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Mechanics Based on an Objective Power Functional 
 
A. Bertram, S. Forest 
 
During the recent years, the interest in non-classical material theories has significantly grown, due to the fact 
that classical theories can not describe certain effects, in principle. In particular, higher order gradient theories 
have turned out to become a promising remedy, since they open the way to conceptually new formats wide 
enough to include, e. g., internal length scales. 
 
The inclusion of higher deformation gradients raises many questions. One expects the parallel existence of 
higher order stress tensors, for which the balances and boundary conditions have to be generalized. This gener-
alization, however, is by no means trivial nor unique. In the present paper, these concepts are derived by posing 
invariance requirements upon a general principle of virtual power, as a linear and continuous extension of the 
balance of work. By such a procedure, a catalogue of different, but essentially equivalent load systems and bal-
ances can be obtained, which can be further particularised for specific materials. 
 
Introduction 
 
The principal aim of any mechanical theory is to decide whether a given motion of a body under certain circum-
stances is dynamically admissible or not. This aim can be achieved in different ways. Usually the admissibility is 
assured by proving that the laws of motion are fulfilled. For this purpose, most authors (i) introduce the forces 
and moments as primitive concepts, (ii) assume their objectivity under change of observer, and (iii) assume the 
Newton-Euler laws of motion to be valid with respect to an inertial observer. Consequently, the laws of motion 
are only invariant under Galilean transformations, but not under Euclidean ones, whereas for the material theory 
invariance with respect to the whole Euclidean transformation group is usually applied. 
 
This structure of a dynamical theory is both well-understood and well-established for simple materials. However, 
some drawbacks remain. 
 

• The key concept of this format, namely the forces and torques are generally invisible and not accessible 
by direct measurement. 

• There are, moreover, substantiated doubts that these concepts are unique. 
• There are many different force and stress concepts and, accordingly, different transformation behav-

iours. 
• The triade of force concept, equations of motion, and inertial observer contains a circularity. As a con-

sequence, it cannot be validated or falsified by experiments, in principle (see Bertram 1989). 
 
The generalization of these concepts for non-classical materials such as gradient ones is by no means trivial. The 
classical Cauchy stress principle has to be enlarged, the same as the balance laws and the boundary conditions. 
For that purpose, a clear scheme is needed, which leads to a framework for gradient theories of any order. 
   
The present approach does not start with forces and moments, but with the (total) mechanical power as a primi-
tive concept. In contrast to stresses, there is only one power, even for materials with internal or external con-
straints. This power is assumed to be objective or invariant for all admissible processes, as it does not depend on 
observers or frames of reference.  
 
Before we investigate the consequences of this invariance requirement, we extend the power functional to the so-
called virtual velocities in a linear and continuous way. It turns out then that the virtual power under all velocity 
fields resulting from a rigid body motion, i.e., with a transversal and a rotational part, tells us whether a motion is 
physically admissible. Because of the linear dependence of the virtual power on the velocities, the lost forces and 
moments can be deduced as the duals of translations and rotations, respectively. In our setting, they have to be 
objective, in contrast to the forces and moments, which comprise inertia terms. Consequently, the full Euclidean 
group applies to the equations of motion, and at this stage there is no need to distinguish between inertial and 
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non-inertial observers at all, which appears to be more reasonable, as an absolute space apparently does not exist 
in mechanics.  
 
Such a procedure, originally proposed by Clairaut, has been often applied, among others by Noll (1959, 1963). 
The derivation of the equations of motions from an invariance requirement of the power has been proposed for 
classical materials by Noll (1963), Green/ Rivilin (1964), Gurin/ Williams (1971), Germain (1972, 1973a), 
Maugin (1980), Gurtin (1981), Bertram (1983, 1989) and others. It turns out to be an efficient tool to derive 
balance equations and associated boundary conditions for a large variety of coupled physical-mechanical situa-
tions. The mechanical theory of materials with microstructure was handled in this way by Germain (1973b), and 
the theory of coupled fields in deformable continua including electromagnetism has been derived by Maugin 
(1980). After postulating the principle of virtual power for a system of forces in a Galilean frame, these authors 
make use of the postulate of objectivity of the virtual power of internal forces with respect to Euclidean transfor-
mations. In contrast, the present work departs from this scenario by stating a principle of objectivity for the total 
power and derives the dynamical concepts, the laws of motion and the boundary terms from it.  
 
For the virtual power one can apply a representation theorem for continuous and linear functionals on vector and 
tensor fields, by which dual fields of all orders are introduced, which stand for higher order stress fields. These 
can partially be turned into surface fields by applying the Gauss transformation. By repeatedly applying this pro-
cedure, we can produce a catalogue of different, but essentially equivalent forms of the virtual power functional, 
which correspond to different force and torque concepts and different boundary values for each of them. Such a 
catalogue becomes helpful for establishing the frameworks for gradient theories. In all cases, we obtain just two 
vectorial equations of motion in terms of dynamical quantities, which are equivalent to the various forms of the 
principle of virtual power. 
 
The partition of forces into internal and external contributions can only be made within material theory which is, 
however, beyond the scope of this treatise. In fact, such a partition does not result from the form of the dynamic 
fields in which they appear in the balance equations. It will be shown that there remains some freedom to shift the 
dynamical field from the interior of a body to its surface, or vice versa. The identification of body forces and of 
surface tractions becomes feasible only after specifying the dependence of the fields on independent variables. 
Thereafter one would declare tractions to consist of the short range forces, and body forces of the long range 
ones.  
 
 
Notations 
 
Throughout the text a direct tensor notation is preferred. Vectors are denoted by bold small letters, tensors by 
bold capitals, often with a suffix indicating its order. A vector is considered as a first order tensor. The norm of a 
tensor of arbitrary order k is denoted by |Yk| , and the inner product between tensors of arbitrary, but equal order 
is "⋅". The Rayleigh product of a second order tensor Y2 and a tensor of arbitrary order T is defined by  
 
    Y2 ∗ T  : =  T ik ... l (Y2 gi) ⊗ (Y2 gk) ⊗ ... ⊗ (Y2 gl) 
 
with respect to any vector basis {gi}. 
 
The symmetric part Y2

sym of a second order tensor Y2
 is 

 
    Y2

sym  =  ½ (Y2 + Y2
T) 

 
and its skew part  
   Y2

skw  =  ½ (Y2 − Y2
T) . 

 
The axial vector Y2

axi of a second order tensor maps any vector x by means of the cross product as does its skew 
part 
    Y2

axi × x  =  Y2
skw x 

 
Some useful rules will be needed for field formulations. For any vector field v we have  
 
   curl v  =  2 (grad v)axi 
and 
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   grad curl v  =  curl (grad v)T. 
 
For any second order tensor field Y2 we obtain the identity 
  
   div Y2

skw  =  − curl Y2
axi 

 
and for any vector field v   
   Y2

skw ⋅ grad v  =  Y2
axi ⋅ curl v . 

 
For the position vector ro with respect to a point of reference O and any constant vector ω , one finds for the skew 
field 
   [grad (ω × ro)]axi  =  ½ curl(ω × ro)  =  ½ ω (div ro) − ½ (grad ro) ω  =  ω   
 
and, consequently,  
   Y2 ⋅ grad(ω × ro)  =  Y2

axi ⋅ curl(ω × ro)  =  2 Y2
axi ⋅ ω. 

 
For all other notations, see BERTRAM (2005). 
 
Table of frequently used notations 
 
  ϕ, ψ observers (frames of reference) 
  ω  angular velocity between two observers 
  ρ mass density 
  c shift between two observers 
  doϕ  moment of momentum 
  fϕ   resultant force  
  fϕ   resultant lost force  
  lϕ  linear momentum  
  Lϕ velocity gradient  
  moϕ    resultant moment with respect to a point of reference O 
  moϕ   resultant lost moment with respect to a point of reference O 
  pϕ power 
  Q relative rotation between two observers  
  rϕ position vector 
  vϕ velocity field  
  Yϕ i  dynamic variables, tensor fields of order i 
 
 
Global Theory 
 
Let ϕ  be an observer (or a frame of reference), and κϕ  a motion of a material body as it is monitored by ϕ . Then 
this motion appears for another observer ψ  as κψ , and the mapping between the two motions is induced by the 
usual Euclidean transformation of the position vectors 
 
  rϕ (P, t)  =  Q(t) rψ (P , t) + c(t)      (1) 
 
point-wise applied, i. e., for all material points P and all times t . Q(t) is a time-dependent rotation (proper or-
thogonal) and c(t) a time-dependent translation vector. The action of the Euclidean group on all other kinematical 
quantities is well known, in particular that on the velocity field vϕ , ψ  =  rϕ , ψ (P, t) •  at a certain instant 
 
  vϕ  =  Q vψ + Q• QT (rϕ − c) + c•  =  Q vψ + ω × (rϕ − c) + c•     (2) 
 
with ω being the axial vector of the skew tensor Q• QT. By an appropriate choice of the points of reference it is 
possible to achieve c ≡ o at any particular instant. The action of the Euclidean group on the velocity gradients  
Lϕ , ψ : =  grad vϕ , ψ  is 
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  Lϕ  =  Q Lψ QT + Q• QT  
 
so that their symmetric parts  Dϕ , ψ  : =  (grad vϕ , ψ)sym  are transformed in an objective way 
 
  Dϕ  =  Q Dψ QT  
 
and their skew parts Wϕ , ψ  : =  (grad vϕ , ψ)skw  after 
 
  Wϕ  =  Q Wψ QT + Q• QT. 
 
Our analysis is based on the notion of the (total) mechanical power as a primitive concept. Roughly speaking, the 
current power of the body at a certain instant is a real number, which depends not only on the current value, but 
on the entire motion of the whole body, if the material has a memory. If, however, the body is currently at rest 
with respect to some observer, then he would expect the power to be zero at such instants. This gives rise for the 
following assumption. 
 
Principle of Determinism. 
For any motion of the body  κϕ  for some observer ϕ  there exists a power functional pϕ (κϕ ) that gives the power 
which the body currently produces, i.e. at the end of this motion. It is zero, if the current velocity field is zero for 
all points of the body.  
 
Thus, by the last assumption we have the implication 
 
  vϕ ≡ o  everywhere ⇒   pϕ (κϕ)  =  0 . 
 
Instead of postulating laws of motion, the criterion for distinguishing between dynamically admissible from non-
admissible motions is chosen here as an objectivity requirement. 
 
Principle of Objectivity. 
A motion of the body is dynamically admissible if and only if the power functional for all (sub)processes and 
(sub)bodies is objective (or invariant) under all changes of observer 
 
  pϕ (κϕ)  =  pψ (κψ) .        (3) 
 
 
One is tempted to state that the power is a linear functional of the velocity field. As the power is only defined for 
some particular process, the velocity field at its end is then determined by the process, so that linearity has no 
meaning, unless we allow for all other fields of a linear space. We will call these fields virtual velocities. Their 
space δVϕ , called the space of virtual velocities, contains the velocity field as a distinguished member. Also, it 
contains all velocity fields resulting from arbitrary rigid body motions. It has to be endowed with a linear and 
topological structure, in order to give properties of functions like linearity and continuity a precise meaning.  
 
For the linear operations of such fields we will introduce them point-wise, as usual. The topological structure, 
however, is non-trivial. We will assume further-on that all velocity fields are p-times piecewise differentiable for 
some  p ≥ 1, which shall not be specified yet. For introducing the topological structure on δVϕ , we use the p-
norm  

  |δvϕ | p  : =  √ ∫
B

[|δvϕ (x)|2 + |grad δvϕ (x)|2 + ... + |grad p δvϕ (x)|2] dV  (4)  

for all δvϕ ∈δVϕ . This makes a topological vector space out of δVϕ , which is contained in the usual Sobolev-
space W  p,2. We will further-on assume that the current velocity field is always contained in δVϕ. This assumption 
restricts the regularity of the velocity fields in a way which is not appropriate for certain purposes and so could be 
released. E. g., shock waves, shear bands, and other localizations will require weaker regularities in order to 
allow also for non-smooth fields with singularities. For the present context, however, we will not include such 
behaviour for the sake of simplicity and clearness. 
 
For another observer ψ  we analogously introduce the space of virtual velocities as δVψ , the elements of which 
are transformed in the same way as the velocities  
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  δvϕ  =  Q δvψ + Q• QT (rϕ − c) + c•       (5) 
 
between two observers.  
We are now able to introduce the virtual power as a continuous extension of the power being linear in the virtual 
velocities. 
 
Definition. During a motion of a body, at each instant the virtual power is a functional  
 
  δpϕ (κϕ , • ) :  δVϕ  →  R 
 
with the following properties: 
(P1) it is continuous and linear 
(P2) it extends  pϕ , i.e., 
 
  δpϕ (κϕ , vϕ) = pϕ (κϕ)   for  vϕ ∈δVϕ        (6) 
 
(P3) it transforms like  pϕ , i.e., for all observers ϕ  and ψ  we have 
 
  δpϕ (κϕ , δvϕ) − δpψ (κψ , δvψ)  =  pϕ (κϕ) − pψ (κψ)    (7) 
 
if δv is transformed like v after (5).   
 
The existence of such an extension is generally assured, but it is by no means unique. However, this non-
uniqueness will have no influence on the distinction between dynamically admissible and non-admissible mo-
tions. 
   
 If we substitute the transformation of the virtual velocity field in (P3), we obtain for all motions (admissible or 
not) 
 
  δpϕ (κϕ , Q δvψ + Q• QT(rϕ − c) + c•) − δpψ (κψ , δvψ)  =  pϕ (κϕ) − pψ (κψ) 
 
and by the linearity of the virtual power functional 
 
  δpϕ (κϕ , Q δvψ) − δpψ (κψ , δvψ)  =  pϕ (κϕ) − pψ (κψ) − δpϕ (κϕ , ω × (rϕ − c)) − δpϕ (κϕ , c•) 
 
for all δvψ ∈δV ψ . Regarding the dependencies upon the virtual power, the right hand side of this equation is 
constant. The only linear function which equals a constant, is the zero function. Thus, 
     
  δpϕ (κϕ , Q δvψ)  =  δpψ (κψ , δvψ)  for all δvψ ∈δVψ .    (8)  
 
The remaining parts of the equation are 
 
  δpϕ (κϕ , ω × (rϕ − c)) + δpϕ (κϕ , c•)  =  pϕ (κϕ) − pψ (κψ) . 
 
By the linearity of the virtual power, there exist two time-dependent vectors for every observer which give the 
virtual power for a translational field 
 
  δpϕ (κϕ , vo)  =  fϕ ⋅ vo         (9) 
 
and for a rotational field 
 
  δpϕ (κϕ , ω × rϕ)  =  moϕ ⋅ ω       (10) 
 
such that 
  δpϕ (κϕ , ω × (rϕ − c)) + δpϕ (κϕ , c•)  =  fϕ ⋅ vo + moϕ ⋅ ω   (11) 
 
with the relative velocity of the reference point (which need not be a material point) 
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   vo = c• − ω × c . 
 
Following Hamel (1949), we will call the vector fϕ the resultant lost (or generalized) force and the vector moϕ  

the resultant lost (or generalized) moment of the body induced by the virtual power functional δpϕ . The resultant 
force fϕ is the lost force completed by the inertia term 
   
  fϕ  : =  fϕ + lϕ

•        (12) 
 
and the resultant moment moϕ  analogously 
 
  moϕ  : =  moϕ + doϕ

•       (13) 
 
with the linear momentum 

  lϕ  : =  ∫
B

rϕ
• ρ dV  ⇒ lϕ

•  =  ∫
B

rϕ
•• ρ dV  (14) 

and the moment of momentum 

  doϕ  : =  ∫
B

rϕ × rϕ
• ρ dV  ⇒ doϕ

•  =  ∫
B

 rϕ × rϕ
•• ρ dV (15) 

as usual.  
The resultant lost forces and moments are observer-dependent functionals of the motion, like the power itself. 
The observer-dependence will be clarified by the next theorem. 
 
Theorem 1. (transformations of forces and moments) 
The resultant lost force fϕ and the resultant lost moment moϕ  are objective vectors 
 
  fϕ  =  Q fψ  and moϕ  =  Q moψ  .     (16) 
  
 
Proof. We apply (P3) to the field  δvψ  ≡  a × rϕ + b  with two arbitrary vectors a and b  
 
  pϕ (κϕ) − pψ (κψ) =   
 
  δpϕ (κϕ , Q(a × rϕ + b) + ω × (rϕ − c) + c•) − δpψ (κψ , a × rϕ + b)   
 
  =  fϕ ⋅ (Q b) + moϕ ⋅ (Q a) + fϕ ⋅ vo + moϕ ⋅ ω − fψ ⋅ b − moψ ⋅ a 
 
  =  (QT fϕ − fψ) ⋅ b + (QT moϕ − moψ) ⋅ a + fϕ ⋅ vo + moϕ ⋅ ω   
 
as  Q(a × r)  =  Q a × Q rϕ  =  Q a × rψ  after an appropriate choice of the point of reference for the second ob-
server. By the arbitrariness of a and b we conclude the objectivity of the two tensors; q.e.d.  
 
If the resultant lost force and moment are objective vectors, then the resultant force and the resultant moment can 
not be objective vectors, in principle. However, this procedure saves us from distinguishing between inertial an 
non-inertial observers, as is usually done.  
While the forces do not depend on a point of reference, the moments do so (through the position vector). This 
dependence is specified by the following theorem. 
 
Theorem 2. (Varignon´s principle) 
 The moment depends on the point of reference after 

  mo'   =  mo +   o o
→
′ × f        (17) 

with   o o
→
′ being the position vector of the second point of reference with respect to the first.  
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Proof. We use the equation of the position vectors  rϕ o' = rϕ o +   o o
→
′ , so that  

  a × rϕ o + b  =  a × (rϕ o' −   o o
→
′ ) + b  =  a × rϕ o' + b − a ×   o o

→
′   

 
holds for arbitrary vectors a and b , and 
 
  δpϕ (κϕ , a × rϕ o + b)  =  fϕ ⋅ b + moϕ ⋅ a 

  = δpϕ (κϕ , a × rϕ o' + b − a ×   o o
→
′ )  =  fϕ ⋅ (b − a ×   o o

→
′ ) + m o'ϕ ⋅ a  

  =  fϕ ⋅ b −   o o
→
′ × fϕ ⋅ a + m o'ϕ ⋅ a . 

 
A comparison in a and b leads to Varignon´s formula; q.e.d. 
 
By the definition of the moments, Varignon´s principle holds analogously for the resultant moments 

  mo'   =  mo +   o o
→
′ × f . 

 
The next results are direct consequences of equation (11). 
 
Theorem 3. (Principle of d´Alembert) 
A motion of the body is dynamically admissible if and only if  

  fϕ  =  o    moϕ  =  o       (18)  
 

hold for one observer (and hence for all).  
 
Theorem 4. (Newton-Euler laws of motion) 
A motion of the body is dynamically admissible if and only if the laws of motion  
 
  fϕ  =  lϕ

•   moϕ  =  doϕ
•      (19)  

 
hold for one observer (and hence for all).  
 
The following statement is a direct consequence of the foregoing theorem. 
 
Theorem 5. (Principle of virtual power, global version) 
A motion of the body is dynamically admissible if and only if the balance of virtual power 
 
  fϕ ⋅ δvo + moϕ ⋅ δω  =  0       (20) 
 
holds for all vectors δvo and δω  for one observer (and hence for all). 
 
Note that the virtual power of this theorem is not identical to the virtual power functional δpϕ , but only contains 
its essential parts for the distinction between admissible and non-admissible processes. With these laws we are 
already able to completely describe the dynamics of rigid bodies. For deformable bodies, however, a field formu-
lation of these concepts is desirable, which will be given in the next Section. 
 
Field equations 
 
The key for the localization of the foregoing global concepts is the Riesz representation of a linear continuous 
functional on topological vector spaces (see, e.g., Adams, 1975 p. 48). 
 
Theorem 6. (field formulation of the virtual power)  
For each observer ϕ  there exist  p+1 tensor fields  Yϕ i  of order i = 1, ... , p+1 such that 

 δpϕ (κϕ , δvϕ)  = ∫
B

[Yϕ 1(x) ⋅ δvϕ (x) + Yϕ 2(x) ⋅ grad δvϕ (x) + ... + Yϕ p+1(x) ⋅ grad p δvϕ (x)] dV 

for all    δvϕ ∈δVϕ .          (21) 
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As almost all of our variables are observer-dependent, we will suppress the observer suffix, whenever no distinc-
tion between different observers is intended.  
The dynamical variables  Y1

 , Y2
 , Y3 , ... , Yp+1  in each material point are still functionals of the motion, but do 

not depend on the virtual velocity. These functionals must be further specified by material laws, which is, how-
ever, beyond the scope of this paper.  
By (P2) we obtain the same representation for the power  

 pϕ (κϕ)  = ∫
B

[Yϕ 1(x) ⋅ vϕ (x) + Yϕ 2(x) ⋅ grad vϕ (x) + ... + Yϕ p+1(x) ⋅ grad p vϕ (x)] dV.  (22)  

 
Theorem 7. (transformations of dynamical fields) 
The fields of the dynamical variables  Yϕ i , i = 1, ... , p+1, are objective under change of observer  
   
  Yϕ i  =  Q ∗ Yψ i .        (23) 
 
 
Proof. By (8) we have for all motions 
 
  δpϕ (κϕ , Q δ vψ)  =  δpψ (κψ , δ vψ)   

  = ∫
B

[Yϕ 1 ⋅ (Q δvψ) + Yϕ 2 ⋅ (Q gradϕ δvψ QT) + ... + Yϕ p+1 ⋅ (Q ∗ gradϕ
 p δvψ)] dV 

  = ∫
B

[(QT Yϕ 1) ⋅ δvψ + (QT Yϕ 2 Q) ⋅ gradϕ δvψ + ... + (QT ∗ Yϕ p+1) ⋅ gradϕ
 p δvψ

 ] dV  

  = ∫
B

[Yψ 1 ⋅ δ vψ  + Yψ 2 ⋅ gradψ δvψ + ... + Yψ p+1 ⋅ gradψ
 p δvψ] dV for all δvψ ∈δVψ 

as 
 
  gradϕ (Q δvψ)  =  Q gradϕ δvψ  =  Q gradψ δvψ QT 
 
and, more generally for higher gradients, by the use of the Rayleigh product 
 
  gradϕ p (Q δvψ)  =  Q ∗ gradψ

p δvψ  for all δvψ ∈δVψ . 
 
A comparison in the arbitrary fields δvψ ∈δVψ  leads to the desired result; q.e.d. 
 
For any observer (and dropping the observer-index), by the definition of the resultant lost force (9) 

  δp(κ , vo)  =  f ⋅ vo  = ∫
B

Y1(x) ⋅ vo dV  = ∫
B

Y1(x) dV ⋅ vo 

we obtain the representation 

   f  = ∫
B

Y1(x) dV. 

Analogously, the definition of the resultant lost moment (10) 

  δp(κ , ω × r) =  mo ⋅ ω  = ∫
B

[Y1(x) ⋅ ω × r + Y 2(x) ⋅ grad (ω × r)] dV  
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  = ∫
B

[r × Y1(x) + 2 Y2
axi(x)] dV ⋅ ω  

leads to the representation 

  mo  = ∫
B

[r × Y1(x) + 2 Y2
axi(x)] dV. 

The resultant force has the representation 

  f  = ∫
B

[Y1(x) + ρ r(x)••] dV 

and the resultant moment 

  mo  = ∫
B

{r(x) × [Y1(x) + ρ (x) r(x)••] + 2 Y2
axi(x)} dV . 

By Theorem 7, we know that  Y1 and  Y2
axi are objective vector fields. 

If we substitute these representations into the Principle of d´Alembert, we obtain local forms of the laws  
of motion.  
 
Theorem 8. (local form of the Newton-Euler laws of motion) 
A motion of the body is dynamically admissible if and only if the local form of the laws of motion hold 
 
  Y1  = 0          (24) 
   

  Y2
axi  = 0       ⇔      Y2  =  Y2

T 

 
almost everywhere in the body. 
 
Note that the other fields  Y2

sym , Y3 , ... , Yp+1  do not directly enter the laws of motion. This, however, does not 
mean that such quantities cannot play a useful role in mechanical theories.  
The next theorem is a stronger version of the Principle of virtual power of the last Section. 
 
Theorem 9. (Principle of virtual power, integral version) 
A motion of the body is dynamically admissible if and only if the balance of virtual power holds in the form  

  ∫
B

(Y1 ⋅ δv + Y2
axi⋅ curl δv) dV  =  0                                    (25) 

for all vector fields δv ∈δV  for one observer (and hence for all). 
 
Proof. We multiply the local laws of motion (24) by arbitrary vectors δv and 2δω. Then 
 
  Y1 ⋅ δv + 2 Y2

axi⋅ δω  =  0 
 
if and only if (24) holds, i.e. if the motion is dynamically admissible. If we interpret δv as the local value of some 
virtual velocity field δv ∈δV , and 2 δω as the local value of its curl, then we obtain the above form of the balance 
of virtual power as a necessary and sufficient condition for a motion to be dynamically admissible; q.e.d.  
 

In the sequel we will derive a number of alternative forms of the forces and moments which are altogether 
equivalent to those of (24). By applying the Gauss transformation in the form  

 ∫
B

Y p+1 ⋅ grad p δv dV  = 
∂
∫
B

(Y p+1 n) ⋅ grad p−1 δv dA  − ∫
B

div Y p+1 ⋅ grad p−1 δv dV   

for any  p > 1,  we can introduce the surface integrals 
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 δp(κ , δv)  =  ∫
B

[(Y1 − div Y2) ⋅ δv − div Y3 ⋅ grad δv − ... − div Yp+1 ⋅ grad p−1 δv] dV 

 +
∂
∫
B

[(Y2 n) ⋅ δv + (Y3 n) ⋅ grad δv + ... + (Yp+1 n) ⋅ grad p−1 δv] dA .   (26) 

For a constant field δv this gives the resultant force 

  f  = ∫
B

(Y1 − div Y2 + ρ r••) dV +
∂
∫
B

Y2 n dA    (27) 

and for δv ≡ ω × r  the resultant moment 

 mo  = ∫
B

[r × (Y1 − div Y2 + ρ r••) − 2 (div Y3)axi] dV +
∂
∫
B

[r × Y2 n + 2 (Y3 n)axi] dA .  (28) 

By applying the Gauss transformation repeatedly, we obtain for the virtual power more surface terms 

  δp(κ, δv)  =  ∫
B

[Y1 − div Y2 + div2 Y3 ... + (−1) p div p Yp+1] ⋅ δv dV 

  +
∂
∫
B

[{Y2 − div Y3  ... – (−1) p div p−1 Yp+1} n ⋅ δv       (29) 

  + {Y3 − div Y4 ... − (−1) p–1 div p−2 Yp+1} n ⋅ grad δv   
   
  + ... + Yp+1 n ⋅ grad p−1 δv] dA . 
 
For a constant δv this gives the resultant force in the form 

  f  = ∫
B

[Y1 + ρ r•• − div Y2 + div2 Y3 ... + (−1) p div p Yp+1] dV  

   +
∂
∫
B

[Y2 − div Y3  ... – (−1) p div p−1 Yp+1] n dA    (30) 

and for  δv ≡ ω × r  this gives the resultant moment 

  mo  = ∫
B

r × [Y1 + ρ r•• − div Y2 + div2 Y3 − ... + (−1) p div p Yp+1] dV 

   +
∂
∫
B

(r × [Y2 − div Y3 + ... – (−1) p div p−1 Yp+1] n     (31) 

  + 2 {[Y3 − div Y4 ... − (−1) p–1 div p−2 Yp+1] n}axi) dA . 
 
Again, the terms with the fields  Y2

sym , Y3 , ... , Yp+1  in the interior and on the surface of the body can be can-
celled out in the laws of motion (24). 
 
By further specifying these fields, we will now deduce different classes of materials. We will start with the most 
simple one. 
 

Example 1: polar materials (Y2 skew, and  Y3,4,.. ≡ 0) 

By assuming that the only non-zero dynamical variables are Y1 and the skew part of Y2 , we obtain the following 
virtual power functional 
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  δp(κ , δv)  =  ∫
B

(Y1 ⋅ δv + Y2
skw ⋅ grad δv) dV  

  =  ∫
B

(Y1 ⋅ δv + Y2
axi ⋅ curl δv) dV      (32)  

  =  ∫
B

(Y1 + curl Y2
axi) ⋅ δv dV +

∂
∫
B

(Y2
axi × n) ⋅ δv dA 

by use of the Gauss transformation in the form 

  ∫
B

Y2
axi ⋅ curl δv dV  = 

∂
∫
B

[Y2
axi × n] ⋅ δv dA  + ∫

B

curl Y2
axi ⋅ δv dV .  

For a constant δv this gives the resultant force 

  f  = ∫
B

(Y1 + ρ r••) dV  = ∫
B

(Y1 + ρ r•• + curl Y2
axi) dV +

∂
∫
B

Y2
axi × n dA (33)  

and for δv ≡ ω × r  the resultant moment 

  mo  = ∫
B

[r × (Y1 + ρ r••) + 2 Y2
axi] dV       (34) 

  = ∫
B

[r × (Y1 + ρ r•• + curl Y2
axi)] dV +

∂
∫
B

r × (Y2
axi × n) dA . 

Usually one considers for the two vector fields the following decomposition into a divergence field and a rest in 
the form 

  Y1 = ρ (b − r••) + div T       (35) 
   

  Y2
axi  =  ½ ρ m + ½ div M .  

These two vector fields are objective after theorem (7). Because of the inertia term in Y1
 , however, it is not pos-

sible that both, b and T are objective. It may be tempting to assume the objectivity of the stress tensor T, while 
the body force density b is made to contain all the inertia terms. However, one should keep in mind that the dis-
tinction between body forces and surface forces induced by T is at this stage by no means unique. This issue 
would become clearer by specifying the dependencies of these two variables on kinematical quantities through 
constitutive equations, which is, however, beyond the scope of this treatise.  

For the virtual power functional we obtain the following versions 

  δp(κ , δv)  =  ∫
B

 [(ρ b − ρ r•• + div T) ⋅ δv + (ρ m + div M) ⋅ ½ curl δv] dV  

  =  ∫
B

 [ρ (b − r••) ⋅ δv + ρ m ⋅ ½ curl δv − T ⋅ grad δv − M ⋅ ½ grad curl δv] dV   

  +
∂
∫
B

 [(T n) ⋅ δv + (M n) ⋅ ½ curl δv] dA      (36) 

  =  ∫
B

 [ρ b − ρ r•• + div T + ½ curl (ρ m + div M)] ⋅ δv dV   
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  +
∂
∫
B

 [½ (ρ m + div M) × n] ⋅ δv dA  

  =  ∫
B

 [ρ b − ρ r•• + div Tsym + ½ curl (ρ m + div M)] ⋅ δv dV   

  +
∂
∫
B

(Taxi + ½ ρ m + ½ div M) × n ⋅ δv dA 

with the vector field  m : =  m – 2 Taxi/ρ .    
 
This gives the resultant lost force in the forms 

  f  = ∫
B

(ρ b − ρ r•• + div T) dV  = ∫
B

ρ (b − r••) dV +
∂
∫
B

T n dA 

  =  ∫
B

[ρ b − ρ r•• + div T + ½ curl (ρ m + div M)] dV   

  +
∂
∫
B

[½ (ρ m + div M) × n] dA       (37) 

  = ∫
B

[ρ b − ρ r•• + div Tsym + ½ curl (ρ m + div M)] dV   

  +
∂
∫
B

 (Taxi + ½ρ m + ½ div M) × n dA   

and the resultant lost moment 

  mo  = ∫
B

[r × (ρ b − ρ r•• + div T) + 2 Taxi + ρ m + div M] dV 

   = ∫
B

[r × (b − r••) + m] ρ dV +
∂
∫
B

[r × (T n) + M n] dA                                  (38) 

   = ∫
B

r × [ρ b − ρ r•• + div T + curl (Taxi + ½ ρ m + ½ div M)] dV  

  +
∂
∫
B

r × [(Taxi + ½ρ m + ½ div M) × n] dA . 

 
 
In the absence of distributed moments (m ≡ 0  and  M ≡ 0)  (non-polar material) we obtain in particular  
 
  Y1 = ρ (b − r••) + div T       (39) 
   

  Y2
axi  =  Taxi. 

 
Note that the two vector fields b and Taxi can be determined independently, the same as Y1 and Y2

axi. 

 This gives the following forms of the virtual power functional 
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  δp(κ , δv)  =  ∫
B

[(ρ b − ρ r•• + div T) ⋅ δv + Taxi ⋅ curl δv] dV  

  =  ∫
B

(ρ b − ρ r•• + div T + curl Taxi) ⋅ δv dV +
∂
∫
B

(Taxi × n) ⋅ δv dA  

  =  ∫
B

(ρ b − ρ r•• + div Tsym) ⋅ δv dV +
∂
∫
B

(Taxi × n) ⋅ δv dA  (40) 

  =  ∫
B

[ρ (b − r••) ⋅ δv − Tsym ⋅ grad δv] dV +
∂
∫
B

(T n) ⋅ δv dA. 

and, thus, for the resultant lost force 

  f  = ∫
B

(ρ b − ρ r•• + div T) dV  = ∫
B

ρ (b − r••) dV +
∂
∫
B

T n dA 

  = ∫
B

(ρ b − ρ r•• + div Tsym) dV +
∂
∫
B

Taxi × n dA    (41)  

and the resultant lost moment 

  mo  = ∫
B

[r × (ρ b − ρ r•• + div T) + 2 Taxi] dV  

  = ∫
B

r × ρ (b − r••) dV +
∂
∫
B

r × (T n) dA     (42) 

   = ∫
B

[r × (ρ b − ρ r•• + div T) + curl Taxi] dV +
∂
∫
B

r × (Taxi × n) dA. 

 
We therefore obtain by (24) Cauchy´s equations of motion in the usual form  
 
  div T + ρ b  =  ρ r••   
 

  Taxi = 0  ⇔      T  =  TT.        (43) 
 
Comparison with Germain’s first gradient theory.  
 
The method of virtual power has been used in the past to derive the fundamental equations of continuum mechan-
ics in a systematic way, for instance in a series of papers by Germain (1972, 1973). There are two main differ-
ences between Germain’s work and the present proposal. Firstly, Germain introduces the virtual power functional 
as a primitive concept, whereas we have constructed it here as an extension of the actual power. Secondly, in 
Germain’s approach and in contrast to the present work, the various forces which act on the body are first divided 
into two classes: external forces representing the dynamical effects on the body B due to the interaction with 
other bodies which have no common part with B, and internal forces representing the mutual dynamical effects 
of subsystems of B. These forces are introduced via the value of the corresponding virtual power.  

In the present work, the partition of forces into internal and external ones has not been made from the outset. 
Accordingly, the principle of objectivity is stated here for the (total) power functional and not only for the power 
of internal forces, as done in (Germain, 1973). Both theories can be shown to lead to the same field equations for 
first and second gradient media. The objective of this paragraph is to identify the dynamical variables Yi of the 
present framework in Germain’s first gradient theory.  
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The derivation of the first gradient theory following the method of virtual power by Germain is not given here. 
Instead, parts of the results obtained in (Germain, 1973) are recalled and compared to the present formulation. 
According to Germain, the virtual power functional is the sum of the following contributions   

  δp(κ , δv)  = δpi (κ , δv) + δ pd (κ , δv)  +δpc (κ , δv) + δpa (κ , δv)   (44) 

which are specified in the sequel. The virtual power functional of the internal forces δpi is a linear form with 
respect to the symmetric part of the virtual velocity gradient 

  δpi
 (κ , δv)  =   – ∫

B

S ⋅ δD dV    with δD : = (grad δv)sym  (45) 

where the stress tensor S is symmetric. The virtual power of external forces is split into the contributions of long 
range forces and contact forces. The virtual power functional of the long range forces δpd has the following gen-
eral form   

  δpd
 (κ , δv)  = ∫

B

 (ρ b ⋅ δv + C ⋅ δW) dV  with δW : = (grad δv)skw.   (46)  

The specific body force ρ b and the skew body couple C (and, possibly, a density of body symmetric double 
forces) must be introduced in general in the first gradient theory. The virtual power functional of contact forces 
δpc is  

  δpc (κ, δv)  = 
∂
∫
B

t ⋅ δv dA .       (47)   

 The stress vector is found to have the following form  

  t  =  T n  with  T  =  S + Tskw      (48) 

The tensor T is the effective or Cauchy stress tensor. The Gauss transformation can be applied to the previous 
surface integral to get the alternative expression  

  δpc (κ , δv)  = ∫
B

[(div T) ⋅ δv + T ⋅ grad δv] dV.     (49) 

Finally, the virtual power of inertial forces is  

  δpa (κ ,δv  =  – ∫
B

ρ r•• ⋅ δv dV.       (50)  

The expressions above are indeed the most general forms of contact and long range forces within a first gradient 
framework. More general contributions would not be balanced by the present form of neither the internal nor the 
acceleration forces.  
 
As a result of all previous contributions, the following expression of the virtual power functional is obtained  

  δp(κ, δv)  = ∫
B

[(ρ b − ρ r•• + div T) ⋅ δv + (Tskw + C) ⋅ δW] dV        (51)  

from which the dynamical variables Yi  in the Riesz representation of the power functional (21) can be identified 
as 
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  Y1  =  ρ b − ρ r•• + div T       (52) 
   

  Y2  =   Y2
skew  =  Tskw + C  

 
or, equivalently, 
 
  Y2

axi  =  Taxi + ½ρ m       with ρ m : = 2 Caxi.  
 
The second law of motion  Y2 

axi = 0 indicates that the skew part of the Cauchy stress tensor is equal to  the nega-
tive body couple density C. The first gradient theory can be compared to the theory of polar media introduced in 
the previous Example 1. Unlike general polar media, first gradient continua are not sensitive to surface couple 
stresses M. Like polar media, first gradient continua can be loaded by body couples ρ m := 2 Caxi. 
Symmetric double body forces can also exist in both first gradient and polar media.  
 
Example 2 
We consider the case of a second gradient material with Y2 symmetric, and  Y3,4,.. ≡ 0 . Here we obtain 

  δp(κ , δv)  =  ∫
B

 (Y1 ⋅ δv + Y2
sym ⋅ δD) dV  with δD : = (grad δv)sym 

  =  ∫
B

 (Y1 − div Y2
sym) ⋅ δv dV +

∂
∫
B

(Y2
sym n) ⋅ δv dA .    (53) 

The resulting lost force is    

  f  = ∫
B

Y1 dV  = ∫
B

(Y1
 − div Y2

sym) dV +
∂
∫
B

Y2
sym n dA   (54) 

and the resulting lost moment  

  mo  = ∫
B

r × Y1 dV        (55) 

  = ∫
B

r × (Y1 − div Y2
sym) dV +

∂
∫
B

r × (Y2
sym n) dA . 

For the two fields we again make the decomposition into a divergence and a rest 

  Y1  =  ρ b − ρ r•• + div T       (56) 
   

  Y2
sym  =  Ssym + div M3    with the symmetry  M3

ijk
 = M3

jik
 . 

This gives 

  δp(κ , δ v)  =  ∫
B

[(ρ b − ρ r•• + div T) ⋅ δv + (Ssym + div M3) ⋅ δD] dV (57) 

  =  ∫
B

 [ρ b − ρ r•• + div(T − Ssym − div M3)] ⋅ δv dV +
∂
∫
B

[(Ssym + div M3) n] ⋅ δv dA . 

The resultant lost force becomes    

  f  = ∫
B

(ρ b − ρ r•• + div T) dV       (58) 

  = ∫
B

[ρ b − ρ r•• + div(T − Ssym − div M3)] dV +
∂
∫
B

(Ssym + div M3) n dA 

and the resultant lost moment    
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  mo  = ∫
B

r × (ρ b − ρ r•• + div T) dV       (59) 

  = ∫
B

r × [ρ b − ρ r•• + div(T − Ssym − div M3)] dV +
∂
∫
B

r × (Ssym + div M3) n dA . 

 
The method of virtual power is the best-suited tool for the derivation of boundary conditions in gradient theories. 
The simple and double force surface densities must be expressed as in terms of the simple and hyperstress tensors 
and of the characteristics of the surface (normal vector and curvature). This has been done by Germain (1973) 
and Trostel (1985, 1993). 
 
Further theories of higher grades can also be specified in the same manner by the general forms in (29).  
 
Conclusions 
 
In the foregoing framework we introduced the fundamental concepts of mechanics on the basis of the mechanical 
power of a moving body, and its objectivity under Euclidean transformations. After an extension of the power 
functional to a virtual power functional, we could introduce the forces and moments as the power-conjugate vec-
tors, and derive the laws of motion, which hold for every observer, regardless if inertial or not.    
 
The application of the Riesz theorem for linear continuous functionals leads to field equations for the (virtual) 
power and for the forces and moments. By applying the Gauss theorem, a catalogue of different, but still equiva-
lent forms can be derived. 
  
The new features of the proposed theory with respect to existing formulations based on power functionals are the 
following. 

• The virtual power is defined as an extension of the actual power. 
• The theory is based on the construction of the total virtual power functional. There is, at the beginning, 

no formal partition into internal and external forces. This partition is however necessary as a next step 
for the formulation of the boundary value problem on the body, especially in order to derive the proper 
boundary conditions. 

• A synthetic framework is presented applying to grade-p materials. The presented balance equations are 
valid for any p > 0. The required generalized stress tensors clearly appear in the Riesz formulation of the 
power functional. They intervene only indirectly in the local form of the balance equations, as shown in 
(Germain 1973) for the second grade theory.  

 
By this procedure we have produced a catalogue of different, but essentially equivalent forms of the power and of 
the balance equations. As a next step, it would be the task of material theories to further specify such theories.  
 
The method of virtual power can also be used to derive the field and boundary equations for other generalized 
continua like the Cosserat and micromophic theories. However, these models require the introduction of addi-
tional degrees of freedom, i.e. enriched kinematics of the continuum, which is not considered in the present work 
(see Germain, 1973b, and Forest and Sievert, 2003, 2006).  
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