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Abstract The elastoviscoplasticity theory of micromorphic media
at finite deformation is presented in this chapter. Micromechanical
considerations are then put forward to motivate the existence of
the microdeformation degrees of freedom in the case of composite
materials. Mixtures of micromorphic media are finally considered
with a view to homogenising the size–dependent properties of metal
polycrystals.

1 Introduction

1.1 Scope of this chapter

A classification of generalised mechanical continuum theories is proposed
in Fig. 1. The present chapter is limited to continuum media fulfilling the
principle of local action, meaning that the mechanical state at a material
point X depends on variables defined at this point only (Truesdell and
Toupin, 1960; Truesdell and Noll, 1965). The classical Cauchy continuum is
called simple material because its response at material point X to deforma-
tions homogeneous in a neighborhood ofX determines uniquely its response
to every deformation at X . In higher grade materials, homogeneous defor-
mations are not sufficient to characterise the material behaviour because
they are sensitive to higher gradients of the displacement field. Mindlin
formulated for instance the theories that include the second and third gra-
dients of the displacement field (Mindlin, 1965). The gradient effect may
be limited to the plastic part of deformation which leads to strain gradient
plasticity models (Aifantis, 1984; Forest and Bertram, 2011) or, more gener-
ally, theories that include the gradient of some internal variables (Maugin,
1990). Higher order materials are characterised by additional degrees of
freedom of the material points (Eringen, 1999). Directors can be attached
to each material point that evolve in a different way from the material lines.
Cosserat directors can rotate. In the micromorphic continuum designed by
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Eringen and Mindlin (Eringen and Suhubi, 1964; Mindlin, 1964), the direc-
tors can also be distorted, so that a second order tensor is attributed to each
material point. Tensors of higher order can even be introduced as proposed
in Germain’s general micromorphic theory (Germain, 1973).

Higher order media are sometimes called continua with microstructure.
This name has now become misleading in the sense that even Cauchy ma-
terial models can integrate some aspects of the underlying microstructure
as illustrated by classical homogenisation methods used to derive the ef-
fective properties of composites. However generalised continua incorporate
a feature of the microstructure which is not accounted for by standard
homogenisation methods, namely their size–dependent material response.
They involve intrinsic lengths directly stemming from the microstructure of
the material. The micromorphic theory now arouses strong interest from
the materials science and computational mechanics communities because of
its regularisation power in the context of softening plasticity and damage
and of its rather simple implementation in a finite element program. The
number of degrees of freedom is not an obstacle any more with constantly
increasing computer power.

The objective of this chapter is first to present the elastoviscoplasticity
theory of micromorphic media at finite deformation. This presentation is
based on the fundamental work of Eringen and on recent developments in
the context of plasticity. The second part is dedicated to the motivation
of higher order degrees of freedom by means of extended homogenisation
methods. Finally the question of heterogeneous micromorphic media is
addressed, with a view to applications in polycrystalline plasticity.

1.2 Notations

First, second, third, fourth and sixth order tensors are denoted by A ,
A∼ , A∼ , A≈ and A∼∼∼

respectively. Their components will be considered with

respect to a Cartesian basis:

A = Ai e i, A∼ = Aij e i ⊗ e j , A∼ = A∼ = Aijk e i ⊗ e j ⊗ e k

The following tensor products are defined

a ⊗ b = aibj e i ⊗ e j , A∼ ⊗B∼ = AijBkl e i ⊗ e j ⊗ e k ⊗ e l

A∼ �B∼ = AikBjl e i ⊗ e j ⊗ e k ⊗ e l

The tensor simple and multiple contractions follow the next rules:

A ·B = AiBi, A∼ : B∼ = AijBij , A∼
...B∼ = AijkBijk
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Figure 1. A classification of the mechanics of generalised continua.

For tensor analysis, nabla operators ∇X and ∇x are defined with respect
to the reference and current configurations of the body, respectively.

∇x = ,i e i =
∂

∂xi
e i, ∇X = ,J E J =

∂

∂XJ
E J

where (E J)J=1,3 and (e i)i=1,3 denote the corresponding Cartesian bases.
The comma stands for partial derivative with respect to the corresponding
coordinate. The following rules are adopted

u ⊗∇ = ui,j e i ⊗ e j , σ∼ .∇ = σij,j e i

2 Micromorphic continua

2.1 Kinematics of micromorphic media

The degrees of freedom of the theory are the displacement vector u and
the microdeformation tensor χ

∼
:

DOF := { u , χ
∼

}

The current position of the material point is given by the transformation Φ
according to x = Φ(X ) = X + u (X ). The microdeformation describes
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name number DOF references
of DOF

Cauchy 3 u Cauchy (1822)

microdilatation 4 u , χ Goodman and Cowin (1972)
Steeb and Diebels (2003)

Cosserat 6 u , R∼ Kafadar and Eringen (1971)

microstretch 7 u , χ, R∼ Eringen (1990)

microstrain 9 u , C∼
� Forest and Sievert (2006)

micromorphic 12 u , χ
∼

Eringen and Suhubi (1964)

Mindlin (1964)

Table 1. A hierarchy of higher order continua.

the deformation of a triad of directors, Ξ i attached to the material point

ξ i(X ) = χ
∼
(X ) ·Ξ i (1)

The polar decomposition of the generally incompatible microdeformation
field χ (X ) is introduced

χ
∼
= R∼

� ·U∼ � (2)

Internal constraints can be prescribed to the microdeformation. The micro-
morphic medium reduces to the Cosserat medium when the microdeforma-
tion is constrained to be a pure rotation: χ

∼
≡ R∼

�. The microstrain medium

is obtained when χ
∼

≡ U∼
� (Forest and Sievert, 2006). Finally, the second

gradient theory is retrieved when the microdeformation coincides with the
deformation gradient, χ

∼
≡ F∼ . A hierarchy of higher order continua can be

established by specialising the micromorphic theory and depending on the
targeted material class, see Table 1.

The following kinematical quantities are then introduced:
• the velocity field v (x ) := u̇ (Φ−1(x ))
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• the deformation gradient F∼ = 1∼ + u ⊗∇X

• the velocity gradient v ⊗∇x = Ḟ∼ · F∼−1

• the microdeformation rate χ̇
∼
· χ

∼
−1

• the Lagrangean microdeformation gradient K∼ := χ
∼
−1 · χ

∼
⊗∇X

• the gradient of the microdeformation rate tensor

(χ̇
∼
· χ

∼
−1)⊗∇x = χ

∼
· K̇∼ : (χ

∼
−1 � F∼

−1) (3)

and the corresponding index notation:

(χ̇ilχ
−1
lj ),k = χipK̇pqrχ

−1
qj F

−1
rk

2.2 Principle of virtual power

The method of virtual power is used to introduce the generalised stress
tensors and the field and boundary equations they must satisfy (Germain,
1973).
The modelling variables are introduced according to a first gradient theory:

MODEL = { v , v ⊗∇x, χ̇
∼
· χ

∼
−1, (χ̇

∼
· χ

∼
−1)⊗∇x }

The virtual power of internal forces of a subdomain D ⊂ B of the body is

P(i)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) =

∫
D
p(i)(v ∗, χ̇

∼
∗ · χ

∼
∗−1) dV

The virtual power density of internal forces is a linear form on the fields of
virtual modeling variables:

p(i) = σ∼ : (Ḟ∼ · F∼ −1) + s∼ : (Ḟ∼ · F∼ −1 − χ̇
∼
· χ

∼
−1) +M∼

... ((χ̇
∼
· χ

∼
−1)⊗∇x)

= σ∼ : (Ḟ∼ · F∼ −1) + s∼ : (χ
∼
· (χ

∼
−1 · F∼ )� · F∼ −1)

+ M∼
...
(
χ
∼
· K̇∼ : (χ

∼
−1 � F∼

−1)
)

(4)

where the relative deformation rate Ḟ∼ · F∼ −1 − χ̇
∼
· χ

∼
−1 is introduced and

expressed in terms of the rate of the relative deformation χ
∼
−1 · F∼ . The

virtual power density of internal forces is invariant with respect to virtual
rigid body motions so that σ∼ must be symmetric. The generalised stress
tensors conjugate to the velocity gradient, the relative deformation rate and
the gradient of the microdeformation rate are the simple stress tensor σ∼ ,
the relative stress tensor s∼ and the double stress M∼ .
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The Gauss theorem is then applied to the power of internal forces

∫
D
p(i) dV =

∫
∂D

v ∗ · (σ∼ + s∼) · n dS +

∫
∂D

(χ̇
∼
∗ · χ

∼
∗−1) : M∼ · n dS

−
∫
D
v ∗ · (σ∼ + s∼) ·∇x dV −

∫
D
(χ̇
∼
∗ · χ

∼
∗−1) : (M∼ ·∇x + s∼) dV

The form of the previous boundary integral dictates the form of the power
of contact forces acting on the boundary ∂D of the subdomain D ⊂ B

P(c)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) =

∫
∂D

p(c)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) dV

p(c)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) = t · v ∗ +m∼ : (χ̇

∼
∗ · χ

∼
∗−1)

where the simple traction t and double traction m∼ are introduced.
The power of forces acting at a distance is defined as

P(e)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) =

∫
D
p(e)(v ∗, χ̇

∼
∗ · χ

∼
∗−1) dV

p(e)(v ∗, χ̇
∼
∗ · χ

∼
∗−1) = f · v ∗ + p

∼
: (χ̇

∼
∗ · χ

∼
∗−1)

including simple body forces f and double body forces p
∼
. More general

double and triple volume forces could also be incorporated according to
Germain (1973).
The principle of virtual power is now stated in the static case,

∀v ∗, ∀χ
∼
∗, ∀D ⊂ B, P(i)(v ∗, χ̇

∼
∗ · χ

∼
∗−1) = P(c)(v ∗, χ̇

∼
∗ · χ

∼
∗−1)

+ P(e)(v ∗, χ̇
∼
∗ · χ

∼
∗−1)

This variational formulation leads to
∫
∂D

v ∗ · (σ∼ + s∼) · n dS +

∫
∂D

(χ̇
∼
∗ · χ

∼
−1) : M∼ · n dS

−
∫
D
v ∗ · ((σ∼ + s∼) ·∇x + f ) dV −

∫
D
(χ̇
∼
∗ ·χ

∼
∗−1) : (M∼ ·∇x + s∼+ p

∼
) dV = 0

which delivers the field equations of the problem (Kirchner and Steinmann,
2005; Lazar and Maugin, 2007; Hirschberger et al., 2007):

• balance of momentum equation (static case)

(σ∼ + s∼) ·∇x + f = 0, ∀x ∈ B (5)
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• balance of generalized moment of momentum equation (static case)

M∼ ·∇x + s∼ + p
∼
= 0, ∀x ∈ B (6)

• boundary conditions

(σ∼ + s∼) · n = t , ∀x ∈ ∂B (7)

M∼ · n = m∼ , ∀x ∈ ∂B (8)

2.3 Elastoviscoplasticity of micromorphic media

Elastic–plastic decomposition of the generalised strain measures
According to Eringen (1999), the following Lagrangean strain measures

are adopted:

STRAIN = {C∼ := F∼
T · F∼ , Υ∼ := χ

∼
−1.F∼ , K∼ :=χ

∼
−1.(χ

∼
⊗∇X)}

i.e. the Cauchy–Green strain tensor, the relative deformation and the mi-
crodeformation gradient.

In the presence of plastic deformation, the question arises of splitting the
previous Lagrangean strain measures into elastic and plastic contributions.
Following Mandel (1973), a multiplicative decomposition of the deformation
gradient is postulated:

F∼ = F∼
e · F∼ p = R∼

e ·U∼ e · F∼ p (9)

which defines an intermediate local configuration at each material point, see
Fig. 2. Uniqueness of the decomposition requires the suitable definition of
directors. Such directors are available in any micromorphic theory.
A multiplicative decomposition of the microdeformation is also considered:

χ
∼
= χ

∼
e · χ

∼
p = R∼

e� ·U∼ e� · χ
∼
p (10)

according to Forest and Sievert (2003, 2006). The uniqueness of the decom-
position also requires the suitable definition of directors. As an example,
lattice directions in a single crystal are physically relevant directors for an
elastoviscoplasticity micromorphic theory, see (Aslan et al., 2011). Finally,
a partition rule must also be proposed for the third strain measure, namely
the microdeformation gradient. Sansour (1998a,b) introduced an additive
decomposition of curvature:

K∼ = K∼
e +K∼

p (11)
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Figure 2. Multiplicative decomposition of the deformation gradient.

Figure 3. Definition of an intermediate local configuration for micromor-
phic elastoplasticity.

A quasi–additive decomposition was proposed by Forest and Sievert (2003)
with the objective of defining an intermediate local configuration for which
all generalised stress tensor are simultaneously released, as it will become
apparent in the next section:

K∼ = χ
∼
p−1.K∼

e : (χ
∼
p � F∼

p) +K∼
p (12)

see Fig. 3.
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Constitutive equations
The continuum thermodynamic formulation is essentially unchanged in

the presence of additional degrees of freedom provided that all functionals
are properly extended to the new sets of variables. The local equation of
energy balance is written in its usual form:

ρε̇ = p(i) − q .∇ + r

where ε is the specific internal energy density, and p(i) is the power density
of internal forces according to Eq. (4). The heat flux vector is q and r is a
heat source term. The local form of the second principle of thermodynamics
is written as

ρη̇ +
(q
T

)
.∇ − r

T
≥ 0

where η is the specific entropy density. Introducing the Helmholtz free
energy function ψ, the second law becomes

p(i) − ρΨ̇− ηṪ − q

T
.(∇T ) ≥ 0

The state variables of the elastoviscoplastic micromorphic material are all
the elastic strain measures and a set of internal variables q. The free energy
density is a function of the state variables:

Ψ(C∼
e := F∼

eT .F∼
e, Υ∼

e := χ
∼
e−1 · F∼ e, K∼

e, q)

The exploitation of the entropy inequality leads to the definition of the
hyperelastic state laws in the form:

σ∼ = 2F∼
e · ρ ∂Ψ

∂C∼
e · F∼ eT , s∼ = R∼

e� ·U∼ e�−1 · ρ ∂Ψ
∂Υ∼

e · F∼ eT

M∼ = χ
∼
−T · ρ ∂Ψ

∂K∼
e : (χ

∼
T � F∼

T ) (13)

while the entropy density is still given by η = −∂Ψ
∂T . The thermodynamic

force associated with the internal variable q is

R = −ρ∂Ψ
∂q

The hyperelasticity law (13) for the double stress tensor was derived for the
additive decomposition (11). The quasi–additive decomposition (12) leads
to an hyperelastic constitutive equation for the conjugate stress M∼ in the
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current configuration, that has also the same form as for pure hyperelastic
behaviour. One finds:

M∼ = χ
∼
e−T · ρ ∂Ψ

∂K∼
e : (χ

∼
eT � F∼

eT ) (14)

The residual intrinsic dissipation is

D = Σ∼ : (Ḟ∼
p
.F∼

p−1) + S∼ : (χ̇
∼
p.χ

∼
p−1) + S∼0

...K̇∼
p
+Rq̇ ≥ 0

where generalised Mandel stress tensors have been defined

Σ∼ = F∼
eT .(σ∼ + s∼).F∼

e−T , S∼ = −U∼
e� ·R∼ e�T · s∼ ·R∼ e� ·U∼ e�−1

M∼ = χ
∼
T .S∼ : (χ

∼
−T � F∼

−T )

At this stage, one may define a dissipation potential, function of the Man-
del stress tensors, from which the viscoplastic flow rule and the evolution
equations for the internal variables are derived

Ω(Σ∼ , S∼ , S∼0
)

Ḟ∼
p
.F∼

p−1 =
∂Ω

∂Σ∼
, χ̇

∼
p.χ

∼
p−1 =

∂Ω

∂S∼
, K̇∼

p
=

∂Ω

∂M∼
, q̇ =

∂Ω

∂R

The convexity of the dissipation potential with respect to its arguments
ensures the positivity of the dissipation rate at each instant.

Explicit constitutive equations can be found in (Forest and Sievert, 2003;
Grammenoudis and Tsakmakis, 2009; Grammenoudis et al., 2009; Regueiro,
2010; Sansour et al., 2010). Examples of application of elastoplastic micro-
morphic media can be found in (Dillard et al., 2006) for plasticity and failure
of metallic foams.

3 From a heterogeneous Cauchy material to a
homogeneous equivalent micromorphic medium

Two major obstacles to the use of such sophisticated continuum models
are the physical interpretation of the additional degrees of freedom and the
identification of the numerous additional material parameters arising in the
constitutive functions of the model. Generalised continua are very often
referred to as media with microstructure without giving precisely the link
between the phenomenological constitutive equations and the detailed mi-
crostructure of the material. The mechanics of heterogeneous materials and
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homogenisation methods are widely used to derive the effective properties
of classical Cauchy materials based on the description of a representative
volume element. Extension of these methods to generalised continua would
establish clear definitions of the macroscopic degrees of freedom and provide
a systematic way of deriving additional macroscopic materials parameters.
Homogenization techniques already exist to construct 1D Cosserat beam
models and 2D Mindlin plate models (Altenbach et al., 2010). In the case
of 3D generalised continua, it has been proposed in (Gologanu et al., 1997;
Forest, 1998, 1999) to construct an effective generalised continuum model
starting from a heterogeneous classical Cauchy material by means of ex-
tended homogenisation methods.

The present part concentrates on the construction of an overall strain
gradient or micromorphic continuum from a microscopic heterogeneous Cau-
chy material. Such a generalised continuum approach is necessary when
significantly high strain gradients develop at the macroscopic scale, more
precisely, when the wave length of variation of the macroscopic fields is not
sufficiently large compared to the size of the heterogeneities.

For that purpose, quadratic boundary conditions to be applied on a
RVE were first proposed in (Gologanu et al., 1997; Forest and Sab, 1998)
to construct an effective second gradient and Cosserat overall continuum,
respectively. They represent extensions of the classical affine conditions
used in classical homogenisation theory (Besson et al., 2009). They were
used to identify higher order stiffness, typically bending stiffnesses, that
are necessary to account for fiber size effect in composites under significant
macroscopic strain gradients, in (Ostoja-Starzewski et al., 1999; Bouyge
et al., 2001, 2002; Sansalone et al., 2006; Chen et al., 2009; Anthoine, 2010).
Cosserat approaches are particularly well–suited to describe the effective be-
haviour of civil engineering and granular materials, as shown in (Trovalusci
and Masiani, 2003; Goddard, 2008; Salerno and de Felice, 2009; Besdo,
2010).

Such higher order homogenisation schemes have been used in so–called
FE2 methods for which the constitutive model at each material of a com-
puted structure is replaced by the resolution of a boundary value problem
on the unit cell of the underlying heterogeneous material. The method is
computationally very expensive but makes it possible to address nonlinear
problems without writing explicit constitutive laws in the generalised contin-
uum model. In (Feyel, 2003), the Cosserat model is used at the macro–level
to represent a fiber matrix composite and the quadratic and cubic bound-
ary conditions proposed by Forest and Sab (1998) are applied to each unit
cell. In the references (Geers et al., 2001; Kouznetsova et al., 2002, 2004),
the macroscopic medium is regarded as a strain gradient continuum so that
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quadratic boundary conditions are sufficient. More recently, a micromor-
phic overall continuum was considered in (Forest, 2002; Jänicke et al., 2009;
Jänicke and Diebels, 2009) which represents currently the most general ex-
tension of classical homogenisation models.

In most cases however, the proposed extended homogenisation proce-
dures remain heuristic and several questions are still pending: existence
of a representative volume element in the presence of non–homogeneous
boundary conditions, properties of the local fluctuation field in the case of a
polynomial macro–field, as recently addressed by (Yuan et al., 2008; Forest
and Trinh, 2011), and the contribution of this fluctuation to the extended
Hill–Mandel condition.

The micromorphic theory is used in this part in the small deformation
context for simplicity. Capital letters will denote variables attached to the
macroscopic homogenized model, whereas small letters will characterize the
microstructure level. The representative volume element of the material
(RVE), a simple unit cell in the periodic case, is made of a heterogeneous
Cauchy continuum characteristic of a composite material. The local coor-
dinate in the unit cell V (X ) with centre X , is denoted by x .

The degrees of freedom represented by the generally non–symmetric sec-
ond order tensor field, χ

∼
(X ), are introduced in addition to the displacement

degrees of freedom, U (X ). It is assumed that the development of microde-
formation gradient

K∼ (X ) = χ
∼
(X )⊗∇X (15)

is associated with internal work and energy storage. There is also an ener-
getic price to pay for the microdeformation to depart from the macrodefor-
mation, characterised by the relative deformation measure:

e∼(X ) = U (X )⊗∇X − χ
∼
(X ) (16)

The micromorphic model encompasses the strain gradient theory as a limit
case if the internal constraint

χ
∼
≡ U ⊗∇X ⇐⇒ e∼ ≡ 0 (17)

is enforced (Forest, 2009).

3.1 Definition of the micromorphic degrees of freedom

A kinematic view of the micromorphic model has been proposed by Ger-
main (1973), that we rephrase here. In a theory which takes microstructure
into account, from the macroscopic point of view of continuum mechanics,
each particle is still represented by a material point X , but its kinematic
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properties are defined in a more refined way. At the microscopic level of
observation, a particle appears itself as a continuum V (X ) of small extent.
Let us call X its center of mass and x a point of V (X ). As V (X ) is of
small extent, it is natural to look at the Taylor expansion of the local dis-
placement u (x ) with respect to x −X and also, as a first approximation,
to stop this expansion with the terms of degree 1:

u (x ,X ) = U (X ) + χ
∼
· (x −X ) (18)

The physical significance of this assumption is clear: one postulates that
one can get a sufficient description of the relative motion of the various
points of the particle if one assumes that this relative motion is a homoge-
neous deformation. For a given local field u (x ,X ), in short u (x ), instead
of explicitly performing the aforementioned Taylor expansion, it has been
proposed in (Forest and Sab, 1998; Forest, 2002; Jänicke et al., 2009) to
determine the homogeneous deformation field (18) that is the closest to the
actual displacement field, in the sense of the following minimisation prob-
lem:

min
U (X ),χ

∼
(X )

∫
V (X )

∣∣∣
∣∣∣u (x )−U (X )− χ

∼
(X ) · (x −X )

∣∣∣
∣∣∣2 dV (19)

for a given material point X . The minimisation procedure is straightfor-
ward and delivers, taking X as the centre of V (X ):

U (X ) =< u (x ) >V (X ) (20)

χ
∼
(X ) = < (u (x )−U (X ))⊗ (x −X ) >V (X ) .A∼

−1

= < u (x )⊗ (x −X ) >V (X ) ·A∼ −1 (21)

with
A∼ =< (x −X )⊗ (x −X ) >V (X ) (22)

The relation (20) is known from classical homogenisation methods and de-
fines the macroscopic displacement as the zeroth moment of the local dis-
placement field. Formula (21) has the merit to unambiguously define the
macroscopic micromorphic degrees of freedom as the first moment of the
local displacement field, tensor A∼ being the quadratic moment tensor of
the unit cell. This represents an enhancement of the macroscopic descrip-
tion that incorporates additional effects of the microstructure compared to
conventional schemes.
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If the displacement field is a linear transformation, u = E∼ · x , the
microdeformation is computed as

χij =< uixk > A−1
kj =< Eilxlxk > A−1

kj = Eil < xlxk > A−1
kj = Eij (23)

so that the microdeformation coincides with the macro–deformation E∼ . In
particular, if a rigid body motion is applied to the unit cell, the microde-
formation will reduce to the applied rotation, as it should be.

3.2 Higher order strain measures

The mechanical theory requires the evaluation of the macroscopic gra-
dients of the degrees of freedom. The macroscopic gradient of the displace-
ment field is still given by the averaging relation:

U ⊗∇X =< u ⊗∇x >V (X ) (24)

The gradient of the microdeformation (15) is computed using the definition
(21) as follows:

Kijk =
∂

∂Xk

(
< (ui − Ui)(xl −Xl) > A−1

lj

)

= <
∂

∂xk
((ui − Ui)(xl −Xl)) > A−1

lj

+ < (ui − Ui)(xl −Xl) >
∂

∂Xk
A−1

lj

= < ui,k(xl −Xl) > A−1
lj + < (ui − Ui) > A−1

kj

+ < (ui − Ui)(xl −Xl) > A−1
lj,k (25)

Taking (20) into account, and assuming that A∼ does not vary from material
point to material point, the microdeformation gradient takes the simple
form:

K∼
T (X ) =< u (x )⊗∇x⊗(x−X ) > ·A∼ −1, Kijk =< ui,k(xl−Xl) > A−1

lj

(26)
where transposition of the third rank tensor is applied to the last two indices.
Accordingly, the microdeformation gradient can be interpreted as the first
moment of the distribution of the local displacement gradient.

The relative deformation must also be evaluated and takes the form of
the difference:

e∼(X ) =< u (x )⊗∇x >V (X ) − < u (x )⊗ (x −X ) >V (X ) ·A∼ −1 (27)
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When the displacement field u is a linear transformation, including rigid
body motions, both the relative deformation and the microdeformation gra-
dient vanish, as it should be.

3.3 Polynomial Ansatz

Quadratic Ansätze have been initially proposed in (Gologanu et al., 1997;
Forest, 1998; Kruch and Forest, 1998; Forest and Sab, 1998; Enakoutsa
and Leblond, 2009) to extend the usual affine conditions of loading of the
material volume element in order to incorporate strain gradient effects in
the homogenisation procedure. Such polynomial developments represent an
alternative to multiscale asymptotic expansions to derive effective higher
order properties (Boutin, 1996), with the advantage that they can be used
in a straightforward manner, irrespective of the local linear or nonlinear
behaviour of the composite material.

We consider the following polynomial Ansatz of degree 4:

u∗i (x ) = Eijxj+
1

2
Dijkxjxk+

1

3
Dijklxjxkxl+

1

4
Dijklmxjxkxlxm, ∀x ∈ V (0)

(28)
that is written in the following intrinsic form:

u ∗(x ) = E∼ · x +
1

2
D∼ : (x ⊗ x ) +

1

3
D≈

... (x ⊗ x ⊗ x )

+
1

4
D
∼∼

:: (x ⊗ x ⊗ x ⊗ x ), ∀x ∈ V (0) (29)

where the coefficients are tensors of ranks 2 to 5.
The macroscopic micromorphic strain measures are now computed suc-

cessively for such a polynomial field on the reference unit cell V (0):

< u ∗ ⊗∇x >V (0)= E∼ +D≈ : A∼ (30)

χ
∼
=< u ∗⊗x >V (0) ·A∼ −1 = E∼ +

1

3
D≈

...A≈ ·A∼ −1, χij = Eij+
1

3
DipqrApqrkA

−1
kj

(31)

K∼
T = D∼ +D

∼∼

...A≈ ·A∼ −1,Kipq =< ui,qxr >V (0) A
−1
rp = Diqp+DiqklmAklmrA

−1
rp

(32)
These simple formula hold if the coordinate system is such that < x >=
X = 0 , and that the means < xi > , < xixjxk > and < xixjxkxlxm >
identically vanish. The fourth order geometric moment A

≈
of the unit cell

has been introduced:

A≈ =< x ⊗ x ⊗ x ⊗ x >V (0) (33)
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It is interesting to notice that the relative deformation is related only to the
third order polynomial:

e∼ = D≈ : A∼ − 1

3
D≈

...A≈ ·A∼ −1 (34)

The formula (30) to (32) set direct linear relationships between the coeffi-
cients of the polynomial and the strain measures of the effective micromor-
phic medium. They were used in Jänicke et al. (2009) to prescribe a given
curvature K∼ or relative deformation to the unit cell. However the num-
ber of coefficients in the polynomials generally differs from the number of
components of the generalised strain measures. For instance, the microde-
formation gradient Kipq cannot be controlled solely by the coefficients Dipq

of the quadratic polynomial since Dipq is symmetric with respect to the
last two indices contrary to Kipq. The selection of the relevant higher order
polynomial coefficients remains to be done. In the present contribution, we
will only consider the coefficients Dijk and some coefficients of Dijkl.

However, the polynomial (29) will usually not be applied to the whole
volume but instead at the boundary ∂V of a given heterogeneous material
volume element V :

u (x ) = E∼ · x +
1

2
D∼ : (x ⊗ x ) +

1

3
D≈

... (x ⊗ x ⊗ x )

+
1

4
D
∼∼

:: (x ⊗ x ⊗ x ⊗ x ), ∀x ∈ ∂V (35)

In that case, the relation (30) is still valid but (32) must be modified. Note
that the microdeformation cannot be controlled from the displacement pre-
scribed at the boundary. The overall microdeformation gradient can be
computed knowing the displacements prescribed at the boundary, using
the same special coordinate system as previously, and choosing a constant
translation such that U (0) = 0 :

Kipq =
1

V
A−1

rp

∫
V (0)

ui,qxr dV =
1

V
A−1

rp

∫
V (0)

(uixr),q dV

− 1

V
A−1

qp

∫
V (0)

ui dV

=
1

V
A−1

rp

∫
V (0)

(uixr),q dV =
1

V
A−1

rp

∫
∂V (0)

uixrnq dS

=
1

V
A−1

rp

∫
∂V (0)

u∗i xrnq dS

=
1

V
A−1

rp

∫
V (0)

u∗i,qxr dV +
1

V
A−1

qp

∫
V (0)

u∗i dV (36)
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so that the expression differs from (32) by the mean value of u ∗. We find :

K∼
T = D∼ +D

∼∼

...A
≈
·A∼ −1 +D∼ : A∼ ⊗A∼

−1 +D
∼∼

:: A
≈
⊗A∼

−1 (37)

Kipq = Diqp +DiqklmAklmrA
−1
rp +DijkAjkA

−1
qp +DijklmAjklmA

−1
qp (38)

Finally, the real local field will be the superposition of the polynomial and
of a perturbation

u (x ) = u ∗(x ) + v (x ), ∀x ∈ V (39)

The fluctuation leads to additional contributions to the micromorphic mea-
sures that are obtained by substituting v to u in the formula (21), (26)
and (27). These contributions do not vanish in general.

3.4 Identification of generalised effective elastic moduli

The identification procedure of the higher order elastic moduli is now
presented based on an explicit example of a peridic composite material.

Definition of the chosen composite material
The chosen periodic composite material for the evaluation of the extended

homogenisation methods is made of a hard isotropic linear elastic phase (h)
and a soft isotropic linear elastic phase (s) :

Eh = 100000MPa, νh = 0.3, Es = 500MPa, νs = 0.3

The two phases display a contrast of 200 in their Young’s modulus. The
retained two–dimensional geometry of the unit cell V0 of the periodic com-
posite is shown in figure 4. It exhibits orthotropic symmetry. The volume
fraction of the hard phase is fh = 0.424. The whole microstructure is
obtained by plane tessellation in the defined directions 1 and 2.

Identification of classical elastic moduli
Classical periodic homogenisation is used to compute the orthotropic elas-

tic properties of the effective Cauchy material. A constant mean deforma-
tion gradient Eij is applied to the unit cell in which the displacement field
is of the form :

u (x ) = E∼ · x + v (x ) (40)

where v is the periodic displacement fluctuation taking identical values
at homologous points of the boundary ∂V0 of the unit cell. The effective
moduli are determined from the mean elastic energy density induced by
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Figure 4. Unit cell V0 of the periodic composite material. The hard phase is
red and the soft phase is blue. The orthotropy axes 1 and 2 are respectively
horizontal and vertical.

three successive independent loading conditions, as illustrated in figure 5.
Finite element simulations are performed under plane strain conditions.
The found moduli are provided in table 2. They are defined in the following
matrix form: ⎡

⎣Σ11

Σ22

Σ12

⎤
⎦ =

⎡
⎣C11 C12 0
C12 C22 0
0 0 C44

⎤
⎦
⎡
⎣ E11

E22

2E12

⎤
⎦ (41)

As a comparison, we have also computed the apparent effective moduli when
homogeneous deformation boundary conditions are applied to the unit cell,
i.e. when the fluctuation is taken to vanish : v = 0, ∀x ∈ ∂V0. These
boundary conditions are referred to as KUBC, kinematic uniform boundary
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Figure 5. Loading conditions applied to the unit cell for the determination
of the effective properties of the homogeneous equivalent Cauchy material.
The first, second and third rows correspond to: E11 = 1, E22 = 1, E12 =
E21 = 0.25, respectively. In each case the remaining components of Eij

vanish.

C11 (MPa) C12 (MPa) C22 (MPa) C44 (MPa)
periodic 44748 1579 7163 372
KUBC 45707 3181 9920 6186

Table 2. Elastic properties of the effective Cauchy material.

conditions. The corresponding apparent moduli, also given in table 2, are
significantly stiffer than effective moduli from periodic homogenisation, as
expected (Kanit et al., 2003).

RVE size for strain gradient overall properties
The influence of the fluctuation type introduced in the boundary condi-

tions in the computations of the previous section clearly shows that there
is undoubtedly a boundary layer effect due to the polynomial boundary
conditions, see also (Forest and Trinh, 2011). To get rid of the boundary
layer effect, it is proposed to consider volume elements containing an in-
creasing number of unit cells, typically a collection of NxN unit cells, with
N = 1, 3, 5.. up to N = 27 in the following simulations. We look for the
size N for which the energy distribution in the bulk of the sample, defined
as a zone of fixed size MxM, does not vary any more when the polynomial
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Deformation of a 15×15–cell volume elements corresponding to
the following Dirichlet conditions at the outer boundary: (a) D111 : u =
1/2x21e 1, (b) D222 : u = 1/2x22e 2, (c) D122 : u = 1/2x22e 1, (d)
D211 : u = 1/2x21e 2, (e) D212 : u = x1x2e 2, (f) D112 : u = x1x2e 1.
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boundary conditions are applied at the remote boundary with the same
given values of the polynomial coefficients. The obtained size will be called
the RVE size for the considered polynomial conditions. In particular, the
attention is focused on the energy density distribution inside the central
unit cell (M = 1).

In the case of affine boundary conditions used for classical homogenisa-
tion, such a procedure is known to lead to a stabilized periodic stress–strain
field in the bulk of the volume element. In particular, the fluctuation at the
boundary of a unit cell, defined as the difference between the displacement
field and the affine contribution, is then found to be periodic. This is no
longer the case for quadratic conditions (Forest and Trinh, 2011).

For more general polynomial Dirichlet conditions prescribed at the outer
surface, we can investigate the convergence of the mechanical fields for an
increasing window size. We also define, in a similar way, the fluctuation v
and examine its properties at the boundary of the central unit cell. This
program has been performed in the reference (Forest and Trinh, 2011) for
a cubic grid–like composite material for quadratic polynomials. We apply
it to the orthotropic microstructure of figure 4 considered in this work. We
use it also to determine the corresponding overall second gradient properties
and compare them with the estimations based on an a priori choice of the
fluctuation. The analysis is limited to the quadratic polynomial term. That
is why only strain gradient properties will be identified and not the full
micromorphic ones.

The six 2D deformation modes corresponding to a full quadratic poly-
nomial in equation (35): D111, D222, D122, D211, D212, D112 are considered.
The associated deformed 15x15–cell volume elements are shown in figure
6. The converged shapes of the central unit cell extracted from the previ-
ous volume elements are given in figure 6, for the same magnification. The
modes D111, D222 and D122 induce only limited deformation in the central
unit cell whereas D211, D212, D112 involve significant straining. The elastic
energy density levels < σ∼ : ε∼ >V0 over the central unit cell V0 associated
with these six modes are given in table 3 depending on the size N of the
volume element. Convergence to finite energy values is obtained for the
modes D211, D212, D112 whereas the material turns out to be insensitive to
the modes D111, D222 and D122.

The displayed convergence for the considered collection of cells ensures
that a representative size has been reached. However, quite a large number
of cells is necessary to detect the energy–free modes. Detailed analysis
confirms that the fluctuation corresponding to the central unit cell response
is not periodic, as pointed out by Forest and Trinh (2011).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Shape of the central cell of a 15x15 volume element subjected
to the following Dirichlet boundary conditions: (a) D111 : u = 1/2x21e 1,
(b) D222 : u = 1/2x22 e 2, (c) D122 : u = 1/2x22 e 1, (d) D211 : u =
1/2x21 e 2, (e) D212 : u = x1x2 e 2, (f) D112 : u = x1x2 e 1.
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NxN-cell D111 = 1 D122 = 1 D212 = 1 D112 = 1 D211 = 1 D222 = 1
3x3 3 19 1033 527 368 324
7x7 2 0.12 789 6176 660 227
9x9 1.3 0.3 761 6079 565 89

11x11 0.9 0.4 759 5930 474 27
15x15 0.5 0.33 770 5714 371 1.8
21x21 0.4 0.32 776 5587 325 0.2
27x27 0.33 0.32 777 5548 315 0.2

Table 3. Average elastic energy density in the central unit of NxN–cell
volume elements submitted to quadratic Dirichlet boundary conditions. The
components Dijk are given in mm−1 and the elastic energy values are in
MPa.

Identification of second gradient effective elastic moduli
The quadratic polynomial loading conditions Dijk can be used to identify

the elastic properties of an overall second gradient medium. The simple force
stress tensorΣ∼ is still related to the strain tensor E∼ by the moduli (41). In a
medium exhibiting point symmetry, the double stress tensorMijk =Mikj is
linearly related to the second gradient of displacement Kijk = Kikj by the
matrix of double elasticity moduli. The structure of anisotropic six rank
tensors of strain gradient elasticity was analysed by Auffray et al. (2009,
2010). In the most general situation the associated matricial representation
is written:

MMM = [AAA]KKK (42)

with

MMM =

⎡
⎢⎢⎢⎢⎢⎢⎣

M111

M122√
2M212

M222

M211√
2M121

⎤
⎥⎥⎥⎥⎥⎥⎦
, KKK =

⎡
⎢⎢⎢⎢⎢⎢⎣

K111

K122

K212

K222

K211

K121

⎤
⎥⎥⎥⎥⎥⎥⎦

[AAA] =

⎡
⎢⎢⎢⎢⎢⎢⎣

A111111 A111122

√
2A111212 A111222 A111211

√
2A111121

A122111 A122122

√
2A122212 A122222 A122211

√
2A122121√

2A212111

√
2A212122 2A212122

√
2A212222

√
2A212211 2A212121

A222111 A222122

√
2A222212 A222222 A222211

√
2A222121

A211111 A211122

√
2A211212 A211222 A211211

√
2A211121√

2A121111

√
2A121122 2A121212

√
2A121222

√
2A121211 2A121121

⎤
⎥⎥⎥⎥⎥⎥⎦

This notation, using square root of two before K212 and M212, defines a
true second order tensorial representation of the sixth-order tensor of double
elasticity. Ranking the components of the second gradient of displacement
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as proposed in the former matricial representation, leads, in the orthotropic
case, to the uncoupled system:⎡

⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

M4

M5

M6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 A45 A46

0 0 0 A45 A55 A56

0 0 0 A46 A56 A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

K1

K2

K3

K4

K5

K6

⎤
⎥⎥⎥⎥⎥⎥⎦

(43)

with the simplified notations :

[K1 K2 K3 K4 K5 K6] =
[
K111 K122

√
2K212 K222 K211

√
2K121

]
,

[M1 M2 M3 M4 M5 M6] =
[
M111 M122

√
2M212 M222 M211

√
2M121

]

and
[A11 A12 A13 A22 A23 A33] =

[
A111111 A111122

√
2A111212 A122122

√
2A122212 2A212212

]
,

[A44 A45 A46 A55 A56 A66] =

[
A222222 A222211

√
2A222121 A211211

√
2K211121 2K121121

]

This makes 12 independent double elasticity moduli to be identified from the
analysis of the response of the unit cell to non-homogeneous loading condi-
tions. Twelve loading conditions are needed to identify them corresponding
to twelve sets of the values of the coefficients Dijk. The six selected load-
ing conditions are labeled (a, b, c, d, e, f) for the identification of the first
block of 6 constants in the matrix (43), taking advantage of the orthotropic
symmetry of the material. Six additional ones are needed for the second
block. For each loading, the post–processing procedure yields the mean
energy density 2ε =< σ∼ : ε∼ >V0 in the unit cell and the overall curvature
K1,K2 and K3. The mean energy density is related to the overall energy
density in the form:

2ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

K1

K2

K3

K4

K5

K6

⎤
⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 A45 A46

0 0 0 A45 A55 A56

0 0 0 A46 A56 A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

K1

K2

K3

K4

K5

K6

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)
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A11 A22 A33 A12 A23 A13

(MPa.mm2) (MPa.mm2) (MPa.mm2) MPa.mm2 MPa.mm2 MPa.mm2

134601 37436 124 548 68706 67368 127 213
A44 A55 A66 A45 A46 A56

69445 2801 32 175 40762 11 094 7 548

Table 4. Higher order elastic properties of the overall second-gradient ma-
terial for the unit cell of figure 4(a). The fluctuation is taken to vanish at
the unit cell boundary.

The found higher order moduli are listed in table 4 for a vanishing fluctua-
tion v in (35) at the boundary of the unit cell V0. We have not determined
the effective moduli corresponding to the converged states of the unit cell
embedded in a NxN–cell volume element in the sense of section 3.4, because
zero–energy modes were detected as discussed above, so that the previous
system of equations is undetermined. A specific procedure is necessary to
determine the vanishing terms of the overall matrix.

3.5 Validation of the extended homogenisation method

The performance of the generalised overall properties determined in the
previous section is evaluated by considering a reference problem for a struc-
ture made of a small number of unit cells of the type of 4(a). The limitation
of the Cauchy continuum is first illustrated and improvements by means of
a strain gradient substitution medium are presented.

We consider the composite structure made of 10x5 cells of figure 8 (left).
The following boundary value problem is considered on this structure. The
left side of the structure is clamped, meaning that U1 = U2 = 0. The
horizontal lower and upper sides are free of forces. The vertical displacement
component U2 = 1 mm is prescribed on the right side, the component U1

being left free. The corresponding deformed shape of the structure is shown
in figure 8 (right). It displays a combination of pure shear and bending
modes in a boundary layer on the left side.

The same boundary value problem is considered for a homogeneous sub-
stitution Cauchy medium endowed with the elastic properties of table 2.
The same clamping boundary conditions U1 = U2 = 0 are prescribed on the
left side. The bottom picture of Fig. 8 shows that the Cauchy medium does
not capture the bending mode of the composite structure and only provides
the shearing mode. This fact had already been noticed for laminates in
(Forest and Sab, 1998; Forest and Trinh, 2011).

When the structure is made of a homogeneous second gradient medium
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endowed with the properties of table 4, the deformed state and quantitative
comparison in figure 9 show that the strain gradient effective medium fully
captures the actual shear and bending modes. In figure 9, the displacement
profile U2(x1) is given along the horizontal line close to the mid–section of
the structure, as drawn in figure 8.

The simulation for second gradient elasticity is made by means of a mi-
cromorphic formulation for which penalty terms ensure that the microde-
formation coincides with the gradient of the displacement field. Clamping
was imposed through the prescription of vanishing microdeformation on the
left side. Note that the choice of the additional boundary conditions on the
left side is quite heuristic, as it is the case in most beam and plate models.

Note that an effective Cosserat continuum, for which the effective moduli
can be determined in the same way, performs as good as the stain gradient
model as shown in Fig. 9. More elaborate examples of loading must be
developed in the future to select the best–suited generalised homogeneous
equivalent continuum.

4 Homogenization of micromorphic media

The homogenisation schemes in this section must be clearly distinguished
from the one of previous section since we consider here a generalized contin-
uum model at both the microscopic and macroscopic levels. For instance,
homogenisation of Cosserat composites were considered in (Forest et al.,
2001; Liu and Hu, 2003; Xun et al., 2004).

The motivation for the development of homogenisation methods for mix-
tures of micromorphic media is mainly related to crystal plasticity. The
mechanical behaviour of metallic polycrystals is notably size dependent and
the conventional crystal plasticity framework fails at convincingly predict
grain and precipitate size effects (Aslan et al., 2011). Single crystals can
be regarded as Cosserat, strain gradient or micromorphic continua. It fol-
lows that a polycrystal is a heterogeneous generalised continuum for which
specific homogenisation methods must be designed.

4.1 Multiscale asymptotic expansion method

In contrast to the previous part, the heterogeneous medium is now a
mixture of micromorphic constituents, i.e. a heterogeneous micromorphic
medium. One investigates the nature of the resulting homogeneous equiva-
lent medium by means of asymptotic methods. The multiscale asymptotic
method by Sanchez-Palencia (1974) is especially adequate for this purpose
since, in contrast to the work done in the previous part, the nature of the
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Figure 8. Reference composite structure made of 10x5 cells (left) and ref-
erence deformed shape of the structure. Two horizontal lines are shown on
the structure for post–processing purposes. The bottom figure shows the
deformed state predicted by the homogeneous equivalent Cauchy contin-
uum.
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Figure 9. Vertical displacement component U2 along the mid–line visible
in figure 8 as computed for the reference structure and Cosserat and strain
gradient substitution media.

effective medium is not postulated a priori but rather is the result of the
analysis.

The balance and constitutive equations of the micromorphic continuum
are recalled briefly in the linear elastic framework for which the asymptotic
methods can be applied in a straightforward manner (Forest et al., 2001)
The motion of a micromorphic body Ω is described by two independent sets
of degrees of freedom : the displacement u and the micro–deformation χ

∼
attributed to each material point. The micro–deformation accounts for the
rotation and distorsion of a triad associated with the underlying microstruc-
ture Eringen (1999). The micro–deformation can be split into its symmetric
and skew–symmetric parts :

χ
∼
= χ

∼
s + χ

∼
a (45)

that are called respectively the micro–strain and the Cosserat rotation. The
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associated deformation fields are the classical strain tensor ε∼, the relative
deformation e∼ and the micro–deformation gradient tensor κ∼ defined by :

ε∼ = u
s⊗ ∇, e∼ = u ⊗∇ − χ

∼
, κ∼ = χ

∼
⊗∇ (46)

The symmetric part of e∼ corresponds to the difference of material strain and
micro–strain, whereas its skew-symmetric part accounts for the relative rota-
tion of the material with respect to microstructure. The micro–deformation
gradient can be split into two contributions :

κ∼ = κ∼
s + κ∼

a, with κ∼
s = χ

∼
s ⊗∇, κ∼

a = χ
∼
a ⊗∇ (47)

In this section, the analysis is restricted to small deformations, small micro–
rotations, small micro–strains and small micro–deformation gradients. The
statics of the micromorphic continuum is described by the symmetric force-
stress tensor σ∼ , the generally non-symmetric relative force–stress tensor s∼
and third–rank stress tensor m∼ . These tensors must fulfill the local form of
the balance equations in the static case, in the absence of body simple nor
double forces for simplicity :

(σ∼ + s∼) ·∇ = 0, m∼ ·∇+ s∼ = 0 on Ω (48)

The constitutive equations for linear elastic centro-symmetric micromorphic
materials read :

σ∼ = a≈ : ε∼, s∼ = b≈ : e∼, m∼ = c∼∼∼
:̇κ∼ (49)

The elasticity tensors display the major symmetries :

aijkl = aklij , bijkl = bklij , cijkpqr = cpqrijk (50)

and a≈ has also the usual minor symmetries. The last constitutive law can

be written in the form :

m∼ = c∼∼∼

s :̇κ∼
s + c∼∼∼

a :̇κ∼
a (51)

For the sake of simplicity, the tensors c∼∼∼

s and c∼∼∼

a are supposed to fulfill the

conditions :

csijkpqr = csjikpqr , caijkpqr = −cajikpqr (52)

thus assuming that there is no coupling between the contributions of the
symmetric and skew–symmetric parts of χ

∼
to the third–rank stress tensor.
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The setting of the boundary value problem on body Ω is then closed by
the boundary conditions. In the following, Dirichlet boundary conditions
are considered of the form :

u (x ) = 0, χ
∼
(x ) = 0, ∀x ∈ ∂Ω (53)

where ∂Ω denote the boundary of Ω. The equations (46), (48), (49) and
(53) define the boundary value problem P .

The next sections of this work are restricted to micromorphic materials
with periodic microstructure. The heterogeneous material is then obtained
by space tesselation with cells translated from a single cell Y l. The period of
the microstructure is described by three dimensionless independent vectors
(a 1,a 2,a 3) such that :

Y l =

{
x = xia i, |xi| <

l

2

}

where l is the characteristic size of the cell. We call a≈
l, b≈

l and c∼∼∼

l the elasticity

tensor fields of the periodic Cosserat material. They are such that :

∀x ∈ Ω, ∀ (n1, n2, n3) ∈ Z3/ x + l(n1a 1 + n2a 2 + n3a 3) ∈ Ω,

a≈
l(x ) = a≈

l(x + l(n1a 1 + n2a 2 + n3a 3)),

b≈
l(x ) = b≈

l(x + l(n1b 1 + n2b 2 + n3b 3)),

c∼∼∼

l(x ) = c∼∼∼

l(x + l(n1a 1 + n2a 2 + n3a 3))

Dimensional analysis

The size L of body Ω is defined for instance as the maximum distance
between two points. Dimensionless coordinates and displacements are in-
troduced :

x ∗ =
x

L
, u ∗(x ∗) =

u (x )

L
, χ

∼
∗(x ∗) = χ

∼
(x ) (54)

The corresponding strain measures are :

ε∼
∗(x ∗) = u ∗ s⊗ ∇∗ε∼(x ), e∼

∗(x ∗) = u ∗ ⊗∇∗ − χ
∼
∗ = e∼(x ) (55)

κ∼
∗(x ∗) = χ

∼
∗ ⊗∇∗ = Lκ∼(x ) (56)
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and similarily

κ∼
s∗(x ∗) = χ

∼
s∗ ⊗∇∗ = Lκ∼

s(x ), κ∼
a∗(x ∗) = χ

∼
a∗ ⊗∇∗ = Lκ∼

a(x ) (57)

with ∇ ∗ =

(
∂ ·
∂x∗i

)
e i = L∇. It is necessary to introduce next a norm of

the elasticity tensors :

A = Max
x ∈Y l

(∣∣alijkl(x )
∣∣ , ∣∣blijkl(x )

∣∣)

Cs = Max
x∈Y l

∣∣cslijkpqr(x )
∣∣ , Ca = Max

x ∈Y l

∣∣calijkpqr(x )
∣∣ (58)

whereby characteristic lengths ls and la can be defined as:

Cs = Al2s , Ca = Al2a (59)

The definition of dimensionless stress and elasticity tensors follows :

σ∼
∗(x ∗) = A−1σ∼(x ), s∼

∗(x ∗) = A−1s∼(x ), m∼
∗(x ∗) = (AL)−1m∼ (x )

(60)
a
≈
∗(x ∗) = A−1a

≈
l(x ), b

≈
∗(x ∗) = A−1b

≈
l(x ), (61)

c∼∼∼

s∗(x ∗) = (Al2c)
−1c∼∼∼

sl(x ), c∼∼∼

a∗(x ∗) = (Al2c )
−1c∼∼∼

al(x ) (62)

Since the initial tensors a≈
l, b≈

l and c∼∼∼

l are Y l-periodic, the dimensionless

counterparts are Y ∗-periodic :

Y ∗ =
l

L
Y, Y =

{
y = yia i, |yi| <

1

2

}
(63)

Y is the (dimensionless) unit cell used in the present asymptotic analyses.
As a result, the dimensionless stress and strain tensors are related by the
following constitutive equations :

σ∼
∗ = a≈

∗ : ε∼
∗, s∼

∗ = b≈
∗ : e∼

∗, m∼
∗ =

(
ls
L

)2

c∼∼∼

s∗ :̇κ∼
s∗ +

(
la
L

)2

c∼∼∼

a∗ :̇κ∼
a∗

(64)
The dimensionless balance equations read :

∀x ∗ ∈ Ω∗, (σ∼
∗ + s∼

∗) ·∇∗ = 0, m∼
∗ ·∇∗ + s∼

∗ = 0 (65)

A boundary value problem P∗ can be defined using equations (56), (64) and
(65), complemented by the boundary conditions :

∀x ∗ ∈ ∂Ω∗, u ∗(x ∗) = 0, χ
∼
∗(x ∗) = 0 (66)
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The homogenisation problem

The boundary value problem P∗ is treated here as an element of a series
of problems (Pε)ε>0 on Ω∗. The homogenisation problem consists in the
determination of the limit of this series when the dimensionless parameter
ε, regarded as small, tends towards 0. The series is chosen such that

Pε= l
L
= P∗

The unknowns of boundary value problem Pε are the displacement and
micro–deformation fields u ε and χ

∼
ε satisfying the following field equations

on Ω∗ :

σ∼
ε = a

≈
ε : (u ε

s⊗ ∇∗), s∼
ε = b

≈
ε : (u ε ⊗∇∗ − χ

∼
ε), m∼

ε = c∼∼∼

ε :̇ (χ
∼
ε ⊗∇∗)

(67)

(σ∼
ε + s∼

ε) ·∇∗ = 0, m∼
ε ·∇∗ + s∼

ε = 0 (68)

Different cases must now be distinguished depending on the relative position
of the constitutive lengths ls and la with respect to the characteristic lengths
l and L of the problem. Four special cases are relevant for the present
asymptotic analysis. The first case corresponds to a limiting process for
which ls/l and la/l remain constant when l/L goes to zero. The second
case corresponds to the situation for which ls/L and la/L remain constant
when l/L goes to zero. The third (resp. fourth) situation assumes that
ls/l and la/L (resp. ls/L and la/l) remain constant when l/L goes to zero.
These assumptions lead to four different homogenisation schemes labelled
HS1 to HS4 in the sequel. The homogenisation scheme 1 (resp. 2) will be
relevant when the ratio l/L is small enough and when ls, la and l (resp. L)
have the same order of magnitude.
Accordingly, the following tensors of elastic moduli can be defined :

a≈
(0)(y ) = a≈

∗(
l

L
y ), b≈

(0)(y ) = b≈
∗(
l

L
y ), (69)

c≈
(1)(y ) =

(
ls
l

)2

c≈
∗(
l

L
y ), c≈

(2)(y ) =

(
ls
L

)2

c≈
∗(
l

L
y ), (70)

c≈
s(1)(y ) =

(
ls
l

)2

c≈
s∗(

l

L
y ), c≈

a(1)(y ) =

(
la
l

)2

c≈
a∗(

l

L
y ), (71)

c
≈
s(2)(y ) =

(
ls
L

)2

c
≈
s∗(

l

L
y ), c

≈
a(2)(y ) =

(
la
L

)2

c
≈
a∗(

l

L
y ) (72)
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They are Y -periodic since a≈
∗, b≈

∗ and c≈
∗ are Y ∗-periodic. Four different

hypotheses will be made concerning the constitutive tensors of problem Pε :

Assumption 1 : a≈
ε(x ∗) = a≈

(0)(ε−1x ∗), b≈
ε(x ∗) = b≈

(0)(ε−1x ∗) and

c≈
ε(x ∗) = ε2c≈

(1)(ε−1x ∗);

Assumption 2 : a
≈
ε(x ∗) = a

≈
(0)(ε−1x ∗), b

≈
ε(x ∗) = b

≈
(0)(ε−1x ∗) and

c≈
ε(x ∗) = c≈

(2)(ε−1x ∗);

Assumption 3 : a≈
ε(x ∗) = a≈

(0)(ε−1x ∗), b≈
ε(x ∗) = b≈

(0)(ε−1x ∗) and

c≈
sε(x ∗) = ε2c≈

s(1)(ε−1x ∗), c≈
aε(x ∗) = c≈

a(2)(ε−1x ∗);

Assumption 4 : a≈
ε(x ∗) = a≈

(0)(ε−1x ∗), b≈
ε(x ∗) = b≈

(0)(ε−1x ∗) and

c≈
sε(x ∗) = c≈

s(2)(ε−1x ∗), c≈
aε(x ∗) = ε2c≈

a(1)(ε−1x ∗).

Assumptions 1 and 2 respectively correspond to the homogenisation schemes
HS1 and HS2. Both choices meet the requirement that

(ε =
l

L
) ⇒ (a≈

ε = a≈
∗ and c≈

ε = (
ls
L
)2c≈

∗)

Assumptions 3 and 4 respectively correspond to the homogenisation schemes
HS3 and HS4. Both choices meet the requirement that

(ε =
l

L
) ⇒ (a

≈
ε = a

≈
∗, c

≈
sε = (

ls
L
)2c

≈
s∗ and c

≈
aε = (

la
L
)2c

≈
a∗)

It must be noted that, in our presentation of the asymptotic analysis, the
lengths l, ls, la and L are given and fixed, whereas parameter ε is allowed to
tend to zero in the limiting process.

In the sequel, the stars ∗ are dropped for conciseness.

Multiscale asymptotic method

In the setting of the homogenisation problems two space variables have been
distinguished : x describes the macroscopic scale and y is the local variable
in the unit cell Y . To solve the homogenisation problem, it is resorted to
the method of multiscale asymptotic developments initially introduced in
Sanchez-Palencia (1974). According to this method, all fields are regarded
as functions of both variables x and y . It is assumed that they can be
expanded in a series of powers of small parameter ε. In particular, the
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displacement, micro-deformation, force and double stress fields are supposed
to take the form :

u ε(x ) = u 0(x ,y ) + εu 1(x ,y ) + ε2u 2(x ,y ) + . . .
χ
∼
ε(x ) = χ

∼1
(x ,y ) + εχ

∼2
(x ,y ) + ε2χ

∼3
(x ,y ) + . . .

σ∼
ε(x ) = σ∼0

(x ,y ) + εσ∼1
(x ,y ) + ε2σ∼2

(x ,y ) + . . .
s∼
ε(x ) = s∼0

(x ,y ) + εs∼1
(x ,y ) + ε2s∼2

(x ,y ) + . . .
m∼

ε(x ) = m∼ 0
(x ,y ) + εm∼ 1

(x ,y ) + ε2m∼ 2
(x ,y ) + . . .

(73)

where the coefficients u i(x ,y ), χ
∼ i
(x ,y ), σ∼ i(x ,y ), s∼i(x ,y ) andm∼ i(x ,y )

are assumed to have the same order of magnitude and to be Y -periodic with
respect to variable y (y = x /ε). The average operator over the unit cell
Y is denoted by

〈·〉 = 1

|Y |
∫
Y

· dV
As a result,

< u ε >= U 0 + εU 1 + . . . and < χ
∼
ε >= Ξ∼ 1 + εΞ∼ 2 + . . . (74)

where U i =< u i > and Ξ∼ i
=< χ

∼ i
>. The gradient operator can be split

into partial derivatives with respect to x and y :

∇ = ∇x +
1

ε
∇y (75)

This operator is used to compute the strain measures and balance equations :

ε∼
ε = ε−1ε∼−1 + ε∼0 + ε1ε∼1 + . . .

= ε−1u 0

s⊗ ∇y + (u 0

s⊗ ∇x + u 1

s⊗ ∇y)

+ ε(u 1

s⊗ ∇x + u 2

s⊗ ∇y) + . . .
e∼
ε = ε−1e∼−1 + e∼0 + ε1e∼1 + . . .

= ε−1u 0 ⊗∇y + (u 0 ⊗∇x + u 1 ⊗∇y − χ
∼1

)

+ ε(u 1 ⊗∇x + u 2 ⊗∇y − χ
∼2

) + . . .

κ∼
ε = ε−1κ∼−1

+ κ∼0
+ ε1κ∼1

+ . . .

= ε−1χ
∼1

⊗∇y + (χ
∼1

⊗∇x + χ
∼2

⊗∇y)

+ ε(χ
∼2

⊗∇x + χ
∼3

⊗∇y) + . . .

(σ∼
ε+s∼

ε) ·∇x+ε
−1(σ∼

ε+s∼
ε) ·∇y = 0, m∼

ε ·∇x+ε
−1m∼

ε ·∇y+s∼
ε = 0 (76)

Similar expansions are valid for the tensors κ∼
s,κ∼

a. The expansions of the
stress tensors are then introduced in the balance equations (76) and the
terms can be ordered with respect to the powers of ε. Identifying the terms
of same order, we are lead to the following set of equations :
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• order ε−1,

(σ∼0
+ s∼0

) ·∇y = 0 and m∼ 0
·∇y = 0 (77)

• order ε0,

(σ∼0
+s∼0

)·∇x+(σ∼1
+s∼1

)·∇y = 0 and S∼0
·∇x+S∼1

·∇y+s∼1
= 0 (78)

The effective balance equations follow (78) by averaging over the unit cell
Y and, at the order ε0 one gets :

(Σ∼ 0 + S∼0) ·∇ = 0 and M∼ 0
·∇+ S∼0 = 0 (79)

where Σ∼ 0
=< σ∼0

>,S∼0
=< s∼0

> and M∼ 0
=<m∼ 0

>.

Homogenization scheme HS1

For the first homogenisation scheme defined in section 4.1, the equations
describing the local behaviour are :

σ∼
ε = a≈

(0)(y ) : ε∼
ε, s∼

ε = b≈
(0)(y ) : e∼

ε and m∼
ε = ε2c∼∼∼

(1)(y ) :̇κ∼
ε (80)

At this stage, the expansion (76) can be substituted into the constitutive
equations (80). Identifying the terms of same order, we get :

• order ε−1,

a≈
(0) : ε∼−1 = a≈

(0) : (u 0

s⊗ ∇y) = 0, b≈
(0) : e∼0 = b≈

(0) : (u 0 ⊗∇y) = 0

(81)

• order ε0,

σ∼0
= a≈

(0) : ε∼0
, s∼0

= b≈
(0) : e∼0

, m∼ 0
= 0 (82)

• order ε1,

σ∼1
= a≈

(0) : ε∼1
, s∼1

= b≈
(0) : e∼1

, m∼ 1
= c∼∼∼

(1) :̇κ∼−1
(83)

The equation (81) implies that u 0 does not depend on the local variable
y :

u 0(x ,y ) = U 0(x )

At the order ε0, the higher order stress tensor vanishes,

M∼ 0
=<m∼ 0

>= 0
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Finally, the fields (u 1,χ∼1
,σ∼0, s∼0,m∼ 1

) are solutions of the following auxiliary

boundary value problem defined on the unit cell :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε∼0
= U 0

s⊗ ∇x + u 1

s⊗ ∇y, e∼0
= U 0 ⊗∇x + u 1 ⊗∇y − χ

∼1
κ∼−1

= χ
∼1

⊗∇y

σ∼0
= a≈

(0) : ε∼0
, s∼0

= b≈
(0) : e∼0

, m∼ 1
= c∼∼∼

(1) : κ∼−1

(σ∼0 + s∼0) ·∇y = 0, m∼ 1
·∇y + s∼0 = 0

(84)

The boundary conditions of this problem are given by the periodicity re-
quirements for the unknown fields. A series of auxiliary problems similar
to (84) can be defined to obtain the solutions at higher orders. It must be
noted that these problems must be solved in cascade since, for instance, the
solution of (84) requires the knowledge of U 0. A particular solution χ

∼
for

a vanishing prescribed U 0

s⊗ ∇x is χ
∼
= U 0

a⊗ ∇x. It follows that the so-

lution (u 1,U 0

a⊗ ∇x−χ
∼1

) to problem (84) depends linearly on U 0

s⊗ ∇x,

up to a translation term, so that :

u ε = U 0(x ) + ε(U 1(x ) +X∼
(1)

u
(y ) : (U 0

s⊗ ∇)) + . . . (85)

χ
∼
ε = U 0

a⊗ ∇x +X≈
(1)
χ(y ) : U 0

s⊗ ∇+ . . . (86)

where concentration tensors X∼
(1)

u
and X≈

(1)
χ have been introduced, the com-

ponents of which are determined by the successive solutions of the auxiliary

problem for unit values of the components of U 0

s⊗ ∇. Concentration

tensor X∼
(1)

u
is such that its mean value over the unit cell vanishes.

The macroscopic stress tensor is given by :

Σ∼ 0
=< σ∼0

>=< a≈
(0) : (1≈ +∇x

s⊗ X∼
(1)

u
) >: (U 0

s⊗ ∇) = A≈
(1)

0
: (U 0

s⊗ ∇)

(87)
Accordingly, the tensor of effective moduli possesses all symmetries of clas-
sical elastic moduli for a Cauchy medium :

A
(1)
0 ijkl = A

(1)
0 klij = A

(1)
0 jikl = A

(1)
0 ijlk

The additional second rank stress tensor can be shown to vanish :

S∼0 =< s∼0 >=< −m∼ 1
·∇y >= 0 (88)
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The effective medium is therefore governed by the single equation :

Σ∼ 0
·∇ = 0 (89)

The effective medium turns out to be a Cauchy continuum with symmetric
stress tensor.

Homogenization scheme HS2

For the second homogenisation scheme defined in section 4.1, the equations
describing the local behaviour are :

σ∼
ε = a≈

(0)(y ) : ε∼
ε, s∼

ε = b≈
(0)(y ) : e∼

ε, and m∼
ε = c∼∼∼

(2)(y ) :̇κ∼
ε (90)

The different steps of the asymptotic analysis are the same as in the previous
section for HS1. We will only focus here on the main results. At the order
ε−1, one gets

a≈
(0) : ε∼−1

= 0, b≈
(0) : e∼−1

= 0, c∼∼∼

(2) :̇κ∼−1
= 0 (91)

This implies that the gradients of u 0 and χ
∼1

with respect to y vanish, so

that :
u 0(x ,y ) = U 0(x ), χ

∼1
(x ,y ) = Ξ∼1(x ) (92)

The fields (u 1,χ∼1
,σ∼0

, s∼0
,m∼ 0

) are solutions of the two following auxiliary

boundary value problems defined on the unit cell :

⎧⎪⎨
⎪⎩

ε∼0 = U 0

s⊗ ∇x + u 1

s⊗ ∇y, e∼0 = U 0 ⊗∇x + u 1 ⊗∇y −Ξ∼1

σ∼0
= a≈

(0) : ε∼0
, s∼0

= b≈
(0) : e∼0

(σ∼0
+ s∼0

) ·∇y = 0

{
κ∼0

= Ξ∼1 ⊗∇x + χ
∼2

⊗∇y

m∼ 0
= c∼∼∼

(2) :̇κ∼0
, m∼ 0

·∇y = 0

We are therefore left with two decoupled boundary value problems : the

first one with main unknown u 1 depends linearly on U 0

s⊗ ∇x and U 0 ⊗
∇x − Ξ∼1

, whereas the second one with unknown χ
∼2

is linear in Ξ∼1
⊗∇x.

The solutions take the form :

u ε = U 0(x )+ε(U 1(x )+X∼
(2)

u
(y ) : (U 0

s⊗ ∇)+X∼
(2)

e
(y ) : (U 0⊗∇−Ξ∼ 1))

+ . . . , χ
∼
ε = Ξ∼1

(x ) + ε(Ξ∼2
(x ) +X

∼∼

(2)
κ (y ):̇(Ξ∼ 1

⊗∇)) + . . . (93)
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where concentration tensors X∼
(2)

u
,X∼

(2)

e
and X

∼∼

(1)
κ have been introduced.

Their components are determined by the successive solutions of the auxiliary

problem for unit values of the components of U 0

s⊗ ∇,U 0 ⊗∇ − Ξ∼1
and

Ξ∼1 ⊗∇y. They are such that their mean value over the unit cell vanishes.
The macroscopic stress tensors and effective elastic properties are given

by :

Σ∼ 0 = < a≈
(0) : (1≈ +∇y

s⊗ X∼
(2)

u
) >: (U 0

s⊗ ∇)

+ < a≈
(0) : (∇y

s⊗ X∼
(2)

e
) >: (U 0 ⊗∇−Ξ∼ 1) (94)

S∼0
= < s∼0

>=< b
≈
(0) : (∇y ⊗X∼

(2)

u
) >: (U 0

s⊗ ∇)

+ < b
≈
(0) : (∇y ⊗X∼

(2)

e
) >: (U 0 ⊗∇−Ξ∼1

) (95)

M∼ 0
=<m∼ 0

>=< c∼∼∼

(2) :̇(1∼∼∼
+∇y ⊗X

∼∼

(2)
κ ) > :̇Ξ∼1 ⊗∇ (96)

None of these tensors vanishes in general, which means that the effective
medium is a full micromorphic continuum governed by the balance equations
(79).

Homogenization scheme HS3

For the third homogenisation scheme defined in section 4.1, the equations
describing the local behaviour are :

σ∼
ε = a≈

(0)(y ) : ε∼
ε, s∼

ε = b≈
(0)(y ) : e∼

ε, (97)

m∼
ε = ε2c∼∼∼

s(1)(y ) :̇κ∼
sε + c∼∼∼

a(2)(y ) :̇κ∼
aε (98)

At the order ε−1, one gets

a≈
(0) : ε∼−1 = 0, b≈

(0) : e∼−1 = 0, c∼∼∼

a(2) :̇κ∼
a

−1
= 0 (99)

This implies that the gradients of u 0 and χ
∼
a

1
with respect to y vanish, so

that :

u 0(x ,y ) = U 0(x ), χ
∼
a

1
(x ,y ) = Ξ∼

a
1(x ) (100)
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The fields (u 1,χ∼
s

1
,χ

∼
a

2
,χ

∼
a

3
,σ∼0, s∼0,m∼ 0

,m∼ 1
) are solutions of the following

auxiliary boundary value problem defined on the unit cell :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε∼0 = U 0

s⊗ ∇x + u 1

s⊗ ∇y, e∼0 = U 0 ⊗∇x + u 1 ⊗∇y −Ξ∼
a
1 − χ

∼
s

1
κ∼
s
−1

= χ
∼
s

1
⊗∇y, κ∼

a
0
= Ξ∼

a
1
⊗∇x + χ

∼
a

2
⊗∇y, κ∼

a
1
= χ

∼
a

2
⊗∇x + χ

∼
a

3
⊗∇y

σ∼0
= a

≈
(0) : ε∼0

, s∼0
= b

≈
(0) : e∼0

m∼ 0
= c∼∼∼

a(2) :̇κ∼
a
0
, m∼ 1

= c∼∼∼

s(1) :̇κ∼
s
−1

+ c∼∼∼

a(2) :̇κ∼
a
1

(σ∼0 + s∼0) ·∇y = 0, m∼ 0
.∇y = 0, m∼ 0

·∇x +m∼ 1
·∇y + s∼0 = 0

This complex problem can be seen to depend linearly on

U 0

s⊗ ∇,U 0

a⊗ ∇−Ξ∼
a
1 and Ξ∼

a
1 ⊗∇. The solutions take the form :

u ε = U 0(x ) + ε(U 1(x ) +X∼
(3)

u
(y ) : (U 0

s⊗ ∇)

+ X∼
(3)

e
(y ) : (U 0

a⊗ ∇−Ξ∼
a
1
)) + . . .

(101)

χ
∼
ε = Ξ∼ 1(x ) + ε(Ξ∼ 2(x ) +X∼∼

(3)
κ (y ):̇(Ξ∼

a
1 ⊗∇)) + . . . (102)

where concentration tensors X∼
(3)

u
,X∼

(3)

e
and X

∼∼

(3)
κ have been introduced.

Their components are determined by the successive solutions of the auxiliary

problem for unit values of the components of U 0

s⊗ ∇,U 0

a⊗ ∇ −Ξ∼
a
1
and

Ξ∼
a
1 ⊗∇y. They are such that their mean value over the unit cell vanishes.
The macroscopic stress tensors and effective elastic properties are given

by :

Σ∼ 0 = < a≈
(0) : (1≈ +∇x

s⊗ X∼
(3)

u
) >: (U 0

s⊗ ∇)

+ < a≈
(0) : (∇y

s⊗ X∼
(3)

e
) >: (U 0

a⊗ ∇−Ξ∼
a
1
) (103)

S∼0
= < s∼0

>=< b≈
(0) : (∇y ⊗X∼

(3)

u
) >: (U 0

s⊗ ∇)

+ < b≈
(0) : (∇y ⊗X∼

(3)

e
) >: (U 0

a⊗ ∇−Ξ∼
a
1) (104)

M∼ 0
=<m∼ 0

>=< c∼∼∼

a(2) :̇(1∼∼∼
+∇y ⊗X∼∼

(3)
κ ) > :̇Ξ∼

a
1 ⊗∇ (105)

They must fulfill the balance equations (79). Note that m∼ 0
and therefore

M∼ 0
are skew–symmetric with respect to their first two indices. The aver-

aged equation of balance of moment of momentum implies then that S∼0 is
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skew–symmetric. The macroscopic degrees of freedom are the displacement
field U 0 and the rotation associated to Ξ∼

a
1
. The found balance and con-

stitutive equations are therefore that of a Cosserat effective medium. The
more classical form of the Cosserat theory is retrieved once one rewrites the
previous equations using the axial vector associated to Ξ∼

a (Forest, 2001).

Homogenization scheme HS4

For the last homogenisation scheme defined in section 4.1, the equations
describing the local behaviour are :

σ∼
ε = a≈

(0)(y ) : ε∼
ε, s∼

ε = b≈
(0)(y ) : e∼

ε (106)

m∼
ε = c∼∼∼

s(2)(y ) :̇κ∼
sε + ε2c∼∼∼

a(1)(y ) :̇κ∼
aε (107)

At the order ε−1, one gets

a≈
(0) : ε∼−1

= 0, b≈
(0) : e∼−1

= 0, c∼∼∼

s(2) :̇κ∼
s

−1
= 0 (108)

This implies that the gradients of u 0 and χ
∼
s

1
with respect to y vanish, so

that :
u 0(x ,y ) = U 0(x ), χ

∼
s

1
(x ,y ) = Ξ∼

s
1
(x ) (109)

The fields (u 1,χ∼
a

1
,χ

∼
s

2
,χ

∼
s

3
,σ∼0

, s∼0
,m∼ 0

,m∼ 1
) are solutions of the following

auxiliary boundary value problem defined on the unit cell :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε∼0 = U 0

s⊗ ∇x + u 1

s⊗ ∇y, e∼0 = U 0 ⊗∇x + u 1 ⊗∇y −Ξ∼
s
1 − χ

∼
a

1
κ∼
a
−1

= χ
∼
a

1
⊗∇y, κ∼

s
0
= Ξ∼

s
1
⊗∇x + χ

∼
s

2
⊗∇y, κ∼

a
1
= χ

∼
a

2
⊗∇x + χ

∼
a

3
⊗∇y

σ∼0
= a

≈
(0) : ε∼0

, s∼0
= b

≈
(0) : e∼0

m∼ 0
= c∼∼∼

s(2) :̇κ∼
s
0
, m∼ 1

= c∼∼∼

a(1) :̇κ∼
a
−1

+ c∼∼∼

s(2) :̇κ∼
s
1

(σ∼0 + s∼0) ·∇y = 0, m∼ 0
.∇y = 0, m∼ 0

·∇x +m∼ 1
·∇y + s∼0 = 0

This complex problem can be seen to depend linearly on

U 0

s⊗ ∇,U 0

s⊗ ∇−Ξ∼
s
1
and Ξ∼

s
1
⊗∇. The solutions take the form :

u ε = U 0(x ) + ε(U 1(x ) +X∼
(4)

u
(y ) : (U 0

s⊗ ∇)

+ X∼
(4)

e
(y ) : (U 0

s⊗ ∇−Ξ∼
s
1
)) + . . .

(110)

χ
∼
ε = Ξ∼ 1

(x ) + ε(Ξ∼2
(x ) +X

∼∼

(4)
κ (y ) :̇ (Ξ∼

s
1
⊗∇)) + . . . (111)
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where concentration tensors X∼
(4)

u
,X∼

(4)

e
and X

∼∼

(4)
κ have been introduced.

Their components are determined by the successive solutions of the auxiliary

problem for unit values of the components of U 0

s⊗ ∇,U 0

s⊗ ∇− Ξ∼
s
1
and

Ξ∼
s
1 ⊗∇y. They are such that their mean value over the unit cell vanishes.
The macroscopic stress tensors and effective elastic properties are given

by :

Σ∼ 0
= < a≈

(0) : (1≈ +∇x

s⊗ X∼
(4)

u
) >: (U 0

s⊗ ∇)

+ < a≈
(0) : (∇y

s⊗ X∼
(4)

e
) >: (U 0

s⊗ ∇−Ξ∼
s
1) (112)

S∼0
=< s∼0

> = < b≈
(0) : (∇y ⊗X∼

(4)

u
) >: (U 0

s⊗ ∇)

+ < b≈
(0) >: (U 0

s⊗ ∇−Ξ∼
s
1)

(113)

M∼ 0
=<m∼ 0

>=< c∼∼∼

s(2) :̇(1∼∼∼
+∇y ⊗X

∼∼

(4)
κ ) > :̇ (Ξ∼

s
1
⊗∇) (114)

They must fulfill the balance equations (79). Note that m∼ 0
and there-

fore M∼ 0
are symmetric with respect to their first two indices. The av-

eraged equation of balance of moment of momentum implies then that
S∼0 = − < m∼ 0

> ·∇ is symmetric. The macroscopic degrees of freedom

are the displacement field U 0 and the symmetric strain tensor Ξ∼
s
1. Such a

continuum is called a microstrain medium (Forest and Sievert, 2006).
As a conclusion, depending on the relative contributions of the various

intrinsic length scales of the micromorphic continuum, different effective
media are obtained, as summarised in table 5. The effective medium can
be of micromorphic, microstrain, Cosserat or Cauchy type.

homogenisation characteristic effective
scheme lengths medium
HS1 ls ∼ l, la ∼ l Cauchy
HS2 ls ∼ L, la ∼ L micromorphic
HS3 ls ∼ l, la ∼ L Cosserat
HS4 ls ∼ L, la ∼ l microstrain

Table 5. Homogenization of heterogenous micromorphic media : Nature of
the homogeneous equivalent medium depending on the values of the intrinsic
lengths of the constituents.
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Figure 10. Periodic meshes of the 2D periodic aggregates used in the finite
element simulations: (a) 52 grains, (b) 47 grains and (c) 55 grains. Two slip
systems are taken into account in each randomly oriented grain. Various
mean grain sizes, d, ranging from tens of nanometers to hundreds of microns,
are investigated. (d) Description of the two effective slip systems for 2D
planar double slip.

4.2 Application to polycrystalline plasticity

The previous homogenisation method is extended to non linear micro-
morphic constitutive equations in order to predict size effects in the plastic-
ity of polycrystals. The micromorphic single crystal model is not presented
here and the reader is referred to (Cordero et al., 2010, 2012) for a detailed
presentation of the model and a more complete description of polycrystal
homogenisation.

Periodic homogenisation of micromorphic polycrystals
The computation of polycrystalline aggregates based on standard crys-

tal plasticity models follows the rule of classical homogenisation theory in
the sense that a mean strain is prescribed to a volume element of poly-
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Figure 11. Macroscopic stress–strain response of the 52–grain aggregate
of Fig. 10(a) under simple shear loading conditions including unloading for
three different grain sizes.

crystalline materials using suitable boundary conditions like strain–based,
stress–based or periodic ones. The structure of the boundary value problem
is modified if a generalized continuum approach is used inside the consid-
ered volume element. In the present work, we are considering the com-
putational homogenisation of a heterogeneous micromorphic medium and
suitable boundary conditions for displacement and plastic microdeforma-
tion must be defined. In the case of linear material behavior, the structure
of the unit cell problem to be solved can be derived from multiscale asymp-
totic expansion analysis, as shown in section 4.1. The obtained boundary
conditions are then assumed to hold also for non–linear material responses.
We look for the displacement field u and the plastic microdeformation field
χ
∼
p in the polycrystal volume element such that

u (x ) = E∼ · x + v (x ), ∀x ∈ V (115)

the fluctuation v being periodic at homologous points of the boundary
∂V . Under these conditions the prescribed average strain is the symmetric
second order tensor E∼ . The plastic microdeformation χ

∼
p is periodic at ho-
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Figure 12. Effect of the mean grain size, d, on the macroscopic flow stress
Σ12|1% at 1% mean plastic strain. The results are obtained with the three
aggregates of Fig. 10 under simple shear. The error bars give the standard
deviation.

mologous points of ∂V . As a result, the mean value of the microdeformation
gradient Γ∼ vanishes.

The grain boundary conditions must now be discussed. At any interface
of a micromorphic continuum, there may exist some jump conditions for
the degrees of freedom of the theory and the associated reactions, namely
the simple and double traction vectors. We consider in this work that such
jumps do not exist. Instead, the displacement vector and the plastic mi-
crodeformation tensor are assumed to be continuous at grain boundaries. As
a result, the simple and double tractions also are continuous. The continuity
of plastic microdeformation is a new grain boundary condition that does not
exist in classical crystal plasticity. It will generate boundary layers at grain
boundaries which are essential for the observed size effects (Cordero et al.,
2010). Let us imagine a grain boundary between a plastically deforming
grain and an elastic grain where plasticity is not triggered. The condition
of continuity of plastic microdeformation implies that the plastic microde-
formation should vanish at this grain boundary, thus leading to a decrease
of plastic slip close to the grain boundary, associated with pile–up forma-
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tion. More generally continuity of plastic microdeformation is enforced at
grain boundaries. Also grain boundaries are assumed to transmit simple
and double tractions. Jump conditions or more specific interface laws may
well be more realistic or physically motivated but they would require ad-
ditional considerable computational effort. We think that the continuity
conditions carry the main physical ingredient to capture the targeted size
effects in plasticity.

The simulations are limited to two–dimensional crystals under plane
strain conditions and a mean shear strain E12 is prescribed to the volume
elements. Three volume elements are considered, made of 52, 47 and 55
grains, respectively, according to a 2D Voronoi tessellation with periodic
constraints. They are shown in Fig. 10. The three realisations of the mate-
rial have different grain shapes and different orientations chosen randomly.
Homothetic volumes constructed from the three previous volume elements
will be considered, thus having different mean grain sizes but the same grain
morphology and crystallographic texture.

Only two planar slip systems are considered in most simulations of this
work. The slip directions and normal to the slip planes are contained in
the considered plane. They are separated by the angle 2φ with φ = 35.1◦

following Bennett and McDowell (2003). The sets of material parameters
used for the simulations are given in (Cordero et al., 2012).

The micromorphic constitutive model contains a characteristic length
equal here to lω = 450 nm. Note that this intrinsic length is defined from
the ratio of two constitutive moduli for reason of dimensionality. The re-
sulting characteristic thickness of boundary layers affected by the strain
gradient effects, especially close to grain boundary, will generally be pro-
portional to lω with a factor depending on other constitutive parameters
and on the type of boundary value problem. Such characteristic lengths
have been derived from analytical solutions in some simple boundary value
problems in (Cordero et al., 2010). For polycrystals, they will emerge from
the computational analysis.

Evidence of size–dependent kinematic hardening
Fig. 11 gives the mean shear stress as a function of mean shear strain as a

result of a finite element simulation of the 52–grain aggregate of Fig. 10(a)
for three different grain sizes. One shear loading branch up to 0.025 mean
shear strain followed by the unloading branch are presented. The stress–
strain curves clearly exhibit an overall kinematic hardening effect induced
by the local contributions of the double stress tensor, as proved in (Cordero
et al., 2010). The kinematic hardening vanishes for large grains and is all
the stronger as the grain size is smaller.

45



From the overall shear curves, the shear stress value Σ12|p0
was recorded

at a given level of mean plastic microstrain χps
12 = p0 where χps

12 is defined
as:

χps
12 = (χp

12 + χp
21)/2 (116)

The mean shear stress Σ12|p0
was plotted as a function of grain size. It

turns out that the shear stress value converges toward a fixed value Σ0

for large grain sizes. This limit depends only on the value of the critical
resolved shear stress entering the Schmid law and on the specific geometry
and orientations of the considered polycrystalline aggregates. It is therefore
possible to draw a Hall–Petch diagram which is a log–log plot of Σ12|p0

−Σ0

vs. the grain size d. Such a plot is given in Fig. 12 for p0 = 0.01. The
continuous line gives the mean value of the shear stress level for the three
realizations of the microstructure considered in Fig. 10. Error bars are also
provided showing the scatter of the results which is rather strong due to
the small number of grains in each microstructure and the small number of
considered aggregates. The diagram of Fig. 12 clearly shows two regimes
in the relation between stress level and grain size. For grain sizes smaller
than 1 μm, no dependence of the overall stress on grain size is observed.
For grain sizes larger than 1 μm, a power law is found in the form

Σ12|p0
− Σ0 ∝ dm (117)

with an exponent m of the order of -0.9 for the mean curve in Fig. 12.
The micromorphic model therefore can account for grain size effects with a
saturation for too small grain sizes.

The dislocation density tensor Γ∼ = curlχ
∼
p does not only impact the

overall polycrystal behavior but also the way plastic deformation develops
inside the grains. An example of the spreading of plastic deformation in a
polycrystal depending on the grain size is shown in Fig. 13 for the 52–grain
aggregate of Fig. 10(a). The shown maps are the contour plots of the field
of equivalent plastic deformation p. At the onset of plastic deformation,
plasticity starts in the same grains and at the same locations in 100μm–
grains as in 1μm–grains, as shown by the pictures of Fig. 13(a) and (b).
This is due to the fact that the same critical resolved shear stress is adopted
for both grain sizes, corresponding to the same initial dislocation density. In
contrast, at higher mean plastic strain levels, the strongly different values of
the plastic microdeformation gradients lead to significantly different plastic
strain fields. Two main features are evidenced by the Fig. 13(c) to (f).
First, a tendency to strain localization in bands is observed for small grain
sizes. The observed bands cross several grains whereas plastic strain is
more diffuse at larger grain sizes. This fact was already observed in the
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d =
4μm

d =
100μm

< χps
12 >= 4 10−7 < χps

12 >= 1. 10−2 < χps
12 >= 2. 10−2

Figure 13. Contour plots of the accumulative plastic strain p for two grain
sizes, d = 100 and 4μm, and for three different mean values of the plastic
strain : < χps

12 >≈ 0., < χps
12 >= 0.01 and < χps

12 >= 0.02, obtained with
the 55–grain aggregate of Fig. 10(c) under simple shear. (g) Macroscopic
stress–strain response of the corresponding aggregate, letters indicating the
loading steps for which the maps are shown.

simulations presented in Cordero et al. (2011, 2012). Second, a consequence
of this localization is that some small grains are significantly less deformed
that the larger ones.
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