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a b s t r a c t

The solutions of a boundary value problem are explored for various classes of generalised

crystal plasticity models including Cosserat, strain gradient and micromorphic crystal

plasticity. The considered microstructure consists of a two-phase laminate containing a

purely elastic and an elasto-plastic phase undergoing single or double slip. The local

distributions of plastic slip, lattice rotation and stresses are derived when the

microstructure is subjected to simple shear. The arising size effects are characterised

by the overall extra back stress component resulting from the action of higher order

stresses, a characteristic length lc describing the size-dependent domain of material

response, and by the corresponding scaling law ln as a function of microstructural length

scale, l. Explicit relations for these quantities are derived and compared for the different

models. The conditions at the interface between the elastic and elasto-plastic phases are

shown to play a major role in the solution. A range of material parameters is shown to

exist for which the Cosserat and micromorphic approaches exhibit the same behaviour.

The models display in general significantly different asymptotic regimes for small

microstructural length scales. Scaling power laws with the exponent continuously

ranging from 0 to �2 are obtained depending on the values of the material parameters.

The unusual exponent value �2 is obtained for the strain gradient plasticity model,

denoted ‘‘curl Hp’’ in this work. These results provide guidelines for the identification of

higher order material parameters of crystal plasticity models from experimental data,

such as precipitate size effects in precipitate strengthened alloys.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Classical continuum crystal plasticity theory incorporates internal variables associated with scalar dislocations
densities in order to describe the hardening behaviour of single crystals and polycrystals (McDowell, 2008). The modelling
of size effects observed in crystalline solids, such as grain or precipitate size effects, has been addressed by adding strain
gradient variables into the constitutive framework, either in an explicit way as in Acharya and Beaudoin (2000), Busso et al.
(2000) and Bassani (2001) or by means of additional degrees of freedom associated with new boundary and interface
conditions (Forest et al., 1997; Shu, 1998). Motivations for introducing strain gradients in continuum modelling stem from
the multiscale analysis of micromechanics, as reviewed in Ghoniem et al. (2003). The resulting strain gradient components
are related to the dislocation density tensor as introduced by Nye (1953). The dislocation density tensor is computed from
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the rotational part of the gradient of plastic deformation, so that the partial differential equations to be solved generally are
of higher order than those used in classical mechanics. That is why it is usually necessary to resort to the mechanics of
generalised continua in order to properly formulate models that incorporate extra-hardening effects associated with the
dislocation density tensor. Generalised crystal plasticity models developed in the past forty years can be classified into two
main groups:

� Strain gradient plasticity models involving either the rotational part of plastic deformation or its full gradient (Aifantis,
1984, 1987; Steinmann, 1996; Fleck and Hutchinson, 1997; Gurtin, 2002; Cheong et al., 2005; Lele and Anand, 2008),
� Generalised continuum theories with additional degrees of freedom accounting for rotation or full deformation of a

triad of crystal directors and the effect of their gradients on hardening: Cosserat models (Kröner, 1963; Forest et al.,
2000; Clayton et al., 2006), and models based on micromorphic theory (Eringen and Claus, 1970; Bammann, 2001).

Most of these phenomenological theories have been shown to capture size effects at least in a qualitative way. However,
clear demonstrations that they can reproduce the scaling laws expected in precipitate hardening or grain size effect,
namely Orowan and Hall-Petch laws, have not been yet provided.

The extra-hardening effects predicted by generalised continuum crystal plasticity models can be summarised in the
main features identified in Fig. 1, which shows schematically in a log–log diagram the effect of the microstructural length
scale l (grain or precipitate size) on flow stress. These three main characteristics are the stress range, DS, the characteristic
length, lc, and the scaling law, Spln when l� lc . Here, DS also corresponds to the highest overstress reached for small
microstructural length scales, that is why DS is also called the extra-stress in this work. Fig. 1 shows that when the
characteristic size of the microstructure decreases, the material strengthens. For large values of l, the asymptotic behaviour
corresponds to the size-independent response of conventional crystal plasticity models. In contrast, for small values of l, a
bounded or unbounded asymptotic behaviour can be obtained, depending on the model considered. The Cosserat crystal
plasticity model proposed by Forest et al. (2000), for instance, predicts an asymptotically saturated extra-stress DS
(see Fig. 1). In the intermediate region around the characteristic length lc, the size-dependent response can be characterised
by the scaling law, Spln, in the proximity of l= lc. The objective of the present work is to derive explicitly the characteristics
DS, lc and n, for models representative of the above classes of generalised material models.

An analytic description of the size-dependent behaviour of materials is possible only in some special simplified
geometrical situations. For instance the prediction of the shearing of a single crystal layer under single (or double) slip for
strain gradient plasticity models was treated in Shu et al. (2001), Bittencourt et al. (2003), Bardella (2007) and Hunter and
Koslowski (2008). Single slip in a two-phase laminate microstructure was considered in Sedláček and Forest (2000), Forest
and Sedláček (2003) and Forest (2008). Here, the plastic slip distributions were compared with those obtained from the
continuous dislocation line tension model, considered as a reference, and Cosserat and strain gradient plasticity models,
including that proposed by Aifantis (1987). This simple situation is considered again in the present work in order to derive
explicit expressions for the overall extra-hardening, the characteristic length scale lc and the S�l scaling law, which had
not been done in the previous work.
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Fig. 1. Description of two different profiles of the macroscopic flow stress that can be obtained with the different groups of models: size effect with two

asymptotic regimes (solid line), unbounded extra-stress for small sizes (dotted line), definition of the scaling law in the transition domain (dot-dashed line).
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In the crystal plasticity theory at small deformation, the gradient of the velocity field can be decomposed into the elastic
and plastic deformation rates:

H
:

�
¼ _u �=¼H

:

�

e
þH

:

�

p
, ð1Þ

where

H
:

�

p
¼
X
a
_gala � na, ð2Þ

with u the displacement field, a the number of slip systems, _ga the slip rate for the slip system a, l the slip direction and n
the normal to the slip plane. The elastic deformation H

�

e bridges the gap between the compatible total deformation H
�

and
the incompatible plastic deformation H

�

p. Applying the curl operator to a compatible field gives zero so that

curl H
:

�
¼ 0¼ curl H

:

�

e
þcurl H

:

�

p
: ð3Þ

The incompatibility of plastic deformation is characterised by its curl part called dislocation density tensor C
�

(Nye, 1953;

Steinmann, 1996; Forest et al., 1997; Acharya and Bassani, 2000; Cermelli and Gurtin, 2001; Svendsen, 2002) defined here as

C
�
¼�curl H

�

p
¼ curl H

�

e: ð4Þ

The tensors H
�

,H
�

e,H
�

p, generally non-symmetric, can be decomposed into their symmetric and skew-symmetric parts:

H
�
¼ e
�
þx
�

, H
�

e
¼ e
�

eþx
�

e, H
�

p
¼ e
�

pþx
�

p: ð5Þ

Then Eq. (3) becomes

0¼ curl e
�

eþcurlx
�

eþcurl H
�

p: ð6Þ

Neglecting the curl part of the elastic strain, e
�

e, leads to the following approximation to the dislocation density tensor derived

by Nye:

C
�
¼ curl H

�

e
¼ curl e

�

eþcurlx
�

eCcurlx
�

e: ð7Þ

Nye’s formula sets a linear relationship between this approximation of the dislocation density tensor and lattice curvature.
The Cosserat crystal plasticity theory developed in Forest et al. (1997) incorporates the effect of lattice curvature on crystal
hardening behaviour. It requires three additional degrees of freedom associated with the lattice rotation x

�

e. In contrast, the

theories proposed by Gurtin (2002) and Svendsen (2002), for example, include the full curl of the plastic deformation. This
requires in general nine additional degrees of freedom associated with the generally non-symmetric plastic deformation

tensor H
�

p. We will call this sub-class of models ‘‘curl Hp’’ .

A consequence of neglecting the curl of elastic strain tensor in the Cosserat model is that Cosserat effects can arise even
in the elastic regime as soon as a gradient of ‘‘elastic’’ rotation exists. Indeed, the curlx

�

ea0 as soon as curl e
�

ea0. In
contrast, in the curl Hp theory, strain gradient effects arise only when plastic deformation has developed. As it will be
shown in this work, this leads to different predicted behaviour at the interface between an elastic and a plastic phase.

The work presented there is organised as follows. Strain/stress fields and the back stress in a laminate microstructure,
made of a hard elastic and a soft plastic phase, submitted to simple shear are derived for the Cosserat theory in Section 2
and for a ‘‘curl Hp’’ type model in Section 3. It will be shown that a jump in the generalized tractions arises at the interface
according to the latter approach, due to the presence of a purely elastic phase. A regularisation method is proposed in
Section 4 by introducing a model, called microcurl, that falls into the class of generalised continua with additional degrees
of freedom. A comparison of the size effects predicted by the Cosserat and microcurl models is presented in Section 5. In
Section 6, we discuss how our results could be used to identify strain gradient plasticity parameters from experimentally
observed size effects, such as precipitate size effects in two-phase single crystal nickel based superalloys published by
Busso et al. (2000), Forest et al. (2000) and Tinga et al. (2008). The solution is finally extended to the case of symmetric
double slip. It is shown that very similar size effects as those for the single slip case are found, opening the way to further
multislip generalisations of the models. The notation used hereafter is given in Appendix A.

2. Cosserat modelling of simple shear in a two-phase laminate

Simple shear of a two-phase laminate was considered first in Sedláček and Forest (2000) and then explored in more
details in Forest and Sedláček (2003) and Forest (2008) from the point of view of the continuum theory of dislocations, on
the one hand, and for Cosserat and strain gradient continuum plasticity models, on the other hand. Analytic solutions of the
boundary value problem were derived for the stress, strain and plastic slip profiles in the microstructure. According to
the Cosserat model presented in Forest (2008), a back stress intrinsically arises from the skew symmetric contribution
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of the stress and orientation tensors, when writing Schmid law. The objective of this section is to recall the main features of
the Cosserat approach, and to derive the main characteristics of the size effect, given by the maximum stress amplitude,
DS, the characteristic length scale of the transition zone, lc, and the scaling law exponent, n.

2.1. The Cosserat formulation

A Cosserat continuum is described by a displacement field u and an independent micro-rotation field, represented by its
axial vector, /. Two deformation measures are then defined:

e
�
¼ u �=þe

�
�/, eij ¼ ui,jþEijkfk, ð8Þ

j
�
¼/ �=, kij ¼fi,j, ð9Þ

where e
�

represents the relative deformation tensor and j
�

the curvature tensor. The stress tensors associated with the
previous deformation and curvature are the force stress tensor, r

�
, and the couple stress tensor, m

�
. Both have to fulfil the

balance of momentum and balance of moment of momentum equations:

divr
�
¼ 0, sij,k ¼ 0, ð10Þ

div m
�
þ2r
�
¼ 0, mij,j�Eijksjk ¼ 0: ð11Þ

Note that volume forces and couples are not considered for simplicity. In Eq. (11), r
�

is the axial vector associated with the
skew-symmetric part of the stress tensor,

r
�
¼�

1

2
e
�
: r
�
: ð12Þ

Moreover, the boundary conditions for the traction and couple stress vectors are

t ¼ r
�
:n, ti ¼ sijnj, ð13Þ

m ¼m
�
:n, mi ¼mijnj, ð14Þ

where n is the unit normal vector to the boundary of the considered domain. The deformation can be decomposed into its
elastic and plastic parts,

e
�
¼ e
�

eþH
�

p: ð15Þ

Plastic deformation is due to slip processes and the evolution of H
�

p is still given by Eq. (2). The constitutive equations for
isotropic Cosserat elasticity can be expressed as

r
�
¼ lðtr e

�

eÞ1
�
þ2me

�

esþ2mce
�

ea, ð16Þ

m
�
¼ aðtr j

�
Þ1
�
þ2bj

�

sþ2gj
�

a, ð17Þ

where l and m are the classical Lamé constants, and mc , a, b and g are four additional elastic constants. In a 2D situation,
as it is the case in this work, the constant a is not relevant and we choose b¼ g for simplicity. The size effects exhibited
by the solutions of boundary value problems involving such a model are related to an intrinsic length scale, typically defined as

lo ¼

ffiffiffiffi
b
m

s
: ð18Þ

In the present work, the constraint

m=mc 51 ð19Þ

is enforced. This condition implies that e
�

e is almost symmetric and therefore means that the Cosserat micro-rotation almost
coincides with the lattice rotation. The parameter mc can be seen as a penalty factor that constrains the Cosserat directors
to be lattice vectors (Forest et al., 2001). The curvature tensor j

�
is then directly related to the curl x

�

e through Nye’s formula
(Forest, 2008). It follows that the curvature tensor of the Cosserat theory stands as an approximation to the dislocation
density tensor.

Here the Schmid criterion is used as the yield criterion, computed with the generally non-symmetric force stress tensor.
Furthermore, the critical resolved shear stress, tc , is taken to be constant for the analytic developments of this work (thus
no strain-hardening is considered). The generalised resolved shear stress for the slip system a, defined by its slip plane
normal vector na, and its slip direction vector la, is obtained from

ta ¼ r
�
: P
�

a
¼ r
�

s : P
�

as
þr
�

a : P
�

aa
¼ tasym�xa, ð20Þ
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where P
�

a
¼ la � na is the orientation tensor. The first term in the generalised resolved shear stress is the classical resolved

shear stress tasym. The second term is a back stress, xa, which is related to the divergence of the couple stress tensor.
Recalling Eq. (11):

xa ¼�
1

2
ðdiv m

�
Þ � ðla � naÞ: ð21Þ

The slip system is activated when the resolved shear stress reaches the threshold, tc , so that the yield criterion reads

jtaj ¼ jtasym�xajrtc: ð22Þ

It has been shown in Forest (2008) that this back stress component leads to linear kinematic hardening in single slip under
simple shear.

2.2. Application to a two-phase periodic microstructure under simple shear

We consider a two-phase periodic microstructure under simple shear as studied in Forest and Sedláček (2003) and Forest
(2008). This microstructure, described in Fig. 2, is composed of a hard purely elastic phase (h) and a soft elasto-plastic single
crystal phase (s). One single slip system is considered in the soft phase (s), with slip direction normal to the interface plane
(h)/(s). This periodic unit cell is subjected to a mean simple glide g in the crystal slip direction of the phase (s). We look for a
displacement and micro-rotation fields of the form

u1 ¼ gx2, u2ðx1Þ ¼ uðx1Þ, u3 ¼ 0, ð23Þ

f1 ¼f2 ¼ 0, f3 ¼fðx1Þ: ð24Þ

Consequently, the Cosserat deformation and curvature tensors become

e
�
¼

0 gþfðx1Þ 0

u,1�fðx1Þ 0 0

0 0 0

2
64

3
75, j

�
¼

0 0 0

0 0 0

f,1 0 0

2
64

3
75 ð25Þ

The solution for / in the elastic phase (h) can be found in Forest and Sedláček (2003). The micro-rotation exhibits a
hyperbolic profile, given by

fðhþÞ ¼ ahcosh oh x1�
sþh

2

� �� �
þdh for s=2oxoðsþhÞ=2, ð26Þ

fðh�Þ ¼ ahcosh oh x1þ
sþh

2

� �� �
þdh for �ðsþhÞ=2oxo�s=2, ð27Þ

with

oh2
¼

2mhmh
c

bh
ðmhþmh

c Þ
, ð28Þ

and with ah and dh being two integration constants. The following relations are obtained for the deformation tensor:

eðhþÞ21 ¼�
mh�mh

c

mhþmh
c

fhþ
þgþdh 2mh

mhþmh
c

, ð29Þ

eðh�Þ21 ¼�
mh�mh

c

mhþmh
c

fh�
þgþdh 2mh

mhþmh
c

: ð30Þ

γ

h
2

h
2

γ

l

1

2

O

n

s

(s)(h−) (h+)

Fig. 2. Single slip in a two-phase periodic microstructure under simple shear: the grey phase (h) displays a purely linear elastic behaviour whereas the

inelastic deformation of the white elasto-plastic phase (s) is controlled by a single slip system ðn ,lÞ.
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In the plastic phase, the solution is derived here for the yield criterion (22). We compute successively,

e
�

p ¼ gl � n ¼

0 g 0

0 0 0

0 0 0

2
64

3
75, e

�

e ¼

0 ee
12 0

ee
21 0 0

0 0 0

2
64

3
75, ð31Þ

which results into two non-zero components for the stress tensor,

s12 ¼ msðee
12þee

21Þþm
s
cðe

e
12�ee

21Þ, ð32Þ

s21 ¼ msðee
12þee

21Þþm
s
cðe

e
21�ee

12Þ, ð33Þ

and one non-zero component for the couple-stress tensor,

m31 ¼ 2bsk31: ð34Þ

The balance equations yield

s21 ,1 ¼ 0, ð35Þ

m31 ,1�ðs12�s21Þ ¼ 0: ð36Þ

The resolved shear stress is given by

t¼ r
�
: P
�
¼ s12: ð37Þ

Combining Eqs. (35)–(37) and the yield condition (22), we obtain the following equation for the micro-rotation axial vector in
the (s) phase

fs
,111 ¼ 0: ð38Þ

The integration of Eq. (38) leads to a parabolic profile for fs

fs
¼ asx2

1þds, ð39Þ

where as and ds are two integration constants.
The determination of the four integration constants, as, ds, ah, dh, is done after taking interface and periodicity boundary

conditions into account:

� Continuity of f at x1=s/2:

as s2

4
þds ¼ ahcosh oh h

2

� �
þdh: ð40Þ

� Continuity of m31 at x1=s/2:

bsass¼�bhahohsinh oh h

2

� �
: ð41Þ

� Continuity of s21 at x1=s/2 in the phase (s),

s21 ¼m31,1þs12, ð42Þ

which implies that

s21 ¼ 4bsasþtc : ð43Þ

In the phase (h), one finds that

s21 ¼ mhðgþfþe21Þþmh
c ðgþf�e21Þ ¼ 2mhðgþdhÞ: ð44Þ

Combining the two previous equations, we obtain

4bsasþtc ¼ 2mhðgþdhÞ: ð45Þ

� Periodicity of u2. We use the property /e21S¼/u,1�fS¼�/fS.

In the phase (h), one finds

e21 ¼
2mh

c

mhþmh
c

ahcosh oh x1�
sþh

2

� �� �
þgþ2dh, ð46Þ

and in the phase (s):

e21 ¼ ee
21 ¼

tc

2m
þ
bsasðmsþms

cÞ

msms
c

, ð47Þ
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which gives the following relationships between the integration constants:

s
tc

2m
�
bsasðmsþms

cÞ

msms
c

þds

� �
þas s3

12
þ

4mh
c ah

mhþmh
c

sinh oh h

2

� �
þhð2dhþgÞ ¼ 0: ð48Þ

By solving Eqs. (40)–(48) analytically, the following expression for the constant as is obtained:

as ¼

g� tc

2mh
fsþ2ð1�fsÞþ fs

mh

ms

� �
�

f 3
s
6 l2�bs f 2

s

bhoh
lcoth ohlð1�fsÞ

2

� �
�bs fs

msþms
c

msms
c
þ 4

mh

� � : ð49Þ

In Eq. (49), fs represents the fraction of phase (s), fs=s/l. The remaining constants can be determined in terms of as:

ah ¼
�sbsas

bhohsinh ohh
2

� � , ð50Þ

dh ¼�
4bsas�tc

2mh
�g, ð51Þ

ds ¼�
4bsas�tc

2mh
�g� sbsas

bhoh
coth oh h

2

� �
�as s2

4
: ð52Þ

Fig. 3 illustrates the micro-rotation profile in the two-phase laminate for a fraction of phase (s) equal to 0.7, and for three
different sets of material parameters. The first one clearly shows the continuity of the micro-rotation at the interface while
the two others, introducing a stronger mismatch between the two phases, show sharper profiles at the interfaces. The set
of material parameters (a) has been chosen in order to clearly show the parabolic profile in the soft phase and the
hyperbolic one in the hard phase. Note that if l is changed into l/10, values of bh,s=100 will provide the same curves.

3. Strain gradient plasticity: the ‘‘curl Hp’’ model

We consider now a strain gradient plasticity theory which includes the full curl of the plastic deformation tensor, H
�

p.
This approach, herefrom to be referred to as the ‘‘curl Hp’’ model, was proposed by Gurtin (2002) and applied to a
constrained layer and a composite problem in Bittencourt et al. (2003). The balance and constitutive equations are first
recalled and recast into the notations used throughout this work. Then the model is applied to a crystal undergoing single
slip. It will be shown that a specific form of the back stress arises from this application. As it was done with the Cosserat
model, the ‘‘curl Hp’’ model is finally applied to the two-phase microstructure illustrated in Fig. 2.

-0.01

-0.005

 0

 0.005

 0.01

-0.4 -0.2  0  0.2  0.4

 φ
 (r

ad
)

x1/l

(a)
(b)
(c)

Fig. 3. Profiles of the lattice rotation angle f (rad) in the two-phase microstructure predicted by the Cosserat model: (a) with a set of material parameters

giving clearly visible parabolic and hyperbolic profiles (m¼ 35 000 MPa, mh
c ¼ ms

c ¼ 106 MPa, bh
¼ bs
¼ 10�5 MPa mm2 and tc ¼ 40 MPa), (b) with a stronger

mismatch between the moduli of the two phases bh
¼ 10�7 MPa mm2 and bs

¼ 10�5 MPa mm2 and (c) bh
¼ 10�11 MPa mm2 and bs

¼ 10�5 MPa mm2,

which leads to sharper interface profiles. In all three cases, fs=0.7 and the bh,s values are chosen for l¼ 1mm.
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3.1. Balance equations

Following Gurtin (2002), we consider a continuum whose power density of internal forces takes the form

pðiÞ ¼ r
�
: H
:

�
þ s
�
: H
:

�

p
þM
�
: curl H

:

�

p
: ð53Þ

For objectivity reasons, the stress tensor r
�

is symmetric whereas the micro-stress tensor s
�

and the double-stress tensor M
�

are generally asymmetric. The total power of internal forces in a domain V, with boundary @V , is

PðiÞ ¼
Z

V
ðr
�
: H
:

�
þ s
�
: H
:

�

p
þM
�
: curl H

:

�

p
ÞdV ¼

Z
V
ððsij _uiÞ,jþðMijEjkl

_H
p

ikÞ,lÞdVþ

Z
V
ð�sij,j _uiþsij

_H
p

ij�EjklMij,l
_H

p

ikÞdV

¼�

Z
V
ðsij,j _ui�ðEkjlMik,l�sijÞ

_H
p

ijÞdVþ

Z
@V

sijnj _uiþ

Z
@V
EjklMijnl

_H
p

ik

� �
dS:

The power density of contact forces is taken as

pðcÞ ¼ t � _uþm
�
: H
:

�

p
, ð54Þ

where t , m
�

are, respectively, the surface simple and double tractions. Volume forces are not written for simplicity. The method of
virtual power can be used to derive the field equations governing the continuum, based on the virtual motions _u and H

:

�

p
:

divr
�
¼ 0, sij,j ¼ 0, ð55Þ

curl M
�
þ s
�
¼ 0, EjklMik,lþsij ¼ 0, ð56Þ

for all regular points of the domain V. Furthermore, the following boundary conditions on @V can be derived:

t ¼ r
�
� n, ti ¼ sijnj, ð57Þ

m
�
¼M
�
� e
�
� n, mij ¼MikEkjlnl: ð58Þ

3.2. Energy and entropy principles: constitutive equations

Under isothermal conditions, the energy balance in its local form states that

r _e ¼ pðiÞ, ð59Þ

where e is the internal energy density function and r the mass density. The entropy principle is formulated as

rð _e� _cÞZ0 ð60Þ

where c is the Helmholtz free energy function. The free energy is taken as a function of the elastic strain, e
�

e, the dislocation
density tensor, or curl H

�

p, and a generic internal hardening variable, q, viz. cðe
�

e,curl H
�

p,qÞ. As a result, the Clausius–Duhem
inequality becomes

r
�
�r @c

@e
�

e

0
@

1
A : e

:

�

e
þ M

�
�r @c

@curl H
�

p

0
@

1
A : curl H

:

�

p
þðr
�
þ s
�
Þ : H

:

�

p
�r @c

@q
_qZ0: ð61Þ

Here, the constitutive assumption is made that the two first terms in the previous inequality are non-dissipative and
therefore should vanish. Then,

r
�
¼ r @c

@e
�

e
, M
�
¼ r @c

@curl H
�

p:
ð62Þ

It follows that the residual dissipation rate is

D¼ ðr
�
þ s
�
Þ : H

:

�

p
�R _qZ0, ð63Þ

where R¼ r@c=@q is the thermodynamic force associated with the internal variable, q. The existence of a dissipation
potential, namely Oðr

�
þ s
�

,RÞ, is postulated so that

H
:

�

p
¼

@O
@ðr
�
þ s
�
Þ
, _q ¼�

@O
@R

: ð64Þ
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3.3. Application of the ‘‘curlHp’’ model to a single slip problem

For a crystal deforming under single slip conditions, the plastic deformation rate is given by

H
:

�

p
¼ _gP

�
¼ _gl � n, ð65Þ

where P
�
¼ l � n is the orientation tensor, l is the slip direction and n the normal to the slip plane. The dissipation rate can

then be expressed as

ðtþ l � s
�
� nÞ _g�R _qZ0, ð66Þ

where t¼ l � r
�
� n is the resolved shear stress. In the absence of a hardening variable, q, for simplicity, the following

generalised Schmid law can be defined (for positive _g):

jt�xj ¼ tc with x¼�l � s
�
� n, ð67Þ

meaning that plastic flow occurs when the effective resolved shear stress jt�xj reaches the critical resolved shear stress tc.
A kinematic hardening component, x, naturally arises in the formulation for which a more specific form is given next. The
curl of the plastic deformation is then given by

curl H
�

p
¼ l � ðn �=gÞ: ð68Þ

For a two-dimensional case, one finds

½curl H
�

p
	 ¼

0 0 g,2n1n2�g,1n2
2

0 0 �g,2n2
1þg,1n1n2

0 0 0

2
64

3
75: ð69Þ

In the particular case when l ¼ e1,n ¼ e2, the only non-vanishing component of the dislocation density tensor is

ðcurl H
�

p
Þ13 ¼�g,1: ð70Þ

Let us consider at this stage the simple quadratic potential:

rcðe
�

e,curl H
�

p
Þ ¼

1

2
e
�

e : K
�
: e
�

eþ
1

2
Aðcurl H

�

p
Þ : ðcurl H

�

p
Þ, ð71Þ

so that

r
�
¼ K
�
: e
�

e, M
�
¼ A curl H

�

p, ð72Þ

where K
�

is the four-rank tensor of the elastic moduli, assumed isotropic hereafter, and A is a higher order modulus.
According to the balance equation (56), it follows that

s
�
¼�curl M

�
¼�curl curl H

�

p: ð73Þ

For single slip, the double curl of plastic deformation is defined as

curl curl H
�

p
¼ l � ððn � g,ije iÞ � ejÞ: ð74Þ

In the particular case of l ¼ e1,n ¼ e2, we obtain

curl curl H
�

p
¼ g,12e1 � e1�g,11e1 � e2, ð75Þ

so that the back stress takes the form

x¼ Aðcurl curl H
�

p
Þ : ðl � nÞ ¼ �Ag,11: ð76Þ

3.4. Application to a two-phase periodic microstructure under simple shear

We consider the same two-phase periodic microstructure under simple shear illustrated in Fig. 2. When the previously
described ‘‘curl Hp’’ continuum plasticity theory is applied to the laminate problem shown in Section 2.2, the main
unknowns are the component of displacement, u2, and the Hp

12 component of plastic deformation:

u1 ¼ gx2, u2ðx1Þ ¼ uðx1Þ, u3 ¼ 0, Hp
12ðx1Þ: ð77Þ

Recalling,

H
�

p
¼ gl � n ¼ ge1 � e2, ð78Þ
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we obtain

½H
�
	 ¼

0 g 0

u,1 0 0

0 0 0

2
64

3
75, ½H

�

p
	 ¼

0 g 0

0 0 0

0 0 0

2
64

3
75, ½H

�

e
	 ¼

0 g�g 0

u,1 0 0

0 0 0

2
64

3
75 ð79Þ

½curl H
�

p
	 ¼

0 0 �g,1

0 0 0

0 0 0

2
64

3
75: ð80Þ

The resulting stress tensors are

½r
�
	 ¼ m

0 g�gþu,1 0

g�gþu,1 0 0

0 0 0

2
64

3
75, ½M

�
	 ¼ A

0 0 �g,1

0 0 0

0 0 0

2
64

3
75, ð81Þ

½curl M
�
	 ¼ A

0 �g,11 0

0 0 0

0 0 0

2
64

3
75: ð82Þ

The balance equations (55) and (56) imply that

s12,1 ¼ 0 ¼) �g,1þu,11 ¼ 0, ð83Þ

and

s12 ¼�ðcurl M
�
Þ12 ¼) s12 ¼ Ag,11: ð84Þ

Thus, the shear stress component, s12, is constant. For this particular case, Schmid law is written as

t�x¼ s12�x¼ tc , ð85Þ

with

x¼ Aðcurl curl H
�

p
Þ12 ¼�Ag,11: ð86Þ

As the shear stress s12 is constant, so is the corresponding back stress,

x,1 ¼ g,111 ¼ 0: ð87Þ

The slip profile is therefore parabolic in the plastic phase. In the elastic zone, all the variables, Hp
12,M13,g,x, vanish.

We now enforce continuity requirements at the interface between both phases for the plastic slip, in addition to the
continuity of displacement and simple traction vector. The continuity condition of plastic slip at x1 = 7s/2 is

Hp
12 ¼ g¼ 0: ð88Þ

The condition of continuity of the double traction tensor, (58), at the interface needs to be considered next. Here,

m12 ¼M13e321n1 ¼�M13 ¼ Ag,1, ð89Þ

which implies the continuity of the double stress component, M13. In the elastic phase, the couple stress component M13 is
not defined since no plastic deformation takes place. If we impose the condition that M13 = m12 = 0 at the interface, it will
imply that the first derivative, g,1, also vanishes. This latter condition requires that the full parabolic function g should also
vanish, so that no plastic strain could develop in the plastic zone. In fact, according to such a plastic strain gradient model,
higher order stresses exhibit a jump at the interface between an elastic and a plastic phase. This discontinuity of the
generalized traction prompts us to introduce, in the next section, a regularised model which is closely related to the
‘‘curl Hp’’ model but which offers a complete solution to the elastic/plastic laminate boundary value problem. On the other
hand, it must be noted that a complete solution can be worked out with the ‘‘curl Hp’’ model when both phases are elasto-
plastic (see Appendix B). The regularised model presented next will give us a way to find a valid interface condition and to
derive the jump condition for generalized tractions (see Appendix C).

4. Formulation of the microcurl model

An alternative model will now be proposed in order to circumvent the discontinuity of the generalized traction observed in
the boundary value problem of interest, thus representing a regularisation of the ‘‘curl Hp’’ model. This model, called here
microcurl, is based on a micromorphic approach that falls in the class of generalised continuum models presented in Forest
(2009). The theory is first described in terms of the balance and constitutive equations. An internal constraint controlling the
plastic micro-deformation is then introduced. Finally an application of the model to the two-phase laminate problem of Fig. 2 is
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presented. Finally, it will be shown that the ‘‘curl Hp’’ model can be obtained as a special limiting case of the microcurl formulation
proposed here.

4.1. Balance equations

We introduce a plastic micro-deformation variable, v
�

p, as a second-rank generally non-symmetric tensor. It is
distinct from the plastic deformation H

�

p which is still treated as an internal variable. Then the degrees of freedom of the
theory are

DOF ¼ fu,v
�

pg ð90Þ

The components of v
�

p are introduced as independent degrees of freedom. In the three-dimensional case, there are nine such
components and the micro-deformation field is generally incompatible. We assume that only the curl part of the gradient of
plastic micro-deformation plays a role in the power of internal forces. Then, in the same way as in Eq. (53), we assume that

pðiÞ ¼ r
�
: H
:

�
þ s
�
: v
:

�

p
þM
�
: curlv

:

�

p
: ð91Þ

The total power of internal forces over the domain V is then given by

�PðiÞ ¼
Z

V
pðiÞ dV ¼

Z
V
ðr
�
: H
:

�
þ s
�
: v
:

�

p
þM
�
: curlv

:

�

p
ÞdV ,

¼

Z
V
ððsij _uiÞ,jþðMijEjkl _w

p
ikÞ,lÞdVþ

Z
V
ð�sij,j _uiþsij _wp

ij�EjklMij,l _w
p
ikÞ dV ,

¼�

Z
V
sij,j _ui dV�

Z
V
ðEkjlMik,l�sijÞ _wp

ij dVþ

Z
@V
sijnj _ui dSþ

Z
@V
EjklMijnl _w

p
ik dS:

The method of virtual power is used to derive the generalised balance of momentum equations. Assuming no volume forces for
simplicity, one finds

divr
�
¼ 0, curl M

�
þ s
�
¼ 0: ð92Þ

The corresponding boundary conditions are

t ¼ r
�
� n, m

�
¼M
�
� e
�
� n, ð93Þ

where t and m
�

are the simple and double tractions at the boundary.

4.2. Constitutive equations

The free energy function is assumed to have the following arguments:

cðe
�

e,e
�

p :¼ H
�

p
�v
�

p,C
�w

:¼ curlv
�

pÞ ð94Þ

where e
�

p is the relative plastic strain measuring the difference between plastic deformation and the plastic microvariable.
The reduced entropy inequality reads

r
�
�r @c

@e
�

e

0
@

1
A : e

:

�

e
� s

�
þr @c

@e
�

p

0
@

1
A : e

:

�

p
þ M

�
�r @c

@C
�
w

0
@

1
A : C

:

�w
þðr
�
þ s
�
Þ : H

:

�

p
Z0: ð95Þ

Furthermore, the following state laws are adopted:

r
�
¼ r @c

@e
�

e
, s
�
¼�r @c

@e
�

p
, M
�
¼ r @c

@C
�
w,

ð96Þ

so that the residual intrinsic dissipation rate is defined as

D¼ ðr
�
þ s
�
Þ : H

:

�

p
Z0: ð97Þ

Assuming a quadratic potential in Eq. (96), the following linear relationships are obtained:

r
�
¼ K
�
: e
�

e, s
�
¼�Hwe

�

p, M
�
¼ AC

�w
, ð98Þ

where Hw and A are the generalised moduli. The size effects exhibited by the solutions of boundary value problems
involving such a model are related to an intrinsic length scale, typically defined as

lo ¼

ffiffiffiffiffiffi
A

Hw

s
: ð99Þ
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The flow rule can be derived from a viscoplastic potential, Oðr
�
þ s
�
Þ, expressed in terms of the effective stress, ðr

�
þ s
�
Þ, that

intervenes in the dissipation rate, see Eq. (97). Then,

H
:

�

p
¼

@O
@ðr
�
þ s
�
Þ

ð100Þ

For a crystal undergoing single slip, Eq. (65) is still valid. The dissipation takes the form

D¼ ðtþ s
�
: ðl � nÞÞ _gZ0 ð101Þ

The generalised Schmid criterion then becomes

jtþ s
�
: ðl � nÞj ¼ tc , ð102Þ

where tc is the critical resolved shear stress. Accordingly, a back stress component naturally arises in the yield function
f ðt,s

�
Þ ¼ jtþ s

�
: ðl � nÞj�tc , in the same way as in the Cosserat and ‘‘curl Hp’’ models.

4.3. Internal constraint

The modulus Hw in Eq. (98) introduces a coupling between the macro and micro-variables. It could also be interpreted as
a penalty factor that constrains the relative plastic deformation e

�

p to remain sufficiently small. Equivalently, a high value of
the coupling modulus, Hw, forces the plastic micro-deformation to be as close as possible to the macroscopic plastic
deformation, H

�

p. In the limit, the use of a Lagrange multiplier instead of the penalty factor, Hw, is necessary to enforce the
internal constraint that

v
�

p 
H
�

p
ð103Þ

In that case, the power of the internal forces, Eq. (91), coincides with that defined in Eq. (53). As a result, the microcurl

model degenerates into the curl H
�

p theory described in Section 3. In Eringen’s and Mindlin’s micromorphic theory, the
micro-deformation can be constrained to be as close as possible to the macrodeformation, represented by the usual
deformation gradient tensor. Then, the micromorphic model reduces to Mindlin’s second gradient theory. We adopt here a
similar constraint such that the microcurl model degenerates into Gurtin’s strain gradient plasticity model. The
curl of micro-deformation C

�w
coincides with the dislocation density tensor only when this constraint is enforced. This

suggests that, in the general unconstrained case, the micro-deformation v
�

p should not depart too much from the

plastic deformation for the C
�w

measure to still have the physical meaning of a quantity close to the dislocation density

tensor. The departure of the micro-deformation from the plastic deformation introduces a new constitutive ingredient in
the model that remains however of a purely phenomenological nature. This constitutive law, embodied by the additional
parameter Hw, is shown in what follows to lead to more general scaling laws than the original strain gradient plasticity

model.
The micromorphic model can also be seen as a regularisation of the curl H

�

p theory which displays some discontinuity at
the interface between the elastic and the elasto-plastic zones. Another way of solving the indeterminacy problem is to
track the limit of the elastic domain and to enforce an a priori condition of vanishing double traction (Liebe et al., 2003) on
this surface. However, with such conditions, it has been shown that the laminate boundary value problem of interest does
not admit any non-trivial solution.

4.4. Application to a two-phase periodic microstructure under simple shear

Contrary to the curl H
�

p theory, plastic micro-deformation can develop even in the absence of macroscopic plastic strain.
In particular, double stresses that may arise in a plastic phase can be transmitted to an elastic phase through the interface.

Let us consider again the two-phase microstructure under simple shear of Section 3 and apply the microcurl model to
that problem. We consider a slip system whose slip direction is along the axis 1, i.e., the shear direction in Fig. 2.
The unknowns of the problems are one component of the displacement vector and two components of the plastic
micro-deformation tensor, namely,

u1 ¼ gx2, u2ðx1Þ, u3 ¼ 0, wp
12ðx1Þ, wp

21ðx1Þ, ð104Þ

½H
�
	 ¼

0 g 0

u,1 0 0

0 0 0

2
64

3
75, ½H

�

p
	 ¼

0 g 0

0 0 0

0 0 0

2
64

3
75, ½H

�

e
	 ¼

0 g�g 0

u2,1 0 0

0 0 0

2
64

3
75, ð105Þ

N.M. Cordero et al. / J. Mech. Phys. Solids 58 (2010) 1963–19941974



Author's personal copy

½v
�

p	 ¼

0 wp
12ðx1Þ 0

wp
21ðx1Þ 0 0

0 0 0

2
64

3
75, ½curlv

�

p	 ¼

0 0 �wp
12,1

0 0 0

0 0 0

2
64

3
75: ð106Þ

The resulting stress tensors are

½r
�
	 ¼ m

0 g�gþu2,1 0

g�gþu2,1 0 0

0 0 0

2
64

3
75, ½s

�
	 ¼�Hw

0 g�wp
12 0

�wp
21 0 0

0 0 0

2
64

3
75, ð107Þ

½M
�
	 ¼

0 0 �Awp
12,1

0 0 0

0 0 0

2
64

3
75, ½curl M

�
	 ¼

0 �Awp
12,11 0

0 0 0

0 0 0

2
64

3
75: ð108Þ

The balance equation, s
�
¼�curl M

�
, gives

wp
21 ¼ 0, Hwðg�wp

12Þ ¼�Awp
12,11: ð109Þ

Furthermore, the plasticity criterion stipulates that

s12þs12 ¼ s12þAwp
12,11 ¼ tc : ð110Þ

The force stress balance equation requires that s12 be constant. It follows that

wp
12,111 ¼ 0, ð111Þ

and the plastic micro-deformation profile in the soft phase is therefore parabolic:

wps
12 ¼ asx2

1þc, ð112Þ

where symmetry conditions have already been taken into account ðwps
12ð�s=2Þ ¼ wps

12ðs=2ÞÞ, and as and c are constants to be
determined. The plastic slip can be computed from Eq. (109). In the elastic domain, the balance equation (109) is still valid
with vanishing plastic slip so that the profile of plastic micro-deformation is hyperbolic:

wph
12 ¼ ahcosh oh x1�

sþh

2

� �� �
with oh ¼

ffiffiffiffiffiffi
Hh
w

Ah

s
, ð113Þ

for s=2r jx1jrðsþhÞ=2. Note that symmetry conditions have already been taken into account ðwph
12ðs=2Þ ¼ wph

12ðs=2þhÞÞ.
The identification of the coefficients, ah, as, c, is possible by means of the following interface and periodicity conditions:

� Continuity of wp
12 at x1 = s/2:

as s

2

� �2

þc¼ ahcosh
ohh

2
: ð114Þ

The periodicity condition for wp
12 at x1=�s/2 and x1 = s/2+h leads to the same equation.

� Continuity of the double traction m12 = �M13 at x1 = s/2, according to Eq. (93):

Mh
13 ¼�Ahwph

12,1 ¼�ahAhohsinh x1�
sþh

2

� �
¼Ms

13 ¼�Aswps
12,1 ¼�2asAsx1: ð115Þ

so that

2Asas s

2
¼�Ahahohsinh

ohh

2
: ð116Þ

Likewise, the periodicity condition for M13 at x1=�s/2 and x1 = (s/2+h) leads to the same equation as above.
� The plasticity condition in the soft phase provides the value of the constant stress component:

s12 ¼ tc�2Asas: ð117Þ

� Consequence of the periodicity of the displacement component u2. We start from

s12 ¼ mðg�gþu2,1Þ ¼) us
2,1 ¼

s12

m þg�g, ð118Þ

so that

us
2,1 ¼

s12

m
�gþasx2

1þc�
2Asas

Hs
w

ð119Þ
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in the plastic phase. In contrast, in the elastic phase, we have

uh
2,1 ¼

s12

m �g: ð120Þ

We compute the average:

Z s=2þh

�s=2
u2,1 dx1 ¼ 0, ð121Þ

which vanishes for periodicity reasons and gives

s12

m �g
� �

ðsþhÞþ c�
2Asas

Hs
w

 !
sþ

2

3
as s

2

� �3

¼ 0: ð122Þ

The solutions of Eqs. (114)–(122) are

as ¼ ðsþhÞ g� tc

m

� �
�

2As

m ðsþhÞ�
s

2

� �2

þ
sAs

ohAh
coth

ohh

2

� �
s�

2Ass

Hs
w
þ

2

3

s

2

� �3
 !�1

, ð123Þ

ah ¼�
1

sinhohh
2

sAs

ohAh
as, ð124Þ

c¼�
s

2

� �2

þ
sAs

ohAh
coth

ohh

2

� �
as: ð125Þ

The corresponding profiles of plastic micro-deformation are illustrated in Fig. 4 for three different sets of material
parameters. The first parameters are chosen to clearly visualise the parabolic profile in the soft phase and the hyperbolic
profiles in the elastic phase. When As = Ah, the slope of the plastic micro-deformation is continuous at the interface, as can
be seen in Fig. 4(a). The two other sets of material parameters introduce a stronger mismatch between the moduli Ah

and As. Accordingly, the micro-variable wp decreases rapidly in the elastic phase, while it is still continuous at the interface.
The profile of Fig. 4(c) is almost flat. In all cases, the coupling modulus has been taken high enough so as the plastic
micro-deformation almost coincides with the plastic slip in the soft phase.

 0

 0.005

 0.01

 0.015

 0.02

-0.4 -0.2  0  0.2  0.4

χ 1
2p

x1/l

(a)
(b)
(c)

Fig. 4. Profiles of plastic micro-deformation wp
12 in the two-phase microstructure with the microcurl model: (a) obtained with a set of material parameters

to visualise the smooth transition at the elasto-plastic interface (m¼ 35 000 MPa,Hh
w ¼Hs

w ¼ 133 829 MPa, Ah=As=2�10�5 MPa mm2 and tc ¼ 40 MPa);

(b) with a stronger mismatch between the moduli of the two phases Ah=2�10�7 MPa mm2 and As=2�10�5 MPa and (c) Ah=2�10�11 MPa mm2 and

As=2�10�5 MPa mm2, which leads to sharper profiles at the interfaces. In all three cases, fs=0.7 and the Ah,s values are chosen for l¼ 1mm.
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5. Overall size effects predicted by the Cosserat, microcurl and ‘‘curl Hp’’ models

Based on the non-homogeneous distribution of mechanical variables in a two-phase laminate undergoing simple shear
as determined for the Cosserat and the microcurl models, see Sections 2.2 and 4.4, we now study more specifically the
macroscopic response of the laminate and the macroscopic size effects predicted by the two models. Due to the similarity
of the models, their responses are analysed in parallel. Differences however exist and will be pointed out. This section is
organised as follows. First, the macroscopic stress strain curve is calculated for the laminate material. The overall
hardening moduli are also determined. The second subsection analyses the predicted size effects. For simplicity, we
assume here that the shear moduli of the two phases are equal: ms ¼ mh ¼ m.

5.1. Predicted macroscopic stress–strain response and kinematic hardening modulus

When deriving the overall properties of a periodic generalised medium, the development of specific homogenisation
tools are required. Such methods were developed for heterogeneous strain gradient and Cosserat media in Smyshlyaev and
Fleck (1996) and Forest et al. (2001), respectively. The effective material is regarded here as a classical Cauchy material
endowed with effective elasto-plastic properties. We derive the expression of the macroscopic Cauchy stress tensor
component, S12, defined as the mean value of the stress component s12 over the unit cell of size l=(s+h):

S12 ¼/s12S¼
1

l

Z l=2

�l=2
s12 dx1: ð126Þ

Note that for the Cosserat model, the local stress tensor is non-symmetric, even though for the simple shear boundary
value problem considered here, we find that the average stress component /s12S¼/s21S¼S12. Expressions for the local
stress s12 were derived in Sections 2.2 and 4.4, in terms of the coefficients (as, ds, ah, dh). The following form can be adopted
for the coefficient, as, which is valid for both the Cosserat and the microcurl models,

as ¼
A

Bl2þClcoth ohlð1�fsÞ

2

� �
þD

, ð127Þ

Table 1 gives the values of A, B, C, D introduced in Eq. (127) for both models. An equivalence can be found between
Cosserat and microcurl material parameters, which is valid for the boundary value problem of interest here

A
 2b, ð128Þ

Hw 
 4
mmc

mþmc

: ð129Þ

However, identification of mc for a given value of Hw is not always possible due to the non-linear relation, Eq. (129), that
allows only values of Hw smaller than

lim
mc-1

4
mmc

mþmc

¼ 4m ð130Þ

Next, results are presented for the microcurl model. The corresponding expressions for the Cosserat model can be obtained
using the previous equivalence relations. The macroscopic stress component, S12, can be obtained knowing the applied
shear strain, g, and mean plastic slip, /gS. Recalling Eq. (117),

S12 ¼
1

sþh

Z l=2

�l=2
s12 dx1 ¼ tc�2Asas ¼ mðg�/gS=fsÞ: ð131Þ

Table 1
Coefficients needed to determine the integration constant as from Eq. (127), as a function of the applied shear strain g for both the Cosserat and microcurl

models.

Model Cosserat microcurl

asðgÞ A tc

m
�g tc

m
�g

B f 3
s

6

f 3
s

6
C f 2

s b
s

bhoh

f 2
s As

Ahoh

D
bs fs

mþmc

mmc

þ
4

m

� �
As 2fs

Hs
w
þ

2

m

 !
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The mean plastic slip is determined from Eq. (109) as follows:

/gS¼ wp
12�

As

Hs
w
wp

12,11

* +
¼

1

l

Z s=2

�s=2
as x2

1�
2As

Hs
w

 !
þc

 !
dx1 ¼

1

l
as s3

12
þs c�

2Asas

Hs
w

 ! !
: ð132Þ

Accordingly, an alternative expression of as as a function of mean plastic strain is obtained:

as ¼
Au

Bul2þCulcoth ohlð1�fsÞ

2

� �
þDu

, ð133Þ

where coefficients Au, Bu, Cu, Du are given in Table 2 for both the microcurl and Cosserat models. The predicted macroscopic
stress–strain curve, for a microstructural length scale of size l = s + h = 10�3 mm, and the material parameters from
Table 3, is shown in Fig. 5. To obtain the curves of Fig. 5, the laminate microstructure of Fig. 2 has been subjected to cyclic

Table 2
Coefficients needed to determine the integration constant as from Eq. (133), as a function of the mean plastic deformation, /gS, for both the Cosserat and

microcurl models.

Model Cosserat microcurl

asð/gSÞ Au �/gS �/gS
Bu f 3

s

6

f 3
s

6
Cu f 2

s b
s

bhoh

f 2
s As

Ahoh

Du fsb
smþmc

mmc

2fsAs

Hs
w

Table 3
Set of material parameters satisfying the equivalence conditions (128) and (129) between the microcurl and the Cosserat models.

Coefficient m (MPa) tc (MPa) Cosserat mc (MPa) microcurl Hw (MPa) Cosserat b (MPa mm2) microcurl A (MPa mm2)

Phase (s) 35 000 40 106 133 829 10�2 2�10�2

Phase (h) 35 000 – 106 133 829 10�5 2�10�5

The intrinsic length scales, defined as
ffiffiffiffiffiffiffiffiffiffiffiffi
A=Hw

p
or

ffiffiffiffiffiffiffiffiffi
b=m

p
, induced by these parameters are of the order of 10 nm for the elastic phase (h) and 500 nm for the

plastic phase (s).
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Fig. 5. Macroscopic stress–strain response of the laminate microstructure under cyclic shear loading conditions: comparison between the kinematic

hardening predicted by both the microcurl and Cosserat models in comparison and the behaviour from a conventional crystal plasticity theory for

l=10�3 mm (the material parameters used are given in Table 3).
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shear loading, controlled by the mean shear deformation g. The average stress component S12 has been then computed.
The predicted response clearly exhibits pure linear kinematic hardening, in contrast to that obtained with the perfectly
plastic classical crystal plasticity model that does not incorporate the higher order back stress component. Such kinematic
hardening components are usually introduced directly into the constitutive equations of classical crystal plasticity, as done
in Busso et al. (2000). The expression for the kinematic hardening modulus H can be obtained using Eqs. (131) and (133):

H¼
2As

Bul2þCulcoth ohlð1�fsÞ

2

� �
þDu

: ð134Þ

This expression clearly shows that the hardening modulus is size-dependent for both the Cosserat and microcurl models. At
the limit of vanishingly small microstructural size, l, for fixed intrinsic lengths of the generalised continua and fixed soft
phase volume fraction, fs, the following value of the hardening modulus is obtained:

lim
l-0

H¼
1�fs

f 2
s

Hh
w
þ

fsð1�fsÞ

Hs
w

: ð135Þ

In the specific case when Hh
w ¼Hs

w ¼Hw, the limit becomes

lim
l-0

H¼
1�fs

fs
Hw ð136Þ

for the microcurl, and

lim
l-0

H¼
1�fs

fs

4mmc

mþmc

: ð137Þ

for Cosserat. Eqs. (136) and (137) reveal a major difference between the two models. In the microcurl model, the limiting
hardening modulus depends only on the parameter Hw, whereas Cosserat depends on both the classical shear modulus, m,
and the Cosserat coupling modulus, mc . Moreover, taking into account the condition m5mc chosen for the Cosserat
continuum, see Eq. (19), we find that, in that case, the limit hardening modulus saturates at

lim
l-0

H¼
1�fs

fs
4m: ð138Þ

In contrast, the kinematic hardening modulus in the microcurl model linearly increases with the coupling modulus Hw.
The existence of such a back stress contribution from the dislocation density tensor was anticipated by Steinmann (1996),

derived from statistical mechanical arguments by Groma et al. (2003) and simulated for a two-phase microstructure in Forest
(2008). However, the previous analytical expressions of the hardening modulus were derived in none of these publications.

5.2. Predicted size-dependent macroscopic flow stress

The previous results make it possible to study the dependence of the flow stress at /gS¼ 0:002 as a function of the
microstructural length scale l=(s+h) for a given volume fraction of the soft phase, fs. The overall flow stress is obtained by
setting /gS¼ 0:002 in Eq. (131). Fig. 6 presents the predicted evolution of the flow stress as a function of l in a log–log

diagram using the numerical values from Table 3 and for different values of the coupling modulus, Hh
w ¼Hs

w ¼Hw. All other

material parameters are kept fixed, in particular, the intrinsic lengths associated with the moduli As and Ah (resp. bs,bh),
which are assumed to be independent of l. The two lower curves in Fig. 6 are obtained for values of the coupling moduli
lying in the range of equivalence between the Cosserat and microcurl models (i.e. satisfying the equivalence condition
(129)). The dotted curve, obtained with mc ¼1, shows the upper limit reached by the Cosserat model. The curves above are

obtained for higher values of the coupling modulus Hw.

For finite values of the coupling modulus, the curves exhibit a typical tanh- shape with a saturation for large
(l410�2 mm for the chosen parameters) and small ðlo10�6 mmÞ values of l. Between these two asymptotic regimes, there
is a transition domain for which significant size dependence is observed. This zone is situated between approximately
l=10�5 and 10�3 mm. The asymptotic values, the width of the transition zone, and the scaling law exponent in the
transition regime are directly related to the material parameters used in both the Cosserat and microcurl models. The main
characteristics of the tanh-curves are analysed in the two following subsections.

5.2.1. Asymptotic regimes and maximal size effect predicted by the models

When the size of the elasto-plastic phase becomes large compared to the intrinsic model material length scale, lo, strain
gradients are small and the kinematic hardening contribution to the overall stress tends to vanish. In such case, the models
reduce to classical crystal plasticity theory. The 0.2% macroscopic flow stress then evolves towards the critical resolved
shear stress:

lim
l-1

S12j0:2 ¼ tc : ð139Þ
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In contrast, for small microstructure sizes, l, compared to the intrinsic material length scale, lo, the strain gradient effects
dominate. The maximum size effect generated by the microcurl model is obtained for sizes lower than a critical value. For
smaller and smaller microstructures, the stress at a given mean plastic strain /gS saturates at

lim
l-0

S12ð/gSÞ ¼ tcþ
1�fs

fs

Hh
wHs

w/gS
Hh
wð1�fsÞþHs

wfs
: ð140Þ

If the two coupling moduli are assumed equal, Hw ¼Hs
w ¼Hh

w, this limit becomes

lim
l-0

S12ð/gSÞ ¼ tcþ
1�fs

fs
Hw/gS: ð141Þ

As a result, for a fixed /gS value, there exists a maximum extra-stress DS induced by strain gradient effects according to
the microcurl model:

DS¼ lim
l-0

S12ð/gSÞ�tc ¼
1�fs

fs
Hw/gS: ð142Þ

The maximum macroscopic extra-stress reachable by the model depends on the volume fraction, fs, the mean plastic
slip, /gS, and the coupling modulus, Hw. Note that, for fs and /gS fixed, we can compute the following limit:

lim
Hw-1

lim
l-0

S12

� �
¼1: ð143Þ

A similar expression for the maximum extra-stress predicted by the Cosserat model is

DS¼
1�fs

fs

4mmc

mþmc

/gS ð144Þ

which, when mc goes to infinity, tends to

DS1 ¼
1�fs

fs
4m/gS: ð145Þ

This expression clearly shows that the maximal size effect predicted by the Cosserat model is bounded, in contrast to that
predicted by the microcurl model. Consequently, as noted in the previous subsection about the hardening modulus, the
Cosserat and microcurl models behave differently for small values of l. The Cosserat maximum size effect is intrinsically
limited by the elastic properties for a given fraction of the phase (s), whereas the maximum size effect predicted by the
microcurl model is entirely controlled by the Hw coefficient.

These different responses are illustrated by Fig. 7, where the extra-stress at 0.2% plastic strain is plotted as a function of
the coupling modulus for the two models. As it was shown in Section 5.1 and in Fig. 6, the two models considered here are
equivalent for sufficiently small values of the coupling modulus, according to the expression (129).
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5.2.2. Predicted transition zone and scaling law

The transition domain between the size-independent and dependent flow stress can be characterised by two main
parameters, see Fig. 1. A critical value of l, denoted lc, is defined as the inflection point of the logl2logS0:2 curve. The
inflection point lc can be computed, for instance, for all the curves of Fig. 6. Moreover, the scaling law, of the form ln, is
defined by the first derivative of the curve, logl2logS0:2 at l= lc. The values lc and n are determined numerically. For the
material parameters given in Table 3, we found lc C2:24� 10�5 mm and the slope at this point is nC�0:46.

Next, we present the model predictions of the evolution of lc as a function of the material parameters. For a fixed
modulus, As =10�1 MPa mm2, the microstructure size dependence of the flow stress is plotted in Fig. 8(a) for different
values of Ah. The other parameters are taken equal to their values in Table 3. These curves show that the transition zone is
translated towards smaller microstructural length scales when Ah is decreased. Similar results hold for the bh,s values in the
Cosserat model. For a fixed modulus Ah =10�1 MPa mm2, the microstructural length scale dependence of the flow stress is
plotted in Fig. 8(b) for different values of As. The translation of the transition zone is still observed.

From these curves, the characteristic length scale, lc, and the scaling law exponent, n, can be determined and plotted as
functions of Ah and As, see Fig. 9. The characteristic length lc increases with As,h, and eventually saturates. For the chosen
parameters, the scaling power law remains close to n=�0.5. The values of lc and n also depend on that of the coupling modulus.
Fig. 10(a) gives the dependence of the inflection point of the curves of Fig. 6 with respect to the values of the coupling moduli mc

and Hw, for fixed values of the remaining parameters, especially Ah,s which describe the gradient effect. The predictions of the
microcurl model shown in Fig. 10 are obtained analytically. A bump is observed on the lc curve for the microcurl model. It seems
to be the result of two competing effects of material parameters. On the one hand, increasing Hc leads to a translation of the
inflection point to the left in Fig. 6. When Hw-1, there is no longer an inflection point, this is the reason why the red curve
converges toward zero for large values of the coupling modulus. On the other hand, increasing Hw leads to an increase in the
slope of the quasi-linear part of the logS0:2 ¼ f ðloglÞ curve, which in turn tends to slightly move the inflection point to the right
in Fig. 6. We find that there exists a domain of Hw values for which the second effect becomes dominant. This non-linear effect
remains limited. Probably, there exists a combination of parameters Hw and A that would lead to a monotonic decrease of lc.
Fig. 10(b) shows that the coupling modulus has a major effect on the scaling law for both models. In contrast, it has a limited
effect on the size-dependent region location since it is generally taken around an equivalent value of 106 MPa. It turns out that,
for the chosen material parameters, the Cosserat model provides power law exponent values that saturate close to n=�0.5 in
the highly constrained case. In contrast, the asymptotic power law for the microcurl model is close to n=�2.Indeed, when the
coupling modulus Hw tends to infinity, we can derive an asymptotic expression for as. In Eq. (133), the Cu andDu coefficients tend
to zero and the coth function tends toward 1. In that specific case, the flow stress becomes

lim
Hw-1

S12 ¼ tcþ
12As/gS

f 3
s l2

: ð146Þ

This expression indicates an n=�2 scaling law. Fig. 11 presents the effect of the volume fraction fs on the scaling law for
the constrained Cosserat and microcurl models, i.e., for high values of the coupling moduli, mc and Hw, respectively. According to
the microcurl model, fs has no effect on the asymptotic power law exponent of n=�2. For the Cosserat model, the effect of
volume fraction is strong and dominates when the coupling modulus mc is high. The range of reachable scaling laws lies
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between 0 and �1. The �1 scaling law is obtained when the fraction of the soft phase tends to 0, i.e., when the microstructure
is mainly constituted by hard obstacles. In this case, the Cosserat model delivers the same scaling law as the Orowan effect for
precipitate hardening:

S12�tcp
1

l
ð147Þ

An approximation of the flow stress can be derived when fs tends to 0. In the transition zone we have checked that the coth
term in Eq. (133) is close to 1. Consequently,

lim
fs-0

S12 ¼ tcþb
s Au
CulþDu : ð148Þ
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This expression can be simplified considering that mc goes to 1:

lim
fs-0

S12 ¼ tcþ
/gS

f 2
sffiffi
2
p lol

bh þ
fs

4m

, ð149Þ

where lo is the characteristic length of the phase (h) defined by Eq. (18). Eq. (149) confirms the scaling law exponent of n=�1
predicted by the Cosserat model when fs tends to 0.

The physical implications of these findings will be discussed in Section 6.

6. Discussion

The objective of this section is to discuss the previous results and to compare the pros and cons of the three models,
namely the Cosserat, ‘‘curl Hp’’ and microcurl. In particular, we insist on the major importance of the interface conditions in
the evaluation of the different approaches. As an illustration, it is shown that the explicit relations obtained for the main
characteristics of the size-dependent model responses in the case of simple shear of a laminate, could be used for the
identification of material parameters for a real two-phase material. Finally, the obtained results are proved to hold also in
the case of a laminate microstructure endowed with two symmetric slip systems and undergoing simple shear.
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6.1. Towards an identification of material parameters

The main features of the scaling behaviour of Cosserat, micromorphic and strain gradient plasticity models have been
quantitatively described in the special case of a two-phase laminate microstructure. Explicit formula or numerical
estimates of the extra-hardening associated with plastic strain gradients, asymptotic behaviour and scaling laws have been
provided for this specific case. A parametric study has shown that a large range of size effects can be explored depending
on the higher order theories’ material parameters. The previous analyses therefore set guidelines for the identification of
such material parameters to describe specific size effects. Simple analytical situations like the one proposed in this work
can help to estimate the order of magnitude of such parameters, see also Hunter and Koslowski (2008). The targeted
phenomena are precipitate hardening and grain size effects. Generalisations of the approach will be necessary to tackle
more realistic microstructures. This will also require intensive numerical simulations.

Depending on the amplitude and the range of observed size effects, the Cosserat and microcurl theories are suitable
models to predict the size-dependent response of elasto-(visco)plastic crystalline solids. The Cosserat formulation has the
particular advantage of requiring three additional degrees of freedom in contrast to the nine required by the micromorphic
approach. However, it has been shown in Section 5.2.1 that the Cosserat crystal plasticity model may not be sufficient to
account for large amplitude extra-hardening over a broad range of length scales, see Eq. (145).
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Experimental results on size effects are generally available for a limited range of length scales. The transition domain
between the two asymptotic regimes of the flow stress curve as a function of microstructure length scale, see Fig. 10, can
therefore be calibrated in order to coincide with the measured experimental range. The existence of a saturated asymptotic
regime below the experimentally investigated length scales, i.e., below lc, can be seen as the limit of the continuum
approach. That is why predictive extrapolations to smaller scales of the generalised continuum models should not be
expected.

The power law exponent n of the Cosserat and microcurl models is not intrinsic to the form of the chosen constitutive
equations but rather strongly depends on the values of the material parameters. It can be calibrated from experimental
results in the range �2rnr0. These models can therefore be used to describe mixed Hall-Petch and Orowan effects. In
contrast, the ‘‘curl Hp’’ model, regarded as the limiting case of the microcurl model for large values of Hw, systematically
leads to a power law exponent n=�2, which does not correspond to any known physical situation in crystal plasticity, to
the best of our knowledge.

For the transmission of higher order tractions at the interface between elastic and elasto-plastic phases, it has been
necessary to introduce higher order moduli like As and Ah in both phases. The absence of such transmission rules leads to a
discontinuity of generalized tractions in the strict strain gradient plasticity theory. These higher order moduli can be seen
as representing intrinsically non-local effects that work at different length scales. Non-local elasticity effects are expected
at very low length scales, typically 10 nm, which motivates low values of the parameter Ah. In contrast, the volume element
of a generalised crystal plasticity model must contain a sufficient number of dislocations for a continuum theory to apply.
Non-local micro-plasticity effects occur at scales ranging typically from 0.3 to 10mm in FCC metals. So we expect that
Ah

5As. These remarks set guidelines for the identification procedure and motivates the selected values of the material
parameters in the examples provided in the previous sections (see Table 3).

As a formal exercise and with a view to setting guidelines for the identification of a more realistic model in the future,
we propose in this section to calibrate the parameters Ah,s,Hw, etc., of the microcurl (and Cosserat) models from
experimental results for a material which shares some common features with the ideal laminate microstructures. Such
experimental results in the form of precipitate size effects in single crystal nickel base superalloys can be found in Duhl
(1987). Here, the microstructure consists of a quasi-periodic distribution of cuboidal gu precipitates coherently embedded
in the g matrix. In a certain range of temperature and strain rate, the precipitates can be regarded as elastic whereas the
matrix displays a complex elasto-viscoplastic behaviour. The narrow channels of g phase are reminiscent of the ideal
laminate microstructure of Fig. 2.

The precipitate size effect in such quasi-periodic microstructures has been modelled by means of periodic
homogenisation techniques based on cubic unit cells, and using generalised continuum models by Busso et al. (2000),
Forest et al. (2000) and more recently by Tinga et al. (2008). In the two first references, the size effect is entirely accounted
for by the strain gradient approach, whereas the strain gradient plasticity model used by Tinga et al. (2008), also includes
the Orowan law explicitly introduced in the constitutive model. In the context of the simple laminate model considered
here, we will try to identify the higher order material parameters so as to describe the experimental precipitate hardening
effect without including explicitly Orowan’s law in the model. As it will be shown, the Orowan effect will arise naturally as
a result of the generalised crystal plasticity formulation. This formal identification aims at discriminating the ability of
the Cosserat and microcurl models to account for significant additional hardening due to strain gradient effects.
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The identification remains somehow idealised since we consider only single slip, which is not the dominant deformation
mode in real superalloys. The slip geometry is also different from the reality, even though the soft phase of the laminate
model mimics a g- channel. Finally, the size effect observed in tension along the [0 0 1] crystallographic orientation is
converted in terms of the resolved shear stress and slip amount, t=g, on one of the eight systems that are activated for this
tensile test, see Fig. 13. Fig. 13 shows that the microcurl model is able to simulate an Orowan-like scaling law, that is when
n��1. Moreover, the identified characteristic length, lc=200 nm, is approximately the matrix channels width in Ni-base
superalloys. The calibrated parameters are given in the caption of Fig. 13. For an unambiguous identification, we have
adopted Hs

w ¼Hh
w ¼Hw. This leaves three parameters that have been identified in order to account for the three

characteristics of the size effect, namely DS, lc and n, see Fig. 12. The experimental results are available only over a narrow
window of precipitate sizes, from 0.2 to 2mm, so that the calibration of the three parameters leads to correct description of
the experimental curve. The predicted ratio, As=Ah � 10, confirms the difference in characteristic lengths for the elastic and
plastic phases. The relatively high value found for Ah shows the important role of the double traction transfer at the
interface. The identified value of the parameter Hw is such that an equivalence with the Cosserat model is possible. As a
result, both the Cosserat and microcurl models are suitable to describe the superalloy behaviour. More detailed
comparisons with experiment would be necessary to further study both approaches.

6.2. Extension to double slip

The Cosserat and microcurl models have common features with the statistical model of dislocations developed for single
slip by Groma et al. (2003) as well as with results obtained from discrete dislocation dynamics simulations in Yefimov et al.
(2004). The strain gradient plasticity model used in the two latter references has been extended for multiple slip situations
using purely phenomenological arguments in Yefimov and Van der Giessen (2005) and Bardella (2007). In the same way,
the Cosserat and microcurl models possess a straightforward phenomenological generalisation for multiple slip, without
introducing neither additional ingredients nor parameters, but without confirmation that it is indeed consistent with the
actual multislip behaviour of crystals. This formulation is illustrated for symmetric double slip in the laminate
microstructure under shear loading conditions. Two slip systems, symmetric with respect to direction 1 and inclined at an
angle 7y with respect to direction 1 are taken into account in the soft phase (s), as shown in Fig. 14. The main unknowns
remain the same as in Section 4.4, see Eq. (104). Following the same procedure as in the case of single slip, one obtains

½H
�
	 ¼

0 g 0

u2,1 0 0

0 0 0

2
64

3
75, ½H

�

p
	 ¼

0 Hp
12 0

Hp
21 0 0

0 0 0

2
64

3
75, ½H

�

e
	 ¼

0 g�Hp
12 0

u2,1�Hp
21 0 0

0 0 0

2
64

3
75: ð150Þ

As the two slip systems are symmetric, the associated plastic slips are equal g1 ¼ g2 ¼ g. Then the non-zero components of
the plastic deformation are

Hp
12 ¼ 2g cos2 y, Hp

21 ¼�2g sin2 y: ð151Þ
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Fig. 12. Influence of each material parameter on the size effect predicted by the considered model.
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The plastic micro-deformation tensor takes the same form as that in Section 4.4. However, in contrast to the case of single
slip, we expect the component wp

21 of the plastic micro-deformation not to vanish. The matrix expressions (106) are still
valid in the double slip context. In particular, there is still one single non-zero component in the curl of plastic micro-
deformation. The resulting stress tensors are

½r
�
	 ¼ m

0 g�Hp
12�Hp

21þu2,1 0

g�Hp
12�Hp

21þu2,1 0 0

0 0 0

2
64

3
75, ð152Þ

½s
�
	 ¼�Hw

0 Hp
12�w

p
12 0

Hp
21�w

p
21 0 0

0 0 0

2
64

3
75, ð153Þ

½M
�
	 ¼

0 0 �Awp
12,1

0 0 0

0 0 0

2
64

3
75, ½curl M

�
	 ¼

0 �Awp
12,11 0

0 0 0

0 0 0

2
64

3
75: ð154Þ

Consequently, the double stress has only one non-vanishing component related to wp
12 as in the case of single slip.

Therefore the balance equation, s
�
¼�curl M

�
, becomes

�HwðH
p
12�w

p
12Þ ¼ Awp

12,11,

Hp
21�w

p
21 ¼ 0:

(
ð155Þ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.0002  0.0004  0.0006  0.0008  0.001  0.0012  0.0014  0.0016  0.0018  0.002

S
iz

e 
ef

fe
ct

 (M
P

a)

l (mm)

microcurl  model
Data for PWA-1480 (760°C) [Duhl, 1987]

Predictions for CMSX4 (850°C) [Busso et al., 2000]

Fig. 13. Comparison between experimental data, in the form of precipitate size vs. size effect strengthening (extra-stress above the size-independent

value) published for a two-phase material (g matrix phase elasto-viscoplastic and quasi-elastic gu precipitates) from Duhl (1987), the prediction of Busso

et al. (2000) and that obtained using the microcurl model. The volume fraction of precipitates is fh=68%, critical resolved shear stress of the matrix phase

tc ¼ 59 MPa,m¼ 100 000 MPa,Hh
w ¼Hs

w ¼ 7� 105 MPa, Ah=3.5�10�6 MPa mm2 and As=4�10�5 MPa mm2.

γ

h
2

h
2

γ

l1
n1 n2

l2
1

2

s

Oθ
(h−) (s) (h+)

Fig. 14. Double slip in a two-phase periodic laminate microstructure under simple shear.

N.M. Cordero et al. / J. Mech. Phys. Solids 58 (2010) 1963–1994 1987



Author's personal copy

It is also found that the component wp
21 does not contribute to the dislocation density tensor. It is bound to coincide with

the plastic deformation Hp
21, according to the second balance equation. This will be due to the fact that no contribution of

the component wp
21 will appear in the back stress, as it is shown by the plasticity criterion jr

�
: P
�

a
þ s
�
: P
�

a
j ¼ tc:

js12ðcos2 y�sin2 yÞþs12cos2 yj ¼ js12ðcos2 y�sin2 yÞþAwp
12,11 cos2 yj ¼ tc: ð156Þ

In the same way as for the single slip case, the profile of wp
12 is parabolic in the plastic phase. It is computed as in Eq. (112),

which involves integration constants that can be identified as in Section 4.4 based on interface conditions. The resulting
plastic slip is

g¼ 1

2 cos2 y
wps

12�
As

Hs
w
wps

12,11

 !
: ð157Þ

Since we have wps
21 ¼�2g sin2 y, the profile of wp

21 is parabolic in the plastic phase as well. In the elastic phase, the balance
equations (155) are still valid with vanishing plastic slip. Then, one obtains

wph
12 ¼

Ah

Hh
w
wp

12,11,

wph
21 ¼ 0:

8>><
>>: ð158Þ

Therefore, the component wp
12 has a hyperbolic profile in the hard phase and can be computed as in Eq. (113); and its profile

over the whole structure is similar to the single slip case. In addition, the component wp
21 vanishes in the elastic domain and

it cannot be continuous at the interface as soon as ga0. Accordingly, the microcurl model only ensures the continuity of the
component wp

12, which contributes to the dislocation density tensor. Here the complete analytical solution with wp
21

discontinuous at the interface between the two phases has been obtained. The expressions of the integration constants as
functions of g are

as ¼

tc

cos2 y�sin2 y
�g

ð1�tan2 yÞ l2 f 3
s

6 þ
lf 2

s Ascoth ohh=2ð Þ
Ahoh þ

2fsAs

Hs
w
þ

2fsAs

mð1�tan2 yÞ2

� �, ð159Þ

ah ¼�
asAss

Ahohsinh ohh
2

� �, ð160Þ

c¼�as s2

4
þ

Asscoth ohh
2

� �
Ahoh

0
@

1
A: ð161Þ

Fig. 15 illustrates the continuity of wp
12 and the discontinuity of wp

21 at the interface. The problem of interface conditions in
strain gradient plasticity has already been pointed out, for example in Aifantis and Willis (2005) and Gurtin and
Needleman (2005). In these publications, jump conditions at interfaces are discussed. Here, no jump condition is
imposed on wp

21 at the interface, instead, continuity requirements for wp
12 and the double traction tensor are enforced. In

order to illustrate the size effects obtained with double symmetric slip, the integration constant as has been obtained as a
function of /Hp

12S. It materialises that we find the same expression than in single slip, as being still given by Eq. (133).
The Cosserat model also gives the same expression for as as a function of /Hp

12S. The macroscopic stress S12 can be
expressed by

S12 ¼
tc

cos2 y�sin2 y
�

2Asas

1�tan2 y
: ð162Þ

Fig. 16 presents the predicted size effects in double symmetric slip for angles y ranging from 01 to 901. For the particular
case of y¼ 453, no plastic slip is activated since the Schmid factors vanish. Note also that for the specific case of y¼ 903, no
hardening effect is found. Indeed, in that situation, one single effective slip system is obtained. Under shear, one slip band
forms parallel to the interface for a vanishing dislocation density tensor, that is curl H

�

p
¼ 0. It can therefore be concluded

that the generalised crystal plasticity models based on the dislocation density tensor do not regularise this strain
localisation problem.

In order to sum up the influence of y on size effects, the maximal size effect predicted by the models is calculated. For
large microstructural length scales compared to the characteristic length, the macroscopic stress becomes

lim
l-1

S12 ¼
tc

cos2 y�sin2 y
, ð163Þ

as in classical crystal plasticity. On the other hand, for small microstructural length scales,

lim
l-0

S12 ¼
tc

cos2 y�sin2 y
þ

1�fs

fs

1

1�tan2 y
Hw/gS: ð164Þ
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Consequently, the maximal extra-stress reads

DS¼
1�fs

fs

1

1�tan2 y
Hw/gS: ð165Þ

The maximal size effect as a function of y predicted by the models is presented in Fig. 17.

7. Conclusions

The main results obtained in this work can be summarised as follows:

1. A micromorphic crystal plasticity model, called microcurl, has been proposed to regularise the response of a strain
gradient plasticity model in the presence of an elastic phase. The ‘‘curl Hp’’ model is retrieved when the coupling
modulus Hw that arises in the microcurl model, becomes a Lagrange multiplier. The corresponding internal constraint
states that the plastic micro-deformation v

�

p coincides with conventional plastic deformation H
�

p.
2. A complete solution of stress, strain and plastic slip distributions could be worked out for a two-phase laminate

microstructure where the behaviour of the elastic and elasto-plastic phases are described by the Cosserat or microcurl
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Fig. 16. Evolution of the macroscopic flow stress S12j0:2 multiplied by the Schmid factor M¼ cos2 y�sin2 y at /Hp
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model. In contrast, a discontinuity remains with the ‘‘curl Hp’’ model due to the question of transmission of higher order
tractions from the plastic to the elastic phase. It was also found that the Cosserat and microcurl solutions coincide for a
certain range of values of material parameters.

3. The size effect in terms of extra-hardening amplitude, predicted by the Cosserat model is bounded. In contrast, this
amplitude is linearly related to the coupling modulus Hw in the microcurl model. Accordingly, the microcurl model can
accommodate any observed amplitude of extra-hardening.

4. A size-dependent transition domain between two asymptotic regimes has been detected for both models, for small and
large microstructural length scales respectively. The location of this transition domain, defined by lc, has been
determined and can be calibrated to comply with experimental results observed either at the nano or micron scales.
This characteristic length is mainly controlled by the parameter As and Ah.

5. The power law exponents for the scaling laws were determined, ranging from n=0 to �2. It comprises therefore the
ideal Orowan and Hall-Petch exponents. The higher order parameters A and Hw can be calibrated to match experimental
results in a given domain of length scales. More specifically, the microcurl model can produce scaling laws between 0
and �2. The Cosserat model produces scaling laws from 0 to �1 depending on the volume fraction of the soft phase. In
contrast, the ‘‘curl Hp’’ model invariably leads to an asymptotic regime with n=�2.

6. The formulation of the three models considered in this work is such that a back stress component arises in the soft
phase and macroscopically results in linear kinematic hardening. The corresponding kinematic hardening modulus was
explicitly derived as a function of higher order material parameters, volume fraction of soft phase, and microstructural
length scale. It is bounded in the case of the Cosserat model, whereas it is linearly related to Hw according to the
microcurl model.

7. The models are applicable to multislip conditions. The analysis in the case of symmetric double slip has revealed a
similar size-dependent behaviour as in single slip, and the existence of a possible discontinuity of some plastic micro-
deformation components.

In the three model formulations presented in this work, the double stress tensor belongs to the arguments of the free
energy function only, and not of the dissipation potential. This simple framework is sufficient to illustrate the existence of a
back stress and to work out explicit analytic results for the laminate problem. However, dissipative mechanisms related to
generalised stresses can be introduced in a systematic manner following the work of Forest and Sievert (2003), Forest
(2009) and Gurtin and Anand (2009). The theory can also be formulated assuming finite deformation kinematics following
the framework proposed in Forest and Sievert (2003) for micromorphic continua. This formulation is based on the usual
multiplicative decomposition of the deformation gradient into elastic and plastic parts. Such decompositions exist also for

the micro-deformation and its gradient. However, in the present single crystal model, there will be no need for

decomposing v
�

p and C
�w

as long as no additional dissipative mechanisms are introduced. The internal constraint

corresponding to Eq. (103) would then be v
�

p 
 F
�

p
�1
�

where F
�

p is the plastic deformation in the multiplicative

decomposition.
The proposed models should now be applied to more realistic cases, for example to predict size effects in Ni-base

superalloys or in polycrystals based on large scale finite element simulations, as done in Forest et al. (2000). The fact that
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the Cosserat extra-hardening stress was found to be bounded, irrespective of the value of higher order moduli, may explain
that the grain size effects for aggregates of Cosserat crystals are systematically underestimated in Forest et al. (2000) and
Zeghadi et al. (2005). It is expected that predicted size-effects will be more pronounced for the microcurl model that with
the Cosserat model.

The linear kinematic hardening predicted by the models in the laminate microstructure is quite ideal and unrealistic.
A dependence of the linear kinematic hardening on total dislocation density was shown in Groma et al. (2003) and Forest
(2008). More generally, the constitutive framework should be extended to include non-linear kinematic hardening.

From the numerical point of view, the Cosserat model has the advantage that it requires only three additional degrees of
freedom compared to the nine generally required in the ‘‘curl Hp’’ and microcurl models. Models involving the slips ga
themselves or the dislocation densities as additional degrees of freedom, like that of Bayley et al. (2006), are even more
expensive since the number of degrees of freedom increases proportionally to the number of slip systems. The possible
discontinuity of some components of the plastic micro-deformation makes the finite element implementation of the
microcurl model quite complex.

Under single slip conditions, the models discussed here have a sound physical basis as shown by comparison with
theoretical results using statistical dislocation concepts and also simple line tension dislocation models (e.g., see Forest,
2008). In contrast, the application of the models to multislip conditions is possible in a purely phenomenological way, by
identifying the material parameters from experimental data, or from comparison with dislocation dynamics simulations.
This remains to be done with a view to highlight the limitations of the approach.

Interface conditions with simple continuity requirements have played a major role in the present work. However,
enriched interface conditions and constitutive equations at grain boundaries, as proposed in Aifantis and Willis (2005) and
Gurtin and Anand (2008), could be more realistic. Some aspects of such interface laws should even be identified from
atomistic simulations (see, for instance, McDowell, 2008).
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Appendix A. Notations

First-rank, second-rank and fourth-rank tensors are respectively denoted by A, A
�

and A
�

. The superscripts A
�

s and A
�

a will
denote respectively the symmetric and skew-symmetric parts of the tensor. Both intrinsic and index notations are given at
some places for clarity.

The intrinsic definition of the curl operator applied to a tensor T of any rank in any coordinate system qi is

curl T ¼
@T

@qi
� e i, ð166Þ

where � denotes the vector product. In a Cartesian frame and for a tensor of rank two, this gives

curl A
�
¼

@A
�

@xl
� e l ¼ Aik,le i � ðek � e lÞ ¼ EjklAik,le i � ej, ð167Þ

where Eijk is the permutation tensor. Hence

ðcurl A
�
Þij ¼ EjklAik,l: ð168Þ

Note that the definition of the curl operator chosen in Cermelli and Gurtin (2001) is the opposite and transpose of (168).
Finally, brackets /S are used to compute average values over a unit cell V:

/�S¼
1

V

Z
V
�dV : ð169Þ

Appendix B. Strain gradient plasticity solution for a two-phase plastic laminate

A complete solution of the laminate boundary value problem can be derived for the two-phase periodic microstructure
under simple shear for the ‘‘curl Hp’’ model of Section 3 when both phases exhibit a plastic behaviour. The hard phase now
admits a critical resolved shear stress th

c . In both phases, under plastic loading conditions, the plastic slip has a parabolic
profile:

ghðx1Þ ¼ ahx2
1þbhx1þch, gsðx1Þ ¼ asx2

1þbsx1þcs ð170Þ
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taken over the interval [�s/2,s/2+h], with six coefficients to be determined from the following conditions:

� Continuity of plastic slip at x1 = s/2 and periodicity of plastic slip at x1=�s/2 and x1 = s/2+h:

as s

2

� �2

þbs s

2
þcs ¼ ah s

2

� �2

þbh s

2
þch, ð171Þ

as s

2

� �2

�bs s

2
þcs ¼ ah s

2
þh

� �2

þbh s

2
þh

� �
þch: ð172Þ

� Continuity of double stress component M13 ¼�Ag,1 at x1 = s/2 and periodicity of double stress vector at x1 =�s/2
and s/2+h:

As 2as s

2
þbs

� �
¼ Ah 2ah s

2
þbh

� �
, ð173Þ

As �2as s

2
þbs

� �
¼ Ah 2ah s

2
þh

� �
þbh

� �
: ð174Þ

� Plasticity criterion

s12þ2Asa
s ¼ ts

c , ð175Þ

s12þ2Ahah ¼ th
c : ð176Þ

� Symmetry condition at x1 = 0:

g,1ð0Þ ¼ 0: ð177Þ

� Periodicity condition for the perturbation u2 translated into the following terms. The elastic law provides

u2,1 ¼ s12=m�gþg: ð178Þ

The mean value over one unit cell of the left-hand side necessarily vanishes since u2 is periodic:

ðsþhÞ/u2,1S¼ ðsþhÞ/s12=m�gþgS¼
Z s=2

�s=2
ðts

c=m�2Asas=m�gþasx2
1þcsÞdx1þ

Z s=2þh

s=2
ðth

c=m�2Ahah=m�gþahx2
1þchÞdx1

¼ ðts
c=m�2Asas=m�gÞðsþhÞþscsþhch

þ
2as

3

s

2

� �3

þ
2ah

3

s

2
þh

� �3

�
s

2

� �3
� �

þ
bh

2

s

2
þh

� �2

�
s

2

� �2

þhðsþhÞ

� �
:

From Eq. (177) we obtain

bs ¼ 0: ð179Þ

The combination (175)–(176) provides the relation

2ðAsas�AhahÞ ¼ ts
c�t

h
c : ð180Þ

From the combination of Eqs. (173) and (180), one finds

bh ¼
ts

c�th
c

Ah

s

2
: ð181Þ

The combination (171)–(172) yields

ah ¼
bh

sþh
¼
ts

c�th
c

Ah

s

2ðsþhÞ
: ð182Þ

Finally,

as ¼
ts

c�th
c

As

2sþh

2ðsþhÞ
: ð183Þ

Eqs. (171) (or (172)) and (179) provide a system of two equations from which we obtain ch and cs.

Appendix C. Double traction at the interface

The purpose of this appendix is to propose a way to derive, from the microcurl model, the jump of generalized tractions
presented in Section 3. It was shown that with the ‘‘curl Hp’’ model, the required continuity of the double traction tensor, m

�
,

see Eq. (58), leads to a physically not relevant solution of the boundary value problem. So, the correct value of the double
traction to be imposed at the interface was left undetermined. This value can be obtained as the limiting case of
the microcurl model for which we have solved the full boundary value problem. As we want the microcurl model to tend
to the ‘‘curl Hp’’ model, we have to consider an infinite coupling modulus, Hw-1. In that case, wps

12 is equal to the plastic

N.M. Cordero et al. / J. Mech. Phys. Solids 58 (2010) 1963–19941992



Author's personal copy

slip g and then we have

lim
Hw-1

wps
12ð7s=2Þ ¼ 0, ð184Þ

which means that the plastic micro-deformation tends to zero at the interfaces with the elastic phase.
We evaluate the double traction tensor at the interfaces:

lim
Hw-1

m12ð7s=2Þ ¼ lim
Hw-1

Aswps
12,1ð7s=2Þ ¼ �

AsAfsl

Bl2þ2As

m
¼

As g�tc

m

� �
fsl

f 3
s
6 l2þ2As

m

: ð185Þ

This expression can be transformed into the following expression:

lim
Hw-1

m12ð7s=2Þ ¼�
AsAufs

Bul ¼
6As/gS

f 2
s l

: ð186Þ

Eqs. (185) and (186) give us the value of the double traction tensor at the interfaces in the limit case of the microcurl model.
We can now return to the original ‘‘curl Hp’’ model and impose the appropriate value of the double traction (and double
stress) component m12 (and M13) at the interface. The corresponding boundary value problem is then well-posed and can
be solved for the plastic deformation profile.
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