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Abstract A reliable determination of the onset of
void coalescence is critical to the modelling of duc-
tile fracture. Numerical models have been developed
but rely mostly on analyses on single defect cells, thus
underestimating the interaction between voids. This
study aims to provide the first extensive analysis of the
response of microstructures with random distributions
of voids to various loading conditions and to charac-
terize the dispersion of the results as a consequence of
the randomness of the void distribution. Cells embed-
ding a random distribution of identical spherical voids
are generated within an elastoplastic matrix and sub-
jected to a macroscopic loading with constant stress
triaxiality and Lode parameter under periodic bound-

C. Cadet · J. Besson · S. Forest (B) · P. Kerfriden
MINES ParisTech, PSL University, MAT - Centre des
Matériaux, CNRS UMR 7633, BP 87, 91003 Évry, France
e-mail: samuel.forest@mines-paristech.fr

C. Cadet
e-mail: clement.cadet@mines-paristech.fr

J. Besson
e-mail: jacques.besson@mines-paristech.fr

P. Kerfriden
e-mail: pierre.kerfriden@mines-paristech.fr

C. Cadet · S. Flouriot · V. de Rancourt
CEA Valduc, 21120 Is-sur-Tille, France

S. Flouriot
e-mail: sylvain.flouriot@cea.fr

V. de Rancourt
e-mail: victor.derancourt@cea.fr

ary conditions in finite element simulations. The failure
of the cell is determined by a new indicator based on
the loss of full rankedness of the average deformation
gradient rate. It is shown that the strain field develop-
ing in random microstructures and the one in unit cells
feature different dependencies on the Lode parameter
L owing to different failure modes. Depending on L ,
the cell may fail in extension (coalescence) or in shear.
Moreover the random void populations lead to a signif-
icant dispersion of failure strain, which is present even
in simulations with high numbers of voids.

Keywords Ductile fracture · Void coalescence ·
Homogenization · Plasticity

1 Introduction

Predicting the failure of a structural part subjected to
monotonous loading requires a good understanding of
the ductile fracture behavior of the material. However
ductile fracture is a complex phenomenon involving
a variety of mechanisms, strongly dependent on the
material and involving large strain at least on a local
level (Besson 2004). Voids are first nucleated within
the material, especially near second phase inclusions.
Depending on the loading conditions, the voids may
or may not grow. Finally the material fails when voids
coalesce, either by internal necking or by the nucle-
ation of secondary voids (mostly for shear-dominated
loading). Softening due to void growth may also be
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sufficient to initiate failure without coalescence per se
(Tekoğlu et al. 2015). Although a large body of liter-
ature on ductile fracture has already been published,
accurate failure prediction is still a research problem,
as evidenced by the Sandia fracture challenges (Boyce
et al. 2014, 2016; Kramer 2019): besides the difficulty
of calibrating modellling parameters from experimen-
tal data, predicting ductile failure requires to take into
account many strongly nonlinear physical processes.

Experimental studies have shown that the failure
behavior strongly depends on the stress state to which
the material is subjected. The effects of the stress tri-
axiality (ratio of the von Mises equivalent stress to
the mean stress) and the Lode parameters (reflecting
the third stress invariant) have been extensively inves-
tigated (for instance by Helbert et al. (1996), Bao
and Wierzbicki (2004), Barsoum and Faleskog (2007),
Gao et al. (2009), Dunand and Mohr (2011), Gilioli
et al. (2013), Zhai et al. (2016), Xiao et al. (2018),
Zhang et al. (2020)). Models representing ductile fail-
ure should therefore account for the effect of these two
parameters.

Analytic and computational approaches at amicrome-
chanical level have also been developed to investigate
the mechanisms of ductile fracture, to model ductile
fracture and provide microscale-informed failure pre-
diction. Following Gurson’s (1977) results from limit
analysis, increasingly precise analytic models have
been developed by explicitly representing approximate
strain fields near voids in a plastic material. Besson
(2010) provides a review of such models but more
recent ones have been developed to represent void
growth and coalescence either by necking or in shear
(Benzerga and Leblond 2014; Morin et al. 2016; Torki
2019; Nguyen et al. 2020), and can be used for prac-
tical applications (Keralavarma et al. 2020). The limit
analysis approach was also extended by Leblond and
Mottet (2008) to random distribution of voids. Com-
putational studies of ductile fracture may help validate
these models or provide valuable insights in the failure
mechanisms on their own, for example by quantify-
ing the effect of stress triaxiality and Lode parame-
ter (Barsoum and Faleskog 2011; Zhu et al. 2018) or
by distinguishing strain localization from coalescence
(Wong and Guo 2015; Guo and Wong 2018; Zhu et al.
2020). However these studies are mostly carried out on
unit cells: the global behavior of the material is sum-
marized by that of a meshed cell containing a single
void. Even though this approach was proven useful to

analyze fundamental mechanisms at the void level at a
lowcomputational cost, it oversimplifies the interaction
between voids, whose influence increases with poros-
ity, by assuming that voids are regularly distributed as
a cubic lattice.

Some studies have investigated the interaction of
voids in simplified configurations, involving only a
couple of voids. For instance Bandstra and Koss (2008)
considered three-voids clusters with rotational symme-
try in an hexagonal volume element; Tvergaard (2016,
2017) considered 2D clusters with three aligned pores,
whereas Trejo Navas et al. (2018) systematically stud-
ied 3D three pore clusters. Khan and Bhasin (2017)
investigated the interaction between two populations
of voids, in the simplified context of a high symmetry
periodic arrangement. However, in a real material, a
large number of voids, with complex spatial distribu-
tion interact with each other. Shakoor et al. (2015) con-
sidered 2D microstructures with a random population
of voids and showed that increased triaxiality acceler-
ates coalescence. Shakoor et al. (2018) also provided
a very fine description of the mechanisms of ductile
fracture from nucleation up to coalescence, between
randomly distributed voids. All these studies evidence
the role of clusters but do not allow to compute coa-
lescence properties depending on loading conditions,
as a model of ductile fracture would require, because
they investigate too few void configurations and load-
ing cases.

Analytical approaches can take random void distri-
butions into account. For instance, Leblond andMottet
(2008) developed a limit analysis model coupling coa-
lescence and shear band formation initially for a peri-
odic distribution, but proposed a method to extend it
to the random case by considering all possible orien-
tations of the shear bands. Moreover, works by Danas
and Ponte Castañeda (2009) or Vincent et al. (2009) for
instance, considered random void populations within
the context of a nonlinear variational homogenization
scheme: the porous medium was compared to a linear
composite, whose stiffness is based on Willis’s (1995)
bounds, and an effectivemodelwas derived to represent
a population of randomelliptical voids. This variational
technique was subsequently used by Danas and Ponte
Castañeda (2012) to investigate the influence of stress
triaxiality and Lode parameter. However, such analyt-
ical approaches should be compared to simulations to
check the validity of their assumptions. For instance,
Danas and PonteCastañeda’s (2012) predictions for the
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behavior at low triaxiality were found to be unrealistic
by Hutchinson and Tvergaard’s (2012) FEM simula-
tions on unit cells with the same loading conditions.

Explicit simulations of random void distributions
have been carried out in a limited number of works.
Bilger et al. (2005), Bilger et al. (2007) using Fast
Fourier Transform then Fritzen et al. (2012) with Finite
Element Analysis proposed a computational homoge-
nization method to determine an effective yield sur-
face. Several microstructures consisting of a random
void distribution embedded in a plastic matrix are sim-
ulated up to overall plastic yield for several loading
conditions. The results are averaged over the several
microstructures to determine an homogenized yield
surface (represented for Fritzen et al. (2012) by a GTN
criterion). This approach was extended to a Green-type
porous matrix (Fritzen et al. 2013), to multiple void
populations of different size (Khdir et al. 2014) and
to non-spherical voids (Khdir et al. 2015). However
these studies were focused on yield surface and did not
address coalescence. Recently, Hure (2021) did per-
form FFT simulations on cells with multiple voids up
to coalescence, and illustrated the influence of the num-
ber of voids on the stress at coalescence. Yet this study
was limited to the simple case of axisymmetric loading.

To the authors’ knowledge, a description of coales-
cence for various loading conditions and at the level of
a representative volume element with multiple voids,
has not been done yet. We therefore propose here to
extend the methodology of Fritzen et al. (2012) and
Hure (2021) to the study of coalescence under vari-
ous stress states. We aim to assess the effect of the
interaction between randomly distributed voids on the
macroscopic failure response of a cell, depending of the
stress state. The results should be compared to those of
unit cells to identify how they differ from cells with
multiple voids. Moreover the statistical dispersion in
failure results linked to the random distribution should
be quantified.

To this end, cells composed of a random popu-
lation of identical spherical voids are generated and
subjected to various loading conditions, characterized
by constant stress triaxiality and Lode parameter lev-
els, in finite element simulations with Z-set software
(Besson and Foerch 1998). We then propose a coales-
cence indicator based on the loss of full rankedness of
the macroscopic deformation gradient rate. The iden-
tification of coalescence during the simulation allows
to extract several quantities of interest at the onset of

coalescence. Our main results show that the evolution
of the onset of coalescence with respect to the Lode
parameter is qualitatively different between random
microstructures and unit cells. This difference is asso-
ciated to a change of coalescence modes for random
microstructures. Finally, dispersion of the results due
to the randomness of the void distribution is studied.

Section 2 describes the methodology used to gener-
ate randommicrostructures and to prescribe the loading
conditions within the FE simulation. In Sect. 3 typical
numerical simulation results are presented and an indi-
cator is defined to identify failure. Section 4 applies the
methodology of Sects. 2 and 3 to compare the response
of random microstructures to that of a unit cell, both
on the evolution of macroscopic (cell-level) quantities,
and on plastic strain field patterns. The dispersion of
the results is also investigated. Finally, we discuss in
Sect. 5 the simulation hypotheses chosen in this work,
and verify to what extent the results can be generalized.

An intrinsic notation is used for tensors: vectors, as
first order tensors, are represented as v = vi e i and
second order tensors as A∼ = Ai j e i ⊗ e j , where (e i ) is
an orthonormal frame. The subscript 0 in the notation
A0 refers to the value of A in the initial configuration
at time t = 0. The position of a material point initially
at x 0 evolves with time t as x = Φ (x 0, t); the defor-

mation gradient is then defined as F∼ = ∂Φ
∂x 0

. Quanti-

ties decorated with an overlying bar, such as Ā, refer
to the macroscopic counterpart (at the level of a cell)
of a quantity A defined locally. For instance F̄∼ is the
average deformation gradient (defined more precisely
in Sect. 2.3), and J̄ = det F̄∼ .

2 Methodology

2.1 Generation of random microstructures and finite
element meshing

Themethodology to create the elementary volumes fol-
lows that of Fritzen et al. (2012). These cells consist
of a cubic matrix containing a population of identical
non overlapping spherical defects. As all the Ndef ects

spheres have the same radius r , the porosity of the cell
(of size Lcube and therefore of volume V = L3

cube) is
defined as:

f = 4π

3
Ndef ects

(
r

Lcube

)3

(1)
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The radius of the voids is fully determined once the
porosity and the number of voids are chosen. The initial
porosity was chosen as f0 = 6%, to be compared to the
range of porosity levels f0 ∈ [0.1%, 30%] considered
by Fritzen et al. (2012). However unit cell analyses fre-
quently study lower porosities, with f0 ∼ 0.1% (Wong
and Guo 2015; Vishwakarma and Keralavarma 2019;
Guo andWong 2018). For low porosity values, interac-
tions between defects can indeed be neglected (Koplik
and Needleman 1988), at least for the growth phase.
Fritzen et al. (2012) showed for instance that unit cells
and randommicrostructures with sufficiently low pros-
ity levels have a similar growth behavior, which can be
represented by a GTN criterion.

Nonetheless, high porosity levels of 6% are possi-
ble in sintered materials (Becker 1987), nodular cast
iron (Zhang et al. 1999), irradiated stainless steel
(Cawthorne andFulton1967).Moreover, overall poros-
ity of 0.5% to 2% can be found in weld joints (Li et al.
2003; Sarre 2018; Lacourt 2019), but porosity values
defined at a smaller scale, near void clusters, can be
higher. A high initial porosity level can also provide
insight for coalescence at lower initial porosity levels.
Coalescence starts after a sufficient phase of growth
so that voids begin interacting with each other and can
no longer be considered isolated, which means that the
porosity is no longer negligible. Notwithstanding the
change of void shape which will play a significant role,
starting at high porosity is equivalent, to some extent,
to considering the end of a simulation at lower porosity.

The position of the defects is chosen according to
a Poisson sphere process (Matern 1986). As the target
porosity is significantly lower than the jamming poros-
ity levels that characterize such processes (around 38
% according to Gamito and Maddock (2009)), a dart-
throwing method is sufficient for the sampling. The
position of the center of a sphere is chosen according
to a uniform distribution on the cube. If the distance
between the resulting spheres and the already built
defects is larger than 10% of the radius of a sphere,
the new sphere is included in the list of defects. Other-
wise it is rejected and a new possible center is chosen
randomly. Introducing a repulsion distance between the
defects allows a better mesh quality. During the FEM
simulations, periodic boundary conditions are applied
(see Sect. 2.3). Therefore a periodic microstructure and
in turn a periodic mesh should be used. In order to
ensure the periodicity of the population of defects, each
time a new defect intersects a side of the cube, it is

copied on the other side (thus there are four copies
if an edge is intersected, and eight if the defect con-
tains a vertex of the cube). All of these copies are
taken into account to determine intersections between
defects. Fritzen et al. (2012) verified several statistical
properties of the representativeness of this process.

The cell with the preceding defect population is
meshed with NETGEN software (Schöberl 1997). This
tool first meshes surfaces, then volumes, and generates
a non structured tetrahedral mesh. Periodicity of the
mesh is imposed so that opposite sides of the cube have
identical surface meshes. A maximum element size of
hcell = r is imposed globally on the cell, but on the sur-
face meshes of the defects the maximum element size
is reduced to hvoid = r/5. The mesh is thus refined
on the part of the surface mesh corresponding to the
surface of voids. Finally, tetrahedral second-order 10-
nodes elements with reduced integration are used to
limit volume locking (due to large strain plasticity) in
the FEA simulations. An example of the meshing of a
microstructure with 27 cells is shown in Fig. 1a.

As cells are cubic, they define a canonical orthonor-
mal frame (O, e 1, e 2, e 3) where O is a vertex of the
cube and the unit vectors e 1, e 2, e 3 are parallel to
edges of the cube (in the initial configuration). All ten-
sor components will be expressed in this frame.

Although a diversity of microstructures were used
in this study, several are repeatedly referred to in this
article; they are shown in Fig. 1. The microstructures
R1 and R2 are two random microstructures with 27-
voids of radius r = 0.08Lcube, R1. The one-pore cell
unit is defined as a cubic matrix of size Lcube, unit =
Lcube, R1/3 containing a unique defect of radius r =
0.08Lcube, R1 (same radius as before, and thus same
volume fraction). It is meshed with the same procedure
and same parameters as the larger cells with a random
population. Finally the microstructure lattice consists
in 3 × 3 × 3 defects arranged on a cubic lattice; it is
meshed in the sameway as the randommicrostructures,
so the mesh is not the assemblage of 27 small identical
meshes of the unit cells.

2.2 Material behavior law at finite strain

Finite element simulations are carried out
usingZset software (Besson andFoerch1998;www.zset-
software.com 2020). As the matrix can undergo large
deformation before coalescence, the simulations are
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Fig. 1 Meshes of some microstructures repeatedly used in the study
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performed in a finite strain framework. A local objec-
tive frame approach is adopted to formulate the consti-
tutive law of the matrix (Besson et al. 2009). The strain
rate D∼ and Cauchy stress σ∼ tensors are convected in a
corotational frame:

ė∼ = Q
∼
T D∼ Q

∼
(2)

s∼ = J Q
∼
T σ∼ Q

∼
(3)

where Q
∼

is a rotation matrix verifying −Q
∼
T Q̇

∼
=

Q̇
∼
T
Q
∼

= W∼ (W∼ = skew(Ḟ∼ F∼
−1) is the material spin

tensor). This choice of corotational frame is equiva-
lent to using the Jaumann derivative of the stress in the
hypo-elasticity law.

The constitutive law is then defined by a classical
additive decomposition of convected strain rates in a
isotropic elastic part and a plastic part. Isotropy and
time-independent perfect plasticity (absence of hard-
ening) with a vonMises yield criterion are assumed for
the matrix material:

ė∼ = ė∼e + ė∼p

e∼e = 1 + ν

E
s∼ − ν

E
(tr s∼)1∼

svm =
√
3

2
s∼
dev : s∼dev

f (s∼) = svm − R0 ≤ 0

ė∼p = ṗ
∂ f

∂s∼

(4)

with s∼
dev the deviatoric part of the rotatedCauchy stress

tensor s∼, svm the equivalent von Mises stress and ṗ =√
2
3 ė∼p : ė∼p playing the role of the plastic multiplier.

The Young modulus, the Poisson ratio and the yield
strength are respectively chosen as E = 200GPa, ν =
0.3 and R0 = 500MPa, hence R0/E = 0.0025. The
cumulative plastic strain is defined as:

p =
∫ t

0
ṗ dt (5)

where t is actually a fictitious time in rate-independent
plasticity, acting as an increasing loading parameter.

During the finite element analysis, this constitutive
law is integrated at each quadrature point of the finite
element mesh by an implicit Euler method, then the

global static equilibrium is solved in total Lagrangian
formulation by a Newton-Raphson scheme with a con-
sistent tangent matrix.

2.3 Boundary and loading conditions

The boundary and loading conditions follow that of
Ling et al. (2016). Periodic boundary conditions are
applied on the sides of the cube (Besson et al. 2009).
The displacement field u should therefore have the
form:

u = (F̄∼ − 1∼) · x 0 + v (x 0) (6)

with F̄∼ the average deformation gradient, and v a dis-
placementfluctuationfield, periodic andwith zero aver-
age gradient over the cell. The periodicity of v and the
anti-periodicity of traction vectors mean that:

v (x +
0 ) = v (x −

0 ) (7)

σ∼ · n (x +
0 ) = −σ∼ · n (x −

0 ) (8)

if x +
0 and x −

0 represent two homologous points on
opposite sides of the periodic mesh and n (x 0) repre-
sent the outward-pointing normal to themesh boundary
at x 0. In this formulation, the degrees of freedom are
the three components of the displacement fluctuation
field for each node of themesh and the nine components
of F̄∼ (or rather of E∼ = F̄∼ − 1∼).

The macroscopic Boussinesq (or first Piola-Kirch-
hoff) and Cauchy stress tensors are defined by:

S̄∼ = 1

V0

∫
V0

S∼ dV0 = 1 − f0
V0

∫
Vmatri x
0

S∼ dV0 (9)

σ̄∼ = 1

J̄
S̄∼.F̄∼

T
(10)

where J̄ = det F̄∼ and V0 is the volume of the cell
(matrix and defects) in the initial configuration. The
integration onV0 implicitly considers that stress iswell-
defined and identically zero in the voids.

The simulations are carried out at constant (macro-
scopic) stress triaxiality and Lode parameter. These
quantities are here defined as:

T = tr σ̄∼
3σ̄vm

(11)
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L = 2σ̄2 − σ̄1 − σ̄3

σ̄1 − σ̄3
(12)

where σ̄vm is the vonMises equivalent stress calculated
from σ̄∼ and σ̄1 ≥ σ̄2 ≥ σ̄3 (with σ̄1 > σ̄3) are the three
eigenvalues of σ∼ . L = −1, L = 0 and L = 1 respec-
tively correspond to states of generalized tension, shear
and compression. An alternative definition of a Lode
parameterwith L = 1 for tension and L = −1 for com-
pression can also be found in literature (e.g. Barsoum
and Faleskog (2011); Wong and Guo (2015))

To ensure that T and L remain constant during the
simulation, a special macroscopic spring element was
developed by Ling et al. (2016). It acts on the Ei j

degrees of freedom, and its reaction forces are cal-
culated so that σ̄∼ keeps the following diagonal form
throughout the simulation:

σ̄∼ =
⎡
⎣σ̄1 0 0
0 σ̄2 0
0 0 σ̄3

⎤
⎦ = σ̄11

⎡
⎣1 0 0
0 η2 0
0 0 η3

⎤
⎦ (13)

where η2 = σ̄2/σ̄1 and η3 = σ̄3/σ̄1 are prescribed
constants which define the stress state. Therefore the
eigenvectors of σ̄∼ are collinear to the three axes of the
cube.

Unlike Barsoum and Faleskog (2011), Dunand and
Mohr (2014), Wong and Guo (2015), Zhu et al. (2018)
but like Zhu et al. (2020), Guo et al. (2020), we chose
not to consider the effect of a shear stress component
(for instance σ̄12) for computational cost reasons. How-
ever the cubic cell exhibits cubic symmetry and has an
anisotropic behavior. The additional stress component
could allow different loading orientations with identi-
cal T and L values. The consequences of this choice
will be discussed in Sect. 5.1.

To prevent degeneracy of solutions due to rigid body
motion, a global translation and a global rotation of the
cube should be fixed. The translation is taken care of by
fixing a vertex of the cube. For the rotation, a possible
method is to impose three additional constraints on the
average deformation gradient F∼ . For instance F∼ can be
supposed symmetric, as done by Ling et al. (2016):

F̄12 = F̄21 F̄23 = F̄32 F̄13 = F̄31 (14)

Another method is presented and discussed in app-
endix B.2.

With the aforementioned conditions, the simulation
can be strain-controlled by specifying only the aver-
age strain along the first axis E11 = F̄11 − 1. We
impose E11 = ε̇t , with ε̇ an arbitrary strain rate (the
value can be arbitrarily chosen, as the plasticity is time-
independent). At the beginning of the simulation t = 0,
the cell is undeformed, and F̄∼ = 1∼.

3 Description of a coalescence indicator

3.1 Typical results of a computation

With the method described in the previous subsection,
simulations can be carried out for several loading con-
ditions. In this study, we are interested in the evolution
of several quantities at failure. However defining duc-
tile failure and detecting it during the simulation is not
straightforward. To illustrate this issue, some enlight-
ening simulation results will be described first.

Three simulations on the microstructure R1 were
carried out in generalized tension (L = −1) at three
triaxiality levels T = 0.8, T = 1 and T = 1.4. The
Fig. 2a compares the macroscopic Cauchy and Boussi-
nesq stress components along the main loading axis
(the marker on the curves corresponds to the indicator
described later in Sect. 3.3). The three loading condi-
tions lead to a similar evolution of stress. The stress
maximum is reached shortly after the beginning of the
computation (for E11 < 0.01) then the stress decreases
monotonously and almost linearly. However, at a crit-
ical strain that depends on the loading condition, the
decrease in stress suddenly accelerates and the unit cell
quickly loses all its load-bearing capacity (at approx-
imately E11 = 0.5, 0.35, 0.18 for T = 0.8, 1, 1.4
respectively). This event can be thought as the fail-
ure of the cell. Moreover, at the same strain as the
onset of stress drop, the transverse strain E22 stabi-
lizes (Fig. 2b). This macroscopic failure is also related
to the behavior at a more microscopic level. Figure 2
shows the cumulative strain field p shortly after this
failure, for T = 1: plastic strain is concentrated in a
band, mostly parallel to a side of the cube (and perpen-
dicular to the main loading axis) but its exact shape fits
closely the distribution of voids.

Although the stress decrease acceleration is clearly
visible on the stress-strain plots in generalized tension,
it is difficult to define its exact location so as to deter-
mine the precise failure onset and compute relevant

123



200 C. Cadet et al.

(a)

(b)

(c)

Fig. 2 Typical computation results for the R1 microstructure

physical quantities at this instant. Moreover the stress
decrease does not generalize to shear-dominated load-
ing conditions. Therefore a more precise failure indi-
cator remains to be determined.

3.2 Available failure indicators in the literature

Several criteria for ductile failure in a unit cell have
been developed, and are reviewed for instance by Zhu
et al. (2020). The earliest approaches were purely geo-
metrical: Brown and Embury’s (1973) criterion deter-
mines when strain bands are oriented at 45◦ relative
to the main loading axis, whereas McClintock (1968)
and Tvergaard and Needleman (1984) (who modified
Gurson’s (1977) model) consider a critical porosity.
Following Needleman and Tvergaard’s (1992) work,
a class of criteria determines the instant when strain
is no more homogeneous and concentrates in the liga-

ments between voids. These criteria compare the norm
of the strain rate in a localization band and its value out-
side the band (or the average value throughout the unit
cell): if the ratio is higher than an arbitrarily chosen
value, failure is said to have been reached. Such cri-
teria are used for example by Barsoum and Faleskog
(2007) or Dunand and Mohr (2014). Similarly, Luo
and Gao (2018) and Vishwakarma and Keralavarma
(2019) consider unit cells composed of several lay-
ers and force strain localization to happen in the cen-
tral one (because the external layers contain smaller
voids or no voids at all): failure can then be moni-
tored by comparing the behavior of the layers. Another
class of criteria determines when a maximum stress or
force is reached. Such criteria can be derived by limit
analyses, for instance Thomason (1985), Benzerga and
Leblond (2014) or Morin et al. (2016). Guo and Wong
(2018) interpreted the maximum of an effective force
in terms of Rice’s (1976) criterion on strain localiza-
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tion.Another approach, adopted byKoplik andNeedle-
man (1988) and used for example by Ling et al. (2016)
defines coalescence as the transition to a specific strain
state: in coalescence, ligaments are in a state of uni-
axial straining (whereas the rest of the cell is rigid and
hardly deforms). Coalescence could also be interpreted
in terms of plastic and elastic energy, as done byWong
and Guo (2015). A last approach was proposed by Zhu
et al. (2020) and involves computing the macroscopic
acoustic tensor in order to directly apply Rice’s (1976)
criterion on strain localization.

However, as pointed for instance by Tekoğlu et al.
(2015), Guo and Wong (2018) or Zhu et al. (2020), the
above criteria actually described two different physi-
cal processes: strain localization and coalescence. Dur-
ing strain localization, strain concentrates in narrow
bands, which can be interpreted as a loss of ellipticity,
according to Rice’s (1976) analysis. As stated previ-
ously, Guo and Wong (2018) establish a link between
strain localization (through Rice’s criterion) and maxi-
mum force criteria. Nonetheless, the more direct appli-
cation of Rice’s criterion by Zhu et al. (2020) detects
localization significantly later than Zhu, Ben Bettaieb,
et al. (2018) interpretation. On the other hand, coa-
lescence represents the fusion of several voids into a
unique larger void during ductile failure. However the
material model described in this article contains no
ingredient to represent explicitly this process of coa-
lescing voids. The state of coalescence can be deduced
nevertheless from the FEM results: at some point in
the loading, the cell stops thinning and the plastic flow
inside becomes macroscopically uniaxial according to
Koplik and Needleman (1988).

As the Fig. 2a shows, the cell’s failure, defined by the
sudden accelerationof the stress decrease, is incorrectly
predicted by the instant of maximum force applied on
the cell (with our choice of periodic boundary condi-
tions, this force is here represented by S11). Due to
the absence of hardening, the maximum of S11 hap-
pens at the beginning in the simulation, much earlier
than the sudden stress drop. On the other hand, this
stress drop occurs simultaneously with the stabiliza-
tion of deformation in the 2-direction transverse to
the main loading 1-axis, and can thus be associated
with coalescence: the stabilization of the average trans-
verse deformation indicates that the macroscopic strain
becomes purely uniaxial. Coalescence thus seems an
accurate failure indicator in this situation. According
to Zhu et al. (2020), an ellipticity loss approach based

on the computation of the macroscopic acoustic ten-
sor could also give sensible values of failure strains.
This criterion was found to predict slightly earlier fail-
ure than a coalescence indicator. However Morin et al.
(2019) tried to apply coalescence and strain localization
approaches to match experimental results; both gave
acceptable results, with slightly better results for coa-
lescence. Therefore we will focus on the coalescence
approach.

3.3 Failure indicator based on the loss of full
rankedness of ˙̄F∼

The criterion of the stabilization of transverse displace-
ment, as used by Ling et al. (2016), suffers from two
main drawbacks. In a random population of voids,
strain localization bands might not be parallel to a face
of the cube, so monitoring E22 with respect to E11

might not detect coalescence. Moreover, this criterion
is limited to the detection of coalescence by internal
necking where voids coalesce in the plane orthogonal
to the main loading axis. However, for shear dominated
loading conditions (when the Lode parameter is close
to zero), coalescence is known to occur in shear bands
(Barsoum and Faleskog 2007, 2011). We generalize
here the stabilization of transverse deformation by not-
ing that for both internal necking and shear, deforma-
tion gradient has a specific form during coalescence.
After coalescence, there exist orthogonal unit vectors
e and e ′ such that F̄∼ = 1∼+ ε̇t e ⊗ e for uniaxial strain-
ing and F̄∼ = 1∼ + ε̇t (e ⊗ e ′ + e ′ ⊗ e ) for pure shear. In

both cases, det ˙̄F∼ = 0. Therefore, as coalescence takes

place, det ˙̄F∼ should vanish.
This behavior of det Ḟ∼ should be compared to the

homogeneous plastic deformation case (which is an
approximation, since strain may be concentrated in
some ligaments). Let us then consider the function:

δ(t) = ε̇−3(1 + ε̇t)3 det ˙̄F∼ (15)

which compares the evolution of det ˙̄F∼ to its theoret-
ical evolution in the case of homogeneous compress-
ible plastic flow. A derivation of the expression of δ

and an example can be found in appendix A. There-

fore, if δ(t) → 0, det ˙̄F∼ decreases faster than expected
by homogeneous plastic flow, and localization can be
considered to have taken place.
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The onset of failure can then be defined as the first
instant tc such that:

δ(tc) ≤ min(Amax
t<tc

δ(t), B) (16)

where A = 0.05 is a threshold comparing the maximal
and current values of δ and B = 0.005 is an absolute
threshold. The function δ keeps smaller values for sim-
ulations with L close to zero (as shown by the α2 factor
of Eq. (33) in appendix A. In these cases, the relative
threshold (depending on A)was found to be inappropri-
ate due to numerical errors, and an absolute threshold
B (consistent with the value of A) was implemented; it
is only needed for loading conditions with |L| < 0.3.
A sensitivity analysis with respect to the empirically
chosen values A and B is carried out in appendix A
and shows that the results which will be presented in
Sect. 4 are not strongly influenced by the values cho-
sen for A and B. The indicator is therefore robust with
respect to the choice of these parameters.

As this criterion using the δ function relies only
on macroscopic quantities (at cell-level), it is easy to
compute and does not make any assumption on the
position and orientation of the possible strain localiza-
tions. Moreover it can be used as a landmark in order
to stop the simulations shortly after failure in order to
spare computation time. However, the indicator detects
a loss of full rank of the deformation gradient rate, and
is therefore not adapted to loading conditions where
the deformation gradient rate is intrinsically of rank 1
or 2. This is especially the case for L = 0 for which
the material is initially in shear, so that the indicator is
activated in the elastic regime and predicts an early fail-
ure. This is acceptable for a perfectly plastic vonMises
matrix, but leads to an underestimation of the strain at
failure for materials whose hardening behavior delays
coalescence. Moreover it is not able to represent a third
and rarer form of coalescence known as necklace coa-
lescence. This form was studied by Gologanu et al.
(2001) for a cylindrical unit cell with an axisymmetric
loading corresponding to our L = 1 situation. The coa-
lescence between voids takes place along the cylinder
axis, which corresponds in our situation to the third and
least stressed axis. Necklace coalescence is not associ-
ated to a loss of full rank, so the δ indicator cannot be
activated. However for the loading conditions involv-
ing overall stress triaxiality considered in this work, the
proposed indicator has been found to be relevant in all
cases.

The failure onset tc can be determined with this
method for the different loading conditions, and allows
to define several quantities at the onset of coalescence:
deformation at coalescence Ec = E11(tc), stress at
coalescence σc = σ̄11(tc) and porosity at coalescence
fc = f (tc). In the following, the evolution of those
quantities and their dispersion due to the randomness
of microstructures will be studied with respect to T and
L parameters.

4 Results

4.1 Response of a microstructure subjected to
proportional loading with different stress
triaxiality and Lode parameter values

The random microstructures constructed in Sect. 2.1
have two main differences in comparison to standard
unit cells: they contain several voids and these voids
are located irregularly within the cell. In this section,
the effect of these differences on the behavior of cells
is investigated. Several microstructures are considered
and subjected to various loading conditions (defined
by T and L). Their failure behavior (evolution of Ec,
fc and σc with respect to T and L) are then compared.
The four microstructures shown on Fig. 1 are analysed:
two random 27-void cells R1 and R2, a unit cell, and
a 27-void cell, lattice, where the voids are distributed
following a 3 × 3 × 3 cubic cell. The four microstruc-
tures have the same porosity 6%, the same pore size
and are meshed with identical mesh size requirements
in order to limit the influence of mesh convergence on
the comparison (the mesh of the unit cell is thus com-
posed of significantly fewer elements than the other
three microstructures). Mesh size will be further dis-
cussed in Sect. B.1. The lattice cell allows to separate
effects due to the presence of several voids in the cell
from those due to the irregular void distribution.

Although the failure behavior on the whole T − L
space should be explored, it is instructive to first con-
sider constant triaxiality or constant Lode parameter
slices of this space. Let us concentrate first on axisym-
metric loading cases characterised by fixed L = −1, as
in Ling et al. (2016).We focus on the zone of intermedi-
ate triaxiality T ∈ [0.7, 2.0], as usual in unit cell studies
(Guo and Wong 2018; Vishwakarma and Keralavarma
2019). We did not study the very low triaxiality regime
T < 0.4 where the phenomenon of void collapse takes
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place (Bao and Wierzbicki 2004; Liu et al. 2016). Tri-
axiality levels T ∈ [0.4, 0.7] were not studied so as to
limit the duration of simulations: coalescence generally
happens with the samemechanisms as for T > 0.7, but
at significantly higher strain values.

The evolution of Ec, fc, and σc with respect to T are
shown on the left side of Fig. 3. The four microstruc-
tures display globally similar responses: Ec decreases
monotonously with increasing Twhile σc increases lin-
early with T . fc behaves similarly to Ec, except for
the microstructure R2: fc is still a mainly decreas-
ing function of T but a local maximum is found at
T = 1.2. Note that the evolution of Ec with respect
to T is smoother and less noisy than that of σc (for
T = 0.8, the stress value for the lattice cell is for
instance particularly low, when compared to the val-
ues at T = 0.6 or T = 1.0). A possible explanation is
that, unlike E11 which is linearly increasing with time,
σ̄11 and f vary rapidly around the instant of coales-
cence: σ̄11 decreases sharply around the coalescence
(as evidenced by Fig. 15). Note also that for R2, the
porosity at coalescence for T = 1.2 is larger than for
T = 1.1, in contradiction to the overall evolution. Coa-
lescence is detected at approximately the same strain
in these two conditions, but as the porosity grows faster
with increasing triaxiality, the porosity at coalescence
is larger for T = 1.2 than for T = 1.1. This slight
deviation from the overall evolution with T seems due
to the randomness of the void population.

The evolution of strain at coalescence Ec was plot-
ted in a logarithmic scale, so as to illustrate the expo-
nential decrease for each microstructure. According to
Rice and Tracey’s (1969) results, a spherical void typ-
ical growth rate varies as exp(3T/2). If we assume
that coalescence happens at a given porosity (as for
Tvergaard and Needleman (1984)), Ec should vary as
exp(−3T/2). The evolution of strain at coalescence
for the random microstructures, the unit and the lattice
cell can be well represented by this simple relation, as
shown by the comparison with the straight line of slope
−3/2.

The evolution of failure-related quantities with
respect to triaxiality, at fixed L = −1 is thus very sim-
ilar for the various studied microstructures, although
some differences are visible. The situation is different
if the triaxiality T = 1 is fixed and the coalescence
behavior is studied with respect to the Lode param-
eter (the whole range L ∈ [−1, 1] is explored). The
results of the simulations are shown on the right side

of Fig. 3. Values for L = 1 are indicated with superim-
posed arrows but should be taken with caution because,
for these loading cases, the simulations diverged or the
failure indicator was not reached; the data for the last
computed point is indicated to serve as lower or upper
bounds for the real value at coalescence, if it exists.
The case L = 1, which corresponds to an axymmetric
loading where the two largest principal stress compo-
nents are equal, is associated by Gologanu et al. (2001)
to the necklace coalescence. Our criterion described in
Sect. 3 is not able to represent this type of coalescence,
which is not associated to a loss of full rank of the
deformation gradient rate. Examining the stress strain
curve of the unit cell in the case L = 1 (not shown here
for brevity) shows a stabilization of stress which could
be linked indeed to a coalescence event, undetected by
the δ indicator.

If we do not consider anymore the values for L = 1,
the unit and lattice cells behave in a similar way (the
difference between these two types of cells, which
should represent the same void configuration, is due
to the meshing): Ec increases slowly with L . This type
of evolution was reported by Zhu et al. (2020), Zhu
et al. (2018) and by Guo and Wong’s (2018) localiza-
tion indicator (when σ̄∼ does not have shear compo-
nents). However, Barsoum and Faleskog (2011), Wong
and Guo (2015), Dunand and Mohr (2014), Guo et al.
(2020), Zhu et al. (2018),Guo andWong (2018) (for the
latter two, in more general loading cases), report that
Ec is a convex function of L , with a minimum near
L = 0. Yet, in our case, a sharp decrease in ductility
is observed for L close to zero. This behavior in gen-
eralized shear corresponds to the expected behavior of
a perfectly plastic von Mises material which localizes
immediately in shear.

However the random microstructures R1 and R2 do
not exhibit the same evolution as the unit cell. Three
zones can be observed on the Ec − L plot for the R1
microstructure (schematized in Fig. 4). The first zone
corresponds to L ∈ [−1,−0.7], in which Ec increases
up to a maximum value on a cusp. For L ∈ [−0.7, 0.4],
Ec is convex in L and minimal for L = 0. The third
zone corresponds to L ∈ [0.4, 1[, where Ec decreases
from its maximum at L = 0.1 and stabilizes.The
zone boundaries correspond to local maxima (signif-
icantly higher than the rest of the data points) of Ec.
They are associated to slope discontinuities, although
Ec remains continuous. In the following, these three
zones will be referred to as: Low Lode parameter
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Fig. 3 Evolution of strain Ec (top), porosity fc (center) and
stress σc (bottom) at coalescence for various microstructures,
with respect to T in generalized tension L = −1 (left column)
or with respect to Lode parameter, at constant triaxiality T = 1
(right column). The points with arrows at L = 1 (right column)

correspond to the last data point from simulations that diverged
or for which the indicator was not reached: these points corre-
spond to lower bounds (for Ec and fc) and upper bounds (for σc,
as σ̄11 is decreasing with E11) for the values at failure, if it does
exist
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Fig. 4 Identification of three ductility zones, with respect to L
(R1 microstructure, constant triaxiality T = 1)

Extension Mode Zone (LLEMZ), Shear Mode Zone
(SMZ) andHighLodeparameterExtensionModeZone
(HLEMZ); the rationale behind these names will be
made clearer after Sect. 4.2. A similar decomposition
in three zones can be seen for the microstructure R2
although for different zone boundaries (L = −0.9 and
L = 0.55). To the knowledge of the authors, such an
evolution of Ec with respect to L was not found in liter-
ature. Although Guo and Wong’s (2018)’s coalescence
criterion yields a non-smooth evolution of Ec, there is
only one local maximum, for L > 0 (with our defini-
tion of L). An explanation for the existence of these
three zones will be proposed in Sect. 5.1.

An asymmetry between positive and negative values
of L can also be observed: ductility Ec is higher in gen-
eralized compression than in tension. This asymmetry
is present in previously mentioned studies, but the sign
of the difference varies among them. Our results are
consistent with Zhu et al. (2020), Dunand and Mohr
(2014) but Barsoum and Faleskog (2011), Wong and
Guo (2015), Guo and Wong (2018) have found cells
more ductile in generalized tension than in compres-
sion (taking into account the different definitions of
L).

Similar behaviors and differences between the unit
and lattice cells on the one hand and the random
microstructures on the other hand can be observed on
the results for porosity at coalescence. For the stress at
coalescence, the asymmetry between L < 0 and L > 0
is clear. There is no significant difference between the
microstructures at L > 0, for L < 0; σc is almost con-
stant for the lattice and unit cells, whereas it increases
slightlywith L for the randommicrostructures.Nozone

boundaries can be easily identified. The theoretical val-
ues for σc obtained for a von Mises material failing
when σvm = R0 are also represented. The type of evo-
lution agrees with the results for the unit cells, but due
to the porosity and the complex coalescence behavior,
stress levels are significantly lower for the cells, and
the slope of σc with respect to T for the simulations at
constant L = −1 also differs.

In contrast to the unit and lattice cells, the random
microstructures display several zones on their Ec − L
curve, which could be linked to different coalescence
behaviors. The different zones for the microstructure
R1 are also shown in the T − L space in Fig. 5. Mul-
tiple simulations were carried out for T ∈ [0.7, 1.1].
A simple interpolation using Gaussian Process Regres-
sion (as implemented in Scikit-learn (Pedregosa 2011))
is proposed and allows for an easier visualization in the
Ec − T − L space, although cusps at zone boundaries
are smoothed. The results of the simulations are also
projected in the Ec − L plane. The triaxiality has two
effects on Ec: Ec globally decreases with higher triax-
iality levels, in agreement with the previous study at
fixed L = −1, and the position of the zone boundaries
is modified (at T = 1.1, the central zone is wider than
at T = 0.7).

4.2 Relation to localization modes

Several ductility zones were identified on the strain
at failure curves for the random microstructure cells,
in contrast to unit cells. However the Ec curves only
give macroscopic information and shed no light on the
mechanisms inside the cell responsible for the drastic
changes in strain at coalescence. We now investigate
the relation between the presence of these zones and
the aspect of strain fields inside the cell.

The Fig. 6 shows, for eachmicrostructure, the cumu-
lative plastic strain field p shortly after coalescence (for
E11 
 1.1Ec). Each image corresponds to a different
L value (T = 1 is fixed). The images are inserted on
Ec − L curves in order to better correlate macroscopic
and field information.

All the p fields display zones of higher strain or
even strain localization (as localization is known to
happen before coalescence (Guo and Wong 2018)).
These zones are organized along approximately planar
bands. For both the unit and lattice cells, these bands
are exactly planar and correspond to a crystallographic
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Fig. 5 Strain at coalescence in the T − L space, for the R1
microstructure. Left: Coalescence surface interpolated by Gaus-
sian process regression for multiple loading cases (simulations

shown as red points). Right: Projection of the simulation results
on the L − Ec plane

plane of the void lattice. In the lattice cells, the three
rows of voids are equivalent, but this symmetry is bro-
ken after coalescence. For randommicrostructures, the
bands are more complex: a base plane can be identi-
fied but bands are distorted by void distribution so as
to include more voids.

For a given microstructure, the orientation of the
bands is not constant with L . Two different orienta-
tions can be distinguished. In the first one the band
is roughly parallel to a face of the cell (and perpen-
dicular to the main loading axis). For the cases with
L 
 1, the localization pattern is more complex and is
composed of several bands. The second type of orien-
tations is characterized by strain bands of overall direc-
tion approximately 45◦ relative to the faces of the cell
(although their precise shape is more complex). These
two orientations are partly constrained by the periodic
boundary conditions because strain localization bands
should be compatible with the periodicity of the cell.
Notice that bands oriented at 45◦ are only found for
Lode parameters close to zero (and only for L = 0
in the regular unit and lattice cells) whereas parallel
orientation is found for higher values of |L|. Observ-
ing more carefully the relation between the orienta-
tion of the bands and the macroscopic Ec − L curves
for the random microstructures shows that strain band
orientation is systematically associated with ductility

zones: the 45◦ orientation is only found in the SMZ
whereas parallel orientations are found in the LLEMZ
andHLEMZ.Therefore the transition betweenductility
zones can be linked to a change in strain localization
mode: between extension mode, with strain bands at
parallel orientation, and shear mode characterized by
the 45◦ orientation.

To better characterize the transition between duc-
tility zones, as explained by p fields, the similarity
between the p field at coalescence for a given value
of L and three reference coalescence p fields for L ∈
{−1, 0, 0.9} is here quantified for the R1 microstruc-
ture. Each loading case is considered a paragon of its
ductility zone (respectively the LLEMZ, the SMZ, and
the HLEMZ). If two p fields are similar, they should
represent a similar coalescence mechanism. A similar-
ity indicator is defined as follows. The p field after
coalescence (at strain E11 = 1.1Ec), as produced by a
FEM computation, is represented by the vector [P] of
p values at all Gauss points (for the R1microscructure,
the [P] vectors are around 7 × 105 components long).
The relative spatial position of Gauss points is irrele-
vant here. For two vectors [P] and [P ′] representing p
fields on the same mesh and with the same ordering of
Gauss points, the similarity can then be defined as the
angle (or rather its cosine) between [P] and [P ′]:
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Fig. 6 Link between Ec
evolution with respect to L
and cumulative plastic strain
field shortly after
coalescence (at strain
E11 = 1.1Ec, which
depends on the simulation).
Fixed triaxiality T = 1

(a)

(b)

(c)
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(d)

Fig. 6 continued

cos(θPP ′) = [P] · [P ′]
||[P]|| · ||[P ′]|| (17)

with ||[P]|| the standard euclidean 2-norm of [P]. If
[P] and [P ′] are proportional, cos(θPP ′) = 1. This
quantity is extracted from Z-set computations using
tools developed by Lacourt et al. (2020).

The evolution of the similarity indicator cos(θ) to
the reference strain fields L = −1, L = 0, L = 0.9 is
plotted in Fig. 7. The three reference strain fields are not
orthogonal, so significant overlap between the indica-
tors is possible. As strain fields at L = −1 and L = 0.9
are similar (cos(θ) = 0.85), their similarity indicator
shows comparable behavior. However the evolution of
the indicator for L = 0 is reversed. The three duc-
tility zones defined earlier are apparent on the figure.
For the LLEMZ L ∈ [−1, 0.7], the contributions of
L = −1 and L = 0.9 are high and almost constant
whereas the contribution of L = 0 is lower but increas-
ing. On the contrary, in the SMZ [−0.7, 0.5], strain
fields are predominantly linked with L = 0 and little
with L = −1 or L = 0.9. In the last zone, HLEMZ,
above L = 0.5, the similarity to the L = 0 strain field
decreases, whereas L = −1 and L = 0.9 contributions

are higher. Notice however that the L = −1 similar-
ity indicator is high at L = 0.5 and decreases with L ,
unlike the L = 0.9 indicator. For L 
 0.5, the situa-
tion is close to that of L = −1, whereas at very high L ,
anothermechanismcould come into play, especially the
competition between two perpendicular strain bands
observed earlier at very high L . Around the ductility
zone boundaries, strain fields quickly change from one
mode to the other. This competition between modes
could explain the cusps in strain at failure observed at
zone boundaries.

4.3 Dispersion due to microstructure sampling

In the previous two sections, two random microstruc-
tureswere considered and the evolution of coalescence-
related quantities with respect to loading conditions
were studied, showing significant differences when
compared to the unit cell. Rather than choosing fixed
microstructures and varying T and L , another approach
is to treat Ec, fc and σc as random variables (depending
on the microstructure), and study their statistics.
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Fig. 7 For the R1microstructure, similarity between the coales-
cence p field at varying L (T = 1 is fixed) and three reference
p fields obtained at L = −1, L = 0, L = 0.9

N = 20 microstructures with 27 voids and ini-
tial porosity f0 = 6% ( f0 is not a random variable)
were randomly and independently generated. Each of
them was subjected to the same loading conditions
(T, L) ∈ {(1,−1), (1,−0.5), (1, 0.5), (1.5,−0.5)}.
The results for Ec, fc and σc are shown in Fig. 8 as box
plots, and are compared to the values for the unit cell.
A strong relative dispersion is present for all loading
cases: the ratio of the standard deviation to the average
is 34%, 59%, 55% and 62% respectively. This indicates
a strong influence of the microstructure on the coales-
cence behavior. The results from unit cells do not rep-
resent well the behavior of the multiple void cells, and
lead for instance to an overestimation of the stress at
coalescence. Dispersion also depends on the loading
conditions: for T = 1, the case L = −1 shows lower
interquartile range than the cases L = ±0.5. This can
be linked to the proximity of zone boundaries for the
latter cases, as Ec was shown to vary sharply near those
boundaries. Moreover, and especially for L = 0.5,

Fig. 8 Dispersion of strain, porosity and stress at coalescence for different loading conditions, when considering multiple (N=20)
random populations of 27 defects (� : comparison with the results for unit cell)
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Fig. 9 Strain at coalescence results for five different microstruc-
tures. Left: For T = 1, evolution of the average, minimum and
maximum value of Ec (over the size-5 sample) with respect to L

(earlier results from 20 realizations are also plotted). Right: aver-
aged behavior with respect to T -L interpolated using Gaussian
Process Regression

somemicrostructures coalesce in tensilemodewhereas
others coalesce in shear mode (compare for instance
the strain fields of R1 and R2 in Fig. 6); the possibility
of different coalescence modes may increase disper-
sion. At higher triaxiality T = 1.5, L = −0.5, the
dispersion is reduced for Ec and fc when compared to
T = 1, L = −0.5 but the relative dispersion is not.
This is due to the overall effect of coalescence appear-
ing earlier at high triaxiality. Besides, the interquartile
range for σc is comparable for both triaxiality levels.

The previous results dealt with a small number of
loading conditions. In order to determine an effective
model of coalescence in random multiple-void cells
for all loading conditions, the T − L space should
be explored more extensively, while still keeping a
large enough set of microstructure realizations. As
in Sect. 4.1, multiple simulations were carried out
for T ∈ [0.7, 1.1] and L ∈ [−1, 1] on five ran-
dommicrostructures among which R1 and R2 (keeping
20 realizations would have been computationally too
expensive). The same loading conditions were tested
for each microstructure. The results for Ec are shown
in Fig. 9. Theminimal, maximal and average values are
first plotted for T = 1. In agreement with the preceding
results, significant relative dispersion is present, and its
extent depends on L: dispersion is particularly strong
near L = 0.5, whereas it is negligible for L = 0 (all the
microstructures agree on almost immediate localiza-
tion for generalized shear). Despite the dispersion, the
overall aspect of the Ec curve, as described in the pre-
vious section, and its decomposition in ductility zones,

are still observable. An interpolation by Gaussian Pro-
cess Regression of the results in the T − L space is
also proposed, based on the average value of the five
microstructures at each loading conditions. The aspect
is similar to that of Fig. 5.

5 Discussion

In this section, we discuss the significance of the results
presented up to now, and assess how representative the
results are and how far they can be generalized. First
we compare the failure indicator proposed in Sect. 3 to
Wong and Guo’s (2015) coalescence criterion, in order
to interpret the difference between unit and random
cells. The dispersion due to the randommicrostructures
is then statistically studied with increasingly large void
populations. Finally the influence of a work-hardening
material is also addressed.

5.1 Interpretation of the proposed failure indicator

In order to better understand the failure mechanism
identified by the δ indicator and the observed differ-
ence between the unit cells and the randommicrostruc-
tures, the δ indicator is compared to another failure
criterion reported in the literature. We focus on Wong
and Guo’s (2015) energy-based coalescence indicator,
althoughZhu, BenBettaieb, et al.’s (2020) andDæhli et
al.’s (2020) approachwithRice’s (1976) criterion could
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(a) (b)

Fig. 10 Comparison of the coalescence onset, as determined by
the δ-indicator and the energy-based criterion. All computations
at triaxiality T = 1. The hatched zones correspond to simulations

for which no minimum of Ẇe/Ẇp was observed, and therefore
no coalescence was identified by the energy-based criterion

also be useful. According to the former indicator, coa-
lescence is associated to concentration of the plastic
deformation in the ligament whereas elastic unloading
takes place elsewhere. Therefore coalescence can be
detected by monitoring the evolution of the plastic Ẇp

and elastic Ẇe work rates and the onset corresponds to
the minimum of the ratio Ẇe/Ẇp.

For our cells, the corresponding work rates can be
computed by the following equations:

Ẇp =
∫
V

σvm ṗ dV (18)

Ẇtot = V0 S̄∼ : ˙̄F∼ (19)

Ẇe = Ẇtot − Ẇp (20)

The plastic power can be computed either on the cell
(with voids) or more easily on the matrix, since stress
is zero in the voids. The total power, sum of the plastic
and elastic parts, can be computed by only usingmacro-
scopic quantities, according to the results of homoge-
nization theory (Besson et al. 2009).

The Fig. 10 compares the failure onsets, as deter-
mined by the δ and the energy-based criteria, with
respect to L , for the unit cell and the microstructure

R1. For the unit cells, the energy criterion identifies
a coalescence onset for all the simulations, and the
trend is typical of Ec vs. L curves in the literature (for
instance Zhu et al. (2020)). Moreover the two criteria
yield similar values of Ec, except for L = 0 where the
δ-criterion predicts early failure as previously. The sit-
uation is more complex for the randommicrostructure.
For the extension mode zones of the curves, the two
criteria also yield very similar results, so they can be
thought to represent the same failure mechanism. On
the other hand, the energy-based criterion fails to acti-
vate in the SMZ, so no coalescence is detected, accord-
ing toWong andGuo’s (2015) definition. The evolution
of the power ratio Ẇe/Ẇp for the unit and the R1 cells,
at L = −1 and L 
 0.2 (in the SMZ for R1), is shown
on the Fig. 11a: contrary to the unit cell and the L = −1
case for R1, the L = 0.2 does not show any minimum
of the power ratio. In all simulations, the elastic power
does not become negative because, unlike Wong and
Guo’s (2015) unit cell, our microstructures do not pos-
sess large void-free regions, in which an elastic unload-
ing can take place.Moreover the simulations also differ
by the evolution of porosity (Fig. 11b): unlike the other
three cases, the random microstructure with L = 0.25
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(a) (b)

Fig. 11 Comparison of the evolution of power ratio Ẇe/Ẇp (left) and of porosity f (right), for the unit and R1 cells in two loading
cases: T = 1, L = −1 and T = 1, L = 0.25

does not show any acceleration of void growth during
failure, which is typically observed for coalescence.
This comparison shows that the δ criterion acts as a
coalescence indicator in the LLEMZ and the HLEMZ,
and correctly predicts failure in the SMZ according to
another mechanism: localization along 45◦ bands in
shear. As failure should happen quickly in the SMZ
for a von Mises matrix, the results obtained for the δ

indicator appear more accurate than those for a pure
coalescence criterion.

The existence of the three ductility zones and the
lower ductility in the SMZ could actually be due to
boundary conditions. As noted previously, two evolu-
tions of Ec with respect to L are reported in the liter-
ature: in Barsoum and Faleskog (2011); Dunand and
Mohr (2014); Wong and Guo (2015), strain at coales-
cence is minimal for L = 0 whereas it increases almost
linearly for Zhu et al. (2018, 2020). The difference
between these two groups of studies is that the former
consider a shear stress component in Eq. (13). Several
loading conditions therefore correspond to the same
triaxiality and Lode parameter, and the reported strain
at coalescence is the minimum value over all tests at
a given (T, L) couple. Coalescence therefore happens
earlier than in the absence of shear stress, and thismight
lead to different responses, as pointed by Zhu et al.

(2020). Another point of view is that the cubic unit cells
have an anisotropic localization behavior. Although the
cubic cell paves space when periodic boundary con-
ditions are enforced, the axes parallel to the sides of
the cube remain privileged, and the response of the
homogenized material displays anisotropy. As local-
ization bands should be compatible with the periodic
boundary conditions, they are always parallel or around
45◦ to one face of the cube (Coenen et al. 2012).Adding
a shear stress component amounts to changing the prin-
cipal loading directions relatively to the cube, and coa-
lescence occurs when the most favorable band acti-
vates.

In the present study, shear stress was not consid-
ered but for the random microstructures, it was shown
that coalescence can happen either by a localization
band perpendicular (corresponding to the LLEMZ and
HLEMZ) or oriented at 45◦ to the main loading axis
(for the SMZ). Therefore the random microstructures
appear softer than the unit cells in that they allow
several localization band orientations. The resulting
response of the cell is then due to a competition between
a limited number of coalescence modes (instead of the
theoretical infinity of orientations considered by Bar-
soum and Faleskog (2011) for instance). The LLEMZ
and the HLEMZ correspond then to the evolution
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shown by Engelhardt, et al.’s (2018) study, whereas the
response of random microstructures in the SMZ near
L = 0 is closer to that of unit cells in Barsoum and
Faleskog (2011)’s study.

5.2 Influence of the number of voids

The microstructures considered in the above sections
were composed of 27 voids. A small number of voids
allows to investigate the effect of a cluster of pores
whereas a sufficiently large number can provide results
for an effective homogenized material. As pointed by
Morin et al. (2016), the homogenization theory does not
stricto sensu apply to coalescence, which takes place
in a small area in the immediate vicinity of voids.

For computational homogenization with a vol-
ume element (VE) approach, random microstructures
should contain enough voids to reduce the uncertainty
due to sampling and limit the influence of boundary
conditions (as there is no intrinsic length scale, the size
of the VE is only determined by the number of voids
it contains). However the computation power required
to simulate large cells with many voids, which lead to
FEM problems with millions of degrees of freedom, is
prohibitive if carried on dozens of loading conditions
and microstructures. This problem is in part mitigated
by the use of periodic boundary conditions: Kanit et al.
(2003) showed that homogenized properties converge
faster with VE size in this case than with kinematic or
static uniform boundary conditions. Their study dealt
however with elasticity and the extrapolation to coa-
lescence properties is not possible yet. Hure (2021),
who carried out simulations of cells with random voids
up to coalescence, compared cells with different num-
ber of voids (up to 64) and reported that the maximum
stress reached during the simulation stabilizes with the
number of voids (indicating the existence of a represen-
tative volume element), but the stress at coalescence
still shows dispersion between realizations. However
only five simulations were performed for each number
of voids, which is limiting for a statistical analysis of
dispersion.

In a complementary approach,we compare the strain
at coalescence results for cells with different numbers
of voids: 27, 64, 125. All cells are generated with
the process described in Sect. 2.1 and their porosity
is always 6%; the meshing parameters are however
adapted so that the ratio between void radius and maxi-

mum element size remains constant for all cells. There
are typically 2 × 105, 6 × 105 and 1 × 106 nodes
for meshes of cells embedding 27, 64 and 125 voids
respectively. As the computational cost of the simu-
lations increases with the number of voids, we only
considered two loading conditions T = 1, L = −1
and T = 1, L = −0.5 and a smaller number of 125-
void cells than the twenty 27-void cells already used
in Sect. 4.3. Examples of p fields after coalescence
for a microstructure with 125 voids (Fig. 12) display
very complex localization paths between voids, but still
show a principal direction parallel to or at 45◦ from the
faces.

Dispersion results are shown in Fig. 13. For the
T = 1, L = −1 case, dispersion is comparable for the
three types of cells: a Brown–Forsythe test (Brown and
Forsythe 1974) was carried out to verify the equality of
variances for the 27, 64 and 125-void groups of cells
(this test and the following one use the Scipy imple-
mentation (Virtanen 2020)). The statistical p-value is
0.19 so the hypothesis of equal variances cannot be
rejected. The mean failure strain is significantly lower
for 64 and 125-void cells than for 27-void cells, as
proven by a one-way ANalysis Of VAriance (Heiman
2001) between the three groups (p-value of 0.002).
However for the T = 1, L = −0.5 loading case,
the dispersion is significantly lower for the 64-void
cell (Brown–Forsythe test between the three groups:
p-value of 0.026). The average failure strain seems to
decrease with the number of voids (an ANOVA test
could not be performed due to the unequal variances)

Therefore failure seems to begin earlier for cellswith
more voids. This could be explained by the higher prob-
ability of a favorable path for a localization bands when
the number of voids grows. Variance remains high for
all groups of cells, but it is possible that the number
of voids reduces dispersion. The simulations evidence
that the size of the volume element can exert an influ-
ence on the failure results. The above simulations there-
fore extend Hure’s (2021) study with the results from
larger and more numerous cells (allowing a statistical
analysis) and are in agreement with his findings. More
simulations at an even higher number of voids could
be carried out to reinforce the statistical significance of
the previous conclusions.
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(a) (b)

Fig. 12 Cumulative plastic strain fields after coalescence for a microstructure with 125 voids

(a) (b)

Fig. 13 Dispersion in the strain at coalescence for cells containing 27, 64, 125 voids, in two loading cases

5.3 Influence of material behavior

The results previously described hold for a perfectly
plastic material. However hardening can mitigate the
effects of softening due to void growth, and delay coa-
lescence. We here consider two other types of material
behavior characterised by their flow stress functions

R(p) replacing the constant R0 used for perfect plas-
ticity in Eq. (4):

R(p) = R′
0 + Kpn (power law hardening) (21)

R(p) = R∞ − (R∞ − R′
0) exp(−bp) (saturating exponential)

(22)
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(a) (b)

Fig. 14 Comparison of different hardening behaviors. a yield function for each hardening type. b Comparison of the Ec − L curves
for each hardening type on the microstructure R1. All computations at fixed triaxiality T = 1

with R′
0 = 350 MPa, R∞ = 500 MPa, K = 343.5

MPa, n = 0.58, b = 10 or b = 200. The different
yield functions are shown in Fig. 14a.

For the R1 microstructure, at fixed T = 1 and vary-
ing L , a comparison of the strain at coalescence Ec

between the three hardening behaviors is shown in
Fig. 14b. On the one hand, for the power law hard-
ening and the slow saturating exponential hardening
b = 10, no central SMZ is observed (except a sudden
drop near L = 0), and the evolution is quite simi-
lar to that observed for unit cells in Sect. 4.1. On the
other hand, if hardening saturates more rapidly, as for
b = 200, the same response as in the perfectly plastic
matrix case is obtained. Therefore, hardening seems
able to prevent the change of coalescence mode for
intermediate values of L , at least if it does not satu-
rate too quickly so as to provide a stabilization effect
throughout the deformation process.

6 Conclusion

In the present study, random microstructures made of
identical spherical voids within an elastoplastic matrix
were generated, and simulated at constant stress tri-
axiality and Lode parameter with periodic boundary

conditions. The FEM simulations were carried out in
a large strain framework up to coalescence. The major
findings are the following:

1. Failure was identified using an indicator based on
the loss of full rank of the average deformation gra-
dient rate, while taking into account the response
in case of homogeneous deformation. The results
of this indicator are consistent with other indicators
reported by the literature but better captures shear
dominated localization modes.

2. Random microstructures show two failure modes,
that differ by the orientation of the localization
band: perpendicular to the main loading axis for an
extension mode, or oriented around 45◦ for a shear
mode. Unlike unit and lattice cells, the shear mode
is not limited to the immediate neighborhood of
L = 0. The competition between these two modes
leads to a non-smooth evolution of the strain at coa-
lescence with respect to the Lode parameter, show-
ing three zones on the Ec − L curve, with reduced
ductility near L = 0. The difference between unit
cells and random microstructures is reduced when
the matrix is no more perfectly plastic, due to a sta-
bilizing effect of hardening. However, the response
with respect to T is similar for unit cells and random
microstructures.

123



216 C. Cadet et al.

3. Whenapplying the same loading state tomicrostruc-
tures with similar characteristics, a significant dis-
persion is found in the results (up to 60% of relative
dispersion for strain at coalescence). This strong
dispersion is also found in simulationswith a higher
number of voids.

If a model expressing coalescence quantities with
respect to loading conditions is desired, using unit cells
therefore appears tomisrepresent the effective behavior
of a material with a complex void distribution, with
differences in the general evolution and oversight of
the statistical aspects. Care should therefore be taken
when applying results on unit cells to more complex
applications.

The present work could be extended in several ways.
Firstly larger population sizes will be considered based
onparallel computing, in order to improve the statistical
representativeness of the presented results. Secondly a
broader description of the mechanisms of coalescence
in random microstructures will be reached by adding
a macroscopic shear stress component to the loading
state, so as to explore a greater variety of loading paths.
Moreover the link between the proposed coalescence
indicator and strain localization criteria such as macro-
scopic or local loss of ellipticity will also be investi-
gated. Finally this work can be the basis to develop and
calibrate an effective damage and plasticity model for
materials containing randomly distributed pores. Hure
(2021) proposed an example of such a homogenized
model, but a new model could integrate the effects of
the Lode parameter and the dispersion. However simu-
lating enough loading cases and with sufficient statisti-
cal representativeness to completely explore the space
of parameters is computationally expensive, especially
as the effect of initial porosity should be taken into
account. Therefore a strategy to construct a surrogate
model with as reduced a number of required simula-
tions as possible should be developed.
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A About the δ indicator

This appendix provides several complements about the
δ indicator. Its expression is first derived by comput-
ing the homogeneous deformation of Green matrix. An
example of application is then presented. Finally a sen-
sitivity analysis regarding the threshold coefficients is
carried out.

A.1 Derivation of the expression for δ

Consider a perfectly plastic volume element (neglect-
ing here the elasticity) which deforms homogeneously
when subjected to the loading conditions (13). In order
to simply represent the porous nature of the cell, the
material behavior will obey Green’s (1972) isotropic
yield criterion (also used by Fritzen et al. (2013)):

f (σ∼) = σeq − R0

σeq =
√
3

2
σ∼
dev : σ∼

dev + C(tr σ∼)2
(23)

with C a constant (C = 0 corresponds to a von Mises
material, and for C = 1/2, there is no lateral contrac-
tion of the cube in tension). The other equations in Eq.
(4) are unchanged, but they are applied here to macro-
scopic quantities.

As the material behavior is isotropic, F̄∼ stays diag-
onal in the diagonalizing basis of σ∼ . Then F̄∼ can be
written as:

F̄∼ =
⎡
⎣1 + vt 0 0

0 b2(t) 0
0 0 b3(t)

⎤
⎦ (24)

where b2 and b3 are functions to be determined. As
D̄∼ = sym( ˙̄F∼ F̄∼

−1
), and F̄∼ is diagonal, D̄∼ can be written

as:

D∼ = Ḟ∼ F∼
−1 = diag

(
ε̇

1 + ε̇t
,
ḃ2
b2

,
ḃ3
b3

)
(25)

For a perfectly plastic Green material, the behavior law
in (4) reads:

D∼ = ṗ

σeq

(
3

2
σ∼
dev + C(tr σ∼)1∼

)

= ṗ

σeq

(
3

2
σ∼ + (C − 1

2
)(tr σ∼)1∼

)
(26)
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D∼ is diagonal so there are three constants α1, α2 and
α3 such that:

D∼ = diag(α1, α2, α3) (27)

α1 + α2 + α3 = 3C tr σ∼
σeq

. (28)

Combining (25) and (28) yields the system:

ε̇

1 + ε̇t
= ṗα1 (29)

ḃ2 = ṗα2b2 (30)

ḃ3 = ṗα3b3 (31)

The plastic multiplier is then ṗ = ε̇/α1
1+ε̇t and the differ-

ential equations canbe solvedwith the initial conditions
b2(0) = 1, b3(0) = 1:

b2 = (1 + ε̇t)α2/α1 b3 = (1 + ε̇t)α3/α1 (32)

Finally,

det Ḟ∼ = ε̇ḃ2ḃ3 = ε̇3
α2α3

α2
1

(1 + ε̇t)
α2+α3

α1
−2

= ε̇3
α2α3

α2
1

(1 + ε̇t)
−3−3C tr σ

σeqα1 (33)

The function comparing the behavior of det Ḟ∼ and the
homogeneous plastic deformation case is then:

δC (t) = ε̇−3(1 + ε̇t)
3−3C tr σ

σeqα1 det ˙̄F∼ (34)

The δ criterion used throughout the article is recovered
by setting C = 0, which corresponds to the simplified
case of a von Mises material. In this case, the criterion
depends no more on the applied σ∼ .

The evolution of δ for a simulation with T = 1 and
L = −1 (coalescence in uniaxial strain state) is shown
in Fig. 15, for two values of C : 0 and 1/2. For both
values of C , the vanishing of δC is simultaneous with
the stabilization of transverse displacement. However
the sharp drop of δC allows a more precise numeri-
cal determination of the onset of coalescence than the
more progressive stabilization of the transverse strain.
For C = 1/2, δ1/2 is approximately constant at the
beginning of the simulation, so that the hypothesis of

Fig. 15 Detection of failure through simple extension criterion
(stabilization of the transverse strain) or vanishing of δ function.
Microstructure R1 under the loading condition T = 1, L = −1

homogeneous flow in a Green volume element (taking
into account the porosity) well represents the overall
behavior of the cell with a von Mises matrix. However,
with C = 0, δ0 does not depend anymore on the stress
state, while still keeping the sudden drop of δC neces-
sary for the determination of the coalescence onset.

A.2 Sensibility analysis regarding the threshold
coefficients

Finally we verify that the δ indicator is a reliable indi-
cator of failure by assessing its sensitivity to the choice
of the empirically chosen threshold values. As the Eq.
(16) shows, the determination of the onset of coales-
cence relies on two thresholds: a relative one A, which
compares the current value of δ to its maximum, and
an absolute one B mostly active in shear-like condi-
tions. The values for those were chosen as A = 0.05
and B = 0.005 but a robust indicator should not be too
sensitive to these values.

Figure 16 compares the effect of different A and B
values on the Ec−L curve (common triaxiality T = 1,
microstructure R1). At constant B, the effect of A is
only visible in the HLEMZ and the LLEMZ, and gen-
erally negligible. At constant A, B only affects the coa-
lescence strain values in the SMZ. Although a change
in B can modify the strain by 0.05, the global aspect
of the curve is preserved. The determination of failure
by the indicator therefore appears robust with respect
to changes in the coefficients.
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(a) (b)

Fig. 16 Effect of varying threshold conditions for the failure indicator on the Ec − L curve. All simulations on the R1 microstructure,
at T = 1

B Effect of different meshing parameters and
boundary conditions

In this section, we review the simulation hypotheses
and assess their influence on the results presented up to
now, showing therefore how representative the results
are and how far they can be generalized. First we
verify that finite element discretization effects can be
neglected, and investigate the effect of different bound-
ary conditions.

B.1 Effect of the meshing parameters

All the simulations described up to now were car-
ried out on meshes of cells with the same mesh-
ing parameter. To determine the influence of mesh
size on coalescence results, the same microstructure
R1 was meshed with different meshing parameters
hcell/r0 ∈ {1.25, 1, 0.875, 0.625} (with the notation of
Sect. 2.1). The maximum element size near the voids is
also adapted to keep the ratio hcell/hvoid = 5 constant.
The same loading condition T = 1, L = −1 is applied
to the four meshes. Figure 17 shows that stress values
during the simulations differ between the meshes, but
the relative difference between the finest and coarsest
meshes is about 5%, which remains acceptable. The
onset of coalescence Ec which is our main quantity
of interest, is almost identical between the meshes, at
Ec = 0.33 ± 1%. Therefore the influence of mesh
refinement for randommicrostructure cells appear lim-

Fig. 17 Cauchy stress during the simulation for several meshes
of the R1 random microstructure with different meshing param-
eters. Loading condition: T = 1, L = −1

ited (although there was only a ratio of 2 between the
element sizes of the coarsest and thefinestmesh),which
justifies the value hcell = 0.08 adopted throughout this
study.

B.2 Effect of the boundary conditions

We here investigate the influence of boundary con-
ditions. The results from Sect. 4 are first compared
to those obtained with different boundary conditions.
Namely we investigate the influence of conditions on
the average gradient, and of planar faces conditions.
The consistency of results at L = −1 is also checked by
a comparison with simulations on axisymmetric cells.
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Fig. 18 Conditions on average deformation gradient obtained
by fixing some degrees of freedom on vertices of the cubic cell

The conditions imposed on the average gradient F̄∼
to prevent rigid body motion are first investigated. In
Sect. 2.3 we imposed F̄∼ symmetric, as for Ling et al.
(2016). However another reasonable choice would be
to fix some degrees of freedom at the vertices of the
cubic cell, as depicted in Fig. 18, which is the stan-
dard method for boundary value problems. A vertex is
already fixed in order to prevent translations, but by
fixing two degree of freedom on a second one, and a
last one on a third vertex, all rotations are fixed. This
can be reformulated as:

F̄12 = F̄13 = F̄23 = 0 (35)

i.e. F̄∼ is an upper triangular matrix. Due to the mixed
conditions imposedby themacroscopic spring element,
the results from the symmetric F̄∼ case cannot be easily
transposed to the triangular F̄∼ case. These two choices
lead to distinct proportional loading path classes and
should therefore be compared.

On the microstructure R1, at fixed triaxiality T = 1,
simulations were performed for several Lode param-
eters to compare the two sets of conditions on F̄∼
(Fig. 19a). The evolution of Ec is close between the
two types of conditions, and the same ductility zones
can be identified for the triangular gradient condition.
However, in that case, cusps seem to be less pronounced
than for a symmetric gradient; this may be due to the
different treatment of shear components by the two con-
ditions. Therefore the influence of the conditions on F̄∼
remains limited.

We then compare the effects of periodic and par-
allel faces boundary conditions. Parallel faces condi-
tions mean that the cubic cell retains parallel flat faces
throughout the computation (for instance all the points
on the x0 = 0 face have the same x-displacement). This
condition is more constraining than periodic bound-
ary conditions. As the comparison in Fig. 19b shows,
the two types of conditions lead to qualitatively dif-
ferent responses. For the parallel faces, no separation
between three ductility zones can be seen (except near
L = 0) and the response of the random microstructure
is closer to that typical of the unit cell. Moreover no
decrease of ductility near L = 0 is observed for the unit

(a)
(b)

Fig. 19 Influence of boundary conditions on the response of the cell. All computations at triaxiality T = 1
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Fig. 20 Evolution of the strain at coalescence with respect to T
for the cubic and 2D axisymmetric unit cells for porosity values
f0 = 6% and 1% (constant Lode parameter L = −1)

cell. Results for the unit cell differ between the parallel
faces and periodic boundary conditions, because in the
periodic case, faces are allowed not to remain strictly
parallel and planar. On the contrary, boundary condi-
tions made of parallel sides strongly hinder the shear
mode failure and only the extensionmode remains pos-
sible. The competition between these two modes tends
to postpone failure (see the cusps on Fig. 4). Therefore,
the reduced competition between modes may explain
an earlier coalescence for parallel unit cells. The pre-
ceding results show that boundary conditions exert a
strong influence on the response of the cell.

Finally, the consistency of results obtained at L =
−1 is checked. As this type of loading is axisymmet-
ric, a computationwith a 2D axisymmetric unit cell was
also performed for comparison. Such unit cells are fre-
quent in ductile fracture studies (Morin et al. (2015) for
instance). The diameter and the height of the cylinder
were chosen equal to Lcube. The porosity is still 6%, so
the radius of the void was modified to 0.22Lcube. The
boundary conditions for this cell differ slightly from
those described in Sect. 2.3: they are no more periodic
and are replaced by straight edges conditions. Besides
the virtual constant triaxiality element is not linked to
the average deformation gradient but to the displace-
ment of the top left node.

Figure 20 compare results for the unit cell and the
2D axisymmetric cell at varying stress triaxiality for

L = −1. In this type of loading, the unit cell was
shown in Sect. 4 to exhibit the same behavior as random
microstructures, compatible with a Rice-Tracey evolu-
tion. At initial porosity f0 = 6%, the axisymmetric
cell presents however a significantly higher exponent
(in absolute value) for the evolution of Ec with respect
to T . This effect seems due to the relatively high poros-
ity in the axisymmetric cell: as depicted in Fig. 20, the
evolution of Ec with respect to T for the low porosity
f0 = 1% axisymmetric cell is much closer to the one
predicted by Rice and Tracey.
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