolation over 200 cycles

After constructing the reduced basis and the RIDs using sim-
ulation data over 10 cycles, extrapolation of the original data
was performed via hyperreduction for two hundred loading
cycles. This aims to evaluate the modeling capabilities of
the data pruning method. Let m denote the number of time
steps involved in the extrapolation of the strain field for two
hundred loading cycles. Here, m = 20 m (m is the number
of columns in Q), which represents an extrapolation of the
original FE data over 190 loading cycles.

To compare the results, the original full field simula-
tion was also run for two hundred cycles. Figure 5 shows
reconstructed macroscopic data. It shows the usual plot of
macroscopic stress (
11, enforced value as Neumann bound-
ary condition) versus the computed average strain (E11)
response of the three cases, hyperreduction using RID1
(small RID), hyperreduction using RID2 (large RID) and the
original data for comparison. To avoid clutter, responses are
plotted only at cycles 1 and 200. It can be seen that the larger
RID gives more accurate predictions of decompressed data
than the small RID at cycle 200. The pruning looses almost
no information for the first 10 cycles for both RIDs, with
decompression errors below 1% for all simulation data.
Statistics have been performed on local results that pertain to
the time step taken at the tensile peak of cycle 200, after the
decompression step of the full strain field by using the Gappy
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Fig. 2 Six first POD modes for displacement among 9 selected (N = 9) for the reduced basis V . Here, the norms of local displacement vectors
have been plotted for each mode

Fig. 3 Six first POD modes for strain field among 20 selected for the reduced basis V ε . Here the local von Mises strains are plotted for each mode

Fig. 4 On the left a small
reduced integration domain
(RID1) restricted to 9300 finite
elements, on the right a larger
one (RID2) involving 17,400
finite elements. The original FE
mesh is shown in transparency
behind the RIDs. It contains
859,848 elements. Colors are
related to grain orientations. The
contribution of Fo, as a zone of
interest, is shown on the right of
RID2
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Fig. 5 Reconstructed macroscopic data. Macroscopic stress vs macro-
scopic strain response for cycle 1 and cycle 200 for the original FE
prediction as well as the HROM for both the small RID (RID1) and the
large RID (RID2)

Fig. 6 Kernel of the probability density function for Gauss point values
of ε11 at the tensile peak of the 200th cycle

POD applied to FE strains, RID1, RID2 and the original FE
data. The Gappy POD applied to FE strains requires to save
the strain field in �R over the 200 cycles as pruned data. It is
morememory demanding than saving only the data related to
the last cycle, but mandatory to monitor the strain-ratcheting
in time.Anyway, it represents a small selection of the original
strain field. Figure 6 shows the kernel of the probability den-
sity function for ε11, estimated from Gauss point values by
using the method proposed in [4]. This method is available in
Scipy [51]. The strain distribution plots show that locally the
decompression of the full strain field via hyperreduction over
RID2 is more precise than using RID1 or the Gappy POD.
The oblique projection involved in hyperreduction appears
to be more accurate than the oblique projection performed
by the Gappy POD. The former includes physical equations
whereas the latter does not. Average values of local strain ε11
and the standard deviation are reported in Table 3.
The computational requirements to decompress the strain
field over 200 cycles can be viewed in Table 3 where the
numbers related to the original full field data have been also
reported. The original FE simulation takes 1034 h. It should
be noted that the number of parallel processors utilized in this
study have been arbitrarily chosen. For the full field simula-
tion 24 processorswere selected because that is themaximum
number available on each cluster node. For the HROM and
Hybrid simulations, four processors were used each. The
computation time for the prediction of the full strain field
via hyperreduction was 27 h for RID1 while for RID2 it
took 38 h. Although the time to run the hyperreduction on
the large RID was 40% longer, much accurate prediction in
strain was achieved. The storage requirement for the pruned
data is almost the same for both RIDs. It is less than 7%
of the original storage space. This storage space is occupied
by the reduced bases V and V ε . Therefore, we save 93% of
storage space, the reconstruction of the full strain field takes
38 h and its accuracy is higher than 99%. The decompression
based on FE strain over the RID and the Gappy POD is the
fastest decompression procedure. But it does not enable data
extrapolation.

Table 3 Finite element mesh details and the resources needed to run the full field, hyperreduced and Gappy POD, predictions

Original FE data Gappy POD Small RID Large RID

Nodes 1,174,719 19,942 19,942 35,893

card(F) – – X X

Elements 859,848 9286 9286 17,381

Computation time × processors 1034 h × 24 0.08 h × 1 27 h × 4 38 h × 4

Storage memory Gbs 101. 5. 3.5 3.5

E11 (error) 0.019 0.02 (5%) 0.017 (10%) 0.019 (< 1%)

Std deviation for ε11 (error) 0.84 0.88 (5%) 0.86 (2%) 0.84 (< 1%)
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Fig. 7 Kernel of the probability density function for Gauss point values
of σ11 at the tensile peak of the 200th cycle

The hyperreduction scheme being an approximate solu-
tion of mechanical equations, we can compare the computa-
tion time of thismethodwith the finite elementmethod.Here,
the following simulation speedups are achieved by hyperre-
duction for the full cyclic simulation: 900 for the larger RID
and 1200 for the smallest RID,when using a single processor.
Hence, the modeling step of the decompression procedure is
very fast compared to the finite element method.

In Fig. 7, similarly to strain decompression, the accuracy
of stress decompression via hyperreduction over RID2 is
more precise than using RID1 or the Gappy POD. A ded-
icated reduced basis for stress has been computed for that
purpose, although the construction of RID1 and RID2 does
not account for this reduced basis. Note that the average value
of stress σ11 is imposed in the finite element model by the
Neumann boundary condition. This boundary condition is
used to plot the macroscopic response in Fig. 5. The recon-
struction procedure accurately replicate this average stress
by using RDI2 of the hyperreduction but not with RID1.

5 Conclusion

Crystalline plasticity modeling is fed by experimental data
and produces large volumes of simulated data. Erasing sim-
ulation data to free up memory space becomes necessary as
more and more mechanical tests are performed. But there is
a risk in erasing data: the risk of not being able to investigate
modeling issues further once the data has been erased. In the
present paper, we show that the data pruning we have devel-
oped allows to reduce the volume of data saved in storage
system while keeping the possibility to evaluate the strain-
ratcheting phenomenon. It is a very complex phenomenon,
depending on the loading conditions applied to a polycrystal

and the mechanical behavior of each grain. The decompres-
sion procedure of strain fields involves physical governing
equations. It is nevertheless 1000 times faster than the origi-
nal FE simulation. Simulation data in crystal plasticity have
been compressed to 7% of their original size with approx-
imation error lower than 1%, for total strain. Results show
the capability of choosing the size of the pruned data via
the following hyperreduction parameters: the number of dis-
placement and strain modes, the parameter k for the RID
construction, and the zone of interest. This pruning method
has extrapolation capabilities via mechanical modeling. In
this paper, the input data of the pruning algorithm are related
to 10 cycles of a cyclic simulation. After the data pruning, the
recovery procedure has accurately extrapolated the pruned
data up to 200 cycles. Although model reduction in crystal
plasticity is not new, the fact that such methods can per-
form data pruning while preserving modeling capabilities is
rather ignored in the literature. The proposed method has to
be considered only if we want to preserve such modeling
capabilities. If not, it is useless.

The hyper-reduction scheme involved in the data prun-
ing procedure has shown its accuracy when considering
various parameter variations such as loading parameter or
constitutive coefficients. The method can be applied to
even more complex loading conditions, including multiaxial
mechanical testing, and to other microstructures of compos-
ite materials. In the related works in progress, we investigate
the insertion of defect in the reduced integration domain in
order to evaluate stress variations due to defects.
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