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1 Cosserat crystal plasticity

The classical theory of continuum crystal plasticity is first recalled and
then generalized to incorporate the effect of lattice curvature on material
hardening. The specific notations used in this chapter are summarized in
section 1.6.

1.1 Dislocation densities and classical continuum crystal plastic-
ity

Elements from a statistical theory of dislocations The yielding and
hardening behaviour of crystals mainly depends on the growth of the dislo-
cation population and on the development of dislocation structures inside
the volume element V of continuum mechanics. A precise account of the
evolution of dislocation distribution in V still lies beyond current comput-
ing capacity, although promising results in that field are available Fivel
et al. (1998). The incomplete information about the dislocation state per-
mits probability predictions and suggests the use of statistical mechanics.
Kröner proposed that the information be given in terms of n-point disloca-
tion correlation tensor functions Kröner (1969, 1971). If the vectors ξ(x )
and b (x ) describe the line vector and Burgers vector of a dislocation located
at x , the first correlation function reads :

α∼ =< b ⊗ ξ > (1)

where the brackets denote ensemble averaging. The next correlation func-
tion then is :

α∼∼
(x ,x ′) =< (b ⊗ ξ)(x )⊗ (b ⊗ ξ)(x ′) >= α∼∼

(x − x ′) (2)
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if statistical uniformity is assumed. Second and fourth rank tensors α∼ and
α∼∼

are indeed related to classical plastic state indicators used in classical

crystal plasticity. For a large enough volume element V , it is resorted to
the ergodic hypothesis so that ensemble averaging is replaced by volume
averaging over V . In that case, α∼ turns out to be identical to the so-called
dislocation density tensor, or Nye’s tensor, which is the basic variable of
the continuum theory of dislocations Nye (1953). On the other hand, one
invariant of the tensor α∼∼

can be shown to be

αijij(0 ) = L/V (3)

where L is the length of dislocation lines inside V . The dislocation density
� well-known in the field of metallurgy.

Classical thermomechanics of single crystals Classical crystal plas-
ticity theory is the paradigm of the model for anisotropic finite deforma-
tion plasticity. It has been founded in the original references Teodosiu
(1970); Mandel (1971, 1973); Rice (1971); Teodosiu and Sidoroff (1976).
More recent accounts of this continuum approach show the success of this
approach based on multiplicative decomposition and the use of scalar dis-
location densities � Maugin (1992); Teodosiu (1997); Gumbsch and Pippan
(2005); Bertram (2005). It is useful to recall the basis of this theory before
generalizing it to include the effect of the dislocation density tensor.

The main field equations of continuum thermomechanics are:
• energy principle (local form)

ρε̇ = σ∼ : D∼ + ρr − div q

where D∼ is the strain rate tensor, σ∼ the Cauchy stress and q the heat
flux vector.

• entropy principle (local form)

ρη̇ + div
(q
T

)
− ρr

T
≥ 0

where η is the specific entropy function.
• Clausius-Duhem inequality

−ρ(ė− T η̇) + σ∼ : D∼ −
q

T
.grad T ≥ 0

The Helmholtz free energy density ψ = ε− Ts is introduced:

−ρ(ψ̇ + ηṪ ) + σ∼ : D∼ −
q

T
.grad T ≥ 0
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• intrinsic and thermal dissipation

Dth = −
q

T
.grad T

Di = −ρ(ψ̇ + sṪ ) + σ∼ : D∼

The gradient of the transformation is called the deformation gradient F∼ . It
is decomposed into elastic and plastic parts as shown in figure 1(a):

F∼ = F∼
e.F∼

p (4)

The uniqueness of this decomposition is ensured in the case of the single
crystal material element if the orientation of the intermediate configuration
is such that the lattice vectors do not rotate from the initial to the in-
termediate configuration. This unique intermediate configuration is called
isoclinic by Mandel (1973). The elastic strain and a stress tensor are defined
with respect to the isoclinic configuration:

E∼
e =

1

2
(F∼

e.F∼
eT − 1∼), Π∼

e =
ρi
ρ
F∼

e−1.σ∼ .F∼
e−T (5)

The power of internal forces makes the link between the different stress
tensors:

1

ρ
σ∼ : (Ḟ∼ .F∼

−1) =
1

ρi
(Π∼

e : Ė∼
e
+ (F∼

eT .F∼
e.Π∼

e) : (Ḟ∼
p
.F∼

p−1)) (6)

The Clausius–Duhem inequality takes now the form

ρ(
Π∼

e

ρi
− ∂Ψ

∂E∼
e ) : Ė∼

e − ρ(s+
∂Ψ

∂T
)Ṫ − ρ

∂Ψ

∂α
: α̇+Dres ≥ 0 (7)

The state variables are (E∼
e, T, α) with additional internal variables α. The

state functions are the internal energy density e(E∼
e, η, α) and the Helmholtz

free energy density ψ(E∼
e, T, α). The exploitation of the second principle à

la Coleman–Noll provides the state laws

Π∼
e = ρi

∂Ψ

∂E∼
e , X = ρi

∂Ψ

∂α
, s = −∂Ψ

∂T
(8)

The residual dissipation then reads

Dres = M∼ : (Ḟ∼
p
.F∼

p−1)−Xα̇ ≥ 0 (9)

This leads to the definition of the so–called Mandel stress tensor:

M∼ := F∼
eT .F∼

e.Π∼
e = C∼

e.Π∼
e (10)
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We assume the existence of a convex dissipation potential Ω(M∼ , X) from
which the flow rule and evolution equations for internal variables are derived:

Ḟ∼
p
.F∼

p−1 =
∂Ω

∂M∼
, α̇ = − ∂Ω

∂X
(11)

We present now a template model for single crystal behaviour introducing
the specific internal variables: “dislocation density” �s, internal structure
αs. Take the free energy function as

ρiψ(E∼
e, �s, αs) =

1

2
E∼

e : c∼∼
: E∼

e + r0

N∑
s=1

�s +
1

2
q

N∑
r,s=1

hrs�r�s +
1

2

N∑
s=1

αs2

(12)
The state laws then read

Π∼
e = ρi

∂ψ

∂E∼
e = c∼∼

: E∼
e

rs = ρi
∂ψ

∂�s
= r0 + q

N∑
r=1

hsr�s

xs = ρi
∂ψ

∂αs
= cαs

The driving force for plastic slip is the resolved shear stress on slip system
s

τ s = (M∼ .n s).m s = M∼ : (m s⊗n s) (13)

The multimechanism crystal plasticity yield criterion for single crystal is
Schmid’s law:

fs = |τs − xs| − rs (14)

The yield threshold is rs. An internal stress (back–stress) xs is introduced
for each system s. Take the dissipation potential

Ω(M∼ , rs, xs) =
K

n+ 1

N∑
s=1

〈f
s

K
〉n+1 (15)

from which flow and hardening rules are derived

ε̇∼
p =

∂Ω

∂σ∼
=

N∑
s=1

γ̇sm s
sym
⊗ n s, �̇s = − ∂Ω

∂rs
= v̇s, α̇s = − ∂Ω

∂xs
= γ̇s (16)

with

v̇s = 〈f
s

K
〉n, γ̇s = v̇s sign(τ s − rs) (17)

Nonlinear hardening rules are more realistic for actual materials in the form:
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• nonlinear isotropic hardening

�s = 1− exp(−bvs), rs = r0 + q
∑
r=1

hsr(1− exp(−bvs)) (18)

• nonlinear kinematic hardening

α̇s = γ̇s − dv̇sαs (19)

For monotonic loading, this equation integrates in

xs =
c

d
(±1− exp(−dvs)) (20)

The isotropic hardening involves an interaction matrix between slip systems.
This corresponds to the notion of latent hardening Besson et al. (2001); Fivel
and Forest (2004). The general form of this matrix for FCC crystals is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B4 B2 B5 D4 D1 D6 A2 A6 A3 C5 C3 C1
B4 h1 h2 h2 h4 h5 h5 h5 h6 h3 h5 h3 h6

B2 h1 h2 h5 h3 h6 h4 h5 h5 h5 h6 h3

B5 h1 h5 h6 h3 h5 h3 h6 h4 h5 h5

D4 h1 h2 h2 h6 h5 h3 h6 h3 h5

D1 h1 h2 h3 h5 h6 h5 h5 h4

D6 h1 h5 h4 h5 h3 h6 h5

A2 h1 h2 h2 h6 h5 h3

A6 h1 h2 h3 h5 h6

A3 h1 h5 h4 h5

C5 h1 h2 h2

C3 h1 h2

C1 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A simplified form of the matrix is h1 = 1, h2 = h3 = h4 = h5 = h6 = h.
If additionally h = 1, we obtain Taylor hardening.

Improved evolution equations for continuum crystal plasticity are ob-
tained by comparing continuum and discrete dislocation dynamics methods
Šǐska et al. (2009).

1.2 A Cosserat theory for elastoviscoplastic single crystals at
finite deformation

Mandel Mandel (1973) introduced the notion of oriented microelements
characterized by some hidden directors into the theory of elastoviscoplas-
ticity. The epoch-making expression “trièdre directeur” is directly taken
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from the Cosserat brothers’ well-known work Cosserat and Cosserat (1909).
The relative rotation of neighbouring microelements may induce local cou-
ple stresses. To a first approximation Mandel neglects them and regards
the single crystal and the polycrystal as a classical continuum. We propose
here the strict treatment of the single crystal as a Cosserat continuum.

Nye noticed that after bending or torsion a crystal contains excess dis-
locations of a definite sign that give rise to lattice curvature Nye (1953).
In a modelling of single crystals with more reference to dislocations, this
additional deformation possibility should be taken into account. Kröner
claimed that the macroscopic response of a medium to lattice curvature is
the existence of actual Cosserat couple stresses Kröner (1963). The couple-
stresses may be of the same order of magnitude as force-stresses under some
circumstances Hehl and Kröner (1958); McClintock et al. (1958). In these
early works Kröner regards the dislocated crystal as a Cosserat medium.
However, his theory deals with symmetric force-stresses and he suggests
later that there may be fundamental differences between dislocation theory
and Cosserat theory Kröner, E. (1967).

The reason for such a misunderstanding stems from the frequent use in
literature of the Cosserat continuum as the medium in which single disloca-
tions may be embedded. Kessel computes the force and couple stress fields
around a screw and an edge dislocation in a Cosserat continuum Kessel
(1970). In this chapter, we claim that the continuum containing a large
number of dislocations in the sense of the continuum theory of dislocations,
can be modelled as a Cosserat continuum. Kröner argues that the rotation
of the crystal lattice with dislocations is not the eigenrotation of physical
particles but the rotation of a structure. This pleads against the constrained
Cosserat theory that is usually used in the continuum theory of dislocations.
As a result, in the Cosserat theory presented here, the rotational degrees of
freedom are independent of the displacement field. Whereas the definition
of the Cosserat directors involved in the continuum theory of dislocation is
left unspecified, the “trièdre directeur” in this work is clearly made of three
orthogonal lattice vectors attached to each volume element. As for them,
Claus and Eringen also erect a lattice triad at every point of the contin-
uum Eringen and Claus (1970). A most interesting point in their work is
that they resort to a micromorphic continuum. They also propose a phe-
nomenological treatment of micromorphic elastoplasticity but they do not
derive the crystallographic expressions of plastic slip and curvature nor the
necessary constitutive equations.

The characteristic size of the volume element must be such that it con-
tains a large number of dislocations and that a mean crystal orientation
can be unambiguously defined at each time. The elements of the presented
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theory have been proposed in Forest et al. (1997). They have been recently
extended and implemented in finite element code by Clayton et al. (2006);
Mayeur et al. (2011).

Kinematics of the Cosserat continuum A material point M ∈ V at
time t0 is described by its position X and its inner state, for an arbitrary
initial placement, chosen as the reference configuration. At time t, its posi-
tion is x (X , t) and its inner state R∼ (X , t), in a given reference frame E.
If (d i)i=1,3 are three orthogonal lattice vectors in a released state at t and
(d 0

i )i=1,3 their initial position in E, then the rotation R is defined through

d i = R∼ .d 0
i , with R∼ .R∼

T = 1∼, R∼ (X , t0) = 1∼ and Det R∼ = 1
(21)

A rotating frame E�(M) is attached to the lattice structure at each point
M ∈ V and each tensor variable y considered with respect to E� will be
denoted �y.

The rotation field R∼ (X , t) can be replaced by the vector field Φ (X , t)
given by equation (118). The three components of Φ are three degrees
of freedom of the continuum in addition to the three components of the
displacement field

u (X , t) = x (X , t) − X (22)

Here, u and Φ are regarded as independent kinematic variables which can
be connected only on the balance or constitutive level or by some constraint.

The deformation gradient classically links a current infinitesimal material
segment dx with its initial position dX

dx = F∼ .dX (23)

so that
F∼ = u ⊗∇ = ui,j e i ⊗ e j (24)

(in the absence of other indication, partial derivatives are taken with respect
to the Xj).

Similarly, we compute the variation dR∼ of microrotation along a material
segment dX . Defining δΦ by

(dR∼ ).R∼
T = 1∼ × δΦ = ε∼.δΦ (25)

we derive

δΦ = −1

2
ε∼ : (dR∼ .R∼

T ) = Γ∼ dX (26)

with

Γ∼ =
1

2
ε∼ : (R∼ .(R∼

T ⊗∇)) (27)
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The notation δΦ means that δΦ is not a total differential, as can be seen
from (26). Contrary to F∼ , Γ∼ generally is not invertible. With respect to
the local space frame E�,

�dx = �F∼ .dX and �δΦ = �Γ∼.dX (28)

where �dx = R∼
T .dx and �δΦ = R∼

T .δΦ and

�F∼ = R∼
T .F∼ , �Γ∼ = R∼

T .Γ∼ (29)

It can be seen that the relative measures �F∼ and �Γ∼ are invariant under any
Euclidean transformation Kafadar and Eringen (1971). Accordingly they
are natural Cosserat strains for the development of constitutive equations.
They are called respectively the Cosserat deformation tensor and the wry-
ness (or bend-twist, or torsion-curvature) tensor. An alternative expression
of the wryness tensor is then

�Γ∼ = −1

2
ε∼ : (R∼

T .(R∼ ⊗∇)) (30)

One defines next the velocity and the gyration tensor Stojanović (1970);
Eringen (1976)

v = u̇ = u̇i e i and υ∼ = Ṙ∼ .R∼
T (31)

which can be replaced by the associated gyration vector

×
υ = −1

2
ε∼ : υ∼ (32)

since it is antisymmetric. The time derivative of the Cosserat strains can
be related to the gradient of the latter quantities:

�Ḟ∼ .�F∼
−1 = R∼

T .(v ⊗∇c − 1∼ × ×
υ ).R∼ (33)

�Γ̇∼.
�F∼

−1 = R∼
T .(

×
υ ⊗∇c).R∼ (34)

where ∇c =
∂

∂xi
e i = F∼

−T ∇ (Euclidean representation, c stands for

current).
v ⊗∇c − υ∼ is the relative velocity gradient and describes the local motion
of the material element with respect to the microstructure.
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Sthenics In order to introduce forces and stresses and to deduce the equi-
librium equations, we resort to the method of virtual power developed by
Germain in the case of micromorphic media Germain (1973b). The virtual

motions are the velocity v and the gyration
×
υ (or microrotation rate vec-

tor). The next step is to choose the form of the virtual power of a system of
forces. Within the framework of a first gradient theory, the virtual power of
the internal forces is a linear form of the virtual motions and their gradient.
The principle of material frame indifference requires that this linear form
should be invariant under any Euclidean transformation. That is why we

will work with the objective quantities v ⊗∇c − υ∼ and
×
υ ⊗∇c. The dual

quantities involved in the linear form of the virtual power of the internal
forces are denoted σ∼ and μ

∼
respectively and are assumed to be objective

tensors. For objectivity reasons the dual variable associated with v is zero.
For any subdomain D ⊂ V

P (i) = −
∫
D

(
σ∼ : (v ⊗∇c − υ∼) + μ

∼
: (

×
υ ⊗∇c)

)
dV

= −
∫
D

(
σij vi,j + μij

×
υi,j − σij υij

)
dV

= −
∫
D

(
σij vi + μij

×
υi

)
,j

dV (35)

+

∫
D

(
σij,j vi + (μij,j − εikl σkl)

×
υi

)
dV (36)

= −
∫
∂D

(
v σ∼ +

×
υ μ

∼

)
.n dS

+

∫
D

(
v .div σ∼ +

×
υ .(div μ

∼
+ 2

×
σ )

)
dV (37)

(in this section the partial derivatives are taken with respect to the current
configuration). The virtual power of external forces reads

P (e) =

∫
D

(
f .v + c .

×
υ
)

dS (38)

The virtual power of contact forces must then be defined

P (c) =

∫
∂D

(
t .v + m .

×
υ
)

dS (39)

The dual quantities of the velocity and microrotation rate in P (e) and P (i)

have the dimensions of force and moment respectively. The principle of
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virtual power then states that

∀D ⊂ V, ∀(v ,
×
υ ) P (i) + P (e) + P (c) = 0 (40)

In particular

∀D ⊂ V, ∀(v ,
×
υ ) / v =

×
υ = 0 on ∂D, (41)∫

D

(
v .(div σ∼ + f ) +

×
υ .(div μ

∼
+ 2

×
σ + c )

)
dV = 0 (42)

Assuming that the quantities are continuous on V , the local equilibrium
equations follow from (42){

div σ∼ + f = 0

div μ
∼

+ 2
×
σ + c = 0

(43)

As a result, the principle of virtual power becomes

∀D ⊂ V, ∀(v ,
×
υ )

∫
∂D

(
(σ∼ .n − t ).v + (μ

∼
.n − m ).

×
υ

)
dV = 0

(44)
from which the boundary conditions are deduced{

σ∼ .n = t
μ
∼
.n = m

(45)

σ∼ is called the Cauchy force stress tensor and μ
∼

the couple-stress tensor.
They are generally not symmetric.

Hyperelasticity

Energy balance Let ε be the internal energy per unit mass, q the heat
flux vector, ρ the current density. The energy balance equation reads then

ρ ε̇ = σ∼ : (v ⊗∇c − υ∼) + μ
∼
: (

×
υ ⊗∇c) − div q (46)

(any other inner heat supply is excluded).
According to the thermodynamics of irreversible processes, the entropy

principle is written

ρ η̇ + div (
q

T
) ≥ 0 (47)

where T denotes the temperature and η the entropy per unit mass.
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Introducing the free energy ψ = ε − η T and combining the energy
and entropy equations, one derives the Clausius-Duhem inequality

−ρ (ψ̇ + ηṪ ) + �σ∼ : (�Ḟ∼ .�F∼
−1) + �μ

∼
: (�Γ̇∼.

�F∼
−1) − 1

T
q .T∇c ≥ 0 (48)

where {
�σ∼ = R∼

T .σ∼ .R∼
�μ
∼

= R∼
T .μ

∼
.R∼

(49)

are rotated stress tensors with respect to the space frame E� attached to
the microstructure.

A material is said to be hyperelastic if its free energy and entropy are
functions of �F∼ , �Γ∼ and temperature only. The Clausius-Duhem inequality
(48) becomes

−
(
ρ

∂ψ

∂�F∼
− �σ∼ .

�F∼
−T

)
: �Ḟ∼ −

(
ρ

∂ψ

∂�Γ∼
− �μ

∼
.�F∼

−T

)
: �Γ̇∼

−
(
ρ η + ρ

∂ψ

∂T

)
Ṫ − 1

T
q .T∇c ≥ 0

Since this expression is linear in �Ḟ∼ , �Γ̇∼ and Ṫ , the last inequality implies

η = −∂ψ

∂T
(50)

and ⎧⎪⎪⎨⎪⎪⎩
�σ∼ = ρ

∂ψ

∂�F∼
.�F∼

T

�μ
∼

= ρ
∂ψ

∂�Γ∼
.�F∼

T
(51)

Linear case; isotropic elasticity Strain and torsion-curvature are small
if ‖�F∼ − 1∼ ‖ � 1 and ‖�Γ∼ ‖ l � 1, where l is a characteristic length. If, in
addition, microrotations remain small, i.e. if ‖Φ ‖ � 1, then⎧⎨⎩

R∼ � 1∼ + 1∼ ×Φ = 1∼ − ε∼.Φ
�F∼ � 1∼ + u ⊗∇ + ε∼.Φ = 1∼ + e∼
�Γ∼ � Φ ⊗∇ = κ∼

(52)

Furthermore, �σ∼ � σ∼ and �μ
∼

� μ
∼
. Accordingly, for linear elasticity, two

four-rank elasticity tensors are introduced{
σ∼ = E∼∼

: e∼
μ
∼

= C∼∼
: κ∼

(53)
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(No coupling between strain and torsion-curvature is possible as soon as
point symmetry is assumed even for the less symmetric solid Kessel (1964)).
Some symmetry properties of these tensors are derived from the hyperelas-
ticity conditions (51)

Eijkl = Eklij and Cijkl = Cklij (54)

Further symmetry conditions can be gained if material symmetries are taken
into account. The form of the Cosserat elasticity tensors for all symmetry
classes has been established by Kessel Kessel (1964). For a triclinic solid,
90 independent constants are necessary instead of 21 in the classical case
(for a solid without point symmetry, Kessel found 171 constants!). We
now consider the example of isotropic elasticity. The two classical Lamé
constants λ, μ are complemented by 4 additional parameters according to{

σ∼ = λ 1∼ Tr e∼ + 2μ {e∼
} + 2μc

}e∼
{

μ
∼

= α 1∼ Trκ∼ + 2β {κ∼
} + 2γ }κ∼

{ (55)

Elastoplastic Cosserat single crystals The works of Sawczuk, Lipp-
mann and Besdo are the first milestones in the plasticity theory of Cosserat
continua at small strains Sawczuk (1967); Lippmann (1969); Besdo (1974).
In the case of single crystals we resort to recent results in Cosserat theory
at large strains Sievert (1992); Sansour (1998b).

Strain decomposition In single crystals, non-homogeneous plastic de-
formations induce non-homogeneous permanent lattice rotations, which
are associated with plastic lattice curvature. That is why elas-
tic and plastic Cosserat deformations and curvatures are introduced:
�F∼

e, �F∼
p, �Γ∼

e and �Γ∼
p. Strain partition rules must then be proposed.

The multiplicative decomposition proposed in Mandel (1971) is adopted
here but only for the Cosserat deformation gradient

�F∼ = �F∼
e.�F∼

p (56)

The expression

�Ḟ∼ .�F∼
−1 = �Ḟ∼

e
.�F∼

e−1 + �F∼
e.�Ḟ∼

p
.�F∼

p−1.�F∼
e−1 (57)

has to be substituted in the Clausius-Duhem inequality (48). The most
natural assumption is that the hyperelastic relations still have the form⎧⎪⎪⎨⎪⎪⎩

�σ∼ = ρ
∂ψ

∂�F∼
e .

�F∼
eT

�μ
∼

= ρ
∂ψ

∂�Γ∼
e .

�F∼
eT

(58)
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It has been proved in Sievert (1992) that the multiplicative decomposition
(56) results from the hyperelastic relation (58)a. Similarly, for the relations
(58) to hold the form of the decomposition of the overall curvature tensor
cannot be arbitrary. One must have :

�Γ∼ = �Γ∼
e.�F∼

p + �Γ∼
p (59)

An elastic-plastic decomposition of displacement or rotation like in Stein-
mann (1994) is not recommended, because these non-objective variables can
not be connected with the quantities energy and dissipation. Such a connec-
tion is possible only on the level of strains. The form of the decomposition
(59) is similar to that used by Eringen and Kafadar for the symmetry trans-
formation of a Cosserat fluid. The decomposition (59) has been assumed
in Dluzewski (1991). Then the elastic constitutive equations (58) follow
necessarily.

The previous decompositions of total deformation and curvature, to-
gether with the hyperelastic relations (58) make it possible to define a unique
intermediate isoclinic configuration for which force and couple stresses are
simultaneously released. This is illustrated by the actualized picture of
Cosserat crystal plasticity in figure 1(b).

(a)

F p
~

F
~

e

F
~

(b)

Figure 1. Kinematics of classical crystal plasticity (a) and Cosserat crystal
crystal plasticity (b).

Kinematics of elastoplastic Cosserat single crystals The plastic de-
formation of single crystals is the result of slip processes on slip systems.
For each slip system s, we define

m s = b s/‖b s‖ (60)
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where b s is the Burgers vector. n s is the unit vector normal to the slip
plane. As a result, the plastic strain rate takes the form

�Ḟ∼
p
.�F∼

p−1 =
∑
s∈S

γ̇s �P∼
s (61)

γs is the amount of slip for the system s. �P∼
s is given by the kinematics

of slip
�P∼

s = �m s ⊗ �n s (62)

If we go back to the Eulerian representation

v ⊗∇c = Ḟ∼ .F∼
−1 = Ṙ∼ .R∼

T + R∼ .�Ḟ∼
e
.�F∼

e−1.R∼
T (63)

+ R∼ .�F∼
e.�Ḟ∼

p
.�F∼

p−1.�F∼
e−1.R∼

T , (64)

we can split the last expression into its symmetric and skew–symmetric
parts:

{v ⊗∇c} = {R∼ .�Ḟ∼
e
.�F∼

e−1.R∼
T }

+
∑
s∈S

γ̇s { 
m s ⊗ 
n s} (65)

and

}v ⊗∇ c{ − Ṙ∼ .R∼
T = }R∼ .�Ḟ∼

e
.�F∼

e−1.R∼
T {

+
∑
s∈S

γ̇s } 
m s ⊗ 
n s{ (66)

where we have noted


m s = R∼ .�F∼
e.�m s and 
n s = R∼ .�F∼

e−T .�n s (67)

Equation (66) clearly shows that the relative rotation rate of material lines
with respect to the microstructure is due to the lattice rotation associated
with slip processes, if elastic contributions are neglected.

We would like to compare the proposed formulation with Mandel’s work.
We are working with invariant tensors written in the microstructure space
frame in order to get rid of undetermined rotations. An equivalent method
is to deal with the so-called isoclinic configuration introduced by Teodosiu
and Mandel Teodosiu (1970); Mandel (1971). Their description reads

F∼ = E∼ .P∼ (68)

where the rotation R∼
isoclinic appearing in the polar decomposition of E∼

links the isoclinic reference frame to the working space frame. As a result
comparing (56) and (68) one can think of the equivalence

E∼ = R∼
�F∼

e (69)
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However, considering the respective polar decompositions

E∼ = R∼
isoclinic U∼

e and �F∼
e = R∼

e U∼
e (70)

we should have then
R∼

isoclinic = R∼ .R∼
e (71)

Regarding the elastic behaviour in the classical case, lattice vectors are
material vectors with respect to the intermediate configuration. Within
the proposed framework this is not exactly true any more. There is an
additional rotation R∼

e of material fibres with respect to the microstructure,
that could be attributed to the presence of heterogeneities. Nevertheless the
constitutive theory must be such that R∼

e remains a corrective term. The
equivalence of the two theories is established if �F∼

e is symmetric.
The plastic lattice curvature and torsion are due to the presence of dislo-

cations with a non-vanishing resulting Burgers vector. The curvature planes
and torsion axes are therefore related to crystallographic directions. They
can be represented by the effect of continuous edge and screw dislocations
for each slip system. That is why we propose the following kinematics for
the plastic wryness

�Γ̇∼
p
.�F∼

p−1 =
∑
s∈S

θ̇s

l
�Q

∼
s (72)

The θs are angles that measure the plastic curvature and torsion over a
characteristic length l. Explicit forms for �Q

∼
s are given in section 4.1. In

section 3.4.2 an alternative more simple treatment for the plastic curvature
is proposed.

Dissipation In the Clausius-Duhem inequality (48), a contribution to the
overall entropy production is due to the development of rotation gradients.
If no hardening variables are introduced, the intrinsic dissipation rate is

Ḋ = σ∼ : R∼ .�F∼
e.�Ḟ∼

p
.�F∼

p−1.�F∼
e−1.R∼

T

+ μ
∼

: R∼ .�Γ∼
e.�Ḟ∼

p
.�F∼

p−1.�F∼
e−1 R∼

T + μ
∼

: R∼ .�Γ̇∼
p
.�F∼

−1.R∼
T (73)

Taking (61) and (72) into account,

Ḋ =
∑
s∈S

γ̇s σ∼ : 
P∼
s +

∑
s∈S

θ̇s μ
∼

: 
Q
∼

s + μ
∼

: R∼ .�Γ∼
e.�Ḟ∼

p
.�F∼

p−1.�F∼
e−1.R∼

T

(74)
where {


P∼
s = R∼ .�F∼

e.�P∼
s.�F∼

e−1.R∼
T


Q
∼

s = R∼ .�F∼
e.�Q

∼
s.�F∼

e−1.R∼
T
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Three terms appear in the dissipation. The first one is the classical one: slip
processes due to irreversible dislocation motion are dissipative. The second
one is due to the evolution of plastic curvature and torsion. It is clear
that homogeneous lattice rotation is definitely not a dissipative process but
plastic curvature due to non-homogeneous lattice rotation is related to the
existence of accommodation dislocations and therefore must be associated
with dissipation. The last term reveals the independence of the elastic
curvature-torsion measure from plastic changes of the material lines in the
intermediate configuration. This is due to the lattice concept, which means
that the elastic behaviour, established in (58), is primary not influenced
by plastic straining. Thus, the elastic strain measures are related to lattice
line-elements and the referring to material lines produces an additional term
in the plastic wryness rate. However, at small elastic strains, this term
vanishes.

1.3 Closure of the continuum theory of dislocations

Closure problem of the continuum theory of dislocations The ori-
gin of the continuum theory of dislocations goes back to Nye’s epoch-making
work Nye (1953). He introduced the dislocation density tensor α∼ and he
established a link between α∼ and the lattice curvature. Kröner proposed
a general presentation of the theory and gave the set of partial differential
equations to be solved in the linear static case for a given distribution of
dislocations and here for an infinite body Kröner (1958)⎧⎪⎪⎪⎨⎪⎪⎪⎩

β
∼

= β
∼
e + β

∼
p

σ∼ = E∼∼
: {β

∼
e}

divσ∼ = 0
curl β

∼
e = α∼

where β
∼

= u ⊗ ∇ = ui,j e i ⊗ e j . In this part, we use Kröner’s
notations for historical reasons. It must be noted that strictly speaking
the non-objective quantity β

∼
cannot be decomposed entirely into an elastic

and plastic part but the usual notations of the continuum theory of dislo-
cations and of classical plasticity theory can be reconciled by the concept
of isoclinic configuration. The continuum theory of dislocations is a way to
think of dislocation theory as a physical field theory. Despite the fact that
the system (75) enables us to find the stress strain field around dislocations
in some given arrangement, such a theory cannot bridge the gap between
dislocation theory and plasticity theory since it does not predict the motion
of dislocations: the dislocation distribution must be known at each step.
In the dynamic theory of continuous distributions of dislocations, Kröner
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and Mura, T. (1963) introduce the dislocation velocity tensor V∼ which is

related to the plastic deformation rate β̇
∼

p by

β̇
∼

p = −
(
ε∼ : V∼

)T

(75)

and we still have
α̇∼ = −curl β̇

∼
p (76)

For a single dislocation
V = v ⊗ ξ ⊗ b (77)

v is the dislocation velocity vector, ξ is the dislocation line vector (notation
of Hirth and Lothe (1982)) and b the Burgers vector. In this case stress
and strain can be obtained provided that α∼ and V∼ are given at each
time, which is of no help to derive a plasticity theory. For, the continuum
theory of dislocations does not provide constitutive equations. As pointed
out by Hahn and Jaunzemis (1973), in a complete theory of dislocations, the
density and motion of dislocations should be derivable from the knowledge
of initial conditions (and boundary conditions) only. This is what we call
the closure problem of the continuum theory of dislocations.

Two attempts to derive the missing constitutive equations must be men-
tioned. On the one hand Mura showed how the von Mises yield criterion and
Prandtl-Reuss relations can be explained in terms of the dislocation velocity
tensor and a so-called “gliding force” Mura, T. (1965). The underlying con-
stitutive assumption is a linear relation between V∼ and the gliding force.
According to Lardner (1969); Eisenberg (1970), constitutive equations are
also necessary to link plasticity and dislocation theories. On the other hand
Hahn and Jaunzemis distinguish mobile dislocations (M) from immobile
ones (I) with common line and Burgers vectors. Aab = Aab

I + Aab
M is

the number of dislocations of Burgers vector b a and line vector ξ b. Using
a large strain formulation, (75) combined with (77) yields

Ḟ∼
p
F∼

p−1 =
∑
a,b

b a ⊗ (ξ b × v ab) Aab
M =

∑
a

AaV a b a ⊗ n a (78)

where AaV a n a =
∑
b

Aab
M ξ b × v ab is normal to the slip plane. Evo-

lution equations are proposed for Aa
I and Aa

M . Isotropic and kinematic
hardening and a viscous stress are also introduced in the modelling.

Recent advances have been reported in the development of a dynamic
continuum theory of dislocations Acharya (2010). Applications to contin-
uum modelling of pile-ups around particles can be found in Taupin et al.
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(2010). A common feature of such generalized continuum dislocations theo-
ries is that they are associated with the existence of lattice curvature induced
back-stress and corresponding kinematic hardening Steinmann (1996); For-
est (2008); Cordero et al. (2010).

Statistical description of dislocation distribution The dislocation
network and the distribution of dislocation sources within a volume element
of single crystal often is or becomes so intricate that an exact description of
all dislocation lines and Burgers vectors must be abandoned. Instead some
overall and statistical information about the distribution may be sufficient
for the modelling of the plastic behaviour of the element. The only known
attempts to develop a complete statistical theory of dislocations goes back
to Zorski (1968) and Kröner (1969). The systematic approach comes up
against tremendous difficulties which are still not overcome. This explains
why the concepts reviewed in this section are only rudimentary tools which
do not exhaust the complexity of dislocation structures.

Dislocation density tensor and the continuum theory of disloca-
tions Within the framework of the continuum theory of dislocations, the
characteristic size l of the volume element is taken large enough for the ef-
fects of the dislocations within it to be averaged. The distribution of dislo-
cations is made continuous by letting b = ‖b ‖ approach zero and increasing
the number n of dislocations of each kind so as to keep nb constant Nye
(1953). The definition of the Burgers vector can be extended to continuous
distributions of dislocations. For that purpose one refers to the kinematic
description proposed by Mandel making use of the isoclinic configuration
and of the strain partition given by (68). In (68), E∼ relates the infinites-
imal vectors dζ and dx , where dζ results from the cutting and releasing
operations from the infinitesimal current lattice vector dx

dζ = E∼
−1 dx (79)

From this, it can be seen that the decomposition (68) actually goes back to
Bilby et al. (1957).

Accordingly, if S is a smooth surface containing x in the current config-
uration and bounded by the closed line c, the true Burgers vector is defined
as

b =

∮
c

E∼
−1.dx (80)

The application of Stokes’ formula (125) leads to the definition of the so-
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called true dislocation density tensor

α∼ = −curlc E∼
−1 = E∼

−1 ×∇c = −εjkl E
−1
ik,l e i ⊗ e j (81)

such that

b =

∫
S

α∼ .n dS (82)

If the surface is infinitesimal of normal n , db = α∼ .n dS is the resulting
true Burgers vector of dislocations crossing the surface dS. It is convenient
to associate each component αij of the dislocation density tensor with a
(super)dislocation characterized by its line vector e j and its Burgers vector
bi e i (no summation). As a result, the diagonal components of α∼ represent
screw dislocations and the out-of-diagonal ones edge dislocations. For n
dislocations per unit surface of Burgers vector b and line vector ξ , we have

α∼ = n b ⊗ ξ (83)

Scalar dislocation densities and crystal plasticity In the classical
continuum theory of dislocations, the description of the dislocation distribu-
tion is restricted to the dislocation density tensor. It enables one to compute
stress-strain fields for special distributions and even discrete dislocations for
which α∼ becomes the sum of Dirac’s functions. However the classical contin-
uum theory of dislocations has failed to describe the elastoplastic behaviour
of single crystals. The main reason is that the dislocation density tensor is
not the relevant variable to explain the hardening processes. In Hahn and
Jaunzemis (1973), the kinematics of plastic deformation are derived from
the dislocation velocity tensor and corresponds exactly to the purely me-
chanical description of slip processes proposed by Mandel. The next step
is the introduction of hardening variables as in the classical macroscopic
plasticity theory. They are related to usual scalar dislocation densities that
are commonly used by metal physicists and which represent the total length
of dislocation lines within a volume element. The multiplication and inter-
action of dislocations is responsible for the hardening of single crystals and
the scalar densities are reliable measures for it. This type of description cul-
minates with the work of Mandel, Zarka and Teodosiu and Sidoroff Mandel
(1971); Zarka (1972); Teodosiu and Sidoroff (1976). In these theories the
dislocation density tensor is not even mentioned since it is not the rele-
vant quantity any more. Constitutive equations for hardening variables are
proposed in a more or less phenomenological way and several elementary
dislocation interaction processes are taken into account.

The main successes of these theories are the modelling of the tensile
behaviour of single crystals, the lattice rotations and the cyclic behaviour
of single and polycrystals Cailletaud (1992).
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Proposed description In this work we claim that both types of descrip-
tions are required for the modelling of non-homogeneous deformation of
single crystals. That is why the statistical description of dislocation distri-
bution must contain at least:

• the dislocation density tensor α∼ which accounts for the resulting Burg-
ers vector across any infinitesimal surface,
and

• scalar dislocation densities ρs or the associated hardening variables,
for instance rs and xs already used in Méric and Cailletaud (1991). The
kinematic hardening variables xs are a measure for microscopically non-
homogeneous spatial dislocation distributions that give rise to a vanishing
resulting Burgers vector (dislocation cells...). Additional variables (densities
of mobile and immobile dislocations...) may also be necessary.

It must be noted that the dislocation density tensor and the scalar dis-
location densities are related respectively to the one-point and two-point
dislocation correlations introduced by Kröner Kröner (1969), as explained
in section 1.1.

The scalar dislocation densities are necessary to account for the harden-
ing or softening behaviour of the material whereas the dislocation density
tensor may play a significant role when strong lattice incompatibilities are
present.

Link between the dislocation density tensor and the lattice
torsion-curvature tensor

Classical analysis at small strains and small rotations Nye in-
troduces the rotation vector Φ of the lattice and the curvature tensor
κ∼ = Φ ⊗ ∇ At small strains and small rotations, the strain and rota-
tion rate decomposition into elastic and plastic parts reads

β̇
∼

= β̇
∼

e + β̇
∼

p = ε̇∼ + ω∼
= ε̇∼

e + ω∼
e + ε̇∼

p + ω∼
p

ω∼
p = ω∼ −ω∼

e = ω∼ − 1∼ × Φ̇ e represents the relative rotation of material
lines with respect to the lattice. As a result, relation (76) becomes

α̇∼ = curl β̇
∼

e = curl ε̇∼
e + curl ω∼

e (84)
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In a way similar to Kröner (1958), we derive

curl ω∼
e = εjkl ωik,l e i ⊗ e j

= −εjkl εikm Φ̇m,l e i ⊗ e j

= −εkljεkmi κ̇ml e i ⊗ e j

= −(δmlδij − δilδmj) κ̇mle i ⊗ e j

= κ̇∼
T − Tr κ̇∼ 1∼

Neglecting the elastic strain, one obtains the expression proposed by Nye
and its inverse form

α∼ = κ∼
T − Trκ∼ 1∼, κ∼ = α∼

T − 1

2
Trα∼ 1∼ (85)

Keeping the elastic term

α∼ = curl ε∼
e + κ∼

T − Trκ∼ 1∼ (86)

Analysis for the Cosserat theory Within the framework of the
Cosserat theory for single crystals presented in part 2, we propose the fol-
lowing definition for the true dislocation density tensor

α∼ = −curlc (�F∼
e−1.R∼

T ) (87)

We try now to link the dislocation density tensor and the wryness tensor.
Equation (87) becomes

α∼ = −
(
εjkl

∂�F e−1
im

∂xl
Rkm + �F e−1

im εjkl R
T
mk,L F−1

Ll

)
e i ⊗ e j (88)

(the comma denotes again a derivative with respect to the reference config-
uration). Note that,

Γ∼ =
1

2
ε∼ : (R∼ .(R∼

T ⊗∇)) =⇒ R∼ .(R∼
T ⊗∇) = ε∼.Γ∼ (89)

or, in components,
RT

mk,l = −RT
mu εukv Γvl (90)

As a result (87) can now be written

α∼ = A∼
el − �F e−1

im RT
mu εklj εkvu ΓvL F−1

Ll e i ⊗ e j

= A∼
el + �F∼

e−1.R∼
T .
(
(Γ∼.F∼

−1)T − Tr (Γ∼.F∼
−1) 1∼

)
= A∼

el + �F∼
e−1.

(
(�Γ∼.

�F∼
−1)T − Tr (�Γ∼.

�F∼
−1) 1∼

)
R∼

T
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where A∼
el = εjkl

∂�F e−1
im

∂xl
Rkm e i ⊗ e j . It can be checked that equation

(86) is retrieved for small strains and rotations. We define

�α∼ = α∼ .R∼ (91)

and R∼ .�F∼
e α∼ can be interpreted as the Cosserat counterpart of the local

dislocation density tensor introduced in the classical continuum theory of
dislocations.

Geometrically necessary dislocations and statistically stored dis-
locations According to Ashby (1971), dislocations become stored in a
plastically non-homogeneous solid for two reasons: dislocations are either
required for the compatible deformation of various parts of the specimen
or they accumulate by trapping each other in a random way. This gives
rise on the one hand to the density ρG of so-called geometrically necessary
dislocations and on the other hand to the density ρS of statistically stored
dislocations. The density ρG can be computed approximately in some situ-
ations like plastic bending or punching. This variable comes directly from
the continuum theory of dislocations and corresponds to the components
of the dislocation density tensor α∼ . In contrast, the density ρS belongs to
the second group of variables that have been listed and called hardening
variables. However, as shown by Ashby in the case of two-phase alloys, ge-
ometrically necessary dislocations may lead to additional hardening. In the
following, we will try to model this coupling effect between the two types
of variables that describe the dislocation distribution. The relative impor-
tance of ρG and ρS depends on the amount of overall plastic deformation,
and on the type of solicitation. Clearly ρG can dominate in the case of
strong deformation gradients.

1.4 Explicit constitutive equations

We propose a complete set of constitutive equations for the elastovis-
coplastic deformation and intrinsic curvature of metal single crystals.

Kinematics of plastic deformation and curvature The plastic flow
due to slip on various slip systems is given by equation (61). Similarly an
expression of the plastic curvature evolution has been proposed (equation
(72)). An expression of �Q

∼
s is now derived from the analysis of the disloca-

tion density tensor. The scalar γs represent the amount of slip due to the
passage of dislocations of type s through the volume element. As for them
the scalars θs represent the plastic curvature due to dislocations trapped in
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the volume element of characteristic length l. We will assume that the curva-
ture axes or say the expression �F∼

e−1.
(
(�Γ∼

p.�F∼
−1)T − Tr (�Γ∼

p.�F∼
−1) 1∼

)
are given by the dislocation density tensor �α∼ . Conversely, the curvature

axes �Γ∼
p.�F∼

p−1 are then given by

(
(�F∼

e.�α∼)
T − 1

2
Tr (�F∼

e.�α∼) 1∼

)
.�F∼

e

for each type of dislocation. The amount of curvature θs will be computed
using constitutive equations proposed in the next section. Furthermore we
drop the factors �F∼

e for simplicity (small elastic strains). We must now
distinguish :

Curvature due to edge dislocations (⊥)

For edge dislocations, �α∼ = b �m ⊗ �ξ .
ξ is the dislocation line vector and the normal to the glide plane is defined
as

n = m × ξ (92)

The associated curvature is then b �ξ ⊗ �m , so that we take

�Q
∼ ⊥ = �ξ ⊗ �m (93)

Arrays of edge dislocations of the same type give rise to lattice curvature
in the plane (m , b ). The rotation vector Φ has the same direction as the
dislocation line vector.

Torsion due to screw dislocations (�)

For a screw dislocation, �α∼ = b �m ⊗ �m
The associated curvature is then b (�m ⊗ �m − 1

2 1∼), so that we take

�Q
∼ � = �m ⊗ �m − 1

2
1∼ (94)

As a result screw dislocations cause lattice torsion about the three reference
axes. Kröner Kröner (1958) noticed that a planar array of crossed screw
dislocations with perpendicular Burgers vectors produces a twist of the lat-
tice about the third direction. This is equivalent to a grain boundary of the
second kind. Grain boundaries of the first kind are generated by an array
of edge dislocations with parallel Burgers and line vectors. Note that the
result (94) is different from that proposed in Dluzewski (1992),

Γ∼
Dluzewski = b (�m ⊗ �m − 1∼) (95)

which gives no torsion with respect to the dislocation line axis. This seems
to hold only when the couple that can be derived from the classical stress
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field around a screw dislocation is not released Friedel (1964); Hirth and
Lothe (1982).

At last we give the proposed kinematics of the plastic lattice torsion-
curvature

�Γ̇∼
p
.�F∼

p−1 =
∑
s∈S

(
θ̇s⊥
l

�ξ s ⊗ �m s +
θ̇s�
l

(�m s ⊗ �m s − 1

2
1∼)

)
(96)

(a)
1

2

3
.

b
ξ

z

l

(b)

Figure 2. Lattice curvature induced by edge dislocations (a); lattice torsion
induced by screw dislocations (b).

Generalized Schmid’s law

Peach and Koehler’s force Kröner shows that Peach and Koehler’s
formula giving the force on a dislocation (b , ξ ) due to a stress field σ∼ applies
also for a non-symmetric stress tensor Kröner (1956). But it is important
to derive again the formula taking care of any transposition. The force f
per unit length of dislocation is defined through

f .dx = b .(σ∼ n ) dS = ((b σ∼)× ξ ).dx (97)

where
n dS = ξ × dx (98)
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The dislocation can move in its plane only if the component of the force in
the glide plane

bτ = f .(n × ξ ) = σ∼ : (b ⊗ n ) (99)

reaches a threshold. This is the physical meaning of Schmid’s criterion. We
will use this criterion to compute the slip rate on slip system s

γ̇s =

(
Max(0, | τ s − xs | − rs)

ks

)ns

sign (τs − xs) (100)

where τ s = �σ∼ : �P∼
s according to (99), and xs and rs are internal kine-

matic and isotropic hardening variables. xs and rs represent respectively
a back-stress and the yield threshold, which are supposed to describe with
sufficient accuracy the dislocation structure with a view to modelling the
hardening behaviour.

Evolution law for the viscoplastic torsion-curvature variables We
consider an array of edge dislocations with b = b e 1, the normal to the
glide plane n = e 2 and ξ = −e 3 (see figure 2). At small strains they
produce a curvature

κ∼
p = −nb e 3 ⊗ e 1 = κp

31 e 3 ⊗ e 1 (101)

We will assume that such geometrically necessary dislocations are produced
by local dislocation sources if the local moment μ

∼
= m e 3 ⊗ e 1 (m <

0 here) is so high that the imposed curvature cannot be accommodated
elastically any longer.

Generalizing the previous example, we propose the following expression
of the viscoplastic curvature rate

θ̇s =

(
Max(0, | �μ

∼
: �Q

∼
s | − l rsc)

l kc

)nc

sign (�μ
∼
: �Q

∼
s) (102)

where rsc denotes the threshold and kc and nc is a viscosity parameter.
The formula is to be applied successively for edge and screw dislocations
belonging to the same system. Equations (100) and (102) and the hardening
rules of the next section close the theory based on multicriteria and asso-
ciative flow rules. Accordingly this theory is part of associative generalized
plasticity.

Expression of the free energy and hardening rules The key-point
of the thermodynamical analysis of a constitutive model for a dissipative
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system is the choice of the relevant internal variables on which the free
energy may depend. We propose such a formulation of the previous model
in the linear case for simplicity. In addition to the observable variables
deformation, curvature and temperature (e∼, κ∼, T ) or equivalently (e∼

e, κ∼
e,

T ), the free energy is assumed to depend on the following internal variables:
• the variables �sS , which are similar to the densities of statistically

stored dislocations, and which are defined by

�̇sS =| γ̇s | (103)

• the variables �sG, which are similar to the densities of geometrically
necessary dislocations, and which are defined by

�sG =| bθ
s

l
| (104)

• the kinematic hardening variables αs.
We postulate then that the free energy is a quadratic form of these variables
according to

ρψ(e∼
e,κ∼

e, T, αs, �sS , �
s
G) = 1

2 e∼
e : E∼∼

: e∼
e + 1

2 κ∼
e : C∼∼

: κ∼
e + 1

2

∑
s∈S cαs2

+ r0
∑

s∈S �sS + 1
2

∑
r,s∈S hsr�sS�

r
S

+ rc0
∑

s∈S �sG + 1
2

∑
r,s∈S hsr

c �sG�
r
G

+
∑

r,s∈S hsr
I �sS�

r
G + f(T )

Hardening matrices hrs and hrs
c have been introduced for each population of

dislocations following Mandel (1965), but a coupling term associated with
the matrix hsr

I must be added.
Assuming then that the thermodynamical forces corresponding to the

variables �sS , �
s
G and αs respectively are rs, rsc and xs, the following hard-

ening rules are derived :

Isotropic hardening

rs = ρ
∂ψ

∂�sS
= r0 +

∑
r∈S

hsr�rS +
∑
r∈S

hsr
I �rG (105)

rsc = ρ
∂ψ

∂�sG
= rc0 +

∑
r∈S

hsr
c �rG +

∑
r∈S

hsr
I �rS (106)
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Note that, for simplicity, we have omitted to split the terms hsr
c �rG into

hsr
c⊥�

r
G⊥ + hsr

c��
r
G� in order to distinguish the contributions of edge and

screw dislocations. The same holds for the terms involving matrix hsr
I .

Furthermore, a similar thermodynamical formulation can be worked out
for non-linear isotropic hardening. It can be seen that a coupling between
plastic deformation and curvature naturally arises from our choice of the
free energy. The existence of additional hardening due to plastic curvature
must be investigated experimentally.

Kinematic hardening

xs = ρ
∂ψ

∂αs
= cs αs (107)

We refer to Méric and Cailletaud (1991) for the expression of the non-linear
evolution law for kinematic hardening:

α̇s = γ̇s − d | γ̇s | αs (108)

Dissipation Introducing now the internal variables in the expression of
the intrinsic dissipation rate derived in 2.5, one obtains

Ḋ =
∑
r∈S

(
τ s γ̇s − xsα̇s − rs�̇sS + νs⊥ θ̇s⊥ + νs� θ̇s� − rsc⊥�̇

s
G⊥

− rsc��̇
s
G�

)
(109)

where

νs⊥ =
1

l
�μ
∼
: �Q

∼
s

⊥ and νs� =
1

l
�μ
∼
: �Q

∼
s

� (110)

The multiplication and motion of dislocations are dissipative processes.
The three first terms in (109) account for dissipation due to slip activity
whereas the remaining terms account for multiplication of geometrically
necessary dislocations. In many cases the last terms can be neglected. But
when strong lattice rotation gradients develop, they may well be the leading
terms.

Some conditions on the material parameters can then be derived from the
entropy principle. Taking the flow rules (100) and (102) and the definitions
(103) and (104) into account, equation (109) can be rewritten under the
form

Ḋ =
∑

r∈S

(
((τ s − xs) sign(γ̇s)− rs + cdαs2) | γ̇s |

+ θ̇s⊥ (νs⊥ − rsc⊥ sign(θsG⊥)) + θ̇s�(ν
s
� − rsc� sign(θsG�))

)
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It can be checked that the positivity of the intrinsic dissipation rate is
ensured if c d > 0 and if the marix hrs

c⊥,� is such that rsc⊥,� is always
positive.

1.5 Conclusions

Recent advances in the mechanics of generalized continua have been used
to develop a Cosserat theory for single crystals at finite deformation and
curvature. The decomposition of the relative deformation gradient into an
elastic and plastic part is multiplicative as usual, whereas the wryness tensor
admits a mixed additive-multiplicative decomposition. We have assumed
that the plastic lattice curvature and torsion are accommodated respec-
tively by edge and screw dislocations belonging to each slip system. The
curvature and torsion angles over a characteristic length due to each type
of dislocation are internal variables in addition to the cumulative amounts
of slip for each slip system. Explicit constitutive equations have been pro-
posed in the case of elastoviscoplasticity. An important consequence of the
theory is that the plastic lattice curvature and torsion as well as the plas-
tic spin are associated with dissipation. The production of geometrically
necessary dislocations is clearly a dissipative process. There is an over-
whelming tendency to include these microstructural features of dislocated
crystals into the framework of generalized continua. Since the pioneering
work of Günther, Claus and Eringen Eringen and Claus (1970) resorted to
a micromorphic continuum. As for them, Smyshlyaev and Fleck (1996) pre-
fer to develop a strain gradient theory of slip. However they replace this
plasticity problem by a problem of non-linear elasticity at small strains.
In contrast our theory has the tremendous advantage to provide a set of
kinematic and constitutive equations in elastoviscoplasticity at finite defor-
mation on a physical and thermodynamical basis. Finally Lachner et al.
(1994) have shown that polycrystals also can be regarded as Cosserat me-
dia. Homogenization techniques should enable one to derive a polycrystal
model from the present theory.

Only a precise enough description of dislocation distribution within a
volume element can enable one to model the plastic behaviour of single
crystals. For that purpose, the continuum theory of dislocations resorts
to the dislocation density tensor. In contrast, macroscopic elastoplasticity
theory involves hardening variables which are related to scalar dislocation
densities. In both theories, the expression ”dislocation density” is seen to
have a very different meaning. The dislocation density tensor and the scalar
dislocation densities are independent measures of the dislocation distribu-
tion. The most important advantage of the proposed theory is to combine
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both descriptions within a single constitutive framework.
It must be noticed that only slip processes have been taken into account

in the present work. Further developments are necessary to include climb
processes, which may play a significant role during creep.

A coupling between plastic curvature and plastic deformation has been
introduced on the level of the hardening rule to represent the influence of
slip plane curvature on further dislocation motion. Experimental evidence
of such hardening effects have been provided for instance in Jaoul (1965).

It is clear that the difference between the classical theory and the
Cosserat theory can appear only if deformation and more precisely lat-
tice rotation is not homogeneous. The theory can therefore be applied to
the prediction and the simulation of localized deformation modes like shear
bands in single crystals. A theoretical analysis of such material instabilities
is presented in Petryk (1992). The case of single crystals is investigated in
Asaro and Rice (1977); Duszek-Perzyna and Perzyna (1993). An analysis
and numerical simulations of localization phenomena in single crystals are
presented in Forest and Cailletaud (1995) for the classical theory. In Forest
(1998) we have performed a bifurcation analysis for single crystals under-
going single slip using the Cosserat theory. Some crucial differences with
respect to the classical case have been pointed out. For instance, according
to the classical theory, slip bands and kink bands can occur for the same
critical hardening modulus. This is no longer true for the Cosserat theory,
which is strongly supported by experimental evidence.

1.6 Appendix: Notations

In this work, a denotes a vector of the Euclidean space E, A∼ a second-rank Euclidean
tensor, and A∼ (resp. A∼) a third-rank tensor when operating on a vector (resp. a second-

rank tensor). The same third-rank tensor is denoted A when regarded as a 3-linear form.

The tensor product of two vectors a , b is such that, for all x ∈ E,

x .(a ⊗ b ) = x .a b
(a ⊗ b ).x = b .x a

where the dot denotes the inner product on E.
Let (e 1, e 2, e 3) be a positive oriented orthonormal basis of oriented E with dimension

3. When written in components, the double contraction of second-rank tensors reads

A∼ : B∼ = AijBij (111)

We note ε∼ the Levi-Civita tensor

ε = Det(e j , e k, e l) e j ⊗ e k ⊗ e l (112)

Notice the useful identity

εijk εilm = δjl δkm − δjm δkl (113)
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The following result concerning third-rank tensors is used,

If B∼ = 1
2
ε∼ : A∼ = 1

2
εikl Aklj e i ⊗ e j

and Aijk = −Ajik

then A∼ = ε∼ . B∼ = εijm Bmk e i ⊗ e j ⊗ e k

The cross product is defined by

a × b = ε∼ : (a ⊗ b ) = εijk ajbk e i (114)

The symmetric and antisymmetric parts of tensor A∼ are respectively denoted {A∼
} and

}A∼
{. There is then one and only one vector

×
A such that, for all x ,

}A∼
{ .x =

×
A ×x ,

×
A = −1

2
ε∼ : A∼ = −1

2
εklm Alm e k (115)

Following Trostel [56], we define a cross product between a second-rank tensor and a
vector

(a ⊗ b )× c = a ⊗ (b × c )
a × (b ⊗ c ) = (a × b )⊗ c

so that
A∼ × c = −(c ×A∼

T )T (116)

As a result
}A∼

{ = 1∼ ×
×
A = −ε∼.

×
A (117)

Any element R∼ of the orthogonal group can be represented by the element Φ of the
associated Lie group such that

R∼ = exp(1∼ ×Φ ) = exp(−ε∼.Φ ) (118)

Concerning tensor analysis, our notations are,

nabla operator
∇ = ,i e i (119)

gradient operator
grad f = ∇f = f,i e i (120)

grad u = u ⊗∇ = ui,j e i ⊗ e j (121)

curl operator
curl u = u ×∇ = εijk uj,k e i (122)

curl A∼ = A∼ ×∇ = εhjk Aij,k e i ⊗ e h (123)

Note that
}u ⊗∇{ =

1

2
ε∼.(curl u ) (124)

We have made a wide use of theorem∮
L

A∼ .l dl = −
∫
S

(curl A∼).n dS (125)

where the open surface S is bounded by the contour L.
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2 The micromorphic approach to strain gradient
crystal plasticity

2.1 The micromorphic approach

A unifying thermomechanical framework is presented by Forest (2009)
that reconciles several classes of gradient elastoviscoplasticity and damage
models proposed in the literature during the last 40 years. It is based on
the introduction of the micromorphic counterpart χφ of a selected state or
internal variable φ in a standard constitutive model. Following the method
of virtual power, the power of internal forces is extended by the contribution
of micromorphic power. In addition to the classical balance of momentum
equation, a balance of micromorphic momentum is derived that involves
generalized stress tensors associated with invariant generalized strain mea-
sures based on χφ and its first gradient ∇χφ. The corresponding additional
boundary conditions are also deduced from the procedure. The power of
generalized forces is assumed to contribute to the energy balance equation.
The free energy density function is then assumed to depend on invariant
generalized strain measures involving in particular the relative generalized
strain φ−χφ and its gradient ∇χφ. The Coleman–Noll procedure is applied
to derive the state laws and residual dissipation from the entropy principle.

When applied to the deformation gradient itself, φ ≡ F∼ , the micromor-
phic theory of Eringen and Mindlin is recovered Eringen and Suhubi (1964);
Mindlin (1964) together with its extension to finite deformation elastovis-
coplasticity Sansour (1998a); Forest and Sievert (2003). If the selected vari-
able is the cumulative plastic strain, the theory reduces to the so–called
”nonlocal implicit gradient–enhanced elastoplasticity model” provided that
simplified linear relationships are adopted between generalized stresses and
strains Peerlings et al. (2001); Engelen et al. (2003). The same holds if
the micromorphic variable coincides with a damage variable Peerlings et al.
(2004).

There are two possible sources of coupling between the macro and micro
variables in the proposed approach. If the relative generalized strain associ-
ated with φ−χφ explicitly appears in the extended power of internal forces,
the associated relative stress acts as a coupling between the balance equation
for standard momentum and for generalized momentum, as in Eringen’s mi-
cromorphic continuum. The relative generalized strain can also be included
as an argument of the free energy function which eventually leads to the
wanted coupling between standard and generalized stresses. Both formula-
tions have been illustrated recently for the so–called ”microstrain” theory
Forest and Sievert (2006).

It the internal constraint is introduced that the micromorphic variable
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χφ remains as close as possible to the macroscopic variable φ, the micromor-
phic model reduces to the second gradient or gradient of internal variable
approach as defined in Maugin (1990); Maugin and Muschik (1994); Papen-
fuss and Forest (2006). When the micromorphic variable is the deformation
gradient itself, the second gradient theory according to Mindlin and Eshel
(1968) is obtained. If the selected variable is the cumulative plastic strain,
the constrained micromorphic theory delivers Aifantis strain gradient plas-
ticity model according to Aifantis (1987); Fleck and Hutchinson (2001).
When applied to the full plastic strain tensors, the strain gradient plasticity
models initially proposed by Forest and Sievert (2003) and Gurtin (2003)
are derived.

General procedure for introducing micromorphic variables

We start from an elastoviscoplasticity model formulation within the frame-
work of the classical Cauchy continuum theory and classical continuum
thermodynamics according to Germain et al. (1983); Maugin (1999). The
material behaviour is characterized by the reference set of state variables

STATE0 = {F∼ , T, α} (126)

on which the free energy density function ψ may depend. The deformation
gradient is denoted by F∼ whereas α represents the whole set of internal vari-
ables of arbitrary tensorial order accounting for nonlinear processes at work
inside the material volume element, like isotropic and kinematic hardening
variables. The absolute temperature is T .

The proposed systematic method for the enhancement of the previous
continuum and constitutive theory to incorporate generalized strain gradi-
ent effects proceeds as follows:

1. Select a variable φ from the set of state variables, which is supposed
to carry the targeted gradient effects:

φ ∈ {F∼ , α, T} (127)

It can be a tensor variable of arbitrary rank. For the illustration, it is
treated as a scalar quantity in this section. The case φ = T is treated
in Forest and Amestoy (2008).

2. Introduce the micromorphic variable χφ associated with φ. It has the
same tensor rank and same physical dimension as φ.

3. Extend the virtual power of internal forces to the power done by the
micromorphic variable and its first gradient:

P(i)(v 
,χφ̇
) = −
∫
D
p(i)(v 
,χφ̇
) dV (128)
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p(i)(v 
,χφ̇
) = σ∼ : ∇v 
 + a χφ̇
 + b .∇χφ̇
 (129)

where D is a subdomain of the current configuration Ω of the body.
The Cauchy stress is σ∼ and a and b are generalized stresses associated
with the micromorphic variable and its first gradient.

4. Extend then the power of contact forces as follows:

P(c)(v 
,χφ̇
) =

∫
D
p(c)(v 
,χφ̇
) dV, p(c)(v 
,χφ̇
) = t .v 
 + ac χφ̇


(130)
where t is the traction vector.

5. Extend the power of forces acting at a distance by introducing, if
necessary, generalized body forces:

P(e)(v 
,χφ̇
) =

∫
D
p(e)(v 
,χφ̇
) dV (131)

p(e)(v 
,χφ̇
) = ρf .v 
 + ae χφ̇
 + b e.∇χφ̇
 (132)

where ρf , ae, b e account for given simple and generalized body forces.
Following Germain (1973a), given body couples and double forces
working with the gradient of the velocity field, can also be introduced
in this theory.

6. Formulate the generalized principle of virtual power with respect to
the velocity and micromorphic variable fields, presented here in the
static case only:

P(i)(v 
,χφ̇) + P(e)(v 
,χφ̇
) + P(c)(v 
,χφ̇) = 0, ∀D ⊂ Ω, ∀v 
,χφ̇
(133)

The method of virtual power according to Maugin (1980) is used then
to

7. Derive the standard local balance of momentum equation:

divσ∼ + ρf = 0, ∀x ∈ Ω (134)

and the generalized balance of micromorphic momentum equation:

div (b − b e)− a+ ae = 0, ∀x ∈ Ω (135)

8. Derive the associated boundary conditions for the simple and gener-
alized tractions:

t = σ∼ .n , ∀x ∈ ∂D (136)

acφ = (b − b e).n , ∀x ∈ ∂D (137)
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9. Enhance the local balance of energy by the generalized micromorphic
power already including in the power of internal forces (129):

ρε̇ = p(i) − div q + ρr (138)

where ε is the specific internal energy, q the heat flux vector and r
denotes external heat sources.

10. Enlarge the state space to include the micromorphic variable and its
first gradient:

STATE = {F∼ , T, α, χφ, ∇χφ} (139)

The free energy density function ψ will in general be a function of the
generalized relative strain variable e defined as:

e = φ−χφ (140)

thus introducing a coupling between macro and micromorphic vari-
ables.

11. Formulate the entropy principle in its local form:

−ρ(ψ̇ + ηṪ ) + p(i) −
q

T
.∇T ≥ 0 (141)

where it was assumed that the entropy production vector is still equal
to the heat vector divided by temperature, as in the classical ther-
momechanics according to Coleman and Noll (1963). Again, the en-
hancement of the theory goes through the enriched power density of
internal forces (129).

12. Exploit the entropy principle according to classical continuum ther-
modynamics to derive the state laws. For that purpose, the following
constitutive functions are introduced:

ψ = ψ̂(F∼
e, T, α,χφ,∇χφ),σ∼ = σ̂∼(F∼

e, T, α,χφ,∇χφ) (142)

η = η̂(F∼
e, T, α,χφ,∇χφ) (143)

a = â(F∼
e, T, α,χφ,∇χφ), b = b̂ (F∼

e, T, α,χφ,∇χφ) (144)

(145)

where F∼
e represents the elastic part of total deformation. Its precise

definition depends however on the retained decomposition of total de-
formation into elastic and plastic contribution. The usual multiplica-
tive decomposition is adopted below for the illustration. The state
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laws follow:

σ∼ = ρ
∂ψ̂

∂F∼
e .F∼

eT η = −∂ψ̂

∂T
X = ρ

∂ψ̂

∂α
(146)

a =
∂ψ̂

∂χφ
(147)

b =
∂ψ̂

∂∇χφ
(148)

and the residual dissipation is

Dres = W p −Xα̇−
q

T
.∇T ≥ 0 (149)

where W p represents the (visco–)plastic power and X the thermody-
namic force associated with the internal variable α. The existence
of a convex dissipation potential depending on the thermodynamic
forces can then be assumed from which the evolution rules for internal
variables are derived, that identically fulfill the entropy inequality, as
usually done in classical continuum thermomechanics Germain et al.
(1983).

In the following, this methodology will be applied to existing theories of
plasticity.

At this first stage, there will be no need for considering generalized exter-
nal body forces so that ae = 0, b e = 0. In the most simple model, assuming
isotropic material behavior for brevity, the additional contributions to the
free energy are taken as quadratic functions of e and ∇χφ:

ψ(F∼ , T, α,χφ,∇χφ) = ψ1(F∼ , α, T ) + ψ2(e = φ−χφ,∇χφ, T ), with (150)

ρψ2 =
1

2
Hχ(φ−χφ)2 +

1

2
A∇χφ.∇χφ (151)

After inserting the state laws (147) and (148)

a = ρ
∂ψ

∂χφ
= −Hχ(φ−χφ) (152)

b = ρ
∂ψ

∂∇χφ
= A∇χφ (153)

into the additional balance equation (135),

a = div b (154)
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the following partial differential equation is obtained:

φ =χφ− A

Hχ
Δχφ (155)

where Δ is the Laplace operator. This type of equation is encountered at
several places in the mechanics of generalized continua especially in the lin-
ear micromorphic theory Mindlin (1964); Eringen (1999); Forest and Sievert
(2003); Dillard et al. (2006) and in the so–called implicit gradient theory of
plasticity and damage Peerlings et al. (2001); Engelen et al. (2003); Peer-
lings et al. (2004). Note however that this equation corresponds to a special
quadratic potential and represents the simplest micromorphic extension of
the classical theory. It involves a characteristic length scale defined by:

l2c =
A

Hχ
(156)

This length is real for positive values of the ratio A/Hχ. The additional
material parameters HX and A are assumed to be positive in this work.
This does not exclude a softening material behaviour that can be induced
bu the proper evolution of the internal variables (including φ ∈ α itself).

Full micromorphic and microstrain theories

The micromorphic theory proposed in Eringen and Suhubi (1964) and
Mindlin (1964) is retrieved by choosing

φ ≡ F∼ (157)

i.e. the selected variable φ is the full deformation gradient itself. The
associated micromorphic variable is

χφ ≡ χ
∼

(158)

where χ
∼
(x ) is the generally nonsymmetric and non compatible field of

microdeformation introduced by these authors. Following the approach
sketched in the previous section, the power of internal forces is extended
by the micromorphic power, written here in the small deformation frame-
work for the sake of brevity:

p(i) = σ∼ : ∇u̇ + a∼ : χ̇
∼
+B∼

...∇χ̇
∼

(159)

where u is the displacement field. An (infinitesimal) change of observer
of rate w∼ changes the gradient of the velocity field into ∇u̇ + w∼ and the
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microdeformation rate into χ̇
∼
+w∼ . The principle of (infinitesimal) material

frame indifference requires the invariance of p(i) with respect to (infinites-
imal) Euclidean changes of observers Gurtin (2003). As a result, the sum
σ∼ + a∼ must be a symmetric second–rank tensor. The power density of
internal forces can therefore be rewritten in the following form

p(i) = σ∼ : ε̇∼ + s∼ : (∇u̇ − χ̇
∼
) + S∼

...∇χ̇
∼

(160)

where σ∼ is symmetric, s∼ is the generally nonsymmetric relative stress tensor,
and S∼ the higher order stress tensor introduced in the formulation of Eringen
(1999). The infinitesimal strain tensor is ε∼. The generalized strain rates
∇u̇ − χ̇

∼
and ∇χ̇

∼
are invariant with respect to (infinitesimal) changes of

observers1. The balance equations of momentum and of generalized moment
of momentum take the form

div (σ∼ + s∼) + ρf = 0, divS∼ + s = 0 (161)

which shows an explicit coupling between both balance equations via the
relative stress tensor s∼. Such a coupling was not explicit in the general
formulation of section 2.1 (see equations (134) and (135), but it finally
becomes evident through the constitutive coupling in equation (155).

The microstrain theory proposed in Forest and Sievert (2006) is an ap-
plication of the micromorphic approach when taking

φ ≡ C∼ = F∼
T .F∼ , χφ ≡χC∼ (162)

or
φ ≡ ε∼,

χφ ≡χε∼ (163)

within the small strain approximation. Because of the symmetry of the
microstrain tensor, it is not necessary to introduce a relative stress tensor
in the enriched power of internal forces. Instead, the standard form (129)
is adopted:

p(i) = σ∼ : ε̇∼ + a∼ :χε̇∼ (164)

The coupling between macro and microstrain arises at the constitutive level
since the free energy density was proposed in Forest and Sievert (2006) to
be a function

ψ(ε∼
e, T, α, e∼ := ε∼ −χε∼, K∼ := ∇χε∼) (165)

1The reasoning holds true at finite deformation as done in Mindlin (1964); Eringen and

Suhubi (1964).
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The additional arguments can be limited to their non–dissipative parts
e∼
e,K∼

e according to Forest and Sievert (2006). The existence of dissipa-
tive micromechanisms is considered in Forest and Sievert (2003). When the
following linearized constitutive equations are adopted:

a∼ = Hχe∼, b∼ = A∇χε∼ (166)

the extra balance equation takes the following simple form:

χε∼ − l2cΔ
χε∼ = ε∼, with l2c =

A

Hχ
(167)

as shown in Dillard et al. (2006). This represents an extension of the scalar
partial differential (155) to a tensor valued micromorphic variable. The
Laplace operator applies here to each individual tensor component, within
a Cartesian orthonormal coordinate system.

The full micromorphic continuum can be regarded as the combina-
tion of the microstrain and Cosserat continua Forest and Sievert (2006).
The Cosserat continuum itself can be interpreted in terms of the proposed
methodology. It corresponds to the choice:

φ = R∼ , χφ ≡χR∼ (168)

where R∼ is the material rotation in the polar decomposition of F∼ . The
associated quantity χR∼ is nothing but the micropolar rotation representing
the rotation of a triad of directors attributed to each material point. The
generalized stress a∼ in the enriched power of internal forces is then related
to the skew–symmetric part of the Cosserat stress tensor. Cosserat models
are known to be able to account for some size effects in the softening plastic
behavior of granular materials Mühlhaus and Vardoulakis (1987) and in the
hardening behaviour of metals Forest et al. (2000).

Microstrain gradient plasticity

The proposed methodology is now applied to the simplest models available
for the isothermal elastic–plastic behaviour of materials. Different general-
ized models are worked out and compared to the existing models in litera-
ture. It turns out that several existing strain gradient plasticity models are
recovered using the proposed systematic procedure. Some differences are
evidenced due to the precise thermodynamical background of the approach
which is not always present in the earlier approaches. In particular the
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approach can be used to tackle coupled problems, thus provided coupled
strain gradient equations not present in the literature. A simple example of
this coupling in given to account for a possible dependence of material pa-
rameters with temperature. The framework is applicable to plasticity and
viscoplasticity.

The reference state space corresponding to a classical elastoplasticity
model retained in this subsection is

DOF0 = {u }, STATE0 = {ε∼e, p, α} (169)

where ε∼
e is the (infinitesimal) elastic strain tensor, p the cumulated plas-

tic strain variable and α denotes another possible internal variable of any
tensorial rank. The selected variable for the micromorphic approach is

φ ≡ p (170)

which the micromorphic variableχp is associated to. The classical power of
internal and contact forces are extended in the following way:

p(i) = σ∼ : ε̇∼ + a χṗ+ b .∇χp, p(c) = t .u̇ + ac χṗ (171)

in which generalized stresses a and b have been introduced. The application
of the method of virtual power leads to the following additional local balance
equation and boundary conditions in addition to the classical local balance
of momentum and traction condition at the outer boundary:

div b − a = 0, ∀x ∈ Ω, ac = b .n , ∀x ∈ ∂Ω (172)

Generalized body forces ae and b e could be introduced in case of necessity
in the balance equations. The extended state space on which constitutive
functions may depend is

STATE = {ε∼e, p, α, χp, ∇χp} (173)

The total strain is still split into its elastic and plastic parts:

ε∼ = ε∼
e + ε∼

p (174)

The free energy density function ψ is assumed to be a function of the pre-
vious set STATE. The Clausius–Duhem inequality takes then the form

(σ∼−ρ
∂ψ

∂ε∼
e
) : ε̇∼

e+(a−ρ
∂ψ

∂χp
)χṗ+(b−ρ

∂ψ

∂∇χp
).∇χṗ+σ∼ : ε̇∼

p−ρ
∂ψ

∂p
ṗ−ρ

∂ψ

∂α
α̇ ≥ 0

(175)
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from which the following state laws and residual dissipation are derived:

σ∼ = ρ
∂ψ

∂ε∼
e
, a = ρ

∂ψ

∂χp
, b = ρ

∂ψ

∂∇χp
, R = ρ

∂ψ

∂p
, X = ρ

∂ψ

∂α
(176)

Dres = σ∼ : ε̇∼
p −Rṗ−Xα̇ ≥ 0 (177)

The plastic behaviour is characterized by the yield function f(σ∼ , R,X). In
the micromorphic model, the yield function can still be treated as the dissi-
pation potential providing the flow and evolution rules for internal variables.
This corresponds to the hypothesis of maximal dissipation or normality rule:

ε̇∼
p = λ̇

∂f

∂σ∼
, ṗ = −λ̇

∂f

∂R
, α̇ = −λ̇

∂f

∂X
(178)

At this stage, a coupling between the macroscopic and microscopic variables
must be introduced, for instance via the relative cumulative plastic strain
p−χp. An example of such a possible coupling is given in the next paragraph.

Example

A quadratic form is proposed to model the free energy density function,
with respect to elastic strain, cumulative plastic strain, relative plastic strain
and micromorphic plastic strain gradient:

ρψ(ε∼
e, p,χp,∇χp) =

1

2
ε∼
e : Λ∼∼

: ε∼
e +

1

2
Hp2 +

1

2
Hχ(p−χp)2 +

1

2
∇χp.A∼ .∇χp

(179)
The corresponding classical model describes an elastoplastic material be-
haviour with linear elasticity characterized by the tensor of elastic moduli
Λ∼∼

and the linear hardening modulus H. Two additional material parame-

ters are introduced in the micromorphic extension of this classical model,
namely the coupling modulus Hχ (unit MPa) and the micromorphic “stiff-
ness” A∼ (unit MPa.m2). The thermodynamic forces associated with the
state variables are given by the relations (176):

σ∼ = Λ∼∼
: ε∼

e, a = −Hχ(p−χp), b = A∼ .∇χp, R = (H +Hχ)p−Hχ
χp

(180)
Note that when the relative plastic strain e = p −χp is close to zero, the
linear hardening rule retrieves its classical form and the generalized stress a
vanishes. Only the strain gradient effect ∇p remains in the enriched work of
internal forces (171). This is the situation encountered in the strain gradient
plasticity models developed in Fleck and Hutchinson (2001). When inserted
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in the additional balance equation (172), the previous states laws lead to
the following partial differential equation:

χp− 1

Hχ
div (A∼ .∇χp) = p (181)

Let us specialize this equation to the case of isotropic materials, for which
the second order tensor of micromorphic stiffness reduces to

A∼ = A1∼ (182)

which involves then a single additional material parameter. The equation
(183) then becomes

χp− A

Hχ
Δχp = p (183)

which is identical to the second partial differential equation used in the so–
called implicit gradient gradient–enhanced elastoplasticity in Engelen et al.
(2003). The microstrainχp is called there the “non local strain measure” p̄.
Note however that the latter model involves only one additional material
parameter, namely l2c = A/Hχ instead of two in the micromorphic approach.
It will turn out to be a special case of the micromorphic model for a specific
value of the coupling modulus Hχ. No thermodynamical framework was
proposed for the elastoplasticity model in the original contribution Engelen
et al. (2003). Such a framework has been sketched in the reference Peer-
lings et al. (2004) where a quadratic potential similar to (179) is introduced
which involves in particular the same coupling term. In contrast to the mi-
cromorphic approach, however, no additional contribution is introduced in
the power of internal forces so that the additional partial differential equa-
tion is derived as a sufficient condition to identically fulfill the global form
of the entropy inequality. In the micromorphic approach, the coupling mod-
ulus Hχ plays a central role and makes it possible to have a fully consistent
thermomechanical basis for the model. When its value is high enough, it
acts as a penalty term forcing the micromorphic plastic strain to follow the
macroscopic one as close as possible.

The necessity of an additional boundary condition associated with the
nonlocal strain measure is recognized in Engelen et al. (2003). The associ-
ated Neumann condition is used in the form:

∇χp.n = 0 on ∂Ω (184)

It coincides with the more general boundary condition derived in the mi-
cromorphic approach:

b .n = ac on ∂Ω (185)
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when ac = 0 and when b is linear with respect to ∇χp, as it is the case for
the quadratic potential (179).

The yield function is now chosen as

f(σ∼ , R) = σeq − σY −R (186)

where σeq is an equivalent stress measure and σY the initial yield stress.
The hardening rule then takes the following form:

R =
∂ψ

∂p
= (H +Hχ)p−Hχ

χp (187)

After substituting the balance (172) into the hardening law, yielding takes
place when

σeq = σY +Hχp−A(1 +
H

Hχ
)Δχp (188)

This expression coincides with the enhanced yield criterion originally pro-
posed in Aifantis (1987) and used for strain localization simulations in Aifan-
tis (1987); Borst et al. (1993) when the micromorphic variable remains as
close as possible to the plastic strain: χp � p. In the latter references, the
Laplace operator is directly introduced in the yield function as a postulate,
whereas its presence is derived here from the combination of the additional
balance equation and the linear generalized constitutive equations.

In the reference Engelen et al. (2003), after introducing the partial dif-
ferential equation (183) in addition to the classical balance and constitutive
equations, the authors propose to substitute the classical hardening law
R(p) by the same function R(χp) where the argument is replaced by the
nonlocal equivalent plastic strain. If such a hardening law is adopted, this
model turns out to be a special case of the present microstrain theory for
the following specific value of the hardening modulus:

Hχ = −H (189)

which follows from the identification (H + Hχ)p − Hχ
χp = Hχp according

to equation (180)4. This assumption indeed reduces the number of free ad-
ditional parameter to one, namely the choice of A related to the intrinsic
length of the material. Such a choice, however, is acceptable only for soft-
ening materials for which H < 0. Otherwise, the additional contribution
to the free energy associated with χp in (179) will act as a destabilizing
term in the material behaviour. Furthermore the type of the partial dif-
ferential equation (183) would be changed. The authors also point out the
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limitations of the simplistic method consisting in substituting the micros-
trainχp in the classical hardening law instead of p, especially regarding the
subsequent evolution inside plastic strain localization bands.

Keeping both Hχ and A as free parameters of the theory makes it possi-
ble, in principle, to envisage applications to strain localization phenomena
in softening materials, as done in Engelen et al. (2003); Dillard et al. (2006)
but also to size effects in hardening plasticity, as done in Hutchinson (2000);
Forest et al. (2000); Dillard et al. (2006). For a detailed discussion of the
pros and the cons of various available strain gradient plasticity models for
both types of applications, the reader is referred to Engelen et al. (2006).

The consistency condition and extension to viscoplasticity are described
in Forest (2009).

Full microstrain gradient plasticity

The approach is not restricted to scalar micromorphic variables. As in Erin-
gen’s micromorphic model where the selected variable is the full deformation
gradient itself, it can be applied to the full plastic strain tensor:

φ ≡ ε∼
p, χφ ≡χε∼

p (190)

This corresponds to 5 additional degrees of freedom if the micromorphic
plastic strain tensorχε∼

p is treated as a deviatoric tensor like the macroscopic
plastic strain tensor. The generalized stresses are symmetric second and
third order tensors, respectively:

p(i) = σ∼ : ε̇∼ + a∼ :χε̇∼
p + b∼

... ∇χεp (191)

The symmetry condition applies only to the two first indices of bijk. The
power of internal forces is indeed invariant with respect to (infinitesimal)
changes of observers, due to the invariance of ε∼ and χε∼

p themselves. The
initial and extended sets of state variables are:

STATE0 = {ε∼e, ε∼
p}, STATE = {ε∼e, ε∼

p, χε∼
p, ∇χε∼

p} (192)

When the micromorphic variable is constrained to remain as close as possible
to the macroscopic one, the theories of gradient of plastic strain presented in
Forest and Sievert (2003); Gurtin (2003); Abu Al-Rub et al. (2007) are re-
covered. In these works, generalized stresses are associated with the plastic
strain rate tensor in the extended power of internal forces.
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As an illustration, we adopt the following quadratic form for the free
energy potential:

ρψ(ε∼, ε∼
p,χε∼

p,∇χε∼
p) =

1

2
ε∼
e : Λ∼∼

: ε∼
e +

1

3
Cε∼

p : ε∼
p

+
1

2
(ε∼

p −χε∼
p) : C∼∼ χ : (ε∼

p −χε∼
p)

+
1

2
∇χε∼

p
...A∼∼∼

...∇χε∼
p (193)

from which the state laws are derived:

σ∼ = Λ∼∼
: ε∼

e, X∼ =
2

3
Cε∼

p +
2

3
Cχ(ε∼

p −χε∼
p) (194)

a∼ = −2

3
C∼∼ χ : (ε∼

p −χε∼
p), b∼ = A∼∼∼

...∇χε∼
p (195)

In the simplified situation for which

C∼∼ χ = Cχ1∼∼
, A∼∼∼

= A1∼∼∼
(196)

where 1∼∼
and 1∼∼∼

are the fourth rank and sixth rank identity tensors operat-

ing respectively on symmetric second order tensors and symmetric (w.r.t.
the two first indices) third rank tensors, the combination of the additional
balance equation and state laws leads to the following partial differential
equation:

a∼ = div b∼ = AΔχε∼
p = −2

3
Cχ(ε∼

p−χε∼
p) =⇒ χε∼

p− 3A

2Cχ
Δχε∼

p = ε∼
p (197)

The differential operators act in the following way w.r.t. to a Cartesian
frame (e i)i=1,3:

div b∼ = bijk,ke i ⊗ e j , Δχε∼
p = (Δχεpij)e i ⊗ e j (198)

The associated boundary conditions on the boundary of the body are given
by a set of 6 equations:

b∼.n = a∼
c (199)

The internal variable α∼ = ε∼
p is the proper state variable for a plasticity

theory incorporating linear kinematic hardening, X∼ being the back–stress
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tensor. The retained isotropic yield function for extended J2–plasticity is

f(σ∼ ,X∼ ) = J2(σ∼ −X∼ )− σY (200)

= J2(σ∼ − 2

3
(C + Cχ)ε∼

p − 2

3
Cχ

χε∼
p)− σY (201)

= J2(σ∼ − 2

3
Cχ

χε∼
p +A(1 +

C

Cχ
)Δχε∼

p)− σY (202)

where J2(σ∼) =
√
3(σ∼

dev : σ∼
dev)/2 is the von Mises second invariant for

symmetric second rank tensors. The normality rule is adopted:

ε̇∼
p = λ̇

∂f

∂σ∼
= −λ̇

∂f

∂X∼
= ṗN∼ (203)

The intrinsic dissipation then takes its classical form:

Dres = σ∼ : ε̇∼
p −X∼ : ε̇∼

p = fṗ+ σY ṗ ≥ 0 (204)

with energy storage associated with kinematic hardening.
The fact that the gradient of the plastic strain tensor (or part of it, in

models retaining only the rotational part) mainly impacts on the kinematic
hardening of the material has been recognized in Steinmann (1996); Forest
et al. (2002); Forest and Sievert (2003); Gurtin (2003). In these references,
the divergence of the higher order generalized stress tensor acts as a backs–
stress.

Plasticity in single crystals

The proposed micromorphic approach can be applied to crystal plasticity
in several ways. For small strain and small rotations, the plastic strain
increments and the lattice rotation rate are

ε̇∼
p =

N∑
i=1

γ̇s {m s ⊗ n s}, ω∼
e = ω∼ − ω∼

p = ω∼ −
N∑
i=1

γ̇s }m s ⊗ n s{ (205)

Definitions of total, plastic and elastic rotation rates are given by (84).
Which variable φ should be chosen to introduce a micromorphic variable?
There are several possibilities depending on the physical nature of the de-
formation mechanism to be accounted for. If φ is the lattice rotation vector
given by (84)

φ ≡ Φ e, χφ ≡ Φ (206)

the Cosserat theory proposed in chapter 1 is recovered. The gradient of Φ e

is nothing but the lattice curvature tensor.
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One may think also of the following choice:

φ ≡ γs (207)

as proposed in Gurtin (2000); Gurtin and Needleman (2005); Bayley et al.
(2006). Such a model is indeed applicable for a single crystal but it seems
to have severe limitations when applied to bicrystals or multicrystals for the
following reason. The variables γs are not uniquely defined in each domain.
They are defined only up to a symmetry belonging to the crystal symmetry
group of the material. As a result, jump conditions at an interface between
two such materials (like two grains) cannot be uniquely defined. Similar
difficulties arise in anisotropic damage of composites Germain et al. (2007).
An acceptable alternative choice is to consider the full plastic strain φ ≡ ε∼

p

as already illustrated in 2.1.

Internal constraints

The coupling parameter Hχ can be seen as a penalty factor to enforce the
internal constraint:

φ �χφ (208)

Indeed, the generalized stress a was taken proportional to the relative strain
φ− χφ so that parameter Hχ acts as a penalty factor in the power of internal
forces (129). The constraint (208) can be strictly enforced if Hχ is treated as
a Lagrange multiplier in the variational formulation Tian-Hu (2004). Such
a model then incorporates the effect of the first gradient ∇φ of the selected
variable in the constitutive theory.

Second gradient crystal plasticity When φ ≡ F∼ is taken as the full
deformation gradient, the considered theory is that of the full micromorphic
continuum as recognized in 2.1. The internal constraint (208) imposes that
the microdeformation coincides with the macrodeformation. As a result,
the effect of the gradient of gradu is introduced in the theory, which corre-
sponds to the second gradient model developed by Mindlin (1965); Mindlin
and Eshel (1968); Germain (1973a).

Fleck and Hutchinson have proposed a crystal plasticity theory based on
the second grade continuum in Fleck and Hutchinson (1997); Shu and Fleck
(1999). This theory is sketched in the appendix 2.2. It incorporates the
effect of the dislocation density tensor but also of gradient of slip normal to
the slip plane. The latter effect is introduced therefore in addition to the
additional hardening associated with the densities of so–called geometrically
necessary dislocations. The second gradient and the Cosserat theories of
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crystal plasticity are compared in a simple situation of single slip in section
2.2.

Aifantis and Gurtin models When φ is related to plastic deformation,
this situation corresponds to the strain gradient plasticity models presented
in the literature. For instance, if φ ≡ p, the cumulative plastic strain, the
following evolution of the stress under plastic loading is deduced from (188),
when the internal constraint is enforced (H � Hχ):

σeq = σY +Hp−AΔp (209)

which is identical to the strain gradient model proposed by Aifantis (1987).
It is also closely related to the corresponding deformation theory exposed in
Fleck and Hutchinson (2001). There is also a direct connection to the so–
called “explicit gradient” theory presented in Engelen et al. (2003). These
authors introduce the micromorphic equivalent plastic strain:

χp = p− c2Δp (210)

If this expression is inserted in a hardening law of the form σeq = σY +H χp,
the partial differential equation (209) is obtained.

The strain gradient plasticity models proposed in Gurtin (2003); Forest
and Sievert (2003) result from the choice φ ≡ ε∼

p, i.e. the full plastic strain
tensor. In these works, the corresponding generalized balance equation and
boundary conditions are clearly stated, based on the method of virtual
power.

2.2 Application to simple shear in a two–phase single crystal

In the current endeavour to connect the different scales involved in plas-
ticity of metals from atomistics to continuum plasticity Forest et al. (2001c),
there is a strong research stream trying to replace detailed descriptions of
the collective behaviour of dislocations by continuum mechanical models.
When the size of the investigated microstructure is of the order of magni-
tude of typically 1 to 10 μm, or below, classical continuum crystal plasticity
theory, as settled in Asaro (1983), for instance, ceases to be relevant since
it is not able to reproduce the observed size effects. In contrast, nonlocal
or generalized–continuum plasticity models incorporating intrinsic length
scales account for the size effects, at least in a qualitative manner Fleck and
Hutchinson (1997).

The aim of the present section is to directly compare the governing equa-
tions and analytical solutions resulting from dislocation-based, Cosserat and
strain–gradient models of crystal plasticity. For this purpose, a two-phase
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single crystal material oriented for single slip and subjected to shear loading
is investigated. A one-dimensional (1D) laminate microstructure consisting
of periodically alternating layers of plastically soft and hard phases is con-
sidered. The hard phase is supposed to behave only elastically, and the
soft channel as an elastic-ideally plastic material. Classical continuum crys-
tal plasticity predicts homogeneous deformation and stress in each phase,
possibly with a jump of some quantities at the interface. In contrast, the
interest here is focused on the non-homogeneous distribution of plastic slip
and lattice rotations in the soft phase arising from the analysis based on
dislocation mechanics, as well as on Cosserat and strain gradient continua.
Intrinsic length scales which are responsible for size effects in plasticity of
such layered microstructures arise naturally in the dislocation analysis. The
present simple examples enlighten the importance and physical relevance of
the additional boundary or interface conditions usually introduced in gen-
eralized plasticity models Shu et al. (2001).

Comparisons between dislocation-based and strain gradient models exist
in the literature, at least in two-dimensional cases. Generally, results of 2D
discrete dislocation dynamics are compared with nonlocal continuum mod-
els. For instance in Bassani et al. (2001), the hardening behavior induced by
a periodic distribution of hard precipitates in a crystalline matrix oriented
for single slip is analysed for the case of simple shear. For that purpose,
dislocation dynamics is resorted to on the discrete level, whereas a nonlocal
model is used at the continuum level. Localized or diffuse plastic deforma-
tion patterns resulting from the dislocation simulations are compared with
the predictions of the nonlocal model. In Shu et al. (2001), shearing of a
single crystal layer is studied in detail for both single slip and double slip
orientations. Dislocations are not allowed to cross the boundaries of the
layer, which leads to non-homogeneous plastic deformation patterns. For
both dislocation and continuum models, the analysis is based on numeri-
cal simulations, which makes it difficult to interpret clearly the continuum
intrinsic length scales present in the model in terms of the corresponding
elementary dislocation processes.

The dislocation simulations in Cleveringa et al. (1998); Bassani et al.
(2001); Shu et al. (2001) are two-dimensional in the sense that only straight
dislocations in a plane perpendicular to them are considered. Formation
of dislocation pileups and dipoles are then the most active elementary de-
formation and hardening mechanisms. However the dislocations which are
constrained to glide in the small volumes or narrow channels are generally
required to bow-out. Obviously, the bowing of dislocations cannot be taken
into account in the 2D dislocation dynamics framework. By contrast, the
continuum line-tension dislocation-based model presented in section 2.2 is
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able to account for the Orowan bowing which is frequently encountered in
the plastic deformation of various dislocation substructures (cells, subgrains,
ladders, ...), single-crystal nickel-based superalloys, passivated thin films or
microlaminates. The model to be presented here shows that the bowing of
dislocations in the narrow channels leads to size effects. For completeness,
an analysis of double-ended pileups of straight dislocations that can form in
the soft channels under the considered loading conditions are investigated
in section 2.2. Pileups are usually regarded as an appropriate illustration
of the dislocation accumulation at interfaces or grain boundaries. They
classically illustrate the effect of the so–called geometrically necessary dis-
locations Ashby (1970). As such, they have been the source of inspiration
of several strain gradient models. Both line–tension and pileup dislocation-
based models will be compared with the response of generalized continuum
models. This attempt to directly identify the line-tension dislocation-based
model with a Cosserat model has been presented in Sedláček and Forest
(2000); Forest and Sedláček (2003); Forest (2008).

The Cosserat elastoplasticity model proposed in section 2.2 mimics the
local response of the considered material in various situations, without ex-
plicitly introducing dislocation distributions. Analytical solutions under
periodicity conditions are found and compared with the above dislocation
approach. Especially, it is shown under which circumstances the Cosserat
rotation coincides with the lattice rotation. Finally, in section 2.2, the plas-
tic strain gradient models of Shu, Fleck and Hutchinson Fleck and Hutchin-
son (1997); Shu and Fleck (1999) and of Aifantis Aifantis (1987, 1999) are
recalled and applied to the present simple case to compare them with the
dislocation and Cosserat models. It will be shown that the interface con-
ditions to be fulfilled in each model play a major role in the modelling of
non–homogeneous deformation patterns.

Reference dislocation models

First, the line-tension model presented in Sedláček and Forest (2000); Forest
and Sedláček (2003) is briefly reviewed and extended in the following two
sections. Then, in section 2.2, an alternative configuration for which an
explicit expression of dislocation distribution in the channels under shear is
available, viz. that of the double-ended pileup, is briefly presented.

The considered periodic laminate microstructure with direction of the
applied stress indicated and the coordinate system used, is sketched in figure
3. Instead of individual dislocations, a continuous field of curved glide
dislocations in the soft channel is considered. For simplicity, all quantities
are assumed to be independent of y and z. The equilibrium position of a
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Figure 3. Dislocation bowing in the soft phase. A part of the loop gliding
in the xOz plane is shown, with the curved (originally screw) section ϕ(x)
and edge segments at the soft / hard phase interface. The resolved shear
stress τ and Burgers vector b are indicated. Labels s and h are used to
designate the soft and hard phase, respectively.

representative bowing screw dislocation ϕ(x) with Burgers vector magnitude
b and constant line tension T in a shear stress field τ(x) is considered,

τ(x) b+ T ∂xx ϕ(x) = 0 . (211)

The second derivative of the dislocation displacement ϕ(x) follows from the
linearized dislocation curvature. Strictly speaking, the linearized disloca-
tion model is restricted to anelasticity (bowing of dislocations in the soft
phase) since it is unable to describe fully plastic flow i.e. the glide of criti-
cally bowed dislocations depositing edge segments at the interfaces. To be
able to deal with the plasticity, at least in an approximate way, one can
introduce the Orowan stress in the soft channel of width s, τOr ≈ 1.5μb/s,
as a threshold stress : if the mean shear stress in the channel reaches the
value of the Orowan stress, the dislocation shape does not change any more
and the bowed-out dislocations glide in the channels, depositing edges at
the interfaces. This transition from anelasticity to plasticity, which is intro-
duced here in an ad hoc manner, arises naturally in the framework of the
full-curvature model Sedláček and Forest (2000); Sedláček et al. (2003).

Increment of plastic shear caused by the displacement ϕ(x) of the mobile
dislocations with density �m follows from the Orowan relation,

γp(x) = �mb ϕ(x) . (212)
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The non-homogeneous plastic deformation is accommodated by the ‘geomet-
rically necessary’ content of the bowing dislocations ϕ(x) which is described
by the Nye-Kröner dislocation density tensor α∼. Its only non-vanishing
component α = αxz can be directly derived from the plastic shear,

α(x) = ∂xγ
p(x) . (213)

It corresponds formally to continuously distributed ‘pileups’ of edge dislo-
cations aligned with the z axis of figure 3, which is exactly the edge content
of the bowing (originally screw) mobile dislocations with the scalar density
ρm. By utilizing Hooke’s law for elastic shear strain εe = εexy,

τ(x) = 2μεe(x) , (214)

a differential equation for the elastic and plastic shear strains results,

2εe(x) + λ2∂xx γ
p(x) = 0 , (215)

with the intrinsic length scale λ given approximately by the average distance
between the mobile dislocations,

λ =

√
T

μ�mb2
≈ 1√

�m
. (216)

We note in passing that the ratio between the channel width and intrinsic
length s/λ is crucial for the size effect appearing during plastic deformation
of narrow channels, thin films, microlaminates, etc., cf. Sedláček and Forest
(2000).

To be able to derive equations for the lattice rotation based on eq. (215),
relations for the elastic and plastic strains and rotations which will be ex-
tracted from the stress equilibrium and strain compatibility conditions are
needed.

A compatible material displacement field u = (γ̄y, uy(x), 0)
T is consid-

ered, leading to material displacement gradient, β = gradu, of the form

β =

⎡⎣ 0 γ̄ 0
∂xuy 0 0
0 0 0

⎤⎦ . (217)

The non-homogeneous plastic shear (212) causes a generally incompatible
plastic distortion

βp = γpm ⊗ n =

⎡⎣ 0 γp 0
0 0 0
0 0 0

⎤⎦ , (218)
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The slip direction m and the normal to the slip plane n coincide with axes
x and y, respectively, see figure 3. Finally, the elastic distortion βe = β−βp

results in the form

βe =

⎡⎣ 0 γe 0
∂xuy 0 0
0 0 0

⎤⎦ , (219)

where γe(x) = γ̄ − γp(x). The symmetric part of βe determines the elastic
strain which enters Hooke’s law (214),

εe(x) =
γe + ∂xuy

2
. (220)

The skew-symmetric part of βe can be represented by the axial vector of
lattice rotation φe = (0, 0, φe = φe

z)
T ,

φe(x) = −γe − ∂xuy

2
. (221)

To solve the boundary value problem outlined here, a homogeneous strain
and a homogeneous stress approximation are considered successively.

Periodic solution Stress equilibrium (divσ = 0) requires that the shear
stress is constant and equal to the applied shear stress,

τ(x) = τ̄ . (222)

With Hooke’s law (214) in the form

εe =
τ̄

2μ
, (223)

eq. (215) yields the following equation for the plastic shear strain,

λ2 ∂xx γ
p(x) = − τ̄

μ
. (224)

Due to the fact that the soft phase is elastic - ideally plastic and from the
discussion following equation (211), it is clear that τ̄ ≤ τOr. To obtain a
unique solution to the problem at τ̄ = τOr (plastic regime), one has to fix the
mean material strain by requiring that e.g. for the mean applied material
shear strain

γ̄

2
=

1

s+ h

(
ε̄hh+

∫
〈s〉

εs(x) dx

)
. (225)
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From equations (217), (220), (223) and (225), the amount of plastic defor-
mation can be found,∫

〈s〉
γp(x) dx =

(
γ̄ − τ̄

μ

)
(s+ h) . (226)

The lattice rotation can be obtained from eqs. (220), (221) and (223) as

φe(x) =
τ̄

2μ
− γ̄ + γp(x) . (227)

As a consequence of (227), ∂xγ
p = ∂xφ

e, and the governing equation for the
lattice rotation in the soft phase φe

s becomes,

λ2 ∂xx φ
e
s(x) = − τ̄

μ
. (228)

Accordingly, the lattice rotation and plastic slip (equation (224)) displays
a parabolic profile,

φe
s(x) = ax2 + bx+ c , (229)

with a = −τ̄ /(2λ2μ). Note that, in the iso-stress framework, the exact
solution of the full-curvature problem is well known: it is a circular arc.
Nevertheless, we have linearized the curvature in equation (211), to be con-
sistent with the rest of the paper. From symmetry reasons (periodicity),

∂xφ
e(0) = 0 , (230)

which implies b = 0. In the anelastic regime (τ̄ < τOr), the requirement for
continuity of lattice rotation,

φe
s(±

s

2
) = φe

h , τ̄ < τOr , (231)

determines the constant c. Lattice rotation in the hard phase results from
eq. (227),

φe
h =

τ̄

2μ
− γ̄ . (232)

Accordingly, the solution takes the form

φe
s(x) =

(
τ̄

2μ
− γ̄

)
− τ̄

2μ

(
x2

λ2
− s2

4λ2

)
, τ̄ < τOr . (233)

In the plastic regime (τ̄ = τOr), there is a discontinuity of the lattice ro-
tation Δφe caused by the discontinuity of the plastic strain Δγp which is
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Figure 4. Double–ended dislocation pile–up in the soft phase under simple
shear.

accommodated by the edge dislocations deposited at the interfaces. The
solution is

φe
s(x) =

(
τ̄

2μ
− γ̄

)
− τ̄

2μ

(
x2

λ2
− s2

4λ2

)
+Δφe , τ̄ = τOr . (234)

The magnitude of the discontinuity Δφe is determined from the equations
(226) and (227),

Δφe =
s+ h

s

(
γ̄ − τ̄

μ

)
− τ̄

12μ

s2

λ2
. (235)

We will return to the meaning of the step in lattice rotation later in the
text.

Even though the stress equilibrium and strain compatibility are fulfilled
exactly in the 1D iso-stress framework, the model is not realistic enough, for
it cannot account for the internal stresses (i.e. kinematic hardening) which
would arise in 2D or 3D structures. In the 1D model, the internal stresses
are fully relaxed by the lattice rotations.

Pileup model This subsection presents a different model of dislocation
structure that can form under the same applied loading conditions and that
leads to a one-dimensional distribution of plastic slip in the macroscopic
limit, that is dislocation pileups. This model is often advocated for the
motivation of nonlocal theories and is recalled here, although its ingredients
are different from the models in section 2.2 based on line tension effects.
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A configuration for which an explicit expression of dislocation distribu-
tion in the channels under shear is available, is that of the double–ended
pileup Hirth and Lothe (1982); Tanaka and Mura (1981), caused by the
simple shearing of a single Frank–Read source at the centre of the channel
of width s (figure 4). For simplicity, we take h � 0 so that any image force
due to the presence of the hard phase h acting on dislocations in the channel
can be neglected. The approach based on the continuum theory of disloca-
tions is briefly recalled here, in the case of pileups of edge dislocations with
Burgers vector of magnitude b. The equilibrium of dislocations under the
applied stress τ̄ can be written :

τ̄ + τd + τc = 0 , (236)

where τd is the stress at x due to all present dislocations and τc the (assumed
constant) threshold for the onset of dislocation motion. If n(x) denotes the
number of dislocations per unit length, the dislocation stress takes the form :

τd(x) = A

∫ s/2

−s/2

n(x′)
x− x′ dx

′ with A =
μb

2π(1− ν)
. (237)

A solution n(x) of the integral equation (236) exists under the condition of
unbounded density at two tips of the pileup, viz. x = ±s/2 in figure 4 :

n(x) =
τ̄ − τc
πA

x√(s
2

)2

− x2

. (238)

The total number of dislocations in each pileup is

N =

∫ s/2

0

n(x)dx =
τ̄ − τc
πA

s

2
. (239)

The displacement of material above the slip plane with respect to that below
is given by

ux(x, y) = bH(y)

∫ s/2

x

n(x′)dx′ , (240)

where H is the Heaviside function and the pileups are assumed to lie at
y = 0 in the volume considered here. Differentiating the previous equation
with respect to y yields :

∂yux(x, y) = bδ(y)

∫ s/2

x

n(x′)dx′ . (241)
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with δ the Dirac distribution. The corresponding amount of plastic slip is
defined by

γp(x) =
1

l

∫ l/2

−l/2

∂yux(x, y)dy =
b

l

∫ s/2

x

n(x)dx (242)

=
b

l

τ̄ − τc
πA

√(s
2

)2

− x2 , for − s/2 ≤ x ≤ s/2 (243)

It is assumed that the pileups are periodically distributed along direction
y perpendicular to slip plane with period l. The length l is assumed to be
large enough for the interaction between parallel pileups to be neglected. As
a result, the distribution of plastic slip in the channel is the arc of an ellipse.
It vanishes at the tips of the pileups and takes its maximal value Nb/l at
the centre. This distribution is therefore different from the parabolic profile
found in section 2.2. The mean value of the plastic slip is

γ̄p =
2

s

∫ s/2

0

γ(x)dx =
b

l

τ̄ − τc
2πA

s

2
. (244)

It can be shown that the dislocation stress τd introduced in equation (236)
does not depend on x, as required by the equilibrium condition

τd = −(τ̄ − τc) = − 2μl

π(1− ν)s
γ̄p . (245)

This proves that the double–ended dislocation pileup produces a hardening
component of linear kinematic type :

X = −τd = Cγ̄p with C =
2μl

π(1− ν)s
. (246)

We note that that the pileup model is formulated at a different level of
approximation than the line-tension models of subsection 2.2. Especially,
a periodic distribution of pileups is assumed along the y direction. This
enables the presence of the dislocation stress τd in the 1D model. Further-
more, each pileup is completely embedded in an elastic matrix, so that the
stress cannot relax. If the pileups were distributed continuously along the y
direction, as the bowed dislocations in the previous sections are, the stress
would then relax exactly as in section 2.2 and the local internal stresses and
thus the macroscopic hardening would disappear.

Application of the Cosserat model

The two-phase material now is a heterogeneous Cosserat continuum. In the
first paragraph, both phases will be assumed to have a linearized behaviour,
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with different moduli. In the two following ones, the soft phase exhibits
elastoplastic behaviour. We look here for solutions fulfilling all compatibility
and equilibrium requirements with the only constraint that all fields must
be periodic along x with period s+ h (see figure 3).

Linear approximation Both phases are Cosserat linear materials with
constants μh, μch, βh and μs, μcs, βs (see section 1.2 for the definition of
isotropic Cosserat elasticity). The moduli of phase s can be also treated
as secant elastoplastic moduli and the elastic and plastic parts will not be
distinguished. Phase h must be thought of as almost classical, which means
that βh is small, but the solution is given here in the general case.

A mean shear deformation γ is applied along the direction x. We look
again for a displacement field of the form :

ux = γy, uy(x), uz = 0 . (247)

The deformation of a Cosserat material is described also by the micro–
rotation axial vector field :

φx = φy = 0, φz = φ(x) . (248)

Thus, the Cosserat deformation and curvature tensors take the form :

e =

⎡⎣ 0 γ + φ 0
∂xuy − φ 0 0

0 0 0

⎤⎦ , κ =

⎡⎣ 0 0 0
0 0 0

∂xφ 0 0

⎤⎦ . (249)

The associated non–vanishing components of the force and couple–stress
tensors are :

σxy = μ(γ + φ+ eyx) + μc(γ + φ− eyx) , (250)

σyx = μ(γ + φ+ eyx)− μc(γ + φ− eyx) , (251)

μzx = 2β∂xφ . (252)

The balance equations give

∂xσyx = 0, ∂xμzx − (σxy − σyx) = 0 , (253)

Taking the elasticity relations into account, these equations become :

μ(∂xφ+ ∂xeyx)− μc(∂xφ− ∂xeyx) = 0 , (254)

β∂xxφ− μc(γ + φ− eyx) = 0 . (255)
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Equation (254) can be rearranged to give

∂xeyx = −μ− μc

μ+ μc
∂xφ . (256)

The equation for φ follows then from (255) :

β∂xxxφ− 2μμc

μ+ μc
∂xφ = 0 . (257)

We define for each phase :

ω2
s =

2μsμcs

βs(μs + μcs)
, ω2

h =
2μhμch

βh(μh + μch)
, (258)

Each ω is the inverse of a length. The solution of (257) takes the form :

φs = as cosh(ωsx) + ds, for − s/2 < x < s/2 , (259)

φ+
h = ah cosh(ωh(x− s+ h

2
)) + dh, for s/2 < x < (s+ h)/2 , (260)

φ−
h = ah cosh(ωh(x+

s+ h

2
))+dh, for − (s+h)/2 < x < −s/2 . (261)

To reduce the number of integration constants in equations (259) to (261),
the periodicity of φ has been used, together with the following symmetry
conditions :

∂xφ(0) = ∂xφ(−
s+ h

2
) = ∂xφ(

s+ h

2
) = 0 . (262)

Then, eyx can now be determined from (256) as follows :

esyx = −μs − μcs

μs + μcs
φs + es ,

eh+yx = −μh − μch

μh + μch
φ+
h + eh , (263)

eh−yx = −μh − μch

μh + μch
φ−
h + eh . (264)

where eh and es are integration constants. Furthermore, equation (255)
implies that :

eyx = − β

μc
∂xxφ+ γ + φ , (265)

eyx(0) = − βs

μcs
asω

2
s + γ + as + ds = −μs − μcs

μs + μcs
(as + ds) + es ,(266)

eyx(
s+ h

2
) = − βh

μch
ahω

2
h + γ + ah + dh = −μh − μch

μh + μch
(ah + dh) + eh ,(267)
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from which the values of es and eh are deduced :

es = γ + ds
2μs

μs + μcs
, eh = γ + dh

2μh

μh + μch
. (268)

For the determination of the four integration constants as, ds, ah, dh, certain
conditions at the interface must be enforced. In the Cosserat theory, the
degrees of freedom ui and φi are continuous if one excludes cracks and kinks.
Therefore, the corresponding traction and couple–stress vectors must also be
transmitted at the interface. Alternative conditions would be to prescribe
specific values or jumps at the interface for displacement and micro–rotation
at the interface, as done for instance in Shu and Fleck (1999). We note that
in the dislocation-based model, the value of the step in lattice rotation given
by eq. (235), follows from the condition of mean prescribed glide γ̄. Here,
this condition is automatically satisfied by the periodicity requirement to
be enforced by equation (273). Thus, continuity requirements are imposed
in this work in the absence of a more specific interface model. The interface
conditions require :

• continuity of φ at s/2:

as cosh(ωs
s

2
) + ds = ah cosh(ωh

h

2
) + dh . (269)

• continuity of μzx at s/2:

βsasωs sinh(ωs
s

2
) = −βhahωh sinh(ωh

h

2
) . (270)

• continuity of σyx at s/2. Rearranging equation (251) as follows :

σyx = (μ+ μc)eyx + (μ− μc)(γ + φ) = 2μ(γ + d) (271)

one obtains the third equation :

μs(γ + ds) = μh(γ + dh) . (272)

• periodicity of uy implies

< eyx >=< ∂xuy − φ >=< −φ > ,

where the brackets denote averaging over x from −(s + h)/2 to (s +
h)/2. One finds :

< φ+ eyx >=<
2μc

μ+ μc
φ+ e >=<

2μc

μ+ μc
φ+ γ +

2μ

μ+ μc
d > ,
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Figure 5. Distribution of microrotation of a two-phase linear elastic
Cosserat material undergoing simple glide, using two different sets of pa-
rameters : (1) μh = 10μs = 26923MPa, μch = 20μcs = 100000MPa,
βh = βs/30. = 100MPa.l2u; and (2) βh = βs/100 = 1MPa.l2u; lu is the
chosen length unit (mm, μm...) and s+ h = 10lu, γ̄ = 0.01.

which gives the fourth equation

4μcs

μs + μcs

as
ωs

sinh(ωs
s

2
) +

4μch

μh + μch

ah
ωh

sinh(ωh
h

2
)

+ γ(s+ h) + 2dss+ 2d2h = 0 . (273)

The four equations (269), (270), (272) and (273) represent a linear sys-
tem of equations for the unknowns as, ah, ds and dh. For conciseness,
the final expressions are not given explicitly. Instead, the profiles of φ
are plotted in figure 5 for two different sets of material parameters. It
can be seen that, for an appropriate choice of the material parameters
(μh > μs, μch > μcs, βs > βh), φh is almost constant and φs displays
a cosh profile with a characteristic length 1/ωs. This profile mimics the
distribution found in subsection 2.2 and suggests that φ can be interpreted
as a lattice rotation, providing that ωs is taken to be of the order of the
magnitude of λ.

In the limiting case when β −→ 0, it can be shown that stresses and
strains are constant in each phase, as expected for the solution of this simple
glide problem for the classical Cauchy continuum. This can also be inferred
from figure 5.
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Figure 6. Distribution of microrotation of a two-phase elastoplastic
Cosserat material undergoing simple glide, using two different sets of pa-
rameters : (1) μh = μs = 26923MPa, μch = 5μcs = 500000MPa,
βh = βs/10. = 10MPa.l2u, τc = 10 MPa; and (2) βh = βs/30 = 1MPa.l2u;
s+ h = lu, γ = 0.01.

It can be checked also that < σyx − σxy >= 0, so that the macroscopic
stress is of course symmetric. This point indicates that we are implicitly
considering the problem of the homogenization of heterogeneous Cosserat
media. This general problem is tackled in Forest et al. (1999, 2001b). The
definition of the effective stress is

σij =< σij > .

If neither mean curvature nor relative rotation is prescribed to the unit cell,
the effective stress is symmetric.

Elastoplastic case Deformation in the soft phase is now decomposed into
its elastic and plastic parts and the Schmid law is used as the yield criterion.
The threshold shear stress τc is taken as constant (thus no hardening is
considered). In contrast, we still do not distinguish between elastic and
plastic curvature and keep a linearized relation between couple–stresses and
total curvature. In this case, he total deformation in the cell is split into
elastic and plastic parts :

e∼ = e∼
e + e∼

p . (274)

Only single slip is considered. The normal ν to the slip plane is supposed
to be parallel to the y-direction (figure 3) and the slip direction s is parallel
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to x :

ep = γpm ⊗ n =

⎡⎣ 0 γp 0
0 0 0
0 0 0

⎤⎦ , ee =

⎡⎣ 0 eexy 0
eeyx 0 0
0 0 0

⎤⎦ ,

so that eeyx = eyx. The non-vanishing force–stress components are :

σxy = μs(e
e
xy + eyx) + μcs(e

e
xy − eyx) , (275)

σyx = μs(eyx + eexy) + μcs(eyx − eexy) . (276)

The driving force to activate plastic slip is taken as the projection τ of
the symmetric part of the force–stress tensor on the normal to the slip
plane, and in the slip direction. Kröner (1956) suggests to take the full
non–symmetric force stress in the computation of the resolved shear stress.
This is not done here since the main Cosserat effects shown in this work
do not come from the asymmetry of stress but rather from the presence
of lattice curvature and the associated couple–stresses. Additional effects
associated with the asymmetric character of the stress tensor have not yet
been studied. Comments on the role of the skew–symmetric part of the
force–stress tensor are given in subsection 2.2. The yield criterion therefore
gives :

τ = (σxy + σyx)/2 = τc = μs(e
e
xy + eyx) . (277)

From the first balance equation, viz. ∂xσyx = 0, and (277), it can be seen
that eyx and eexy are constant. The second balance equation reads :

βs∂xxφ− μcs(e
e
xy − eyx) = 0 , (278)

which gives
∂xxxφ = 0 . (279)

Thus, φ displays a parabolic profile in the cell. The wall of width h in figure
3 is taken as an elastic Cosserat solid. The profile is the same as in section
2.2 :

φs = asx
2
1 + ds, for − s/2 < x < s/2 , (280)

φh = ah cosh(ωh(x− s+ h

2
)) + dh for s/2 < x < (s+ h)/2 ,(281)

where ωh is still given by (258). To determine the integration constants,
the following conditions must be accounted for :

• continuity of φ at x = s/2 :

as
s2

4
+ ds = ah cosh(ωh

h

2
) + dh . (282)
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• continuity of μzx

βsass = −βhahωh sinh(ωh
h

2
) . (283)

• continuity of σyx; eyx, e
e
xy and σyx are determined in each phase :

eyx + eexy =
τc
μs

, eexy − eyx =
2βs

μcs
as ,

σs
yx = τc − 2βsas, σh

yx = 2μh(γ + dh) ,

so that
2μh(γ + dh) = τc − 2βsas . (284)

• periodicity of uy; we use again the property

< eyx >=< ∂xuy − φ >=< −φ > ,

esyx =
τc
2μs

− βs

μcs
as, ehyx = −μh − μch

μh + μch
φh + γ + dh

2μh

μh + μch
, (285)

esyx + φs =
τc
2μs

− βs

μcs
as + a1x

2
1 + d1 ,

ehyx + φh =
2μch

μh + μch
φh + γ +

2μh

μh + μch
dh (286)

=
2μch

μh + μch
ah cosh(ωh(x− s+ h

2
)) + γ + 2dh ,(287)

from which the last equation for the determination of the integration
constants is deduced :

(
τc
2μs

− βs

μcs
as+ds)s+

ass
3

12
+2dhh+γh+

4μch

μ+ μch

ah
ωh

sinh(ωh
h

2
) = 0 .

(288)
The linear system (282), (283), (284), and (288) can be solved for the four
unknowns (as, ds, ah, bh), as in the previous section.

Once the micro–rotation φ(x) is known, the amount of plastic slip can
be found from :

γp = γ + φ− τc
2μs

− βsas
μcs

. (289)

The resulting parabolic distribution of Cosserat micro–rotation and plastic
strain are given in figure 6 for two different sets of parameters. Note that
for the classical limiting case when βs tends to zero (and μc to infinity, see
next section), the classical relation (227) is retrieved.
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Limiting case for constrained Cosserat single crystal plasticity At
this point, a precise discussion of the links between the Cosserat micro–
rotation φ and the lattice rotation φe must be given. The previous analysis
of two different situations has shown the similarity between the profiles of φ
and φe, as deduced from the combination of classical continuum mechanics
and equilibrium of a dislocation line. In the continuum framework of classi-
cal crystal plasticity, in which dislocations are not considered individually,
a clear definition of lattice rotation exists. For instance, in the specific case
of the shear test, it is given by equation (221). Such continuum description
of lattice rotation will now be compared with the Cosserat micro–rotation
computed in section (2.2). By definition, the lattice rotation is related to
the skew–symmetric part of the elastic distortion :

ee =

⎡⎣ 0 γ − γp + φ 0
∂xuy − φ 0 0

0 0 0

⎤⎦ , (290)

the corresponding axial vector being (0, 0,
γ − γp − ∂xuy

2
+ φ)T .

If the skew–symmetric part of the Cosserat elastic deformation tensor van-
ishes, the following relation is found :

φ = −γ − γp − ∂xuy

2
(291)

which is exactly that given by equation(221). Thus, the Cosserat micro–
rotation is found to coincide exactly with the standard definition of lat-
tice rotation when the Cosserat elastic deformation is symmetric. It is
recalled that the skew–symmetric part of the stress and elastic deforma-
tion are linked by the elastic modulus μc (see equations (275) and (276)).
Thus the value of μc controls the difference between the Cosserat micro–
rotation and lattice rotation. The physical meaning of φ in the case of
crystal plasticity is therefore clear only when it is close or equal to the
lattice rotation. This is the case when μc is large compared to the other
moduli. The condition μc → ∞ enforces indeed the symmetry condition
for the elastic deformation. The resulting finite skew–symmetric part of the
stress can be regarded as reaction stresses (similarly to pressure in classical
incompressible materials). This is a kind of constrained Cosserat contin-
uum for which the Cosserat micro–rotation follows strictly lattice rotation,
which is different from the well–known couple–stress medium, for which
the Cosserat rotation is forced to follow the material rotation, namely pure
rotation component of the overall deformation gradient Koiter (1963).
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Consider the analysis of section 2.2 in the case when μc goes to infinity.
The equations are indeed simplified and a clearer connection between ma-
terial and geometric constants can be derived. The characteristic length in
the hard phase becomes :

1

ωh
=

√
βh

2μh
. (292)

In the previous system of four equations (282),(283), (284) and (288), the
fourth one now becomes :

(
τc
2μs

+ ds)s+
ass

3

12
+ (2dh + γ)h− 2βs

μh
ass = 0 . (293)

The solution can then be given in a rather concise form, at least for as which
characterizes the parabolic profile of the lattice rotation distribution :

as = −6
γ(s+ h)− τc

2μh
(s+ 2h+ s

μh
μs

)

s3 +
βs
μh

(18s+ 12h+ 3s2ωhcotanh(ωh
h
2 ))

. (294)

It can be seen that, contrary to the result of the analysis in the purely linear
case of subsection 2.2, both material and geometric parameters contribute
to the shape of the distribution φ in the elastoplastic channel. It can also be
noted that when βh → 0, i.e. ωh → ∞, the coefficient as vanishes and the
classical homogeneous distribution of rotation and plastic slip is retrieved.
Interestingly, when a non–zero and constant value of βh is assumed and
when βs → 0, the coefficient as does not vanish but rather reaches the
limit :

as = −6(γ − τc
μ
)
s+ h

s3
(295)

where μh = μs = μ has been assumed for simplicity. The fact that the
classical homogeneous solution is not found in this case can be interpreted
as follows. Letting βs vanish in the moment of momentum balance equation
(278) makes this second partial differential equation disappear, so that in
principle we are left with the usual force–stress balance equation and a clas-
sical solution could be expected. However, if equation (278) is multiplied by
1/βs and differentiated again, we are left with (279) that can be assumed to
hold in the limit for βs → 0. It amounts then to finding a parabolic distri-
bution of φ fulfilling the classical equation (227) and continuity conditions
at the interface. Indeed for very low values of βs finite element simulations
provide this limit solution. Identifying the present result (295) and the cor-
responding solution of the dislocation model (216), the link between the
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Cosserat model and the intrinsic length scale is

1

λ2
= 24(

γμ

τc
− 1)

s+ h

s
� �m (296)

which provides a reasonable but very approximate estimate of the density of
mobile dislocation. The complete solution with all available material con-
stants is of course more elaborate and incorporates the length scale associ-
ated with a non–vanishing βs. In the latter case, the complete identification
of the Cosserat model with the corresponding dislocation model can be done
using (294) in order to calibrate βs, as a function of �m.

Comparison with strain gradient plasticity models

Alternative nonlocal continuum theories are available to model size effects
in crystal plasticity, usually called strain gradient plasticity models. In this
section, the response predicted by two of them is investigated in the simple
case of shearing of laminate microstructures. In particular, the shape of the
non–homogeneous plastic slip profiles are compared to the previous Cosserat
results.

Second gradient formulation Based on the continuum framework in-
troduced by Mindlin and Germain Mindlin and Eshel (1968); Germain
(1973a), a strain gradient plasticity constitutive framework has been de-
veloped by Shu, Fleck and Hutchinson Fleck and Hutchinson (1997); Shu
and Fleck (1999). Two main models have been proposed by the authors.
The first one deals with isotropic plasticity, the second one with crystal plas-
ticity. The main constitutive and balance equations are recalled in section
2.2 in a simplified case of single slip. Moreover the originally viscoplastic
framework is translated into a purely elastoplastic one, for which analytical
solutions can be found in the shear test considered in this work.

As in section 2.2, the displacement field in a periodic two–phase laminate
microstructure subjected to mean shear deformation γ̄ is considered. The
solution must fulfill balance and constitutive equations in each phase and
interface conditions. First, a solution is obtained assuming a linear approx-
imation for the constitutive behaviour without distinction between elastic
and plastic parts. The second solution is valid for the nonlinear elastoplastic
regime.

Using the same coordinate frame as in section 2.2, the solution still takes
the form ux = (γ̄y, uy(x), 0)

T . The non–vanishing components of the strain
gradient tensor η, as defined in Appendix 2.2, are

ηxyx = ηyxx =
1

2
∂xxuy . (297)
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Elastoplastic case

Adopting the additive decomposition (1) of total strain and strain gra-
dient into elastic and plastic parts, the elastic laws become

σxy = 2μεexy = μ(γ̄ + uy,x − γp) , (298)

myxx = 2l2eμ(ηyxx − ηpyxx) = l2eμ(∂xxuy − γS) , (299)

where γS is the slip gradient variable (see Appendix 2.2). The yield condi-
tion is a generalized Schmid law involving resolved shear stress and hyper-
stress :

σeq = |τ |+ |m|/lp = σxy +myxx/lp = τc . (300)

It must be noted that a second characteristic length lp enters the yield
criterion. The yield condition combined with the balance equation

∂xσxy − ∂xxmyxx = 0 . (301)

can then be shown to lead to the following partial differential equations

∂xxuy − l2p∂xxxxuy = 0, ∂xγ
p − l2p∂xxxγ

p = 0 . (302)

Since the definition of lattice rotation (227) still holds, one is led to the
following partial differential equation for φ :

∂xφ− l2p∂xxxφ = 0 , (303)

which again gives a cosh−profile but associated with the characteristic
length lp. This result is different from the parabolic profile found in the
same analysis with the Cosserat model. The reason is however clear : it
stems from the modified yield condition (300). A consequence of this choice
is that shear stress σxy does not remain constant in space, contrary to all in-
vestigated cases in the previous sections. It introduces hardening associated
with strain gradient.

The strain gradient model can however be slightly modified to be closer
to the simple Cosserat constitutive equations used in section 2.2. We let lp
go to infinity and do not distinguish elastic and plastic parts in η :

σeq = τ = σxy = τc, myxx = 2μl2eηyxx . (304)

le is in fact here the characteristic length of the elastoplastic secant moduli
in the second elasticity law, since η has not been partitioned. The balance
equation (301) now yields :

∂xxxxuy = 0, ∂xxxγ
p = 0, ∂xxxφ = 0 , (305)

and a parabolic profile is retrieved.
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Crystal plasticity with gradient of internal variable One of the
earliest proposals to introduce higher–order gradients in the relevant con-
stitutive variables is Aifantis’ model that belongs to a class of generalized
continua different from the theories used in the previous sections. The
models presented and illustrated in Aifantis (1987, 1999) do not introduce
additional rotational degrees of freedom like the Cosserat theory, nor higher
order derivatives of the displacement field. Instead, the constitutive be-
haviour of the material is assumed to depend on an internal variable γp and
its gradient grad γp. The free energy is a function of temperature, elastic
strain, plastic slip and its gradient. The classical expression of work of inter-
nal forces is in fact complemented by terms related to the internal variable
and its gradient Forest et al. (2002) :

pint = σij ε̇ij + αγ̇p +Bi∂iγ̇
p , (306)

where α and Bi are the thermodynamical forces associated with the internal
variable and its gradient. The principle of virtual work can be used to derive
the balance equations :

divσ = 0, α = divB . (307)

The classical balance equation is conserved, whereas the second one can be
regarded as a definition of the introduced generalized force α. The degrees of
freedom and associated reaction forces are therefore the pairs (ui, ti = σijnj)
and (γp, B = Bini). The dissipation rate takes the form

D = σij ε̇
p
ij + (div B)γ̇p = (τ + div B)γ̇p . (308)

The latter expression leads one to propose a yield condition of the form :

σeq = τ + div B = τc . (309)

In Aifantis model, B is assumed to be simply proportional to grad γp

(quadratic potential) :
Bi = c∂iγ

p , (310)

where c is a constitutive parameter. The yield condition (309) then be-
comes :

τ = τc − cΔγp , (311)

which is the well–known gradient–enhanced yield criterion, with Δ being
the Laplace operator. This theemodynamics of Aifantis model has also
been investigated by Bardella (2007); Gurtin and Anand (2009); Forest and
Aifantis (2010).
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This theory is now applied to the simple situation investigated in the
present article. The yield condition reduces to the simple form :

τ = σxy = τc − c ∂xxγ
p . (312)

The equilibrium equation requires constant shear stress so that we must
have :

∂xxxγ
p = 0 . (313)

The elasticity relation (298) implies again ∂xxuy = ∂xγ
p so that lattice

rotation φ must fulfill the same partial differential equation :

φ =
∂xuy + γp − γ̄

2
, ∂xxxφ = 0 . (314)

This model therefore gives the same answer for the lattice rotation and plas-
tic slip distribution as the Cosserat model of section 2.2, namely a parabolic
one. The interface conditions are dictated by the chosen degrees of freedom
and associated forces :

• displacement uy and traction vector σxynx are continuous across the
interface;

• plastic slip γp and force B = (c grad γp).n = c∂xγ
p are continuous

across the interface.
In contrast to the Cosserat theory, plastic slip is assumed to be continuous,
whereas lattice rotation need not necessarily to be continuous (this comes
from the fact that ∂xuy is not necessarily continuous in contrast to the strain
gradient theory).

If linear hardening is introduced in the yield condition (309), it can be
shown that a cosh distribution is obtained. However, this situation cannot
be compared to that of section 2.2 and 2.2 since there no hardening was
taken into account.

Direct comparison between the dislocation and generalized
continuum frameworks

A direct comparison between the dislocation models and the continuum
frameworks is difficult insofar as the dislocation models considered in this
work are very specific whereas the continuum models can be used in very
general situations. The line tension model considers a representative bow-
ing screw dislocation which is a convenient and idealized situation. As for
the pile–up model, it deals with periodic arrays of edge dislocations. How-
ever, a parallel between the line tension dislocation model and the Cosserat,
second gradient and Aifantis models can be drawn. All models share the
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main variables plastic slip γp and lattice rotation φe, even though the two
gradient models more explicitly introduce the gradient of plastic slip. The
classical divergence equation for the stress tensor is valid for all theories.
The generalized continuum involve an additional (or a higher order) balance
equation which reflects in a continuum way the dislocation line tension equi-
librium equation. A one–to–one identification is however not possible since
the continuum theories do not explicitly introduce densities of line defects.
The consequence is that the governing partial differential equations in the
case of shearing of the elastoplastic laminate microstructure have almost the
same structure. The gradient theories are somewhat different, in the sense
that they predict that the shear stress τ does not remain equal to the criti-
cal resolved shear stress τc. In the strain gradient theory, the shear stress τ
is equal to τc −myxx/lp and to τc − c∂xxγ

p in Aifantis model. This strain–
gradient induced hardening behaviour is not introduced nor predicted in the
idealized line tension dislocation and Cosserat models. The strain gradient
theory can be simplified to get rid of this hardening component, as shown
at the end of section 2.2. The similarity of the governing p.d.e. makes it
possible to identify some parameters of the generalized continuum models
with the dislocation based quantities, especially the involved characteristic
lengths.

As a consequence of the choice of the primary variables, the interface
conditions are different for all generalized continuum models. In the line
tension model, at least in the plastic regime, plastic slip and lattice rotation
are not necessarily continuous, which corresponds to a density of edge dislo-
cations deposited at the interface. In contrast, the Cosserat theory assumes
the continuity of lattice rotation whereas plastic slip is continuous in the
gradient of internal variable theory. The second gradient model introduces
the continuity of the normal gradient of displacement, the physical meaning
of which is more difficult to assess. These differences in interface conditions
make the previous identification of characteristic lengths at the level of the
governing equations insufficient. That is why, we must also compare the fi-
nal solution, namely the predicted distribution of slip and lattice rotation in
the considered simple glide test. As shown in section 2.2, the lattice distri-
butions predicted by the Cosserat and line tension models can be identified.
The phenomenological moduli are then related to dislocation material pa-
rameters but also to the geometry of the microstructure, especially the layer
thicknesses s and h.
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Figure 7. Deformed states of a two–phase material element under simple
shear : (a) initial state; (b) solution according to classical crystal plasticity;
(c) Cosserat elasticity (see subsection 2.2); (d) Cosserat elastoplasticity (see
subsection 2.2). The solutions have been computed using the finite element
method and each phase is divided into elements : hard phase in white, soft
phase in grey; the mean deformation is the same in (b,c,d).

Non–homogeneous plastic deformation in channels

In the simple situation investigated in this work, several available nonlocal
models of crystal plasticity - ranging from Cosserat, second grade to gradient
of internal variable theories - predict development of a non–homogeneous
distribution of plastic slip and lattice rotation in the soft channels of the
laminate microstructure under shear. Each of the nonlocal models has its
own advantages and drawbacks. The Cosserat model naturally comes out
of almost thirty years old theoretical reflexions on crystal plasticity Mandel
(1973) but the physical meaning of the skew–symmetric part of the stress
still remains unclear. In the strain gradient model recalled in Appendix 2.2,
the constitutive links between slip gradient variables γS and the gradient
of slip grad γp remains phenomenological. This model gives also the oppor-
tunity of incorporating effects that are not associated with geometrically
necessary dislocations (in particular the gradient of slip in the direction
normal to the slip plane, the physical interpretation of which remains to be



252 S. Forest

explained). Regarding Aifantis’ model, the Laplace term in yield condition
(311) can in some cases be derived from the physics of dislocations (see for
instance Estrin et al. (1998) in the case of double slip).

Anyway, the use of Cosserat, strain gradient or Aifantis models invari-
ably leads to parabolic or cosh- distributions of plastic slip and lattice rota-
tion, depending on specific constitutive assumptions. Each profile is char-
acterized by a length that is directly related to the constitutive length(s)
introduced in each model. This intrinsic length enters the elastic or the
plastic part of the constitutive equations, or both. Figure 7 summarizes
and illustrates the different deformed states of a sample of such two–phase
material, according to the classical and Cosserat models.

The parabolic or cosh- distributions of plastic slip and lattice rotation
result also from the line–tension dislocation–based model that incorpo-
rates the bowing of screw dislocations in narrow channels into a simple
one–dimensional continuum–mechanics description. Loosely speaking, the
anelastic regime for which dislocations move over short distances can be
associated with a cosh- distribution, whereas the fully plastic regime corre-
sponds to a parabolic profile.

Thus it appears that the plastic slip and lattice rotation distribution
obtained within the proposed Cosserat framework accurately mimics the
results of the dislocation–based line–tension models. On the generalized–
continuum level, simple linear and/or perfectly plastic constitutive equa-
tions that are usual in phenomenological modelling can be used. The bal-
ance of moment of momentum equation (253) 2, that does not exist in the
classical continuum framework, turns out to be the continuum counterpart
of the equilibrium condition (211) for a representative dislocation bowing
in the channel.

Even a direct identification of the dislocation and Cosserat models is
possible. In particular, the wavelength λ of the dislocation model (216)
enables one to compute the corresponding value of the Cosserat parameter
βs from (292) :

βs �
2μ

�m
(315)

Since it depends on the density of mobile dislocations which may vary during
deformation, βs should not be seen as a constant material parameter. In
the case of the parabolic profile, not only the constant βs, but also explicitly
the channel width s are the determinant parameters (see equation (295)).
The identification for the iso–strain model has been proposed in Sedláček
and Forest (2000). The present work focuses on the detailed solution of the
iso–stress periodic problem. Other models like strain gradient and Aifantis’
model have been shown to reproduce the line–tension effects as well.
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Interestingly, the mentioned nonlocal theories were not originally de-
signed for the modelling of line tension effects but rather hardening effects
due to so–called geometrically necessary dislocations as in the pileup model.
Admittedly, several nonlocal models have shown their ability to account for
particle or grain size effects that can be related to the presence of dislo-
cation pileups (see Forest et al. (2000); Acharya and Beaudoin (2000) for
the simulation of Hall–Petch effects in polycrystals). However one should
not hastily associate strain gradient plasticity and dislocation pileup ef-
fects. In fact, the distribution of plastic slip in dislocation pileups in the
soft phase is not correctly described by any of the mentioned nonlocal mod-
els. Double–ended pileups are dislocation structures that can also form in
the laminate microstructure under the prescribed loading conditions, for
instance because of periodically distributed Frank–Read sources, or as the
result of passage of many bowed screw dislocations. It could be argued
that the pileup model includes internal stresses and associated hardening,
which has not been taken into account in the Cosserat model. However, the
strain gradient model used in section 2.2 incorporates hardening associated
with hyperstresses and still provides a cosh- distribution. A Cosserat model
including classical linear hardening would lead in fact also to a cosh- distri-
bution. It shows that the main ingredients of the current nonlocal crystal
plasticity models are not really best–suited for the description of disloca-
tion pileup effects in crystals, but rather of dislocation line tension effects.
This is surprising since the size effects arising from dislocation bowing did
not belong explicitly to the initial main motivations that have led to the
development of the nonlocal theories. Conversely, this fact can be regarded
as an important property of the nonlocal models since the line tension ef-
fects have proved to dominate the mechanical response of many engineering
materials. The case of single-crystal nickel-based superalloys is of special
interest, since they display a periodic microstructure of hard precipitates
and soft channels. A description of precipitate size effects in single crys-
tal superalloys based on the Cosserat theory can be found in Forest et al.
(2000). An alternative model including gradients of internal variables has
also been applied to this single crystal material Busso et al. (2000). Size
effects associated with the channel width are predicted by the models. For
example, it can be checked that the solution of the elastoplastic Cosserat
model tends towards the classical one when the relative size s/h goes to
infinity (coefficient as of the parabolic profile then vanishes according to
equation (294)).

The presented results are applicable to cyclic loading conditions. Further
effort must now be concentrated on dislocation interaction and hardening,
which remains challenging since the line tension model becomes difficult
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to handle explicitly in the three–dimensional case Sedláček et al. (2003).
Dislocation dynamics and finite element simulations are then useful tools
to go towards more realistic multi–slip situations, as initiated in Shu and
Fleck (1999); Shu et al. (2001). The situation of double slip has been shown
to be dramatically different from the single slip case in Shu et al. (2001),
from the dislocation dynamics point of view.

Role of interface conditions

In the present study, nonlocal mechanical models incorporating additional
higher order boundary or interface conditions have been considered. It
appears clearly in Shu et al. (2001) that models that keep the classical
structure of the boundary value problem unchanged, like Acharya and Bas-
sani (2000); Busso et al. (2000), predict homogeneous glide as the classical
continuum mechanics does for the shearing of a crystalline layer. Non–
homogeneous distributions can be obtained with a nonlocal model by ap-
plying higher order boundary conditions at the boundary of the sheared
layer. The higher order boundary conditions concern the additional degrees
of freedom of higher order derivatives, introduced in the model, and their
associated forces. Similarly, in the two–phase microstructure considered in
this work, the enriched interface conditions are responsible for the devel-
opment of a non–homogeneous plastic slip pattern in the soft phase. Since
neither special constitutive properties nor direct boundary conditions have
been applied to the interface, both phases must be treated as generalized
continua, and not only the soft one. If one considers in the Cosserat model
of section 2.2, the limit case for which μch = ∞ and βh = 0, constant values
for φ are obtained in each phase with a jump. It means that, in order to get
a non–constant distribution, the wall cannot be regarded as purely classi-
cal : it must be able to carry the surface couples produced in phase s at the
boundary. This can be achieved by setting a relatively low value of βh and
a 100 time bigger βs. In that case, the distribution in the hard phase is then
almost flat with a steep rise close to the boundary, that mimics a jump of
the considered variable. The same holds for the two other nonlocal models
handled in section 2.2. An alternative method could be to consider the hard
phase as a classical material and to set directly boundary conditions at the
interface (see for instance Shu and Fleck (1999) for the interface between
two crystallites). This has not been done here because the conditions to
be prescribed are not necessarily known a priori. Instead, in the Cosserat
theory, lattice rotation, the additional degree of freedom, is continuous at
the interface and so does the traction vector and the couple–stress vector.
Similarly in the second gradient theory, the normal gradient of the displace-
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ment and the associated force must be continuous at the interface. So does
plastic slip and associated force in Aifantis’ model. These conditions are
therefore slightly different for each theory, even if the governing partial dif-
ferential equation may be the same in the bulk. It is however difficult to
assess which continuity requirement is the most realistic from the physical
point of view. The main point is that these continuity constraints are the
origin of the non–uniform lattice rotation field in the soft phase.

More general grain boundary behavior could include discontinuities of
lattice rotation, plastic strain, or even grain boundary sliding and opening
for damage Acharya (2007); Gurtin and Anand (2008).

Description of internal stresses and hardening

The attention has been focused on the continuum description of plastic slip
and lattice rotation distribution, but the question of hardening is also an
important point from the macroscopic point of view. The pileup model
of subsection 2.2 leads to the existence of linear hardening due to internal
stresses, described by equation (246). This kinematic hardening component
can be seen as a sort of nonlocal hardening law since it depends on the
mean value of plastic slip and not on the local value of γ. It has the classi-
cal form used in phenomenological constitutive equations for single crystal
under cyclic loading Méric et al. (1991), although nonlinear kinematic hard-
ening is usually observed experimentally. It appears also that this hardening
term does not depend on lattice curvature or dislocation density tensor and
therefore has no direct relation to the density of geometrically necessary
dislocations (see also Mughrabi (2001)). A size effect is expected from the
dependence of the hardening modulus C on the channel width s, see equa-
tion (246).

Such a hardening term should be introduced in the continuum model of
section 2.2 to account for arising internal stresses. It can be easily done
by replacing τc in (277) by a term of the form τc + Cγ̄. The form of the
solution is not affected by this term which does not depend on position x.
It is clear however that the continuum Cosserat model does not account for
the exact distribution of plastic strain in a double–ended pileup (parabolic
profile instead of an elliptic one). The introduction of the linear hardening
component then keeps a phenomenological character.

In Shu et al. (2001), the local hardening modulus entering the consti-
tutive equations of the second grade model has been identified numerically
using the mean response of the discrete dislocation dynamics model. The
hardening modulus links the equivalent stress and plastic strain rates σ̇eq

and q̇ (see section 2.2). However the plastic multiplier q is a measure of
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cumulated plastic strain and strain gradient without distinction, because of
the use of a single coupled yield criterion (300) in the spirit of Borst (1991) :

q̇ = |γ̇p|+ lp|γ̇S | . (316)

The pileup model indicates that hardening originates from mean plastic slip
and not from local slip gradient. Accordingly, a distinction between both
contributions should be preferable in the continuum model. Such a distinc-
tion exists in the full Cosserat model used in Forest et al. (2000) by con-
sidering two different plastic multipliers, one for plastic slip, the other one
for lattice curvature. This means also that the single yield criterion (300) is
replaced by two yield conditions : one involves resolved shear stresses, the
second one involves resolved couple–stresses. Coupling between both comes
then from the hardening laws. It must be noticed that this hardening law
for the two–phase material must be of kinematic type for application to
cyclic plasticity.

In many generalized crystal plasticity models, the higher order stresses
generate kinematic hardening, generallly linear. Different classes of such
models are compared in Forest (2008); Cordero et al. (2010).

Appendix: Second grade continuum

The strain and its gradient are decomposed into their elastic and plastic parts :

εij = εeij + εpij , ηijk = ∂xkεij = ηeijk + ηpijk . (1)

The associated stresses are the classical Cauchy stress σij and the hyperstress tensor
mijk. The following simplified form of the elastic relations has been chosen in Shu and
Fleck (1999) :

σij = Cijklε
e
kl, mijk = l2eCijpqη

e
pqk , (2)

where the usual four–rank elasticity tensor is denoted by Cijkl and le is a character-
istic length associated with the higher order elasticity law. For the structure to be in
equilibrium, the stress tensors must fulfill the following balance equation :

∂xjσij − ∂xjxkmijk = 0 , (3)

where volume simple and double forces have been excluded. Note that equilibrium is
governed by a single higher order partial differential equation whereas two balance equa-
tions must be fulfilled for the Cosserat continuum. For this continuum, a boundary value
problem is well–posed provided that boundary conditions are prescribed to one element
in each pair (ui, ti) and (Dui, ri). The unknown displacement is denoted by ui and Dui

is the normal gradient of ui defined by

Dui = (∂xjui)nj (4)

for a unit vector n normal to a surface. The corresponding tangent gradient operator is

Dj(.) = ∂xj (.)−D(.)nj (5)

The traction vector t and double traction vector r on a surface element of normal n are
respectively defined by

ti = (σij − ∂xkmijk)nj + (Dlnl)mijknjnk −Dj(mijknk) (6)
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ri = mijknjnk . (7)

In the case of single slip in a system (m ,ν ) (slip direction s and slip plane normal ν),
the plastic strain and strain gradient are related to the amount of slip γp and the slip
gradient variable γS by :

ε̇pij = γ̇p s(iνj), η̇pijk = γ̇S s(iνj)sk , (8)

where the parentheses around indices stand for symmetrization. Note that in the general
theory proposed in Shu and Fleck (1999), additional slip gradient variables γT , γM are
introduced, that we do not include in the simple case investigated here. It must be noted
also that in this theory, the slip gradient variable γS does not necessarily coincide with
the gradient of slip γp.

The plastic yield criterion is a generalized Schmid law involving resolved shear stresses
and hyperstresses :

σeq = |τ |+ |m|/lp, with τ = σijsiνj , and m = mijksiνjsk . (9)

Plastic deformation can then occur when σeq reaches the threshold τc. The authors in
Shu and Fleck (1999) propose a viscoplastic formulation of the constitutive framework.
In contrast, an elastoplastic formulation is used here, for the simple case of single slip.
Associative plastic flow is assumed. Thus, the normality rule is given as :

γ̇p = q̇∂τσeq = q̇ sign τ , (10)

γ̇S = q̇∂mσeq =
q̇

lp
signm , (11)

where q̇ denotes the plastic multiplier in both equations.

Two characteristic lengths appear in the theory, namely le in equations (2) and lp in

equation (9).
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3 Continuum modelling of size effects in the
mechanics of single and polycrystals

3.1 Plasticity at the crack tip in single crystals

The stress–strain field at the crack tip in a single crystal can be simu-
lated using dislocation dynamics and continuum crystal plasticity Van der
Giessen et al. (2001). The problem of the crack in an infinite medium has
been addressed very often during the development of the mechanics of gen-
eralized continua in the 60s and 70s. Solutions are available for the elastic
couple stress medium and fully non local elasticity. In the case of crystal
plasticity, numerical solutions with the Cosserat continuum have been com-
pared to Rice’s solution for the classical continuum in Forest et al. (2001a).
The classical solution, derived for an elastoplastic single crystal without
hardening, predicts the existence of sectors with constant stress separated
by localization bands. The physical nature of the bands depends on crys-
tal structure and orientation. Intense slip bands, kink bands and multislip
bands can coexist. The use of the Cosserat continuum leads to the weak-
ening and even elimination of kink bands at the crack tip when additional
hardening associated to lattice curvature is introduced. The figure 8 shows
the profiles of equivalent plastic slip along half a circle close to the crack tip
for three different values of extra–hardening modulus H assuming a simple
extra–hardening model linear in the variable θ (see equation (106)). For
the considered crystal orientation, kink bands lie at 55◦ and 125◦ from the
horizontal axis, whereas the vertical band is a pure slip band. The intensity
of the kink bands decreases for increasing H values. Note that asymptotic
analyses of the crack tip field are possible within classical crystal plasticity
that exclude kink banding Drugan (2001) but they are difficult to implement
numerically. Recent experimental investigations on nickel–base superalloys
at room temperature confirm in fact the existence of kink bands at the
crack tip under monotonous loading (cf. figure 9 and reference Flouriot
et al. (2003)). Extra–hardening parameter H can be identified from the
found intensity of the kink bands.

The use of physically more realistic models at the crack tip than classical
crystal plasticity is an important issue for the prediction of subsequent crack
growth, especially in fatigue Deshpande et al. (2001).

3.2 Strain heterogeneities in polycrystals

The continuum crystal plasticity framework can be used to evaluate the
development of plastic strain heterogeneities in thin or bulk polycrystals.
We report first computations based on classical continuum crystal plasticity,
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Figure 8. Equivalent plastic strain at a crack tip in an elastic ideally–plastic
Cosserat single crystal under mode I loading conditions (F.C.C. crystal, the
vertical and horizontal directions are respectively [011] and [100]). The
results are obtained from finite element computations of cracked Cosserat
single crystals. The equivalent plastic strain is localized in 3 bands (a). The
amount of plastic slip is plotted along half a circle close to the crack tip for
three different values of the extra–hardening parameter H (b).
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Figure 9. Slip lines at the crack tip of a nickel–base superalloy single crystal
in a CT specimen. The crack plane is (110) and the crack propagation
direction is [001]. Two kink bands are clearly visible on each side of the
crack tip (after Flouriot et al. (2003)).
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theory recalled in section 1.1. The presented simulations and the results
obtained in Barbe et al. (2001a,b); Cailletaud et al. (2003); Parisot et al.
(2004); Šǐska et al. (2007) can integrate only relative grain size effects and
size–independent strain incompatibilities. The application of the Cosserat
model to polycrystals is postponed to section 3.3.

Multicrystalline specimens and coatings Metallic multicrystals have
been investigated both experimentally and numerically in several situations
in the past ten years: copper bicrystals Méric et al. (1994), copper, nickel,
aluminum or iron muticrystals Teodosiu et al. (1993); Eberl et al. (1998);
Ziegenbein et al. (1998); Delaire et al. (2000). The specimens may be
strained in situ in a SEM. An EBSD analysis provides the lattice rotation
field and the use of grids on the surface enables one to derive some compo-
nents of the strain fields. In all mentioned contributions, the experimental
results have been compared with success with realistic 3D computations
using crystal plasticity.

The interest of computing samples containing a small number of large
grains lies in the fact that the whole framework can be checked experi-
mentally by comparing local and global predictions to strain or stress field
measurements. In the case of coatings for instance, the computations are
also of industrial interest since they can be used to optimise the microstruc-
ture, like grain size for instance.

The case of zinc coatings on steel sheets has been presented in Parisot
et al. (2004) and the case of copper thin films in Šǐska et al. (2007). The
finite element computation of the tension or expansion of a coating on its
substrate reveals the following features of the coating behaviour:

• the multiaxial stress state of each grain depending on its orientation;
• activated slip systems in the core of the grains, at the grain boundaries
and at the interface coating/substrate;

• the gradient of strain that can develop from the interface to the free
surface; this gradient can be shown to increase when the ratio between
in–plane grain size and coating thickness decreases;

• forces acting at grain boundaries and at the interface, that can lead
to intergranular fracture or interface decohesion;

• the coating roughness induced by local plasticity.

Computation of polycrystalline aggregates The type of geometrical
aggregates shown in figure 10 can be used to investigate the intragranular
fields, and to contribute to a better knowledge of the state of stress and
strain in a current point of a polycrystal, and in more critical areas like
the vicinity of the surface or at the grain boundaries. To be significant,
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the calculation must involve a reasonable number of grains and a reason-
able number of elements in each grain. According to the literature related
to texture effect, one thousand of grains seems to be a good number for
representing a given material. The following examples are restricted to 200
grains, in order to have more than 1000 integration points in each grain
(10× 10× 10, in 3D). Averaged values can then be considered on the mesh,
in order to compare the FE model to the results given by more simple mod-
els like self–consistent approaches, on the level of each grain, and for the
global mechanical response. The elements used are 20–node bricks with 27
integration points per element.

Boundary conditions and representativity of the volume element
Three types of boundary conditions will be considered on a cube containing
200 grains Kanit et al. (2003) :

• Homogeneous strain based boundary conditions: the three compo-
nents of the displacement at each node of the outer surface are pre-
scribed according to the equations :

u = E∼ .x (12)

where E∼ is a given constant strain tensor and x the position of the
point. We apply in this work a strain E∼ corresponding to average
uniaxial tension. The values of the component are taken from a sim-
ulation with a homogenized polycrystal model;

• Mixed boundary conditions for which only the displacement normal
to the surface is prescribed according to the previous equation; lat-
eral free surfaces may be considered for the case of simple tension for
instance.

• Homogeneous stress based boundary conditions for which the traction
vector is prescribed at each point of the boundary.

In this section, the local and global behaviour of the polycrystal is inves-
tigated. No special property is attributed to the grain boundaries. In
particular, grain boundary sliding or damage are not considered.

The representativity of the considered polycrystalline volume element is
a central issue. The number of grains must be large enough for the vol-
ume to be sufficiently representative. On the other hand, the number of
elements inside each grain must be large enough for a sufficiently accurate
description of the local intragranular strain field. That is why the presented
computations belong to the largest computations of polycrystals available
in literature and require parallel computing. With the number of processors
used, the compromise is a volume containing 200 grains. The representa-
tivity of the volume element depends on the contrast of phase properties,
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on the type of boundary conditions and on the wanted accuracy of the es-
timation of the effective property Kanit et al. (2003). It can be assessed
by applying strain based and stress based boundary conditions on the same
volume Huet (1990). The difference between the apparent properties found
for both conditions is due to the lack of representativity of the sample. For
large volumes, the choice of the boundary conditions should not matter
any more. The tensile curves obtained for both conditions on the consid-
ered sample of 200 grains differ by about 6%. The tensile curves can be
found in Barbe et al. (2001b). The interest of periodic boundary conditions
compared to homogeneous ones is illustrated in Kanit et al. (2003).

Intragranular fields Figure 10 shows the finite element mesh, and the
strain and stress field in the polycrystal in overall simple tension. The
material is IN600 Barbe et al. (2001b), the cube is submitted to a 1.5%
overall tension, and the orientations of the grains are randomly distributed,
in order to simulate an initially isotropic material. The slip activity is
mainly due to the gradients of stress at the grain boundaries and not related
to a kind of propagation of slip across boundaries. The development of
deformation bands is observed independently of the grain morphology. In
contrast the stress level is generally higher close to grain boundaries.

Free surface effect Contradictory results can be read in the literature
concerning the effect of a free surface on local plastic behaviour Mughrabi
(1992). After extensive TEM studies, some authors Pangborn et al. (1981)
observe a hardened surface, due to the increase of dislocation density, but
other works Fourie (1967); Mughrabi (1970) display an inverse effect, with
lower dislocation densities and larger cell sizes. On the other hand, attempts
have been made to approach the surface effect from a mechanical point
of view, using a crystallographic inclusion in a homogeneous semi–infinite
medium, considered as elastoviscoplastic Pilvin (1998) or in full polycrystals
Barbe et al. (2001b). In these simulations the presence of a free surface
seems to lead to lower stress levels, the perturbed area corresponding to
about 3 grains. In the simulation of polycrystalline aggregates in tension
with one free lateral surface, the first order surface effect is scatter. Relaxing
the boundary condition can produce a drop of the local stress, but in some
other location, a very low stress level obtained with homogeneous strain
conditions can increase when freeing the surface. Averaged quantities can
be considered, by plotting the average value of a critical variable in a slice
at a given distance of the free surface. In that case, the observed effect is
small (less than 10%). In general at a free surface of the cube, the number
of active slip systems is significantly smaller (more than 15% less than in
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Figure 10. Two meshing strategies for polycrystalline volume elements
(a). Contour (b) of the total strain in the tensile direction, (c) of von Mises
equivalent stress, for a FCC polycrystal subjected to a mean tensile strain
of 1.5%.
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the core of the specimen), then the sum of the plastic slip is also smaller.
A systematic study of the 3D morphology of grains on the strain field at

a free surface can be found in Zeghadi et al. (2007b,a).

Grain boundary effect Like the surface, the presence of a grain bound-
ary will first induce a large scatter, in terms of stress and strain. However,
the averaged stress over one or several grains as a function of the distance to
the closest grain boundary is rather constant Barbe et al. (2003). The main
results obtained by this statistical analysis are the following. The number
of active slip systems and the sum of the plastic slips increase near the grain
boundary. The von Mises strain is larger in the center of the grain.

The situation is quite different in the case of an aggregate of h.c.p. crys-
tals like zinc. For this class of symmetry, elasticity and plastic slip are
strongly anisotropic. In the zinc alloy studied in Parisot et al. (2004), the
activated slip system families are mainly basal slip and pyramidal Π2, the
latter having an initial critical resolved shear stress ten times larger than
the former. The consequence is that pyramidal slip takes place principally
near the grain boundaries whereas basal slip spreads over the entire grain.

3.3 Grain size effects in polycrystals

Generalized homogenization method for polycrystals The poly-
crystal can also be regarded as a heterogeneous Cosserat material since it
is an aggregate of Cosserat single crystal grains. As a result, some homoge-
nization procedures must be designed to study the resulting properties of the
polycrystal. The classical homogenization methods well–established for het-
erogeneous Cauchy media, as described in details in Sanchez-Palencia and
Zaoui (1987); Suquet (1997); Jeulin and Ostoja-Starzewski (2001), must be
extended to heterogeneous higher order continua. This task has been un-
dertaken for heterogeneous Cosserat media in Forest et al. (1999, 2001b)
and for micromorphic continua in Forest (2002). The theory is presented at
small deformation for the sake of brevity.

Hill-Mandel approach The aim is to replace a heterogeneous material
by a homogeneous substitute medium (HSM) which can be said to be equiv-
alent in a sense to be made precise. Following Hill-Mandel’s approach of the
mechanics of heterogeneous materials, a condition of macro-homogeneity is
required stipulating that the (isothermal for simplicity) free energy of the
HSM at point x can be identified to the mean value of the free energy over a
representative volume element V under the same overall loading conditions
at x . In the case of heterogeneous Cosserat materials for which the local
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fields are the relative strain, curvature and force and couple stress tensors
e∼,κ∼,σ∼ and μ

∼
inside V , this condition can be generalized in the following

forms. If the overall substitute medium (to be used for structural calcula-
tions for instance) is treated as a Cauchy continuum, the condition reads
:

< σ∼ : e∼ + μ
∼
: κ∼ >= Σ∼ : E∼ (13)

where E∼ andΣ∼ are the effective (symmetric) deformation and stress tensors.
If the HSM is regarded as a Cosserat continuum itself, it becomes

< σ∼ : e∼ + μ
∼
: κ∼ >= Σ∼ : E∼ +M∼ : K∼ (14)

where K∼ and M∼ are effective curvature and couple stress tensors, E∼ and Σ∼
being not necessarily symmetric any more. The procedure (14) is of course
more general and contains (13) as a special case to which it reduces if the
effective characteristic length is very small.

The determination of the effective properties then goes through the res-
olution of a boundary value problem on V . Boundary conditions on ∂V
must then be chosen that automatically fulfill conditions (13) or (14). For
instance the following homogeneous conditions at the boundary can be con-
sidered:

u = E∼ .x and Φ = K∼ .x , ∀x ∈ ∂V (15)

where E∼ and K∼ are given and constant. It follows that

E∼ =< u ⊗∇ > and K∼ =< κ∼ > (16)

Condition (14) then is automatically satisfied for the following definition of
the effective stress tensors

Σ∼ =< σ∼ > and M∼ =< μ
∼
+
(
ε∼ : σ∼

)
⊗x >=< μij+εimnσmnxj > e i⊗e j

(17)

Asymptotic methods In the case of periodic microstructures, a unit cell
V can be defined and asymptotic methods are well-adapted for deriving the
form of the effective balance and constitutive equations Sanchez-Palencia
(1974). The key-point is the choice of the small parameter ε introduced
in the multiscale asymptotic developments. Two different schemes have
been proposed in Forest et al. (2001b) for periodic heterogeneous Cosserat
media. Three characteristic lengths must be distinguished : the size l of
the unit cell V , a typical characteristic length lc of the constituents of the
heterogeneous Cosserat material, and a typical wave length Lω associated
with the applied loading conditions. In classical homogenization theory, one
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usually speaks of slowly varying mean fields when l � Lω and, in this case,
the small parameter is ε = l/Lω. In the present situation, one may first
consider a limiting process HIwith ε −→ 0, for which the Cosserat length
scale lc varies in the same way as l, so that the small parameter can also be
written ε = lc/Lω. In this case, the effective medium can be shown to be a
Cauchy continuum. According to a second limiting process HII , lc is kept
constant, which corresponds to ε = l/lc. The main fields are now treated
as functions of the two variables x and y = x /ε. The local fields can be
expanded in power series of ε,

u ε(x ) = u 0(x ,y ) + εu 1(x ,y ) + ε2 u 2(x ,y ) + ... (18)

Φ ε(x ) = Φ 0(x ,y ) + εΦ 1(x ,y ) + ε2 Φ 2(x ,y ) + ... (19)

where the u i and Φ i are assumed to have the same order of magnitude and
are periodic in y . Similar expansions exist for the force and couple stresses:

σ∼
ε(x ) = σ∼

0(x , y) + ε σ1(x ,y ) + ε2 σ∼
2(x ,y ) + ... (20)

μ
∼
ε(x ) = μ

∼
0(x , y) + ε μ1(x ,y ) + ε2 μ

∼
2(x ,y ) + ... (21)

The form of the constitutive equations is different for each homogenization
procedure and in the case of linear elasticity, they read:

HI : σ∼
ε = D∼∼

(y ) : e∼
ε(x ) and μ

∼
ε = ε2C∼∼

(y ) : κ∼
ε(x ) (22)

HII : σ∼
ε = D∼∼

(y ) : e∼
ε(x ) and μ

∼
ε = C∼∼

(y ) : κ∼
ε(x ) (23)

After noting that ∇ = ∇x + 1/ε∇y (with obvious notations), we compute
the gradient of the kinematic variables and the divergence of the stresses in
order to introduce them in the balance and constitutive equations. Ordering
the terms according to ε leads to a set of equations from which a series
of auxiliary boundary value problems to be solved on the unit cell can be
defined (see Boutin (1996) for the classical case). The first auxiliary problem
for the procedure HII consists in determining vector fields v and ψ such
that :

u = E∼ .y + v with Φ = K∼ .y +ψ, ∀y ∈ V (24)

σ∼ = D∼∼
: (u ⊗∇y) and μ

∼
= C∼∼

: (Φ ⊗∇y) (25)

σ∼ .∇y = 0 and μ
∼
.∇y = 0 (26)

where v and ψ take the same values on opposite sides of the cell and the
traction and surface couple vectors σ∼ .n and μ

∼
.n are anti-periodic. The



268 S. Forest

solution of this problem gives in fact the terms u 1,Φ 1,σ∼
0 and μ

∼
0. This

leads to the following expression of the mean work of internal forces :

< σ∼ : e∼ + μ
∼
: κ∼ >=< σ∼ >:< u ⊗∇ > + < μ

∼
>:< κ∼ > (27)

which defines the effective deformation, curvature, force and couple stress
tensors. The effective medium then is a Cosserat continuum.

Retained approach for non linear multiphase materials The poly-
crystal is a heterogeneous material with a disordered distribution of phases,
each phase being a crystal orientation, and Hill-Mandel approach has proved
to be efficient for deriving effective properties in such cases Sanchez-Palencia
and Zaoui (1987). This requires however computations on a large represen-
tative volume element V containing many grains. Such aggregates have
already been computed in classical crystal plasticity in section 3.2. But for
Cosserat materials, the number of degrees of freedom and internal variables
increases dramatically in the three-dimensional case so that we will work
here on smaller samples of grains. In the latter case, periodic boundary
conditions will induce less pronounced boundary effects than the Dirichlet
conditions (15) (see Kanit et al. (2003)). That is why a mixed approach be-
tween Hill-Mandel and periodic ones is retained here, combining the periodic
scheme HII and unaltered local constitutive equations and thus different
from (25). It has been shown numerically in Forest et al. (2001b), at least
in the case of linear elasticity, that the approach HII works well even if
lc ∼ l, which will be the case in section 4 to 6.

Accordingly, the following initial boundary value problem P is considered
on a single unit cell V :

u = E∼ .x + v , Φ = K∼ .x +ψ,

constitutive equations,

σ∼ .∇ = 0, μ
∼
.∇− ε∼ : σ∼ = 0 (28)

where v (resp. ψ) takes the same value on opposite sides of the cell. The
traction and surface couple vectors of two homologous points on opposite
sides of V are opposite. This problem is solved on a single cell V and no
attempt is made to extrapolate the solution in a regular solution on the
entire body, although it may be possible in particular for symmetric E∼ or
Σ∼ and vanishing K∼ .

Scale dependent behaviour of polycrystals Continuum crystal plas-
ticity models can be enhanced to account for size effects in single or mul-
tiphase metal polycrystals. Strain gradient, gradient of internal variable
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and Cosserat models are available to introduce additional hardening pri-
marily associated with densities of so–called geometrically necessary dislo-
cations Kubin and Mortensen (2003). Direct simulations of polycrystalline
aggregates including a detailed description of non–homogeneous deforma-
tion inside individual grains can then be used to predict grain size effects
classically observed in metal polycrystals Acharya and Beaudoin (2000);
Forest et al. (2000). The advantage of such models is that the grain size D
is not explicitly introduced in the constitutive equations, so that the size
effect scaling is the result of complex in–grain stress–strain fields and inter-
actions between grains. As a result, once identified, the same model can be
used for other size effects associated with the interaction with other phases
(lamellar structures, two–phase materials).

The aim of the next sections is the identification of the material param-
eters of a Cosserat crystal plasticity model to account for grain size effects
in an IF ferritic steel. Tensile curves for grains sizes ranging from 120 μm
to 5 μm can be found in Bouaziz et al. (2001) and show strong effects for
smaller grains. This hardening is not only due to grain size effects but also
to solid solution hardening since it is impossible to produce IF steels with
such small grains with exactly the same composition as for larger grains.
The solid solution hardening part can be isolated and estimated by suited
experiments so that the present work can concentrate on the remaining part
of hardening due solely to grain size changes. Scaling laws in D−0.7 were
found experimentally. Precise modelling of IF steels based on crystal plas-
ticity at a fixed grain size can be found in the referenced Paquin (2001);
Hoc et al. (2001).

The Cosserat crystal plasticity model is specialized in section 3.3 to the
case of small strain and rotation. The main capabilities of the model are
illustrated by two–dimensional finite element simulations showing the de-
velopment of lattice rotation and curvature inside grains for different grain
sizes. The actual identification of the model for IF steels requires the 3D
simulations of section 3.3. Some of the presented results were published in
Zeghadi et al. (2005). Simulations based on strain gradient plasticity mod-
els also exist for polycrystals in miniaturized samples Bayley et al. (2007);
Bargmann et al. (2010). The obtained lattice orientation fields can be com-
pared to experimental results like EBSD field measurements St-Pierre et al.
(2008).

Cosserat crystal plasticity model at small strain and rotation
Cosserat continuum mechanics introduces, at each material point, not only
a displacement vector u but also an independent rotation field, represented
by the axial vector φi. The Cosserat deformation and curvature tensors are
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respectively:

eij = ui,j + εijkΦk κij = Φi,j (29)

In the static case,the force and couple stress tensors associated with the
previous deformation measures, must fulfill two balance equations Nowacki
(1986):

σij,j + fi = 0, μij,j − εijkσjk = 0 (30)

The isotropic elasticity law involves the 2 Lamé constants and 4 additional
moduli:

σij = λδije
e
kk+2μee(ij)+2μce

e
{ij}, μij = αδijκ

e
kk+2βκe

(ij)+2γκe
{ij} (31)

where (ij) and {ij} respectively denote the symmetric and skew-symmetric
parts of the tensor. The Cosserat directors can be identified with lattice
directions when the elastic strain tensor eeij is almost symmetric. That is
why the constant parameter μc is used as a penalty factor in the crystal
plasticity Cosserat model. An intrinsic length le =

√
β/μ can be defined.

Plastic deformation is due to the activation of plastic slip γs on slip system
s:

ėij = ėeij + ėpij , ėp =

N∑
s=1

γ̇sP s
ij , P s

ij = ms
in

s
j (32)

where ms
i and ns

i respectively are the slip direction and normal to the slip
plane. For IF steels, the 24 slip systems {110} < 111 > and {112} < 111 >
are retained Paquin (2001); Hoc et al. (2001). Similarly, lattice curvature
is accommodated by elastic and plastic parts:

κ̇ij = κ̇e
ij + κ̇p

ij , κ̇p
ij =

n∑
s=1

(
θ̇s⊥
lp

Qs
ij⊥

)
, Qs

ij⊥ = εikln
s
km

s
lm

s
k (33)

where εijk is the permutation symbol. Plastic lattice bending only is ac-
counted for in the present work, based on Nye’s formula. It is represented
for each slip system by the angle θs divided by a second characteristic length
lp. Viscoplastic flow rules are adopted for both plastic slip and curvature:

γ̇s = 〈 | τ
s | − rs

k
〉n sign (τ s), θ̇s = 〈 | ν

s | − lp rsc0
lp ksc

〉nc sign (νs) (34)

where τs = σijP
s
ij and νs = μijQ

s
ij⊥ respectively are the resolved shear

stress and the resolved couple stress. The brackets 〈〉 denote the positive
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E ν k n r0 q b1
(MPa) (MPa.s1/n) (MPa) (MPa)
208000. 0.3 3. 10. 29. 39. 16.

β rc0 H ′ lp kc nc b2
(MPa.mm2) (MPa) (MPa) (mm) (MPa.s1/nc)

0.001 0.000001 10. 1. 0.01 1. 5.

Table 1. (a) Classical parameters used in the computations (b)
Specific Cosserat parameters used in the computations

part. A simple nonlinear evolution law is adopted for the critical resolved
shear stress rs:

rs = r0 +Q

n∑
r=1

hsr(1− exp(−bvr)) + r⊥, vs =| γ̇s | (35)

with an interaction matrix hrs which represents a simplified version of the
model used in Hoc et al. (2001).

Influence of Cosserat elasticity and curvature hardening The
Cosserat bending modulus β was introduced by Kröner in dislocated crystals
Kröner (1963) and related to the density of geometrically necessary dislo-
cations and therefore to θs/lp. In the simple case of single slip in periodic
layered microstructures analysed in Forest and Sedláček (2003), it has been
related to line tension effects associated with the collective bowing of disloca-
tions in narrow channels. As a result, this parameter (and the corresponding
intrinsic length le) influences the spreading of lattice curvature inside grains.
To show that, finite element simulations of the shearing of a 2D aggregate
containing nine ferritic grains were performed for two different values of
the bending modulus, under plane strain conditions. Non–homogeneous
deformation and lattice rotation are due to plastic strain incompatibilities
between grains having different (random) orientations. Lattice curvature
primarily develops close to grain boundaries. Higher values of β promote
a larger spreading of lattice curvature for the same mean prescribed strain
value. This feature will play an important role in the following simulations
of grain size effects.

In equation (35), an additional hardening term r⊥ associated with lattice
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curvature is introduced. The following evolution rule is proposed

r⊥ = Q⊥(
n∑

s=1

(1− exp(−b⊥θs)))
1
2 (36)

Similar additional hardening terms are summarized and commented in Ku-
bin and Mortensen (2003) and involve the square root of a combination of
the density of statistically stored dislocations and density of geometrically
dislocations. Such rules are relevant for f.c.c. crystals but they are ques-
tionable in b.c.c. crystals. The function (36) of plastic lattice curvature
angles is of purely phenomenological nature. It has two advantageous fea-
tures: a vertical tangent at zero plastic curvature and saturation for higher
curvature levels. This allows strong effects at incipient plasticity, as recom-
mended by Ashby Ashby (1970). The effect of extra–hardening is illustrated
in the 2D case on figure 12 for two different grain sizes. The geometry of the
grains is the same for both computations but the absolute sizes of the aggre-
gates differ, which correspond to grain sizes of 120 and 5 μm respectively.
At the very beginning of intragranular plastic flow (0.075% overall shear
strain), plastic strain and lattice rotation maps are quite similar for both
grain sizes. As a consequence, plastic curvature fields strongly differ (figures
12(a)(b) and (c)). Lattice curvature being much larger in the small grains,
the curvature hardening rule (36) induces higher stress levels for small grain
sizes, as shown on figures 12(d). This will strongly affect subsequent plastic
flow in the grains. This mechanism is the main ingredient in the following
simulations of grain size effects in ferritic polycrystals.

3D finite element analyses of ferritic steels 2D simulations were
used in the previous section to illustrate the different capabilities of the
Cosserat crystal plasticity model. 3D simulations are necessary to actually
reproduce the experimental results on grain size effects in ferritic steels. A
mean tensile strain up to 10% is prescribed to a small aggregate containing
10 grains. Geometrical and kinematic periodicity conditions are chosen
because a periodic homogenization scheme is available for Cosserat continua,
and also because smaller representative volumes can be considered Forest
et al. (2000). The considered volume element is shown in figure 13.

The identification of the material parameters of the Cosserat models for
the considered material proceeds as follows. The initial critical resolved
shear stress r0, the hardening parameters Q, b (equation (35)), are deduced
from the tensile curve of IF steel with D =120 μm (large grain polycrystal
behaviour). The interaction matrix hrs is taken from the references Paquin
(2001); Hoc et al. (2001). The Cosserat parameters β,Q⊥, b⊥ (equation
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Figure 11. Mean axial stress–mean axial strain curves predicted by the
finite element analysis compared with experimental results

.

(36)) are identified from the dependence of the tensile curve on grain size.
For all simulations at different grains sizes, the material parameters, the
morphology of the grains and the boundary conditions are the same. The
finite element meshes take the actual size of the grains into account. The
inverse approach requires large amounts of time since each simulation on
one aggregate is time consuming. The best parameters found are given in
table 3.3. Reference computations have also been performed with classical
polycrystalline model. The Cosserat parameters are such that its response
is close to the classical one for grain sizes larger than D =120 μm. The
results after identification are shown in figure 11 which gives the average
values of axial stress and strain. As expected, the finite element response
is significantly harder for the smallest grain size. In both cases, the same
grains are activated and the maximal stress is localised near the grains
boundaries. The predicted grain size scaling at 0.2% plastic strain can be
checked. Grain size effects saturate for grain larger than 120 μm (classical
case) and for grains smaller than 1μm with the present parameters.

The effect of grain size on the local fields in 3D is illustrated in figure 13.
As expected, plastic strain is higher in larger grains for the same mean total
strain. Lattice curvature is higher in small grains and is observed mainly
close to grain boundaries where most strain incompatibilities arise.

An enhanced continuum crystal plasticity model was used to simulate
grain size effects in a ferritic steel using the finite element method and pe-
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(a)

(b)

(c)

(d)

Figure 12. Two–dimensional simulation of microplasticity in a polycrys-
talline volume element with two grain sizes and periodicity conditions: (a)
equivalent plastic strain, (b) norm of the lattice rotation vector (in rad.),
(c) norm of lattice curvature, (d) von Mises stress. The mean total strain
is 0.00075 in both computations.
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(a)

(b)

(c) � 1− 10◦/μm

Figure 13. Computation of a periodic volume element of a ferritic steel for
two grain sizes at the same mean strain level 0.01: (a) field of equivalent
plastic strain, (b) field of equivalent stress, (c) field of equivalent plastic
curvature for the smaller grains.
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riodic polycrystalline aggregates. In the simulation, the size effect is due to
an increase of plastic curvature for small grains associated with additional
curvature hardening. A second significant component is the increase of
the volume fraction of curved lattice within the grains for decreasing grain
size. This also contributes to higher macroscopic stress levels. However,
the present simulations still significantly underestimate the grain size effect
observed experimentally. This may be due to too coarse meshes, to insuffi-
cient lattice curvature spreading at small grains, or to deeper metallurgical
physical reasons that remain to be sorted out.

Alternative crystal plasticity models accounting for the overall grain size
effects are based on mean field homogenization approaches Pipard et al.
(2009).
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