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Abstract

It is generally accepted that the Earth’s lowermantle is dominated by twominerals, magnesiowustite (Mg, Fe)O (Mw) and (Mg,

Fe)SiO3 perovskite (Mg-Pv) which are thought to exhibit very different rheological properties. In order to assess the respective role

of those phases in the mechanical properties of the assemblage, we have carried out 3D finite element modelling of a model two-

phase aggregate. An isotropic random polycrystal has been built from a Voronoı̈ mosaic. Then each grain has been attributed a

bhardQ or bweakQ behavior in such away that the hard phase represents a volume fraction of 70%. The creep law introduced for both

phases is a simple power law creep without hardening. A contrast of 35 is chosen between the strain rates of both phases under a

shear stress of 10 MPa. A representative volume element of 470 grains has been shown to provide a satisfactory description of the

mechanical response of the aggregate with a relative precision equal to 3%. Numerical creep experiments conducted under a

constant macroscopic shear stress of 10 MPa suggest that the creep rate of lower mantle assemblages would be dominated by the

mechanical behavior of the harder phase (Mg-Pv). The finite element model allows one to extract the individual behavior of the

two phases within the aggregate. It is shown that during creep, the harder Mg-Pv phase carries most of the stress whereas the softer

Mw phase is responsible for most of the accumulated strain. This result should have implications for the development of shape and

lattice preferred orientations of Mw within the aggregate, thus for seismic anisotropy of the lower mantle.
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Global geodynamics is mostly due to the slow

cooling of the Earth which is achieved through lar-

gescale convection of the hot mantle. Understanding

the rheological properties of the Earth’s interior is thus

a major goal of modern geophysics. It is a formidable
tters 237 (2005) 223–238
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challenge as the deep Earth is largely inaccessible to

direct observation. Whatever the assumption made on

the lower mantle bulk composition (pyrolite [1] or

chondritic [2], for instance), it is likely constituted by

a rock assemblage dominated by a (Mg, Fe)SiO3

phase with a perovskite structure (hereafter referred

to as Mg-perovskite or Mg-Pv) and by (Mg, Fe)O

magnesiowustite (Mw). Some minor amount of a

CaSiO3 perovskite phase is also likely to be present

(with possibly some minor silica component: stisho-

vite) although it will not be considered explicitly in

the following. Mg-perovskite is thus by far the most

important constituent with a volume fraction of the

order of 70%–80%.

The contrast between the elastic properties of Mw

(the softer phase; in this paper, bweakQ or bsoftQ and
bhardQ or bstrongQ will refer to the relative strengths of

the two phases at a given strain-rate and temperature)

and Mg-Pv has led some authors to suggest that their

plastic behavior might have a similar contrast [3]. Mw

is stable under ambient pressure and appears weaker

than most silicates. The rheological properties of Mg-

Pv, which must be studied under extreme P, T condi-

tions, are far less well constrained. High-pressure,

room-temperature experiments have supported the hy-

pothesis that Mw is weaker than Mg-Pv [4,5]. It is

only recently that plastic deformation experiments

have been carried out on Mg-Pv at high-temperature

[6,7]. In situ stress measurements performed at tem-

peratures up to 1073 K further support the idea that

Mg-Pv remains the strongest phase at higher temper-

ature [6]. It is thus commonly accepted that a repre-

sentative lower mantle assemblage can be regarded, to

a first approximation, as a two-phase aggregate con-

stituted mostly by a strong Mg-Pv phase combined

with 30%–40% of a much weaker Mw phase. Many

authors have questioned the respective contributions

of these two components to the rheology of the ag-

gregate. Although it is often assumed that the domi-

nant connected Mg-Pv phase should control the

deformation of the assemblage (e.g. [8]), some authors

suggest that the presence of a much weaker phase

might have a significant effect on the rheology of the

assemblage [3].

The rheology of a polyphase assemblage is com-

plex due to stress and strain partitioning between the

individual constituents. It depends on many factors

including the rheology contrast between the phases,
the volume fractions and the phase distributions

within the aggregate [9–14]. The rheological behav-

ior of the polyphase aggregate is not necessarily

found by averaging between the rheologies of the

individual phases even when they have very compa-

rable characteristics [15]. The simplest modelling

approach consists in assuming that either strain-rate

or stress is homogeneous within the aggregate,

corresponding respectively to the Taylor and Reuss

bounds. The actual response of any real aggregate

must lie within these two rigorous upper and lower

limits. For microstructures with a high contrast of

properties, the Reuss and Taylor models are too far

apart to give a useful estimate of the effective prop-

erties. Tharp [16] suggested that some aggregates

with a strong phase forming an interconnected frame-

work and a much weaker dispersed phase would

behave like porous powder metals. More realistic

information can be obtained by using the viscoplastic

self-consistent (VPSC) approach in which the behav-

ior of each grain is constrained (stress equilibrium

and strain compatibility) by the aggregate as a whole

represented by a homogeneous equivalent medium.

This approach has been shown to provide robust

solutions to the prediction of crystal preferred orien-

tations in rocks (including polyphase aggregates

[17,18]) but corresponds to a very specific morphol-

ogy of the components.

A different approach is to use finite element

modelling which introduces explicitly the morpholo-

gy of the heterogeneous materials being considered

(including phase distributions). Pioneering 2D stud-

ies have already been achieved on polymineralic

assemblages showing the efficiency of the method

[11]. In case of metals, Soppa et al. [19] showed a

good qualitative agreement between experimental

(grating technique) and 2D calculated distributions

of strain fields in Ag/Ni composites. Finite element

modelling is now able to predict the mechanical

properties of 3D aggregates with realistic morpholo-

gies [20–24]. A further advantage is that finite ele-

ment modelling also highlights the heterogeneities

that develop inside the grains. John et al. [25] have

deduced the intra-grain properties in a gamma tita-

nium aliminide alloy from an integrated experimental

and analytical approach. Hartig et al. [26] have

investigated the effects of plastic interaction between

a soft phase (copper) and a hard phase (iron) in two-
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phase mixtures of ductile polycrystalline particles.

The measured quantities (macroscopic stress and

strain, elastic strains and texture) were compared

with the results from 3D finite element calculations.

Stress and strain fields were in reasonably good

agreement with experiments.

The aim of the present work is to design a

generic numerical experiment to address the issue

of the relative importance of Mw and Mg-Pv on the

rheology of their aggregate taking advantage of the

recent progress of 3D finite element modelling. Our

model lower mantle aggregate exhibits the most

simple morphology with both phases having the

same grain size and being distributed homogeneous-

ly within the aggregate. The two phases are charac-

terized by a large rheology contrast with the hard

phase occupying 70% of the volume. The creep

behavior of this aggregate is calculated using the

finite element method. The mechanical response of

the aggregate as well as of individual phases within

it are presented to answer the following questions:

which phase dominates the rheology of the aggre-

gate? How do stress and strain partition between the

two phases?
2. Computational method

In contrast to the bounding or analytical estima-

tion technique, the computational methods introduce

explicitely the morphology of the random heteroge-

neous materials being considered [27]. They rely on

solving boundary value problems on volume ele-

ments of the material. The finite element method is

chosen for the computations presented in this work.

A generic representation of the microstructure of

random materials is chosen, namely the so-called

Voronoı̈ mosaics. The corresponding parameters

used in the finite element simulations of the creep

behavior of a two-phase aggregate are then identi-

fied: mesh size, constitutive equations of the consti-

tuents and boundary conditions.

2.1. Generic representation of the microstructure

Although the aim of this paper is clearly to con-

tribute to a better understanding of the rheology of the

lower mantle, the authors do not pretend to provide a
realistic numerical simulation of an actual lower man-

tle aggregate. The reason is that too much information

is lacking on lower mantle assemblages as well as on

the properties of the constituent minerals. As an illus-

tration, we have no clue as to the microstructures or

grain sizes in the lower mantle. However, absolute

values of grain sizes are not required here since no

intrinsic length scale is introduced in the simulation.

For simplicity, we have decided to start from the

simplest microstructures. The Voronoı̈ mosaic model

is a good candidate since it provides a granular rep-

resentation of the microstructure and since it intro-

duces a random character in the phase distribution

[28]. It is an ideal representation of isotropic random

polycrystals [29,21]. The Voronoı̈ mosaic model

reproduces a random distribution of grains in space

according to a Poisson process, building a Voronoı̈

tesselation of space [29]. It is also possible to super-

impose a constraint of periodicity at the boundary of

the volume in the generation of the Voronoı̈ mosaic as

proposed in [30] and used in [31]. Fig. 1a shows a 3D

Voronoı̈ mosaic obtained by the algorithm proposed in

[21]. Each grey scale corresponds to a different grain.

The phases (hard and soft) are then distributed ran-

domly on the various grains according to a given

volume fraction, which leads to the distribution

shown in Fig. 1b. As a result, both phases have the

same mean grain size at the beginning of the calcula-

tion. In the present study, we have chosen a volume

fraction of 70% for the hard phase (supposed to

represent the Mg-Pv) and 30% for the weak phase

(i.e., Mw).

Fig. 2 shows in 3D the interconnecting character of

both the hard and weak phases. The 3D morphology

of each phase in one configuration of the material is

shown in Fig. 2a. In Fig. 2b (resp. 2c), the phase Mg-

Pv (resp. Mw) only is visible. The Fig. 2d represents

the ensemble of all points in phase Mw that can be

connected to the bottom and top faces of the cube by

lines entirely contained in the phase Mw. As a result,

all isolated parts of phase Mw in Fig. 2c were re-

moved. In this way, we say that a phase is

binterconnectedQ if most of the phase volume (here

in fact 94%) is geometrically connected to the bottom

and top faces of the cube. In our simulated images of

Voronoı̈ mosaics, both phases are interconnected. This

feature will play a significant role in the deformation

of the aggregates.



Fig. 1. (a) 3D microstructure (Voronoı̈ mosaic containing 470

grains), (b) meshing of a two-phase material: 3D Voronoı̈ mosaics

containing 470 grains with 70% of Mg-Pv and 30% of Mw.
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2.2. Properties of the constituents

The constitutive equations used for modelling the

response of the phases Mg-Pv and Mw are based on a

standard elastoviscoplastic framework. The total strain

is decomposed into elastic and plastic parts and Hoo-

ke’s law is adopted:

eij ¼ eeij þ epij; rij ¼ cijkle
e
kl ð1Þ
The creep law introduced for both phases is a simple

power law without hardening:

ėepij ¼ ṗp
3

2

sij

J2 rij

� � ; ṗp ¼
J2 rij

� �
K

� �n

; J2 rij

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sijsij

r
ð2Þ

J2 denotes the second invariant of the stress tensor

and is also called the von Mises equivalent stress.

The deviatoric part of the stress tensor is sij and p

is the cumulative equivalent viscoplastic strain. The

material properties of each phase are thus defined

by the two parameters: K and n. As Mw is stable at

ambient pressure, rheological data are available for

this material (although the actual behavior under

lower mantle conditions might well differ signifi-

cantly from ambient pressure behavior). We have

thus used existing mechanical data from [32] to

determine Kw and nw for the weak phase. More

precisely, Kw was calibrated using a numerical iden-

tification method from the load-stepping tests results

performed at 1400 K (from 33 MPa to 85 MPa),

with increasing and then decreasing loads. These

parameters are given in Table 1. The viscoplastic

behavior of the hard phase is then deduced by

imposing a viscosity contrast. This contrast has to

be high enough for the two phases to have marked

properties, but not too high, otherwise the weak

phase would behave like voids. A contrast of 35

between the strain rates of both phases under a

shear stress of 10 MPa represents a satisfactory

compromise. No crystallographic character is intro-

duced in the model. The local behavior of the

phases is taken to be isotropic. For Mg-Pv, a stress

exponent of n =3.5 is chosen to account for the

behavior observed on analog perovskites [33,8,

34,35]. These constitutive equations are implemen-

ted in the finite element program Z-set [36]. They

are integrated numerically using an implicit Newton

algorithm. Note that the chosen constitutive model

is very simple. In particular, the viscoplastic power

law leads to a locally stable behavior. Such an

approach is not able to capture strain localization

phenomena like unstable shear banding or damage,

in plastic materials.



Fig. 2. (a) 3D representation of the volume (two-phase material, 470 grains), (b) 3D representation of the Mg-Pv phase inside the volume, (c) 3D

representation of the Mw phase inside the volume, and (d) 3D representation of the interconnected parts of the Mw phase.
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2.3. Finite element meshing

The finite element mesh associated with the image

of the microstructure is obtained using the so-called

multi-phase element technique [37,21]. A regular 3D

finite element grid is superimposed on one image of

the Voronoı̈ mosaics. The material property is attrib-
Table 1

Volume fraction and mechanical data for the two phases

Phase Volume

fraction

(%)

n K

(MPa1/n)

E

(GPa)

m

Mg-Pv (hard) 70 3.5 5000 441 0.25

Mw (soft) 30 4 950 307 0.25

K and n are parameters in the creep law used for the viscoplastic

behavior of the two phases.
uted to each integration point according to the color of

the nearest voxel of the image. As a result, two phases

may be present inside some elements. Fig. 1b shows

such a mesh and the distribution of both phases. The

elements are quadratic bricks (20 nodes) with com-

plete integration (27 Gauss points).

The appropriate mesh density, defined as the av-

erage number of elements required for ensuring a

given accuracy in the results of the numerical simula-

tions, must be first determined. For that purpose, a

specific microstructure made of 100 grains is used,

with a volume fraction equal to 70% Mg-Pv and 30%

Mw. Shear creep tests at 1400 K were simulated by

applying a constant macroscopic shear stress
P

12

equal to 10 MPa, with the boundary conditions as

explained in Section 2.4. The number of cells and the

geometry of the microstructure are unchanged but
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different mesh resolutions are used. The number of

finite elements was changed from 100 to 8000 ele-

ments. The results given in Fig. 3 show the conver-

gence of the macroscopic shear Ė12 of the aggregate

as a function of the number of elements. A mesh

density of 17 quadratic elements per grain is necessary

to get a precision of 1% on the mean strain rate. We

verified that this mesh density leads to a convergence

of the local stress and strain fields with a precision of

5%. The largest computations presented in this work

are based on a mesh containing 20�20�20 ele-

ments, with 107,163 degrees of freedom and

216,000 integration points. All computations were

carried out on a single workstation.

2.4. Boundary conditions

The computation cost limits the possible number of

grains that can be handled in the simulation of one

volume element V. In particular, such a limit size may

be smaller than a so-called Representative Volume

Element of the material [31]. In this case, the proper-

ties that can be computed are not necessarily the

desired effective properties but merely apparent prop-

erties of the investigated volume. Kanit et al. [31]

show that one can estimate the effective properties

of heterogeneous materials by computing and averag-

ing the apparent properties of a sufficient number of

volumes containing a given number of grains. This

statistical approach is used in the present work.
Fig. 3. Evolution of Ė12 as a function
The notations used within the context of the me-

chanics of heterogeneous materials are the following

[38]: the local strain and stress fields inside the con-

sidered volume elements are denoted by eij(xk) and

jij(xk). The macroscopic strain and stress tensors are

then defined as the corresponding average values over

each considered volume:

Eij ¼ beijN ¼ 1

V

Z
V

eijdV ; Rij ¼ brijN ð3Þ

In order to investigate the creep behavior of the

heterogeneous material, one must be able to prescribe

a given macroscopic stress tensor Rij to each consid-

ered volume element V. For that purpose, several

types of boundary conditions are available. They are

listed and compared in [31]. The boundary conditions

that lead to the smallest boundary layer effects and

therefore to smaller representative volume elements

are the periodicity conditions. The displacement field

over the entire volume then reads:

ui ¼ Eijxj þ vj 8xiaV ð4Þ

where Eij is the prescribed macroscopic strain tensor.

The fluctuation vi is periodic: it takes the same values

at two homologous points on opposite faces. The

traction vector rijnj takes opposite values at two

homologous points on opposite faces of V. The nu-

merical resolution of this problem within the finite

element context is such that the dual forces associated
of the number of elements (3D).



Table 2

Dispersion of the macroscopic shear rate as a function of the

volume V

V (number of grains) 55 96 150 227 470

n (number of

calculations)

120 140 89 78 25

Mean value ĖE12

P

� 109s�1
� � 6.18 5.83 5.52 5.45 5.51
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to Rij are the components of the macroscopic stress

tensor Eij [39]. Consequently, the periodicity condi-

tions can be used either for prescribing mean strain or

mean stress components. In the present work, all the

simulations were performed by applying a constant

macroscopic shear stress R12 during the creep tests,

the remaining stress components being set to zero.
Variance 2D Ė12

(�109 s�1)

1.41 1.19 0.73 0.58 0.32

erel 4.4% 4.5% 3.5% 2.9% 3.0%
3. Results and discussion

In order to study local and global heterogeneities of

the aggregate during a creep test, we have to consider

a representative volume element of the material. The

first aim of this section is to estimate the size of a

representative volume element for the rock assem-

blage that will contain all the statistical description

of the material. Then, 3D meshed representative

microstructures (Fig. 1b), containing both phases

(Mw (30%) and Mg-Pv (70%)) distributed among

470 grains, are deformed under creep and analysed

in the Sections 3.2, 3.3 and 3.4. The creep test is

simulated by applying a constant macroscopic shear

stress R12 ¼ 10MPa using periodic boundary condi-

tions. First, the macroscopic response of this aggre-

gate is studied. Second, the local behavior of the

phases is analysed. Heterogeneities of stress and strain

fields inside the constituent phases are analysed quan-

titatively. The final subsection focuses on the mor-

phological evolution of the phases during creep in the

case of large strain behavior.

3.1. Determination of the representative volume ele-

ment (RVE)

In this work, the definition of the RVE is based on

statistical arguments. The RVE must ensure a given

accuracy of the estimated property obtained by spatial

averaging of the stress, strain, or the energy fields in a

given domain V. The method of determination of the

size of this RVE is the following. The overall mechan-

ical properties are studied for a large range and number

of volume sizes V, given in Table 2. The convention is

made that the mean volume of one Voronoı̈ cell is 1.

Accordingly, a volume contains in average N =V Vor-

onoı̈ cells. The results are given as a function of

volume V. The investigated mechanical property is

the macroscopic shear strain rate Ė12 obtained for a
prescribed stress component R12 ¼ 10MPa. For each

calculation, the macroscopic shear rate Ė12 is then

computed as the spatial average:

ĖE12 ¼ bėe12N ¼ 1

V

Z
V

ėe12dV ð5Þ

For each volume, n different configurations of the

random microstructure are simulated, containing in

average N =V grains. Generally, there is a dispersion

of the calculated apparent strain rates for all these

configurations since for each volume size the exact

morphology differs from one sample to another. For

larger and larger volumes the dispersion of the esti-

mated apparent property tends to vanish. The evolu-

tion of the obtained mean value ĖE12

P
and variance

DĖ12
of the apparent macroscopic shear rate as a func-

tion of the volume size V are given in Table 2. The

relative error erel on the mean value is also given. In the

statistical theory of samples that can be found for

instance in [40,31], the absolute error eabs and relative

error erel on the mean value of a studied property Z,

obtained with n independent configurations of volume

V, is a function of the variance Dz(V) by:

eabs ¼
2Dz Vð Þffiffiffi

n
p ; erel ¼

eabs

Z¯
ð6Þ

As expected, the dispersion of the results decreases

when the size of the domain increases. The calculated

mean values depend on the volume size and converge

towards the same limit for large volumes, which can

be regarded as the desired effective response of the

material. The microstructure containing 470 grains is

the one for which the dispersion of the results is the

weakest. In this case, the relative precision on the

mean value is equal to 3%. We choose this precision

for the subsequent analysis of the effective material

properties and the results obtained with 470 grains are
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analysed systematically in the succeeding portions of

the paper.

3.2. Macroscopic creep behavior of the aggregate

For a given aggregate containing 470 grains, the

computed shear strain rate Ė12
FE averaged over the

aggregate is given in Table 3 and compared to the avail-

able analytical Taylor and Reuss models. The Taylor

model assumes homogeneous strain inside the aggre-

gate whereas the Reuss model assumes homogeneous

stress. For comparison, the expected strain rates in

each phase, if it were alone and submitted to the

same load, are also given. These values are called

Ė12
Mg-Pv bulk and Ė12

Mw bulk, respectively. The numeri-

cal result is closer to the Taylor bound than to the

Reuss bound. It can be noticed that

ĖEFE
12

ĖE
Mg�Pv bulk
12

¼ 2:3;
ĖEMw bulk
12

ĖEFE
12

¼ 20 ð7Þ

It turns out that the mechanical behavior of the

aggregate is closer to the one of Mg-Pv than to Mw.

This result is due to the fact that the Voronoı̈ model is

such that both phases are interconnected inside the

volume for the given volume fractions. 3D represen-

tations of the Mg-Pv and Mw phases inside the vol-

ume are given in Fig. 2. The interconnected part of the

Mg-Pv phase represents a hard skeleton which pre-

vents unlimited deformation along the loading direc-

tion. As a result, deformation in the soft phase remains

limited and does not localize into shear band for

instance. The precise contributions of the individual
Table 3

Average shear strain rates Ė12 for
P

12 ¼ 10MPa

Model Ė12

(�109 s�1)

Bulk magnesiowustite Ė12
Mw bulk 110

Reuss approach Ė12 35

Magnesiowustite within the aggregate

(FE) Ė12
Mw FE

8.7

Aggregate (FE) Ė12
FE 5.8

Perovskite within the aggregate

(FE) Ė12
Mg-Pv FE

4.8

Taylor approach Ė12 5.0

Bulk perovskite Ė12
Mg-Pv bulk 2.5

FE stands for Finite Element simulation.
phases to the mechanical behavior of the aggregate is

analysed in the next section.

3.3. Individual behavior of the two phases within the

aggregate

3.3.1. Average response of the phases

The average stress and average strain of each

phase in the computed aggregate are respectively

denoted by RMg�Pv FE
12 ; RMw FE

12 ;EMg�Pv FE
12 ;EMw FE

12 :
They are plotted in Fig. 4 as a function of time. The

load R12 ¼ 10MPa is imposed on the volume within

1 s. Two stress regimes are visible in Fig. 4a:

! The first one is a transient stage and corresponds to

a redistribution of the local stresses in the phases.

The instantaneous response of the phases is elastic

so that both phases start with stress values close to

10 MPa at t =1 s. Afterwards, the shear stress level

increases significantly in the hard phase Mg-Pv and

decreases in the soft phase Mw. The duration of the

transient is about 3000 s for both phases.

! The second one is a steady-state creep regime

characterized by a constant mean shear stress

level in both phases. This asymptotic mean shear

stress is found to be more than twice higher in Mg-

Pv than in Mw.

The time evolution of mean shear strain compo-

nents is presented in Fig. 4b. It turns out that the

macroscopic shear of the aggregate is closer to the

response of the Mg-Pv phase than to that of Mw.

Primary creep is very short (b500 s) in Mw and

secondary creep is dominant for both phases. The

corresponding steady strain rate values are given in

Table 3. There is a factor of 13 between the shear

strain rate of Mw if it were alone and its shear strain

rate Ė12
Mw FE within the aggregate, whereas for Mg-

Pv, this factor is equal to 2. Furthermore, inside the

aggregate, the phase Mw deforms more than twice as

fast as the phase Mg-Pv:

ĖEMw bulk
12

ĖEMw FE
12

¼ 13;
ĖE
Mg�Pv FE
12

ĖE
Mg�Pv bulk
12

¼ 1:9;

ĖEMw FE
12

ĖE
Mg�Pv FE
12

¼ 1:8 ð8Þ



Fig. 4. (a) Applied macroscopic stress and average stress in the phases versus time, (b) macroscopic shear strain and average shear strain in the

phases versus time.
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As a result, it can be said that, during creep, the

Mw phase is responsible for most of the accumulated

strain whereas the phase Mg-Pv carries most of the

stress. The main contribution of the model is to esti-

mate the ratios of the different contributions of the

phases to stress and strain.

3.3.2. Statistical analysis of intraphase fields

The Finite Element simulations provide us with a

detailed description of local stress and strain inside

the phases, as illustrated by the von Mises equiva-

lent stress maps of Fig. 5 and the strain map of Fig.

6. At the beginning of the transient regime, stress is

rather homogeneous in the material (Fig. 5a). The

soft phase then undergoes significant stress relaxa-
tion whereas the hard phase hardens. The steady

stress state is shown on Fig. 5b and can be com-

pared with the transient one of Fig. 5a. The fact

that the stress is high in almost all Mg-PV grains is

related to the interconnected morphology of the

phase which can carry all the load. The strain

map of Fig. 6 shows that high strain is distributed

over all soft grains (see Fig. 1b). This, however,

cannot be interpreted as strain localization, this term

being reserved to unstable behavior like in shear

banding.

An important feature of the simulations is the

tremendous local heterogeneities found for both

stress and strain in the aggregate. Indeed, the min-

imum and maximum local equivalent stress / strain
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Fig. 5. Contour of von Mises equivalent stress (in MPa): (a) transient regime (at t =400 s), (b) steady state (at t =30,000 s). The macroscopic

shear stress R12 ¼ 10MPa was applied.

K. Madi et al. / Earth and Planetary Science Letters 237 (2005) 223–238232



x

y

z

0.00011 0.00015 0.00019 0.00022 0.00026 0.00029 0.00033

1

2
3

Fig. 6. Contour of equivalent plastic strain p at t =30,000 s.

K. Madi et al. / Earth and Planetary Science Letters 237 (2005) 223–238 233
values in the maps of Figs. 5 and 6 are 5.7 MPa /

10�5 and 33.5 MPa /10�3, respectively, for the

mean prescribed shear stress / strain of 10 MPa /

2.2�10�4. This heterogeneity can be compared to

that computed in the grains of a polycrystalline FCC

metal in [22], where the crystallography was taken

into account. In the latter reference, the polycrystal

was deformed in tension at low temperature. De-

tailed stress and strain distributions inside individual

grains can be found in [22]. In the present work, we

concentrate on histograms of stress and strain that

can be deduced from the simulations. The histo-

grams for stress component r12 in Mg-Pv and in

Mw are given in Fig. 7a and b, respectively. They

are given at different times in the transient and

steady state stages. Such histograms are obtained

by storing the r12 / q̇12 components at all integration

points inside one given phase at a given time. The
studied mesh of the microstructure contains 216,000

integration points: 155,631 in the Mg-Pv phase and

60,369 in the Mw phase. These values are then

ranked to construct the desired stress / strain distribu-

tion functions for each individual phase. The fre-

quency represents the volume fraction of each phase

where the local shear stress takes the value

r12FDr12 on the horizontal axis, where Dr12=0.1

MPa is the class interval size. The corresponding

histograms for the strain rate ė12 are presented in

Fig. 8. These histograms were obtained with a class

interval size of Dė12=10
�9 s�1. The following state-

ments can be made from the analysis of the calcu-

lated histograms:

! All the curves are bell-shaped, and they are sym-

metric with respect to the mean value, except the

strain rate distributions at the beginning of the



Fig. 7. Distribution of local stress versus time: (a) Mg-Pv, (b) Mw. The frequency represents the volume fraction of each phase where the

local shear stress takes the value r12FDr12 on the horizontal axis. These histograms were obtained with a class interval size of

Dr12=0.1 MPa.
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transient regime (Fig. 8). Each distribution is char-

acterized by its mean value and its standard devi-

ation. The mean value is almost equal to the

corresponding average field (shear stress or shear

rate, see Table 3). The Gaussian character of the

distribution was analysed using the kurtosis param-

eter defined as

k ¼ E x� x̄ð Þ4

r4
ð9Þ

where r is the standard deviation, x̄ is the mean of

x. The kurtosis of a normal distribution is 3. The
values found for the distributions presented in this

work range from 3.3 to 3.5.

! In the Mg-Pv phase, the local stress distribution

progressively spreads out as a function of time and

reaches a steady state distribution that changes

only slightly from time t=5000 s to t =30,000 s.

This is not the case for Mw (see Fig. 7b) where the

shape of the local stress distribution remains al-

most invariant.

! The strain rate distribution in both phases evolves

considerably from the transient to the steady

state. The initial strain rate distribution is rather

flat and non-symmetrical. During the transient



Fig. 8. Distribution of local strain-rate versus time: (a) Mg-Pv, (b) Mw. The frequency represents the volume fraction of each phase where the

local shear strain rate takes the value ė12FDė12 on the horizontal axis. These histograms were obtained with a class interval size of

Dė12=10
�9 s�1.
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regime, the mean value varies only slightly

whereas the variance decreases dramatically. The

initial flat distribution goes from negative to pos-

itive strain rate values as high as 2.10�7 s�1. In

contrast the final distribution lies in the positive

strain rate domain.

In summary, stress tends to become more homo-

geneous in phase Mg-Pv than in phase Mw. This

leads to a huge scatter of viscoplastic strain rates

inside Mw.

We have checked that the calculated distributions

do not depend on the specific morphology of a

volume element containing 470 grains. Ten random-
ly generated aggregates having 470 grains and about

the same volume fractions of constituents were ana-

lysed along the previous lines. The corresponding

stress distributions in both phases are given in Fig.

9. The distribution functions have the same shape

for all simulations. The transient regime depends on

the specific morphology and shows some scatter.

However, the final stress distribution is robust as it

does not differ from one aggregate to the other.

Such histograms obtained experimentally based on

strain field measurement methods are available in

literature only for polycrystals at low temperature

[41]. They confirm the bell-shaped distributions

found in this work.



Fig. 9. Local stress distribution at different times for 10 different aggregates: (a) in the Mg-Pv phase, (b) in the Mw phase. The frequency

represents the volume fraction of each phase where the local shear stress takes the value r12FDr12 on the horizontal axis. These histograms

were obtained with a class interval size of Dr12=0.1 MPa.
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3.4. Large strain behavior

Some finite element simulations of compression on

the previous aggregates were also performed using a

large strain formulation of the elastoviscoplastic equa-

tions. In order to reduce cost calculations, we decided

to work on a microstructure containing 227 grains.

Hooke’s law (1) is replaced by a Jaumann rate equa-

tion for the stress [42]:

rJ
ij ¼ ṙrij þ rikWkj �Wikrkj ¼ cijklD

e
kl ð10Þ

The exponent J denotes the Jaumann derivative.

The spin tensor Wij is the anti-symmetric part of the
velocity gradient. Dij
e is the tensor of elastic strain

rate. The aim is to determine the evolution of mor-

phology changes during compression creep starting

from the previous isotropic Voronoı̈ phase distribu-

tion. After 15% overall compression strain, local

strains inside the soft phase are as high as 53%.

The corresponding geometry of the phase in Fig.

10 clearly shows that the soft grains tend to deform

into pancakes. Systematic analysis at larger strains is

necessary to predict the final morphology of the

deformed two-phase material which may well be

strongly anisotropic. If such high strain morpholo-

gies can be determined, the previous analysis of
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Fig. 10. Morphology changes during compression creep (overall

compression strain: 15%), white color: Mw, grey color: Mg-Pv, (a)

initial state, (b) deformed state.
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stress / strain distribution should be performed again

using more realistic microstructures than the generic

one used in the present work.
4. Conclusions and prospects

This paper presents 3D simulations of creep in a

two-phase aggregate, aimed at casting light on the

mechanical behavior of a model lower mantle assem-

blage. Our goal was to perform a generic numerical

experiment to assess the role of the hard (and major)

and soft (and minor) phases. It appears that the rhe-

ology of the aggregate is dominated by the hard phase

which forms a load-bearing framework. A conse-

quence of the existence of a hard Mg-Pv skeleton is

that the hard phase limits the overall deformation. It is

interesting to note that the behavior of the aggregate is

closer to the Taylor bound than to the Reuss bound.
The present study concludes that the rheology of Mg-

Pv is the key parameter that controls the rheology of a

lower mantle assemblage. On the other hand, most

strain is produced within the weak phase (Mw).

Hence, our starting microstructure (with both phases

having the same morphologies and grain sizes) is not

stable to high strains. Our preliminary large strain

calculations suggest that Mw grains undergo signifi-

cant flattening which tends to produce layering. This

is an important result as shape preferred orientation

can induce seismic anisotropy [43].

The question of a possible additional contribution

of lattice preferred orientation to seismic anisotropy

depends on the actual deformation mechanism acti-

vated into Mw (diffusion- or dislocation-creep).

Without any reliable information on the grain sizes

in the mantle, it is not possible so far to make any

conclusion on this issue. It is also necessary in the

future to incorporate additional mechanisms like

grain boundary migration or dynamic recrystalliza-

tion to account for the microstructure evolution in a

more realistic way.
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