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A general method, based on a multiscale approach, is proposed to derive the effective elastic shear modulus of a rub-
ber with 14% carbon black fillers from finite element and fast Fourier transform methods. The complex multiscale
microstructure of such material was generated numerically from a mathematical model of its morphology that was
identified from statistical moments out of transmission electron microscopy images. For finite element computations,
the simulated microstructures were meshed from three-dimensional reconstruction of the isosurface using the marching
cubes algorithm with special attention to the quality of the topology and the geometry of the mesh. To compute the shear
modulus and to determine the representative volume element, homogeneous boundary conditions were prescribed on
meshes and combined with a domain decomposition method. Regarding parallel computing, specific difficulties related
to the highly heterogeneous microstructures and complex geometry are pointed out. The experimental shear modulus
(1.8 MPa) obtained from dynamic mechanical analysis was estimated by the Hashin-Shtrikman lower bound (1.4 MPa)
and the computations on simulated microstructures (2.4 MPa). The shear modulus was determined for two materi-
als with the same volume fraction but different distribution of fillers. The current model of microstructures is capable
of estimating the relative effect of the mixing time in processing associated with change in morphology on the elastic
behavior. The computations also provide the local fields of stress/strain in the elastomeric matrix.

KEY WORDS: morphology, homogenization, meshing of microstructure, parallel computation, rubber
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1. INTRODUCTION

The objective of the mechanics of microstructures is to derive the effective physical properties and the local fields of
material volume element from the knowledge of the nature of the heterogeneities, their spatial distribution, and their
constitutive laws (Cailletaud et al., 2003). The numerous methods for three-dimensional microstructure characteriza-
tion provide detailed information concerning the three-dimensional morphology of the microstructure or the nature of
their components (Ludwig et al., 2009). Detailed information about the morphology can be introduced in a finite ele-
ment (FE) model to compute the mechanical properties of the microstructure. In order to describe with precision the
geometry of the microstructure, the resulting FE mesh contains a large number of nodes and considerable numerical
effort is necessary to solve the corresponding value problem, for instance, based on parallel computing.

The homogenization methods are used to derive the effective physical properties from information on the mi-
crostructure at the microscopic scale. For two-phase heterogeneous materials and for linear elasticity behavior, two
groups of homogenization techniques are usually considered: the analytical techniques and the numerical ones. In the
analytical techniques family, it is possible to bound the effective property (Beran, 1968) using first-order Voigt and
Reuss bounds, second-order bounds (Hashin and Shtrikman, 1963), or higher order bounds usually containing more
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information on the morphology of the microstructure (Jeulin and Ostoja-Starzewski, 2001). More and more statisti-
cal information about the microstructure morphology is also considered and leads to a hierarchy of bounds (Kröner,
1980; Torquato and Stell, 1983; Torquato and Lado, 1986; Torquato, 1991). It is also possible to estimate directly
the effective properties with the Mori-Tanaka model, for instance, Mori and Tanaka (1973), or using a self-consistent
scheme refering to disordered materials, for electrical conductivity Bruggeman (1935) and Beran (1968), and for
linear behavior (Kr̈oner, 1958; 1977). More recently, a self-consistent scheme has been developed in order to esti-
mate the properties of a rubber with carbon black (CB) fillers at large deformations (Omnes et al., 2008a). Regarding
the numerical techniques, the integrated methods and sequential methods are proposed. In the case of the integrated
method, the multiscale character is directly introduced in the FE simulation, leading to two levels (micro and macro)
of computations, such as the FE2 method (Feuel and Chaboche, 2000) or the Arlequin technique (Ben Dhia, 1998).
In the case of the sequential methods, the homogenization problem is solved using simulations on samples of mi-
crostructures for which the representative volume element (RVE) plays a key role. The RVE is defined as the volume
of heterogeneous material that is large enough to be statistically representative of the material. Sab (1992) demon-
strated that the physical responses obtained for different homogeneous boundary conditions prescribed on the sample
coincide for any volume larger than the RVE. For a given physical property, the size of the RVE can be determined
from a statistical and numerical approach (Kanit et al., 2003) using a Monte Carlo procedure to compute the apparent
response on realizations of simulations of microstructures for increased sizes.

For the determination of the RVE of a heterogeneous material, a model of the morphology (Serra, 1982) is deter-
mined based on two- or three-dimensional (2D/3D) information on the geometry of the microstructure [for instance,
microtomography data (Madi et al., 2007; Ludwig et al., 2009); or scanning electron or transmission electron mi-
croscopy or (SEM/TEM) images]. Many papers referred to mathematical models of the morphology of heterogeneous
materials to derive properties by homogenization such as Voronoi tessellation for polycrystals (Barbe et al., 2001)
and granular media (Sab and Boumediene, 2005), or hard core sphere models to represent aggregates in cement paste
(Wriggers and Moftah, 2006; Hain and Wriggers, 2008). For rubber, the CB aggregates were modeled as squares or
dodecaedron in a elastomeric matrix in Bergstrom and Boyce (1998) and as the union of CB spherical-shaped particles
in Naito et al. (2007). In Jha et al. (2007) a cuberille model was considered to describe the aggregates surrounded by
a third phase representing the bonded rubber. In Laiariandrasana et al. (2009) a composite model was also obtained
from periodic homogenization by placing a spherical CB particle at the center of a tetrakaidecaedron cell. In general,
all these works have shown the need for a three-dimensional microstructural model to take the interaction between
aggregates and the interaction of fillers with the elastomeric matrix into account.

The goal of the present work is to use a 3D morphological model and estimate the effective elastic shear modulus
of a rubber with CB fillers based on large-scale FE computations. The addition of filler aggregates (e.g., carbon black
or silica) to rubber leads to significant improvements of the physical and the mechanical properties of the material.
These mechanisms of elastomer reinforcement by fillers also contribute to an increase of strain-induced mechanical
nonlinearities. For example, if a dynamic load is applied at medium-to-large strains, the filler network can deteriorate,
resulting in a loss in stiffness. This well-known behavior is called the Payne effect (Payne and Whittaker, 1971).
Some experiment data obtained from a dynamic mechanical analyzer (DMA) (Jean, 2009) show that the Payne effect
is enhanced when the initial shear modulus increases. The shear modulus increases when the volume fraction of
fillers increases and tends to decrease when the time of mixing of fillers into the matrix increases for a constant
volume fraction. Much effort has been devoted to reducing the Payne effect without compromising the enhancement
of the other important material properties. Another related effect is commonly observed in filled elastomers at large
strains, namely, stress softening. This phenomenon, known as the Mullins effect (Mullins, 1947; Mullins and Tobin,
1954), is usually assumed to be either the result of an evolution in the hard and soft domain of the microstructure,
whereby the effective volume fraction of the soft domain increases with stretch, or the result of irreversible damage
in the material, or a combination of both phenomena. But the basic mechanisms of elastomer reinforcement by fillers,
including the way it is affected by the particle size or the degree of dispersion, are not very well documented. Since
this paper is focused on the prediction of the effective elastic shear modulus at small deformation, the destruction
of the carbon-black network is not taken into account. For further insight into experimental results and modelling
approaches of Mullins and Payne effects, we recommend the following references: Govindjee and Simo, 2009; Ogden
and Roxburgh, 1999; Diani et al., 2009; Cantournet et al., 2009; Medalia, 1978; Kraus, 1984; Lion, 1996.
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Section 2 presents the morphological model of the microstructure, identified on the statistical moments on TEM
images, and depicts the method retained to generate a three-dimensional mesh of the microstructure. Section 3 de-
fines the general boundary value problem for the determination of effective linear properties of the simulated meshed
microstructures. Section 4 proposes a strategy of computation using the domain decomposition method and paral-
lel computing applied to the highly heterogeneous rubber composite. The results of the determination of the shear
modulus and of the size of the following RVE are given in Section 5. In addition to the FE computations, the elastic
response and RVE from periodic computations were obtained using the fast fourier transform (FFT) approach (Michel
et al., 2000). Finally, the computations also give insight into the local stress and strain fields in the elastomeric matrix
between CB aggregates as shown in Section 5.3.

2. REPRESENTATION OF THE MICROSTRUCTURE OF RUBBER WITH CB FILLERS

2.1 Multi-Scale and Statistical Modeling of the Microstructure

2.1.1 Morphological Modeling Approach

To model the structure of a rubber with carbon black fillers, two kinds of models can be investigated. The first kind
consists of describing the microstructure as an ideal periodic composite using periodic computations on an elementary
cell. This method, widely used in the case of two dimensions (Zeman and Sejnoha, 2001), was also extended in three
dimensions by Jean (2009) and Laiarinandrasana et al. (2009), where a carbon black particle was located at the center
of a tetrakaidecaedron cell in order to derive the effective behavior of a centered cubic symmetry of fillers in a rubber
matrix. Hereby, such models do not take the aggregates of carbon black fillers into account. The second kind of
model consists of simulating more realistic three-dimensional microstructures, strongly motivated by the large data
on the three-dimensional morphology and the increase of capabilities of computations. A first set of models consists
of tessellating space into cells. For instance, the Voronoi cell tesselation is used in the case of polycrystals (Barbe et
al., 2001; Osipov et al., 2008; Gérard et al., 2009) and granular media (Sab and Boumediene, 2005). A second set
of models consists of describing the dispersion of inclusions and/or pores in a matrix such as in Hain and Wriggers
(2008), where a model of hard-core spheres represented the aggregates in a cement paste. In the present study, the
second set of models was retained to describe the distribution of aggregate fillers in the rubber matrix.

2.1.2 Multiscale Boolean-Cox Model

Figure 1(a) shows a TEM micrograph of1500 nm in length of the microstructure of a rubber containing14% fillers.
This image reveals clearly the multiscale microstructure of this material with three scales: the spherical-shaped parti-

(a) (b) (c)

FIG. 1: Statistical modeling of rubber with carbon black fillers:(a) electron micrograph,(b) simulation of microstruc-
ture of1600 nm in length, and(c) focus on a single aggregate.
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cle, the aggregate, and the matrix located between aggregates. A multiscale model was favored to represent each scale
of the microstructure (Jeulin, 1991; Jeulin and Le Coënt, 1995; Savary et al., 1999; Delarue, 2001). For the present
material, the multiscale morphological model was detailed in (Jean et al., 2007; 2010) and consisted of three Boolean
models. A Boolean model of spheres, associated with a truncated Gaussian distribution of the radius, describes the
carbon black particles. According to experimental measurements of the morphology of aggregates, a Boolean model
of ellipsoids, associated with a log-normal distribution of their size, was retained to describe the aggregates. Finally,
a Boolean model of spheres with a constant radius represents the matrix zones. The final microstructure was obtained
by a combination of Boolean models according to a Cox algorithm (Moreaud and Jeulin, 2005; Jean et al., 2007).
Figure 1(b) illustrates a simulation of a microstructure of the CB aggregates of the rubber composite of1600 nm
length, the elastomeric matrix corresponding to the complementary set. Figure 1(c) shows an example of aggregate
and its own structure. This model contains four parameters to identify: the volume fraction of each scale (particles,
aggregates and matrix) and the radius of the spheres describing the matrix zones.

2.1.3 Identification of the Boolean Cox Model from TEM Images

To identify the parameters of the multiscale model, an original method was proposed in Jean et al. (2007; 2010). This
method involves two steps. The first step aims at fitting a first primary set of parameters on an approximate expression
of the analytic covariance. The obtained set of parameters is then used in the second step as an initial set. In this
second step, the model is identified by minimizing the error on the statistical moments (covariance and third-order
moment) and the closing curve, providing a size distribution of the matrix. This optimization consists of computing
a representative sample of virtual TEM images from 3D simulations of microstructure and comparing the numerical
morphological data to the experimental data. Finally, the identified model is validated according to some macroscopic
percolation criterion.

2.2 FE Meshing of Microstructures

2.2.1 General Overview

Several techniques are available to mesh a structure or a microstructure within the FE method. In the case of het-
erogeneous media with complex morphology, two methods are considered here. In the first method, the isosurface
(the surface between two phases) is explicitly discretized so that the element edges of the mesh follow the interface
between the two phases. In the second method, the isosurface is not discretized but the mesh properties are modi-
fied in the areas where the isosurface should be located. One possible choice consists of assigning different material
properties to each integration point in a single element crossed by the isosurface (Lippman et al., 1997; Barbe et al.,
2001). This is the so-called multiphase elements technique. Other recent techniques introduce a discontinuity in the
FE interpolation of the corresponding elements. This enrichment is local in the embedded FE method (Ortiz et al.,
1987) or global as in the extended finite element method (X-FEM) (Moës et al., 1999), where the isosurface is located
using the level sets method. This method, applied to the hard core model of spheres, gives promising results (Ionescu
et al., 2007). However, its robustness has not yet been demonstrated on large-scale simulations of heterogeneous
microstructures.

Hence in the present work, priority has been given to generate an FE mesh that follows the microstructure inter-
faces. This is called the conforming meshing technique (Frey and Georges, 1999). Here, the geometry of simulated
microstructures was given by a list of the radii and coordinates of the center of all carbon black spherical particles.
In similar cases, where an analytic expression of the isosurface is available, computer-aided design (CAD) methods
are favored to create the geometrical objects describing the isosurface. These geometrical objects are then meshed
using Delaunay triangulations (Georges and Borouchaki, 1997). The same techniques or the advanced front method
(Lohner, 1996) allow the mesh to eventually be filled in volume. In the present case, the union operation of spheres,
according to the Boolean model, was not robust enough when a few dozens of intersected particles were considered.
Therefore, a concurrent method to CAD techniques was retained the marching-cubes algorithm (Lorensen and Cline,
1987). This algorithm reconstructs the isosurface from the three-dimensional image.
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2.2.2 Triangulation of Interface and Tetrahedral Meshing

The three-dimensional image of a simulated microstructure of rubber composite was composed by a set of two-
dimensional images of one-pixel thickness [Fig. 2(a)]. These images were binarized, the white and black labels cor-
responding to the carbon particles and the rubber matrix, respectively, leading to a voxel-based discretization of the
particles [Fig. 2(b)] and of the matrix [Fig. 3(a)]. The isosurface describing the interface between the two materials
was captured using the marching cubes algorithm. The quality of the isosurface reconstruction is strongly related to
the resolution of the image. In this algorithm, a cube of the size of one voxel is translated along the three vectors
(x , y , z ) so that each vertex matches with the center of a voxel. At each step, the label of the eight vertices is tested.
When the labels differ, the isosurface crosses the cube; thus, an elementary polygonal surface, chosen in a table con-
taining all the possible configurations, is built up in the cube. Finally, the union of all the elementary polygons creates
the final three-dimensional polygonal isosurface. One should notice that the marching cubes procedure considers the
outside volume of the microstructure as a third phase. The outer boundary of the volume of simulation is thus included

(a) (b)

FIG. 2: (a) Set of two-dimensional images constituting the three-dimensional simulation and(b) discretization into
voxels of three-dimensional image simulation (carbon black fillers).

(a) (b)

FIG. 3: (a) Discretization into voxels of three-dimensional image simulation (elastomeric matrix) and(b) represen-
tation of three-dimensional polygonal surface using the marching cubes algorithm.
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in the final polygonal surface [Fig. 3(b)]. The whole procedure was carried out with Avizo software (Vizualization
Science Group, 2009).

The obtained polygonal surface [Fig. 4(a)] was then discretized by triangular-shaped elements. The corresponding
mesh [Fig. 4(b)] usually contains a large number of nodes. For instance, for a simulated microstructure of1.25× 105

voxels with about 20 spheres, the mesh of the isosurface contained around106 elements [Fig. 5(a)]. Such a fine
discretization may be required for a precise description of the particles. The faces of the cube also belong to the
isosurface. There is no need for a fine mesh on these faces where only matrix material is present. This first mesh also
contains too many flat triangles with acute angles on the surface of particles, as shown in Fig. 4(b), contrary to the outer
boundary of the volume [Fig. 5(a)]. Also, on the union area between intersected particles, some overlaping elements
were detected by Avizo. Because of its size and its bad quality, this surface mesh cannot be used for filling with
volumic elements and for FE computations. It was proposed first to coarsen the surface mesh uniformly on the faces
of the cube, preserving fine enough discretization at the interface between the matrix and particles [Fig. 5(b)]. Then,
in order to have a surface mesh with a correct topology, a manual correction of flat-shaped elements and intersected
elements had to be carried out.

(a) (b)

FIG. 4: (a) Focus on a sphere from three-dimensional microstructure and(b) its corresponding first primary FE mesh
obtained from marching cubes algorithm.

(a) (b)

FIG. 5: Mesh of microstructure before(a) and after(b) reduction of the mesh size.
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Next, this surface mesh could be filled to obtain a three-dimensional mesh for the FE computation. Nevertheless,
for practical reasons regarding domain decomposition methods (see Section 4.3), this surface mesh has to be further
optimized. This step was automatically conduced by the Yams software (INRIA, 2009) interfaced with a Zset environ-
ment (Mines-ParisTech, 2003). Two tasks were considered in the procedure. The first task aims at refining the surface
mesh at the interface between the two materials and coarsening it inside the phases (Fig. 6). Attention was paid to the
smoothness of the element size gradient from fine to coarse mesh domains. The second task deals with the optimiza-
tion of the classic geometrical criteria (Frey and Georges, 1999) defined for each element. The elements that do not
satisfy the criteria were modified by moving their nodes and/or changing their connectivity. Finally, a free linear tetra-
hedral mesh was built on the basis of the conforming optimized surface triangulation. The meshing was performed
using Delaunay triangulation based on the TetMesh GHS3D module (INRIA, 2009). Figures 7(a) and 7(b) illustrate

FIG. 6: Three-dimensional FE meshing of computed 3D microstructures, focusing on geometrical progression of
meshsize in the matrix (blue phase).

(a) (b)

FIG. 7: Three-dimensional FE meshing of computed 3D microstructures -(a) simulation of600 nm in length,2241
particles and1, 046, 040 nodes:(b) simulation of1000 nm in length,4061 particles, and1, 412, 997 nodes.
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such three-dimensional FE meshes for a simulated microstructure of600 nm and1000 nm length, respectively. Both
contain more than106 nodes.

3. BOUNDARY VALUE PROBLEM FOR THE DETERMINATION OF EFFECTIVE LINEAR
PROPERTIES

3.1 Apparent vs Effective Properties

A volumeV is considered made of heterogeneous material. Its outer boundary is∂V . A local behavior is defined at
every pointx belonging to the volumeV , with c∼∼

(x ) the local fourth-rank tensor of elasticity moduli:

σ(x ) = c∼∼
(x ) : ε∼(x ) ∀x ∈ V (1)

The apparent mechanical response is calculated after averaging the strain and stress tensors over the volumeV :

Σ∼ =
1
V

∫

V

σ∼(x )dV E∼ =
1
V

∫

V

ε∼(x )dV (2)

Due to the linearity of the elasticity problem, the fourth-rank tensor of apparent elasticity moduliC∼∼
app can be defined

as
Σ∼ = C∼∼

app : E∼ (3)

The Voigt notation for the elasticity tensor is




Σ11

Σ22

Σ33

Σ12

Σ23

Σ31




=




Capp
11 Capp

12 Capp
13 Capp

14 Capp
15 Capp

16

− Capp
22 Capp

23 Capp
24 Capp

25 Capp
26

− − Capp
33 Capp

34 Capp
35 Capp

36

− − − Capp
44 Capp

45 Capp
46

− − − − Capp
55 Capp

56

− − − − − Capp
66







E11

E22

E33

2E12

2E23

2E31




When the volumeV is an RVE, the apparent response coincides with the effective mechanical behavior of the hetero-
geneous material. In the present work, three types of boundary conditions to be prescribed on the boundary∂V are
considered.

3.2 Boundary Conditions

3.2.1 Kinematic Uniform Boundary Conditions

The displacementu is prescribed at each pointx belonging to the boundary∂V such that

u = E∼ .x ∀x ∈ ∂V (4)

whereE∼ is a given homogeneous strain tensor. It follows that

〈ε∼〉 =
1
V

∫

V

ε∼dV = E∼ (5)

The macroscopic stress tensor is then defined by the spatial average:

〈σ∼〉 =
1
V

∫

V

σ∼dV = Σ∼ (6)
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3.2.2 Static Uniform Boundary Conditions

The traction vectorσ∼.n is prescribed at the boundary∂V such that

σ∼.n = Σ∼ .n ∀x ∈ ∂V (7)

whereΣ∼ is a given homogeneous stress tensor. It follows that

〈σ∼〉 =
1
V

∫

V

σ∼dV = Σ∼ (8)

The macroscopic strain tensor is then defined by the spatial average:

〈ε∼〉 =
1
V

∫

V

ε∼dV = E∼ (9)

3.2.3 Periodic Conditions

The displacement field over the entire volumeV takes the following form considering a periodic fluctuationv (Kanit
et al., 2003):

u = E∼ .x + v (10)

The fluctuationv is periodic in the sense that it takes the same value at two homologous points at opposite faces
of ∂V . Furthermore, the volumeV is in equilibrium because the traction vectorσ∼.n takes opposite values at two
homologous points at opposite faces of∂V .

The periodicity conditions were not used in the FE simulations reported in this work because of the difficulty of
constructing large meshes with homologous nodes at the boundary. On the other hand, the use of Lagrange multipliers
to enforce the periodicity conditions turns out to be too expensive for the considered parallel computations. Neverthe-
less, an alternative method allows computations of the apparent response of a volume with periodic conditions (PC),
based on the FFT method (Moulinec and Suquet, 1994; Willot and Jeulin, 2009), which consists of computing the
local fields from an image of the periodic simulation (Section 3.6).

3.3 Bounds of Effective Moduli by Apparent Properties

One recalls that the effective behavior is defined for a representative volume element. It is possible to bound the
effective moduli by the apparent responses obtained for smaller volumes (Huet, 1990). Letc∼∼

(x ) ands∼∼
(x ) be the

fourth-rank tensor fields of elastic moduli and compliances in the volumeV of heterogeneous material, defined by
Eq. (1).

For the kinematic uniform boundary condition (KUBC), problem

Σ∼ = 〈σ∼〉 = 〈c∼∼ : A∼∼
: E∼ 〉 = 〈c∼∼ : A∼∼

〉 : E∼ = C∼∼
app
E : E∼ (11)

For the static uniform boundary condition (SUBC) problem,

E∼ = 〈ε∼〉 = 〈s∼∼ : B∼∼
: Σ∼ 〉 = 〈s∼∼ : B∼∼

〉 : Σ∼ = S∼∼
app
Σ : Σ∼ (12)

A∼∼
andB∼∼

are the fourth-rank concentration tensors such that

{
ε∼(x ) = A∼∼

(x ) : E∼
σ∼(x ) = B∼∼

(x ) : Σ∼
(13)

From Eq. (2), the concentration tensors satisfy

〈A∼∼ 〉 = 〈B∼∼ 〉 = I∼∼
(14)

whereI∼∼
is the fourth-rank identity tensor.
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The fourth-rank tensorsC∼∼
app
E andS∼∼

app
Σ define the apparent moduli computed with KUBC and apparent compli-

ance computed with SUBC, respectively, for a given volumeV . For volumes smaller than the representative volume
element, the effective fourth-rank tensor of elasticity moduli is bounded as follows (Huet, 1990):

S∼∼
app−1
Σ ≤ C∼∼

eff ≤ C∼∼
app
E (15)

whereC∼∼
app andS∼∼

app are the tensors of apparent elastic moduli and compliances, respectively. This inequality is

written in the sense of quadratic forms. For large enough volumes, i.e., for representative volumes, the properties
obtained for every boundary condition are equivalent (Sab, 1992):

C∼∼
app
E = S∼∼

app−1
Σ = C∼∼

eff = S∼∼
eff−1 (16)

This condition is used in (Ranganathan and Ostoja-Starzewski, 2008) to detect the size of the RVE. It has to be
completed by the statistical precision of the effective properties resulting from the fluctuations of microstructure, as
made in Kanit et al. (2003), Jeulin (2005), and Jeulin and Moreaud (2008). Since we estimated onlyC44, C55, and
C66 for simplification of the calculations, we could not check the fact that the KUBC and SUBC tensors are inverse
of each other, as proposed in Ranganathan and Ostoja-Starzewki (2008). In the case of the simulated microstructures
of rubber with carbon black fillers, the size of the (RVE) for the shear modulus is not knowna priori; hence the shear
moduli obtained for each boundary condition has to be compared. Usually the difference between the responses of the
dual boundary conditions tends to increase when the size of the simulated microstructure decreases. In Section 4.2 we
make use of the statistical approach of the RVE on our simulations.

3.4 Elastic Properties of Constituents

The elastic properties of both phases, carbon black fillers and elastomeric matrix, were given by Michelin. For the
rubber, the Young’s modulus was determined by Michelin from dynamic mechanical analysis testing and the Poisson
ratio was given by Michelin. These results (EM = 3 MPa andνM = 0.49983) are in agreement with the values found
in literature (Holownia, 1974; Omnes et al., 2008b). The rubber exhibits a quasi-incompressible behavior. Concerning
the carbon black fillers, the Poisson ratio is usually taken asνCB = 0.3. Due to the difficulty in carring out mechanical
tests on the fillers alone, the Young’s modulus of the carbon black fillers is chosen as that of the carbon black and does
not take the specific structure of the carbon black particle into account (ECB = 80, 000 MPa).

4. COMPUTING STRATEGY

4.1 General Overview

The size of three-dimensional FE meshes, obtained in Section 2.2, requires a large amount of RAM memory to solve
the corresponding linear system. In such cases, a common idea is to split the initial problem into subproblems of
smaller sizes. This may be achieved by nonoverlapping domain decomposition techniques widely used in structural
mechanics and more recently applied to microstructures (Cailletaud et al., 2003). These techniques benefit from the
specific architecture of clusters of computers dedicated to parallel computing. Two classes of method are generally
considered: balanced domain decomposition (BDD) (Mandel, 1993) and the finite element tearing and interconnecting
method (FETI) (Farhat and Roux, 1991). In both methods, an additional problem located at the interface between
domains has to be solved in order to ensure global solution compatibility. From a mechanical point of view, the
unknowns of the interface problem are displacements in the case of the BDD method and forces for the FETI method.
This is the main reason these methods are often referred to as primal and dual methods, respectively. Many works
have proved the robustness of the FETI method for FE computations of largescale microstructures, mainly in the case
of polycrystals (Barbe et al., 2001; Kanit et al., 2003; Gérard, 2008; Osipov et al., 2008). For these reasons, the FETI
method was favored for the microstructures studied in this work. Similarly, many papers deal with the application of
FETI on large, highly heterogeneous media (Bhardwaj et al., 1998; Gosselet et al., 2003; Klawonn and Rheinbach,
2006), even though only basic examples are treated therein.
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4.2 Dual FETI Method for Large Scale Microstructural Computations

An overview of the FETI techniques in the particular case of structural mechanics is given in detail in Gosselet and
Rey (2006). The FETI method is a nonoverlapping domain decomposition method which consists of two successive
steps. In the first step, the displacement response of each domain is computed independently. This step results in
domains, with non-vanishing relative displacements, the so-called displacement jump. In the second step, the forces
needed for the displacement jump at the interface to vanish are computed. For the sake of simplicity, a BVP defined
on a volumeΩ, subdivided into two domains is considered. The corresponding FE linear system reads

Ku = f with





f : vector of nodal forces

u : vector of nodal diplacements

K : global stiffness matrix

(17)

The partition of the microstructure into two domains,Ω1 andΩ2, leads to the following system:


K1 0

0 K2


 .

{
u 1

u 2

}
=

{
f

1
+ Bt

1λ

f
2

+ Bt
2λ

}
(18)

whereu 1 andu 2 are the vectors of degrees of freedom in subdomainsΩ1 andΩ2, respectively. The matricesBs

are Boolean operators which ensure the field transfer from the domainsΩs to the interfaceΩ1 ∩ Ω2. The interface
problem is written as follows: (

2∑
s=1

BsK−1
s Bt

s

)
λ = −

2∑
s=1

BsK−1
s f

s
(19)

D =
2∑

s=1

BsK−1
s Bt

s (20)

whereD is the Schur dual complement. The equivalent residual problem enforces the continuity of displacement at
the interface between domains:

B1u 1 + B2u 2 = 0 (21)

this problem is solved iteratively using the preconditioned conjugate gradient (PCG) (Shewchuk, 1994). At theκth

iteration, the displacement jump reads

2∑
s=1

Bsu
k
s = Dλ k +

2∑
s=1

BsK−1
s f

s
(22)

The condition number of the Schur dual complement in Eq. (22) is of primary importance for the convergence of the
interface problem. Indeed, conjugate gradient methods are known to be sensitive with respect to conditioning. In the
case of a rubber composite, this issue, as well as the detection of rigid body modes, are assessed in the next subsection.

4.3 Inherent Difficulties for Highly Heterogeneous Microstructures

4.3.1 Condition Number of Dual Schur Complement Matrix

As mentioned in the previous subsection, the condition number of the Schur dual complement is of major importance
for the convergence of the interface problem with iterative solvers. With a view to improving this condition number,
the use of preconditioners is mandatory. The optimal choice is the Dirichlet preconditioner. Under certain conditions,
the lumped preconditioner can achieve a slower convergence of the FETI interface problem. The conditioning ofD
is related to the conditioning of eachKs. Thus, the decomposition in homogeneous domains (same material) leads
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to the best conditioning number of the Schur dual complement for any preconditioner, including the lumped one.
This approach has been successfully tested on a simulated microstructure containing a dozen particles [Fig. 8(a)].
Figure 8(b) shows the corresponding mesh decomposition with homogeneous domains using a dedicated automatic
mesher. Here, each domain corresponds to an aggregate or to a part of the matrix. The larger domains can be possibly
subdivided like the matrix phase [Fig. 8(b)] or some aggregates [Fig. 9(a)]. For an increasing contrast in elastic
properties, the convergence rates were compared to results obtained on the same microstructure partitioned with Metis-
Split [Fig. 9(b)]. The contrast is defined as the ratio of Young’s modulus of the carbon black particles over Young’s
modulus of the matrix (ECB/EM ). Contrary to the dedicated automatic mesher, Metis-Split tends to minimize the
size of the interface between domains and to create domains containing close numbers of degrees of freedom (11 and
4 domains for the homogeneous domain decomposition and for Metis-Split, respectively). The proposed partitioning
is less efficient than Metis-Split when the contrast is lower than106 in the case of KUBC but ensures the convergence
for higher contrasts. This method of partitioning creates at least as many domains as aggregates in the simulation and
thus cannot be used in the case of too many independent aggregates, for scalability reasons. It can be of interest when
the carbon black network percolates in the simulation.

x
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z

x

y

z

(a) (b)

FIG. 8: (a) Simulation of microstructure containing12 carbon black particles and(b) decomposition into 11 homo-
geneous subdomains.
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x
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z

(a) (b)

FIG. 9: (a) Decomposition of the largest aggregate into two subdomains and(b) decomposition into four subdomains
using Metis-Split, each color corresponds to one domain.
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4.3.2 Detection of Rigid Body Modes

Dealing with mechanics, most local problems, on each domain, are only force-based and thus ill-posed. Their solutions
are provided with a linear combination of rigid body modes. Only problems defined on domains located on the
global volume boundary where displacements are imposed have a unique solution. In the Z-set environment (Mines-
ParisTech, 2003), the sparse direct solver detects automatically and handles the rigid body modes if necessary. Still,
the efficiency of this detection is strongly affected by the contrast between the elastic properties of the constituents and
the aspect ratio of the domains. It is recommended to generate domains with an aspect ratio close to one (Bhardwaj
et al., 1998). In this work, a strong influence of the geometrical quality of the mesh on the convergence of the FETI
problem has also been noticed.

4.4 Quantitative Study of Convergence Using Uniform Boundary Conditions

For both uniform boundary conditions, a shear test is performed on a given simulated microstructure. The effect of
contrast in terms of the Young’s modulus of the phases is investigated. To increase the contrast, the Young’s modulus
of the carbon fillers is increased from3 MPa to its current value of80, 000 MPa, whereas the Young’s modulus of the
elastomeric matrix remains constant and equal to3 MPa. Figures 10 and 11 depict the evolution of FETI error as a
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FIG. 10: Influence of elasticity contrast between fillers and matrix on FETI error for SUBC.
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FIG. 11: Influence of elasticity contrast between fillers and matrix on FETI error for KUBC.

Volume 9, Number 3, 2011



284 Jean et al.

function of the number of iterations for different contrast values in the case of KUBC and SUBC, respectively. The
FETI error is the ratio of the displacement jump between subdomains over the initial one. For both cases, the FETI
error increases when the Young’s modulus of particles increases. Contrary to the KUBC, the use of SUBC does not
enable us to reach the real contrast, because the FETI problem finally diverges. Indeed, in the SUBC problem, all the
domain problems are ill-posed. Thus, as mentioned in the last subsection, the solver may fail to detect the rigid body
modes of each domain because of increasing ill-conditioning due to the larger contrast values. Here, the apparent
shear modulus was computed under SUBC while the contrast was increased. Figure 12 shows that the apparent shear
modulus reaches an asymptotic value for a contrast ratio larger than5000, corresponding to a Young’s modulus for
carbon black particles equal to15000 MPa. This value is retained for the SUBC computations in the determination of
RVE size for shear modulus in Section 5.

4.5 Quasi-Incompressibility of Elastomeric Matrix

Specific difficulties are encountered when the behavior of the elastomeric matrix is quasi-incompressible. This quasi-
incompressibility can “lock” the displacements and therefore can increase the apparent elastic moduli of the material.
To avoid locking the local displacements, the pressure may be included as a degree of freedom in the FE formulation.
Such a mixed formulation (Zienkiewicz and Taylor, 1989) accounts for the possible strong differences of pressure in
the material. In the classic FETI method, the interface problem is set to ensuring the displacement continuity between
domains. The use of mixed formulation imposes the domain decomposition method to account for the pressure con-
tinuity as well. Hybrid domain decomposition methods as proposed in Farhat et al. (2001) ensure the continuity of
both primal and dual variables on the interface between domains. They are, thus, also referred as to FETI dual primal
(FETI-DP) methods.

In the present work, for linear elasticity, a shear test was performed on the simulated microstructure studied in the
last subsection for KUBC and SUBC with a Poisson ratio for the elastomeric matrix that varied from0.4 to 0.49999.
The standard formulation with displacement as a degree of freedom and mixed formulation with displacement and
pressure as a degree of freedom were compared. Figure 13 shows the evolution of the apparent shear modulus as a
function of the Poisson ratio of the elastomeric matrix for both boundary conditions and for both FE formulations. For
values of Poisson ratio very close to0.5 the standard formulation overestimates the apparent response of material for
both boundary conditions (KUBC, SUBC), probably mostly due to the local displacement locking phenomena in the
matrix. For a Poisson ratio equal to0.49, the mechanical response in linear elasticity is identical for both formulations
and remains constant for higher ratios for the mixed formulation. However, it would be meaningless to have the same
conclusion for the computation of the bulk modulus directly related to this ratio. The use of a Poisson ratio equal to
0.49 allows use of the classical FETI with only displacement as an unknown in the interface problem. In the following
simulations of this work, a Poisson ratio equal to0.49 was retained to compute the effective shear modulus.
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FIG. 12: Influence of the elasticity contrast between fillers and matrix on the apparent response.
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FIG. 13: Apparent shear modulus as a function of Poisson’s ratio of elastomeric matrix, influence of the kind of
boundary conditions, and FE formulation mixed (P1+P1, linear interpolation of the displacement and of the pressure)
and standard (P1, linear interpolation of the displacement).

4.6 Fast Fourier Transform (FFT) Method

With no meshing, the FFT (Moulinec and Suquet, 1994) is an alternative approach for computing the local elas-
tic response of a heterogeneous material with complex phase geometry. It makes use of the Lippmann-Schwinger
equations:

ε˜(x) = ε˜0 −
∫

V

dx′ G˜̃
(0)(x− x′) : τ˜(x′) (23)

τ˜(x) = σ˜(x)− c˜̃
(0) : ε˜(x) (24)

wherec˜̃
(0) is an arbitrary “reference” elastic tensor,G˜̃

(0) is Green’s function (of zero average) associated toc˜̃
(0),

andτ˜ is the polarization field. The constant tensorε˜0 is used to apply a macroscopic (i.e., average) strain loading in
the volumeV . Periodic boundary conditions are assumed (Section 2.2), andV is seen as an elementary cell of the
microstructure.

Iterating Eqs. (24) in the real space and (23) in the Fourier domain gives the following fixed-point algorithm,
where convergence is measured in terms of stress equilibrium:

setε˜
(0)(x) ≡ ε˜0, i = 0,

iterate

τ˜
(i)(x) = σ˜

(i)(x)− c˜̃
(0) : ε˜

(i)(x), σ˜
(i)(x) = c˜̃(x) : ε˜

(i)(x)

τ˜
(i)(q) = FFT(τ˜

(i)(x); q)

ε(i+1)(q) = −G˜̃
(0)(q) : τ˜

(i)(q), q 6= 0, ε˜
(i+1)(q = 0) = ε0

ε˜
(i+1)(x) = FFT−1(ε˜

(i+1)(q); x)

i = i + 1

until

|qiσij(q)| < η|σ˜(q = 0)|
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whereq are the Fourier modes andη is the required precision. Typically in our computations,η = 10−5. According
to this procedure, the admissibility of the strain field is enforced at each step, and the displacement fieldu is given in
the Fourier domain as

ui(q) =
2qkεik(q)− 3qiεm(q)

|q|2
whereεm = εii/3.

Random samples of the mathematical model considered in this work are discretized on a cubic lattice grid to
generate microstructure images, of sizeL × L × L voxels, withL = 200, 350, or 500 (where the size of a voxel is
about3.2 nm). Prior to discretization, the mathematical model random samples are “periodized,” i.e., particles that cut
through one of the elementary cell’s face (or respective corner) are duplicated, with copies placed along its opposite
face (or respective corner) to enforce the microstructure periodic nature. Such treatment leads to an additional volume
fraction of particles, for instance, whenL = 500, the volume fraction grows from16.1% to 16.9%. To correct this,
the effective elastic moduli are corrected proportionally to the volume fraction difference.

For highly contrasted composites such as the material considered in this work, much faster convergence is achieved
using the “augmented Lagrangian” algorithm (Michel et al., 2000). This refined algorithm has been used here for this
reason. Although the convergence rate of Michel’s method highly depends on the choice of the reference tensorc˜̃

(0), it

is generally observed that the optimal reference tensor varies slowly with the size of the microstructure. Accordingly,
the reference tensor is numerically optimized for systems containing643 voxels and then used on larger grids.

Contrary to the boundary conditions used in the FFT algorithm, the microstructure model developed here is not
periodic. This discrepancy is studied by considering two methods of discretization, referred to as “discontinuous” and
“continuous” models, that are detailed below. In the “continuous” model, each random sample is periodized prior to
discretization on the voxels grid. More precisely, every spherical inclusionsi is replaced with an infinite set of spheres
{si + (uxex + uyey + uzez)L} whereux, uy, uz are integers. Although such a model is consistent with PC, it also
increases the volume fraction of spheres, and as a consequence of additional sphere connections, greatly decreases
the number of aggregates (Table 1). To avoid this drawback, a “discontinuous” discretization is considered, where the
periodization step is omitted, i.e., spheres located along the microstructure frontiers are cut along the cube faces. Such
a microstructure model is closer to that used by the FEM.

Although the difference between the two models are boundary layer effects, the density of aggregates is very
different for the two microstructures, even at large systems sizes (Table 1). As the volume fraction is close to the
percolation threshold, a comparison of the elastic response of the two models is necessary to quantify these effects.

5. RESULTS

5.1 Effective Shear Modulus

Following the procedure proposed by Kanit et al. (2003), the effective shear modulus for a rubber with14% of
CB fillers was estimated by computing apparent moduli on simulated microstructures of different sizes. Several
realizations per size are considered to determine the deviation of the mean value. For a large enough volume element,

TABLE 1: Number of particles and of aggregates (lines 2 and 3,
respectively) in microstructures, as used in FFT computations and
increasing system sizes (columns 2, 3, and 4). Each number rep-
resents one microstructure sample. The number of aggregates de-
pends on the discretization method, “continous” or “discontinuous”
(numbers between round and square brackets, respectively)

L (nm) 640 1120 1600

Nb. of particles 1310 7174 17951

Nb. of aggregates [141] (196) [555] (723) [1841] (2170)
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the computed shear modulus converges to the effective response and coincides for any type of boundary condition.
For intermediate volumes, the effective shear modulus is estimated from the mean value computed from an adequate
number of realizations. Hereby, three sizes of simulated microstructures were considered, corresponding to cubes
with edge of600, 800 and1000 nm length, respectively. Due to the difficulty to mesh and compute such simulated
microstructures, the study was limited to two realizations per size; hence six microstructures were computed. When
a given simulation volume element is subjected to a shear test with respect to the three cube directions, the apparent
behavior reads




−
−
−

Σ12

Σ23

Σ31




=




− − − − − −
− − − − − −
− − − − − −
− − − Capp

44 − −
− − − − Capp

55 −
− − − − − Capp

66







−
−
−

2E12

2E23

2E31




The components of stress tensor and strain tensor are given for the SUBC and the KUBC, respectively. For instance,
in the case of KUBC the apparent shear moduliCapp

44 is estimated by the computed valueΣ12 for E12 = 0.5 and
other vanishing strain components. The same method was applied toCapp

55 andCapp
66 considering the three directions

of shear loading (x , y ), (y , z ), and (x , z ). For each realization of the volume element, the apparent shear modulus
was defined by averaging the three components of the fourth-rank tensorC∼∼

app:

Gapp =
1
3
(Capp

44 + Capp
55 + Capp

66 ) (25)

Therefore,36 FE computations were carried out (three sizes, two realizations per size, and six FE simulations per
realization). For PC with the FFT method there were three computations per realization. Table 2 gives for each FE
simulation the number of spheres and aggregates and the number of unknowns (degrees of freedom, dof) of the
problem. The FFT enables us to compute larger volume than the FE method.

Figure 14 displays both the mean and the deviation of the apparent shear modulus obtained for all realizations
as a function of the size of the simulated microstructure. This size is given in terms of the length of the edge of the
cube of each simulation. The three curves present the results of FE and of the FFT simulations for SUBC and PC,
respectively. The two curves concerning the FFT results are related to the two methods of periodization presented
in Section 4.6, the continuous and the discontinuous ones. The exact volume fraction of carbon black fillers in each
simulation was systematically reported. Since the volume size was fixed and the material random, the carbon volume
fraction can fluctuate from one realization to another. The high volume fraction (>20%) for one of the two realizations
of the smallest microstructure has been retained in order to have a percolated (P) network of carbon black fillers in the
simulation, contrary to the other simulations.

Figure 14 shows that, in general, the mean value of the shear modulus decreases when the size of simulation
increases for the two boundary conditions, SUBC (FE) and PC (FFT). Furthermore, the periodic response is above the
SUBC one, systematically. Both responses are also above the lower Hashin-Shtrikman bound (Hashin and Shtrikman,

TABLE 2: Parameters of simulations of microstructures

600 800 1000
L (nm)

R1 R2 R1 R2 R1 R2

Nb of particles 1364 1311 2203 2241 3951 4061

Nb of aggregates 139 107 255 257 443 309

Nb of dof (×106) 2.5 2.2 3.1 3.6 4.5 4.2
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FIG. 14: Apparent shear modulus as a function of the length of the edge of the simulated cube (nm).

1963) and the experimental shear modulus. The volume fraction of most realizations does not reach the volume
fraction of the material, equal to14%. More realizations per size should be considered to obtain the appropriate value
by averaging. Nevertheless, a linear interpolation of the mean value of the fraction to14% was performed (Fig. 15).

In Fig. 15 the responses for SUBC and PC seem to be stable when increasing the size of generated microstructures.
The macroscopic shear modulus, as computed with the FFT method, is larger for “continuous” models than for the
“discontinuous” model. Furthermore, an increase of particle connections and decrease of the number of aggregates in
the continuous model, compared to the discontinuous model (see Table 1), leads to an increase of the macroscopic
shear modulus. Finally, it was found that the elastic response of the discontinuous model, as computed by FFT, is in
good agreement with FE computations, and as expected is much closer to the latter than the discontinuous model. The
responses may be close to the effective shear modulus.
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FIG. 15: Apparent shear modulus as a function of domain size L (nm) for a volume fraction of14%. Linear interpo-
lation from Fig. 14.
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5.2 Determination of the RVE Size for the Effective Shear Modulus

5.2.1 The Integral Range

To compute the RVE size (Jeulin, 2005; Kanit et al., 2003), the integral range (Matheron, 1971) was determined from
numerical simulations. We consider fluctuations of average values over different realizations of a random medium
inside the domainB with volumeV . In geostatistics, it is well known that for an ergodic stationary random function
Z(x), with mathematical expectationE(Z), one can compute the varianceD2

Z(V ) of its average valuēZ(V ) over the
volumeV as a function of the central covariance functionC(h) of Z(x) (Matheron, 1971) by

D2
Z(V ) =

1
V 2

∫

V

∫

V

C(x− y) dxdy, (26)

where
C(h) = E{[Z(x)− E(Z)] [Z(x + h)−E(Z)]}

For a sufficiently large specimen, Eq. (26) can be expressed to the first order in1/V as a function of the integral range
in the spaceR3, A3, by

D2
Z(V ) = D2

Z

A3

V
(27)

with

A3 =
1

D2
Z

∫

R3
C(h) dh (28)

whereD2
Z is the point variance ofZ(x) (here estimated from the simulations) andA3 is the integral range of the

random functionZ(x), defined when the integral in Eqs. (26) and (28) is finite. The asymptotic scaling law in expres-
sion (27) is valid for an additive variableZ over the region of interestV .

To estimate the effective elasticity tensor by simulations, we have to compute the averages〈σ∼〉 for KUBC or
〈ε∼〉 for SUBC conditions. For the applied boundary conditions the modulus is obtained from the estimations of a
scalar, namel the mean stress or strain field. Therefore the variance of the effective property follows Eq. (27) when
the integral rangeA3 of the relevant field is known. Since the theoretical covariance of the fields (σ∼ or ε∼) is not
available, the integral range can be estimated according to the procedure proposed by Matheron for any random
function (Matheron, 1989): working with realizations ofZ(x) on domainsB with an increasing volumeV (or in the
present case, considering subdomains of large simulations with a wide range of sizes), we can estimate the parameter
A3 by fitting the obtained variance according to expression (27). The point varianceD2

Z of the corresponding field is
directly estimated from the numerical variance of the field.

5.2.2 Practical Determination of the Size of the RVE

When considering a material as a realization of a random set or of a random function, the idea that there exists one
single possible minimal RVE size must be left out. Instead, the size of an RVE can be defined for a physical property
Z, a contrast of properties, and above all, a given precision in the estimation of the effective property, depending on
the number of realizations that one is ready to generate. By means of a standard statistical approach, the absolute error
εabs and the relative errorεrela on the mean value obtained withn independent realizations of volumeV are deduced
from the interval of confidence by

εabs =
2DZ(V )√

n
; εrela =

εabs

E(Z)
=

2DZ(V )
E(Z)

√
n

(29)

The size of the RVE can now be defined as the volume for which for instancen = 1 realization is sufficient to estimate
the mean propertyE(Z) with a relative errorεrela = 1%, provided we know the functionDZ(V ). Alternatively, we
can decide to operate on smaller volumes (provided no bias is introduced by the boundary conditions) and consider
n realizations to obtain the same relative error. In the case of an effective elastic moduli, the exact mean value and
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variance for a given domain size area priori unknown. Using Eq. (29), the absolute error on the mean value can be
evaluated. This methodology was applied to the case of the dielectric permittivity of various random media (Delarue,
2001; Jeulin and Moreaud, 2008) and to the elastic properties and thermal conductivity of a Voronoı̈ mosaic (Kanit et
al., 2003) or of materials from the food industry (Kanit et al., 2006).

In this work, the largest simulations considered for the statistical study are two volumes of1000 and1500 nm
length for SUBC and PC, respectively. For the postprocessing computations, the realization of1000 nm length is
divided up to1000 subvolumesvi (Fig. 16). The statistical dispersion ofσ13 for a shear test according to (x ,z ) axes
is observed. Figure 17 illustrates the evolution of the ratioD2

σ13
(v)/D2

σ13
as a function of elementary volumev (or

equivalently, the number of domainsN in the volumeV , v = V/N ).

FIG. 16: Decomposition of a microstructure of1000 nm edge length into1000 small volumes.
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FIG. 17: Variance of apparent mechanical properties on punctual variance as a function of volume of subdomains.
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The ratioD2
σ13

(v)/D2
σ13

decreases when the size of the subvolumes increases, or equivalently, when the number of
subvolumesN decreases. The expression (27) is fitted on this curve, for large enough volumev, in order to determine
the integral range. The obtained integral ranges are equal toASUBC

3 = 3.0 × 107 nm3 andAPC
3 = 1.06 × 107

nm3 for SUBC and PC, respectively. These values correspond to a cube volume of998 and704 nm of edge length,
respectively. In the case of PC, the resulting integral range is smaller than the volumeV . In the case of SUBC, these
two values are very close. In many works (Kanit et al., 2003; Sab and Boumediene, 2005; Hain and Wriggers, 2008)
it has been observed that the effective property is reached for smaller volumes in the case of PC than for the other
boundary conditions, SUBC, and KUBC. According to the present results, the apparent shear modulus obtained in the
case of PC for the simulated microstructures of1500 nm edge length may be regarded as the effective property for
this rubber filled with14% of carbon black particles. Nevertheless, the SUBC response is not far from the PC one.
Thus the effective shear modulus for SUBC should be reached for slightly larger volumes.

5.3 Local Fields

The local fields were studied in the full volume of a microstructure of1000 nm edge length [Fig. 18(a)] and displayed
on an extracted slice of a thickness of100 nm and with about 30 aggregates which intersect it [Fig. 18(b)].

The first step in the analysis of local fields consisted of looking at stress and strain isovalues in the matrix and in
the aggregates (Fig. 19). The histograms of these values were also displayed in the elastomeric matrix to illustrate the
field fluctuations. Indeed, very high stress/strain gradients were observed in the matrix. The investigated values are
the equivalent von Mises stress and strain:





εMises =
√

2
3
(εdev

ij εdev
ij )

σMises =
√

3
2
(σdev

ij σdev
ij )

(30)

whereε∼
dev andσ∼

dev denote the deviatioric parts ofε∼ andσ∼, respectively. Similarly, the spherical part of the stress
and strain tensors are considered: {

εSph = trace(ε∼)

σSph = trace(σ∼)
(31)

(a) (b)

FIG. 18: The microstructure and the corresponding slice of 100 nm of thickness considered for the local fields
analysis.
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FIG. 19: The aggregates intersecting the studied slice.

Figures 20–23 give the distribution of the trace of stress tensor, the von Mises equivalent stress, the trace of strain
tensor (which is proportional to the pressure), and the von Mises equivalent strain. Each distribution is associated with
the contour maps in the two phases composing the slice. Table 3 gives the mean value and the standard deviation for
each distribution in the elastomeric matrix.

Under SUBC and PC, a shear test leads to a zero global average pressure in the material, or equivalently, to a van-
ishing average trace of strain tensor, even though large pressures can develop locally inside the material. Figure 22(a)
shows the heterogeneous field of the trace of strain tensor in the microstructure due to the interaction of the matrix
with aggregates. Figure 22(b) shows the distribution of the trace of strain tensor in the elastomeric matrix alone. A
χ2 test has proven that the histogram follows a Gaussian distribution. The trace [Fig. 22(b)] varies from−0.01% to
0.01% for a given shearΣ13 = 0.1 MPa. The positive upper values of the trace are located close to the aggregates.
The negative lower values of the trace are located in the matrix far from the aggregates. A study of the trace of the
stress tensor (Fig. 20) leads to the same conclusions. Figures 23(a) and 23(b) show the von Mises strain map in the
slice and the distribution in the elastomeric matrix, respectively. For most cases, the elastomeric matrix around the
aggregates has a very small value of equivalent strain. The mean value of equivalent strain over the matrix is equal
to 4.53 × 10−2. The global value of the equivalent strain is equal to3.97 × 10−2. Thus, the presence of aggregates
amplifies the strain in the matrix. It can be studied by means of two indicators, the local amplification factorAlocal

and the global amplification factorAglobal:

TABLE 3: Mean value and standard deviation of the statistical
distributions in the matrix for a shear test in the(x , z ) direction,
E13 = 0.1

(In the matrix) tr(σ) MPa tr(ε) σMises MPa

Mean value 3.49× 10−3 2.32× 10−5 9.12× 10−2

Standard deviation 0.1 0.0017 0.02

(In the matrix) εMises Σ13 MPa E13

Mean value 4.53× 10−2 3.44× 10−4 1.71× 10−4

Standard deviation 0.02 – –
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FIG. 20: Distribution of trace of stress tensor in the matrix component,〈σSph〉matrix = 3.49×10−3 MPa,∆[tr(σ)] =
0.04 MPa,Σ13−prescribed = 0.1 MPa.

Alocal(x ) =
(εMises)matrix(x )
〈εMises〉matrix

Aglobal =
〈εMises〉matrix

〈εMises〉total
(32)

The local amplification was defined at each point belonging to the matrix as the ratio of the local strain over the mean
strain of the matrix. (For illustration see Fig. 23, showing the fieldεMises in the matrix.) The global amplification
was defined as the ratio of the mean strain in the matrix over the mean strain in the entire microstructure. Another
definition of the global strain amplification was proposed in Bergstrom and Boyce (1998). This definition corresponds
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FIG. 21: Distribution of von Mises equivalent stress in the matrix component,〈σMises〉matrix = 9.12× 10−2 MPa,
∆(σMises) = 5.0× 10−3 MPa,Σ13−prescribed = 0.1 MPa.

to the ratio of local strain in the matrix over the strain of the corresponding unfilled material. Here, amplifications are
studied in terms of the von Mises strain. The maximum local amplification value is close to3. The global amplification
value is equal to1.14. The global amplification is linked to the volume fraction of the fillers. The local amplification
is also linked to the volume fraction but mainly linked to the dispersion of particles and aggregates in the matrix. It is
interesting to identify the matrix zones where the maximum of local amplification is located.
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FIG. 22: Distribution of trace of strain tensor in the matrix component,〈εSph〉matrix = 2.32 × 10−5, ∆[tr(ε)] =
2.0× 10−3, Σ13−prescribed = 0.1 MPa.

6. DISCUSSION

The interpolated effective shear modulus of simulated microstructures slightly overestimated the experimental data
(Table 4). Some possible reasons for that are related to the specific behavior of elastomers. Some works (Leblanc,
2002; Donnet, 2003) assumed that the global mechanical behavior of the composite is mainly affected by the local
behavior of the elastomeric matrix located close to aggregates. The elastomeric matrix located near aggregates may
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FIG. 23: Distribution of equivalent strain,〈εMises〉matrix = 4.53×10−2, ∆[εMises] = 1.4×10−3, Σ13−prescribed =
0.1 MPa.

have stiffer properties than the rest of the elastomeric matrix. The size of this bonded rubber is not controlled inside
the model, and this size may be overestimated by the FE computation. A third phase may be introduced in this area in
the matrix with a particular thickness and physical properties (Marcadon et al., 2007). It is also possible to introduce a
thick layer around the carbon black fillers with weakened properties in order to reduce its apparent physical property.

The second possible reason can be related to the identification of the microstructure model. Indeed, a slight over-
segmentation of particles in aggregates on TEM images has been noticed. This oversegmentation results in aggregates
with more carbon black fillers in binary TEM images than in the experimental ones. The morphological model being
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TABLE 4: Values of interpolated shear modulus to conver-
gence obtained for KUBC and PC, compared to the exper-
imental data and the length corresponding to the integral
range

SUBC PC Exp

Gapp
interp (MPa) 2.4 2.4 1.81

LA3 (nm) 998 704 –

identified on binary TEM images, the aggregates in the simulated microstructure may contain more particles which
are more entangled and thus tend to reinforce the composite. It would be interesting to slightly reduce the volume
fraction of particles in the inclusions in order to decrease the intersection volume between particles. This modification
has to be performed with an increase of the volume fraction of the inclusions in order to keep the global volume
fraction of carbon black fillers constant.

Another material with the same volume fraction of fillers, namely14%, is studied. During material processing,
this material was mixed during twice less time. In order to distinguish this material from the one studied in the last
section, they are calledMt andMt/2, respectively. Figures 24(a) and 24(b) display the experimental TEM images of
the materialsMt andMt/2. The carbon black particles and aggregates of the microstructure of the materialMt/2 are
less dispersed than the ones ofMt. Figure 25(a) shows a simulated microstructure ofMt/2 exhibiting a percolated
network of the particles. Figure 25(b) illustrates the largest percolating aggregate. These carbon black fillers are less
homogeneously distributed than the material studied in the last subsection,Mt. A shear test was performed on this
simulated microstructure. The ratio, from FE simulations, between the shear modulus forMt andMt/2, GMt/GMt/2,
is the same ('10%) as the one obtained experimentally. Thus the present general method seems to be able to account
for the morphological effect associated with material processing. This is not the case of the Hashin-Shtrikman bound,
which provides here a good estimate of the experimental property. The results of the prediction of the shear modulus
of the two considered materials enable us to give a further interpretation of the overestimation. Due to the conditions
of mixing, materialMt/2 is expected to create more occluded elastomer inside carbon black aggregates, resulting in
a higher modulus. It can be suspected that the morphological model slightly overestimates the fraction of occluded
elastomer in both cases, resulting in a higher apparent modulus.

Figure 26 illustrates the two morphological configurations of aggregates in the matrix considered for the local
analysis in the slice. The first case represents the field between two aggregates called A and B. The second case con-
siders the field in the matrix between branches of the same aggregate, B. The elastomer located between the aggregates

(a) (b)

FIG. 24: TEM images of the materialMt (a) and the materialMt/2 (b), micrographs of1500 nm edge length.
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(a) (b)
FIG. 25: Simulation of the materialMt/2 differentiating the aggregates(a) and its percolated network(b).

FIG. 26: Aggregates A and B studied in the local analysis of the field.

A and B was subjected to the strongest local strain amplification, approximatively equal to 3. This phenomenon is
due to the difficulty of the rubber matrix to deform its surrounding aggregates. This rubber is located between the
branches of aggregates where the matrix is compressed [tr(ε∼) ≤ 0]. Indeed, the matrix located between the branches
of aggregate A has a local amplification equal to0.66, whereas the matrix located between the branches of aggregate
B has a local amplification equal to1.33. The matrix located between the branches of aggregate B is less confined than
aggregate A. The structure of the aggregates can definitely have a strong influence on the local mechanical behavior,
locally amplifying the strain/stress in the matrix and thus modifying the global stiffness of the composite.

7. CONCLUSIONS AND PROSPECTS

A method was proposed in this paper to estimate the apparent/effective elastic properties of a rubber with carbon black
nanoparticles from computations of its microstructure. A mathematical model associated with an original method of
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identification was established in order to simulate three-dimensional virtual microstructures. This mathematical model
and the method of identification are explained in detail in Jean et al. (2010).

For the FE method, a meshing algorithm was proposed to take the complex geometry of the heterogeneous media
into account. The obtained mesh requires domain decomposition techniques for parallel computations. Regarding the
highly heterogeneous behavior of the material, special attention was focused on the quality of the three-dimensional
mesh and on the influence of the mechanical contrast between phases on the apparent response. Furthermore, in linear
elasticity, the shear modulus was computed with a Poisson ratio equal to0.49 using a standard FE formulation. In
contrast, the FFT computations could be performed with the actual value of Poisson ratio in the rubber matrix.

For an isotropic linear elasticity behavior, the apparent shear moduli were computed on simulated microstructures
with increasing sizes. Three boundary conditions were used: the KUBC, the SUBC using FE approach, and the PC
using the FFT method. From the statistical approach detailed in Kanit et al. (2003), the integral range was determined
for the SUBC and periodic conditions. It seems that the RVE is reached in the case of PC, in agreement with the com-
putations in Kanit et al. (2003) and Lachihab (2004). The obtained effective value of the shear modulus overestimates
the experimental value. Thus in order to underline the efficiency of the method and the approach, the elastic property
of another material associated with another mixing time was computed. The deviation on shear modulus between this
material and the initial one is similar to the one obtained experimentally. The present general method is able to account
for the influence of the morphology and the material processing.

Finally, an analysis of local fields in the microstructure, submitted to shear loading, was performed in order to
characterize the interaction between aggregates and the elastomeric matrix. The local and global strain amplification
were studied in the matrix. The matrix located between two aggregates seems to be subjected to an increasing strain
amplification when the distance between aggregates decreases.

The next step will be the systematic use of local field analysis to understand the local mechanical phenomena in
each phase and between heterogeneities. For instance, the study of strain and stress amplification can be very useful
to predict local failure for most of the materials. Another step will be to consider a more realistic rubber behavior in
the sense of large deformation loading and high nonlinear mechanical behavior. Numerous difficulties will arise due
to the high nonlinearity of the problem, such as in the case of the domain decomposition method for solving the FE
problem. The use of domain decomposition usually requires use of a remeshing procedure to maintain an acceptable
shape ratio and mesh quality in the domain. Finally, the study of RVE size in the nonlinear context is a challenge for
further studies.
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