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Abstract

The objective of the present work is to compare several thermomechanical
frameworks, taking into account the influence of strain gradient, internal vari-
ables, gradient of internal variables, and temperature gradient on the consti-
tutive behavior of materials. In particular, the restrictions by the second law
of thermodynamics are derived. The method of exploitation consists of two
steps: an application of the well-known method by Liu and a new method of
exploiting the residual inequality. The first example introduces an enlarged
set of variables for the constitutive functions including in particular the strain
gradient, an internal variable, its gradient, and the temperature gradient. In
the second example, the power of internal forces is enriched to incorporate
generalized stress measures. In the third example, the classical thermome-
chanical setting is complemented by a balance-type di¤erential equation for
an additional variable. Finally, material theories of grade n are envisaged. It
is shown that the free energy density may depend on gradients only in the
case that an additional balance equation is introduced. We also demonstrate
that for isotropic materials the second law of thermodynamics implies for a
large class of state spaces that the entropy flux equals the heat flux divided
by temperature.



1. Introduction

1.1. Scope of this work

A precise description of the thermoelastoviscoplastic behavior of materials
based on phenomenological constitutive equations requires the introduction
of internal variables [1–4]. An example of such an internal variable is the
alignment tensor in liquid crystals [5–7], and it is known that in this case the
transport of orientational order gives an extra contribution to the entropy
flux [8]. For an overview over the field and for di¤erent applications of inter-
nal variables, see for instance [9–16].

It is also possible within the continuum mechanical framework to account for
the size-dependent material behavior observed in many physical situations
(like grain size e¤ects in polycrystals or particle size e¤ects in composites) by
introducing strain gradients or gradients of internal variables into the consti-
tutive modelling [17–20].

When the constitutive functions like stress and free energy density are as-
sumed to depend on additional variables with respect to the classical frame-
work, such as strain gradients and/or gradients of internal variables, the ther-
modynamical setting of the theory must be reconsidered. In particular, the
restrictions on such dependences induced by the second law of thermodynam-
ics must be examined. Three main trends can be distinguished in the literature
to tackle this problem:

� In many cases, the thermomechanical consistency of proposed strain gradi-
ent models is not checked systematically. In particular, the balance equa-
tions (momentum and energy) are assumed to keep their classical form so
that the boundary value problem remains una¤ected. This is the case for
instance for the strain gradient plasticity models in [21–23]. Some limita-
tions of such models are reviewed in [24].

� The incorporation of higher order gradient e¤ects is made possible in some
theories by enriching the power of internal forces or by adding contribu-
tions to the energy balance. The mechanical power is enriched in the second
gradient of displacement theories [25–27] by introducing higher order gen-
eralized stress tensors. Such a generalized contribution is added at the level
of the energy balance in [28]. The case of the gradient of damage is tackled
in [29] by extending the power of internal forces through the product of the
gradient of damage rate by a generalized stress measure. Mindlin’s theory
of second gradient media is extended to thermoelasticity in [30, 31] by in-
troducing the gradient of temperature into the thermomechanical setting.
Strain gradient plasticity models are proposed in [32, 33]. These extensions
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lead to additional balance equations and additional boundary conditions to
be taken into account.

� The introduction of an extra entropy flux k has been considered as an
alternative generalization of the classical theory in [34, 10] to incorporate
internal variables and their gradients. An extra entropy flux in the case of
materials with additional degrees of freedom has been proposed in [9].

In contrast to these approaches, in [35] the problem of thermoviscous fluids is
treated with heat flux and stress tensor as independent variables in the spirit
of extended thermodynamics. Assuming that there is no influence of gra-
dients, the authors find the classical expression for the entropy flux being
heat flux over temperature. Including gradients into the set of variables, they
find an extra entropy flux, i.e., a modified relation between entropy flux and
heat flux.

The objective of the present work is to compare several thermomechanical
frameworks taking the influence of strain gradient, gradient of internal vari-
ables, and temperature gradient on the constitutive behavior of materials into
account. In particular, the restrictions on such constitutive dependences im-
plied by the exploitation of the second law of thermodynamics are derived
systematically and compared for the di¤erent frameworks. The method of
exploiting the second law consists of two steps: The first step is an application
of the well-known methods of Liu [36], or equivalently of the method of Co-
leman and Noll [37]. The second step is a new method of exploiting the resid-
ual inequality.

Section 2 considers the introduction of an enlarged state space including in
particular the strain gradient, an internal variable, its gradient, and the tem-
perature gradient, without considering any additional di¤erential equation.
The restrictions on the constitutive functional dependences are derived. In
Section 3, the power of internal forces is enriched to incorporate generalized
stress measures. In Section 4, the classical thermomechanical setting is com-
plemented by a balance equation for the internal degree of freedom instead
of the usual evolution equation. Finally, material theories of grade n are en-
visaged in Section 5.

In this work, we reserve the term ‘‘internal variable’’ for a quantity which is
neither observable nor controllable. The example of molecule or lattice rota-
tion in liquid or solid crystal shows that a quantity can be observable (by X-
ray analysis for example) but not easily controllable because it is experimen-
tally di‰cult to monitor it. The question then arises whether it should be
treated as an internal variable or as an actual degree of freedom. When the gra-
dient of such a variable plays a role in the material theory, we show especially
in Section 3 that the variable can be treated as an additional degree of freedom.

Thermodynamical Frameworks for Higher Grade Material Theories 321

J. Non-Equilib. Thermodyn. � 2006 �Vol. 31 � No. 4



The analysis is confined to the case of solid bodies within the context of small
perturbations, although straightforward extensions of most results are pos-
sible in the context of finite deformations or in the case of fluids. Accord-
ingly, the privileged constitutive function in this work is the free energy den-
sity C.

The notation used throughout this work is the following: scalar quantities,
vectors, second- and third-rank tensors are denoted respectively, by a, a, a�,
a��. Simple, double, and triple contraction read � , : , ..

.
. ‘ is the nabla operator.

The symmetric strain tensor is denoted by e � within the context of small defor-
mations. _aa is the time derivative of a.

1.2. Method of exploiting the dissipation inequality

According to the second law of thermodynamics, all processes are connected
with a non-negative entropy production sb0. In principle, this could be
guaranteed either by ‘‘ruling out’’ the (mathematical) solutions of the balance
equations, which contradict this dissipation inequality, or by restrictions on
constitutive functions, such that there exist only solutions of the balance equa-
tions together with constitutive equations in agreement with the dissipation
inequality. With a very reasonable amendment to the second law, it can be
shown that the second possibility is the case [38]: the second law of thermody-
namics imposes restrictions on constitutive functions. The most general form
of these restrictions is derived by the method of Liu [36] after having chosen
the state space (the set of variables the constitutive functions depend upon).
Let us give here a short sketch of the method:

The balance equations, after the chain rule is applied to the constitutive func-
tions, form a system of equations linear in the so-called higher derivatives,
i.e., the derivatives are not included in the state space but one order higher.
These higher derivatives will be put together in a row y. Then the system of
balance equations and the dissipation inequality can be written symbolically
as:

A � y ¼ C ; ð1Þ

B � ybD; ð2Þ

with a matrix A, rows B and C , and a scalar function D. All these quantities
are functions of the state space variables.

LIU’s proposition [39, 36, 40]: Constitutive equations satisfy the relations

BðZÞ ¼ lðZÞ � AðZÞ; ð3Þ
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lðZÞ � CðZÞbDðZÞ; ð4Þ

with state space functions lðZÞ. The entropy production density

s :¼ l � C� Db0 ð5Þ

is independent of the process direction, i.e., it depends only on the state space
elements and not on higher derivatives.

The set of equations (3) will be denoted as ‘‘LIU equations’’, and Eq. (4) is
the residual inequality. The LIU equations are as many equations as there
are higher derivatives (elements in the row y). These are more equations
than there are unknown factors l, which is the same number as the number
of balance equations. The equations remaining after eliminating the unknowns
l from the LIU equations are the restrictions on constitutive functions. After
eliminating the multipliers l from the residual inequality, an expression for
the entropy production is obtained. In the examples, it turns out that this ex-
pression is of the form of a sum of products where one factor can be denoted
as a thermodynamic force and the other one as a thermodynamic flux, i.e., it
is of the form

s ¼
X
i

vi fiðvjÞb0: ð6Þ

One can show that for continuous functions fiðvjÞ it follows [41] that fi is a
homogeneous function,

vi ¼ 0 ) fi ¼ 0: ð7Þ

This fact as well as the LIU equations will be exploited in the following.

Another way of exploiting the inequality of the second law of thermodynam-
ics is the Coleman–Noll procedure [42]. Both methods have been used for the
results presented in this work and can be shown to lead to the same conclu-
sions under conditions stated in Section 3.

2. Application to a gradient theory with an internal variable

A higher order theory involving the first and second gradients of the displace-
ment field is envisaged in this section using the method proposed in [25]. The
influence of an internal variable a and of its first gradient is also taken into
account. A full thermomechanical framework is the aim of this part.
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2.1. Balance equations and equation of motion for the internal variable

The material is supposed to be non-micropolar, i.e., there is no internal angu-
lar momentum and the balance of angular momentum is not independent of
the balance of momentum. The remaining balance equations are:

Balance of mass:

_%%þ %‘ � v ¼ 0; ð8Þ

with mass density % and material velocity v.

Balance of momentum:

% _vv� ‘ � ðs� � ‘ � S�� Þ � % f ¼ 0: ð9Þ

f is the specific density of volume forces, s� denotes the Cauchy stress tensor,
and S�� the hyperstress tensor. Volume double and triple forces are excluded
here for the sake of simplicity [26]. The special case of S�� ¼ 0 is discussed at
the end of this section.

Balance of internal energy:

% _eeþ ‘ � q� s� : _e �e �� S�� ..
.
‘ _e �e � ¼ 0: ð10Þ

Here e is the internal energy density, q is the heat flux density, and the re-
maining terms are the (internal) power of stress and hyperstress. It is sup-
posed that there is no radiation absorption.

We are dealing with solids, and we will restrict ourselves to small deforma-
tions. We introduce an additional internal variable a in order to model more
complex material behavior, like for instance in the case of plasticity. The in-
ternal variable could be a scalar or a tensor of arbitrary order. For simplicity
we introduce here a scalar internal variable, but the exploitation of the dissi-
pation inequality works analogously with a tensor variable of arbitrary order.

For the internal variable we suppose an equation of motion of the form of a
relaxation equation:

da

dt
¼ pa; ð11Þ

with a production pa which is determined by internal dynamics. It is a consti-
tutive quantity, depending on the whole set of state space variables, including
the internal variable itself.
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The stress tensor s� , the hyperstress S�� , the specific internal energy density e,
and the heat flux q are constitutive quantities. They depend on a set of vari-
ables, denoted as state space Z in a material-dependent manner. General
conclusions concerning these constitutive functions, valid for any material,
can be drawn from the second law of thermodynamics.

The second law of thermodynamics is expressed by the dissipation inequality:

s ¼ % _hhþ ‘ �Fb0; ð12Þ

with specific entropy density h, entropy flux F, and entropy production s.
The dissipation inequality is exploited according to Liu (see Section 2.2) to-
gether with the balances of mass, momentum, and internal energy, as well as
the relaxation equation for the internal variable. The corresponding multi-
pliers are denoted by L%, Lv, Le, and La. These are functions of the state
space variables.

2.2. Exploitation of the second law according to Liu

The second law of thermodynamics is fulfilled by any thermodynamic pro-
cess, if and only if the following inequality is fulfilled:

% _hhþ ‘ �FþL% ðBalance of massÞ þLv � ðBalance of momentumÞ

þLe ðBalance of internal energyÞ

þLa ðRelaxation of internal variableÞb0: ð13Þ

The implications of this inequality on constitutive functions are exploited in
the following.

We assume that for material behavior strain and strain gradient, temperature
and temperature gradient, and the internal variable a together with its gradi-
ent are relevant. They are included in the domain of constitutive functions Z.
In addition, the possibility of first-order time derivatives of these variables be-
ing relevant for the material behavior is taken into consideration:

Z ¼ fT ; e �; a;‘T ;‘e �;‘a; _TT ;‘ _TT ; _e �e �;‘ _e �e �; _aa;‘ _aag: ð14Þ

Constitutive quantities depend on position and time through the space and
time dependence of the field quantities in the state space Z. The time and
space derivatives of all constitutive functions are carried out according to the
chain rule, for example:
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_ee ¼ qe

qT

dT

dt
þ qe

q‘T
� d‘T

dt
þ qe

qe �
:
de �
dt

þ qe

q‘e �
..
. d‘e �

dt
þ qe

qa

da

dt
þ qe

q‘a
� d‘a
dt

þ qe

q _TT

d 2T

dt2
þ qe

q‘ _TT
� ‘ d 2T

dt2
þ qe

q _e �e �
:
d 2e �
dt2

þ qe

q‘ _e �e �
..
.
‘
d 2e �
dt2

þ qe

q _aa

d 2a

dt2
þ qe

q‘ _aa
� ‘ d 2a

dt2
: ð15Þ

Application of the chain rule to all constitutive functions in the inequality
(13) leads to an expression linear in the so-called higher derivatives not in-
cluded in the state space. These are in our case:

€TT ;‘ €TT ;€e �e �;‘€e �e �; €aa;‘€aa;‘‘T ;‘‘e �;‘‘a;‘‘ _TT ;‘‘ _e �e �;‘‘ _aa; _vv: ð16Þ

Corresponding to each higher derivative, there is an equation restricting
constitutive functions. From this set of equations, the quantities La, Lv,
and Le are eliminated. The results are most conveniently written in terms of
the specific free energy density C :¼ e� Th and the extra entropy flux k ¼

F�
q

T
. The multiplier L% cannot be calculated, but the balance of mass plays

simply the role of a constraint,

_%% ¼ �% trace _e �e �: ð17Þ

The corresponding multiplier plays neither a role in the restrictions on consti-
tutive functions, nor in the expression for the entropy production and may
remain undetermined. The same holds for the multiplier La, because the re-
laxation equation (11) is a relation between state space variables.

It is found that

Le ¼ � qh

qe
ð18Þ

and Le is set equal to the inverse temperature

Le ¼ 1

T
: ð19Þ

This is in agreement with thermostatics, and an argument in favor of this
identification in non-equilibrium can be found in [43].
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From the equation corresponding to the higher derivative _vv, we calculate:

Lv ¼ 0; ð20Þ

which is taken into account in the following.

The remaining restrictions on constitutive functions from the second law are

qC

qzi
¼ 0 zi a f _TT ;‘ _TT ; _e �e �;‘ _e �e �; _aa;‘ _aag; ð21Þ

qk

qui
¼ 0 ui a f‘T ;‘e �;‘a;‘ _TT ;‘ _e �e �;‘ _aag: ð22Þ

In summary, the exploitation of the second law with the balance equations as
constraints has restricted the dependence of the extra entropy flux and of the
free energy density to the following variables:

kðT ; _TT ; e �; _e �e �; a; _aaÞ: ð23Þ

The extra entropy flux does not depend on the highest gradients in the state
space. The dependence of the free energy density is then

CðT ;‘T ; e �;‘e �; a;‘aÞ: ð24Þ

The free energy density does not depend on any time derivative.

In addition to the above restrictions on constitutive functions, the method of
Liu results in an expression for the entropy production, which is a function of
the state space variables:

s ¼ � %

T

qC

qT
� %

e

T 2

� �
_TT � %

T

qC

q‘T
� ‘ _TT

� %

T

qC

qe �
þ 1

T
s�

� �
: _e �e �þ � %

T

qC

q‘e �
þ qk

q _e �e �
þ 1

T
S��

� �
..
.
‘ _e �e �

� %

T

qC

qa
_aaþ � %

T

qC

q‘a
þ qk

q _aa

� �
� ‘ _aa

qk

qT
þ 1

T 2
q

� �
� ‘T þ qk

qe �
..
.
‘e �þ qk

qa
� ‘ab0: ð25Þ

This inequality is exploited now further making use of Eq. (7).
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2.3. Exploitation of the residual inequality

In order to make it more clearly readable for the following exploitation, we
write the entropy production in the form of a formal scalar product between
rows, as suggested in Section 1.2. It is understood that in the lines involving
vectors or tensors the scalar product (contraction over all pairs of indices in
components) has to be taken:

s ¼

� %
T

qC
qT

� % e
T 2

� %
T

qC
q‘T

� %
T

qC
qe � þ 1

T
s�

� %
T

qC
q‘e � þ

qk

q _e �e � þ 1
T
S��

� %
T

qC
qa

� %
T

qC
q‘a

þ qk

q _aa
qk

qT
þ 1

T 2 q

qk

qe �
qk

qa

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

�

_TT

‘ _TT

_e �e �
‘ _e �e �
_aa

‘ _aa

‘T

‘e �
‘a

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: ð26Þ

Equation (26) clearly shows that the entropy production is a sum of products
of state space variables and derivatives of constitutive functions. Under the
presupposition that the dependence of the constitutive functions on the state
space variables is continuous, it follows according to Eq. (7) that each consti-
tutive quantity in the row at the left-hand side is a homogeneous function of
the state space variable in the row at the right-hand side in the same line. This
fact is exploited now, beginning in the last line of Eq. (26):

qk

qa
¼ f1ðZÞ‘a; ð27Þ

where f1ðZÞ is up to now an arbitrary function of the state space variables.
On the other hand, k does not depend on ‘a as a consequence of the dissi-
pation inequality [see Eq. (23)] and therefore, the left-hand side of Eq. (27),
qk

qa
, is also independent of ‘a. Consequently, the only possibility to fulfill Eq.

(27) is:

f1 ¼ 0 ) qk

qa
¼ 0: ð28Þ

The extra entropy flux does not depend on the internal variable.
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The exploitation of the entropy production proceeds with the line above in
Eq. (26). This shows analogously that k does not depend on strain:

qk

qe �
¼ f2ðZÞ‘e �; ð29Þ

where f2ðZÞ is up to now an arbitrary function of the state space variables.
On the other hand, k does not depend on ‘e � according to the Liu procedure

[see Eq. (23)] and therefore, the left-hand side of Eq. (29),
qk

qe �
, is also indepen-

dent of ‘e �, and the only way to fulfill Eq. (29) is

f2ðZÞ ¼ 0 ) qk

qe �
¼ 0: ð30Þ

The exploitation of the next line in the entropy production does not restrict
the extra entropy flux k, because of the unknown constitutive function heat
flux q in the corresponding equation. Concerning the dependence of the extra
entropy flux k on temperature, we cannot draw any conclusion from the en-
tropy production.

The results on the extra entropy flux and the free energy density derived up to
here can be summarized as:

kðT ; _TT ; _e �e �; _aaÞ: ð31Þ

Apart from temperature, the extra entropy flux depends only on time deriva-
tives, whereas

CðT ;‘T ; e �;‘e �; a;‘aÞ ð32Þ

does not depend on any time derivative, but on gradients.

Further conclusions are drawn from the exploitation of the remaining lines of
the entropy production. The next line in Eq. (26) results in

� %

T

qC

‘a
þ qk

q _aa
¼ f3ðZÞ‘ _aa; ð33Þ

with an arbitrary state space function f3ðZÞ.

C and k both do not depend on ‘ _aa, and therefore the left-hand side of
Eq. (33) is independent of ‘ _aa. Therefore, Eq. (33) can hold only if f3 ¼ 0. It
follows
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%

T

qC

q‘a
¼ qk

q _aa
: ð34Þ

The left-hand side of Eq. (34) depends on ðT ;‘T ; e �;‘e �; a;‘aÞ [see Eq.
(24)], whereas the right-hand side depends on ðT ; _e �e �; _aaÞ. The only common
variable is the temperature T , and we conclude that both sides of Eq. (34)

can solely be functions of temperature. On the other hand,
%

T

qC

q‘a
as well as

qk

q _aa
are vectors. An isotropic vector function cannot be represented by a scalar

variable T . It follows:

%

T

qC

q‘a
¼ 0;

qk

q _aa
¼ 0: ð35Þ

Analogously, the line above in Eq. (26) is exploited and leads to the conclu-

sion that
%

T

qC

qa
is a homogeneous function of _aa on one hand, but on the

other hand C does not depend on _aa. It follows

%

T

qC

qa
¼ 0; ð36Þ

i.e., we have shown that the free energy density does not depend on the inter-
nal variable a. In the context of the elastic-viscoplastic behavior of materials,
a dependence of the free energy on the internal variable a is required. This is
usually done by postulating the existence of a convex dissipation potential W
being a function of the thermodynamical force a ¼ qC=qa. The evolution
equation for _aa is then given by the partial derivative qW=qa. This framework
proposed in [1–3] is not addressed in the present work.

The exploitation of the next two lines in the entropy production equation (26)
does not lead to restrictions on the free energy density and on the extra en-
tropy flux due to the additional undetermined constitutive functions stress
tensor s� and hyperstress S�� .

The second but last line of the entropy production equation (26) shows
that

qC

q‘T
¼ f4ðZÞ‘ _TT ; ð37Þ

but the free energy density does not depend on ‘ _TT , and therefore
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qC

q‘T
¼ 0: ð38Þ

The free energy density does not depend on temperature gradient.

2.4. Summary

The second part of the exploitation of the second law of thermodynamics,
namely the conclusions drawn from the entropy production, have consider-
ably restricted the constitutive functions. With the chosen set of variables,
Eq. (14) in the domain of the constitutive functions, and including the power
of the hyperstress S�� in the balance of energy, we found from the exploitation
of the second law of thermodynamics that the extra entropy flux k and the
free energy density C depend solely on the following sets of variables:

kðT ; _e �e �Þ; ð39Þ

CðT ; e �;‘e �Þ: ð40Þ

The internal variable or derivatives of it appear neither in the free energy den-
sity, nor in the extra entropy flux. In this sense, the inclusion of the internal
variable in the beginning does not lead to any modification of the classical
theory.

If there is no material anisotropy present (in addition to the possible rele-
vance of tensorial internal variables), there exists no vector function k de-
pending on a scalar (the temperature) and a symmetric second-order tensor
( _e �e �) solely [44]. We conclude from Eq. (39) that the extra entropy flux van-
ishes, k ¼ 0, i.e., we have the classical relation between entropy flux and
heat flux:

F ¼
q

T
: ð41Þ

The only cause for the entropy flux is the heat flux. There is no contribution
from the internal variable, because the internal variable satisfies a pure relax-
ation equation without a flux.

Our result does not contradict the result of eq. (3.9) in [10], but according to

us the constitutive functions are further restricted to the case
qC

q‘a
¼ 0, i.e.,

B ¼ 0 in the notation of [10], and therefore

k ¼ 0: ð42Þ

Thermodynamical Frameworks for Higher Grade Material Theories 331

J. Non-Equilib. Thermodyn. � 2006 �Vol. 31 � No. 4



2.5. Special case of vanishing hyperstress

If we had set the hyperstress S�� equal to zero, we could proceed with the eval-
uation of the fourth line of the entropy production in Eq. (26). This would
lead to the conclusion

qk

q _e �e �
¼ 0; ð43Þ

%

T

qC

q‘e �
¼ 0: ð44Þ

In this case, the extra entropy flux does not depend on _e �e �, but can only depend
on temperature, i.e., on a scalar variable. Again, the representation theorem
shows that the extra entropy flux vanishes. In addition, the dependence of the
free energy is restricted in this case to the equilibrium variables CðT ; e �Þ.

A dependence of the free energy density on the strain gradient is therefore
only possible if the power of internal forces is enriched by the introduction
of the hyperstress tensor S�� as suggested in [25]. In the same spirit, more gen-
eral dependencies of the free energy densities become possible by further ex-
tending the power of external forces and introducing additional generalized
stress tensors. This is the objective of the next section.

3. Higher grade theory with enriched power of internal forces

3.1. Second gradient and additional degree of freedom theory
with state space Z0

An alternative formulation is presented here for a material theory including
the first and second gradients of the displacement field u, an additional inde-
pendent variable a, and its first gradient ‘a. In the thermomechanical theory,
the variables T and ‘T must also be introduced a priori. The state space is
therefore defined as

Z0 ¼ fT ; e �; a;‘T ;‘e �;‘ag: ð45Þ

It is a subspace of the already introduced state space Z in Eq. (14). For the
sake of conciseness, the Coleman–Noll exploitation procedure of the second
law is applied in this section [42]. The Liu approach can be shown to lead to
the same conclusions in the present context provided that the Lagrange mul-
tiplier Le is identified with the inverse of T .
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3.1.1. Balance equations Following the method of virtual power formulated
and applied to first- and second-grade continua in [26, 45, 18], the overall
powers of internal, external, and contact forces in a virtual motion Q? a Z0

for a domain D of the body, are assumed to admit power densities:

PðiÞðQ? a Z0Þ ¼
ð
D

pðiÞðQ?Þ dV ; PðeÞðQ? aZ0Þ ¼
ð
D

pðeÞðQ?Þ dV ; ð46Þ

PðcÞðQ? a Z0Þ ¼
ð
qD

pðcÞðQ?Þ dS; ð47Þ

where qD is the boundary of a subdomain D of the body.

The power density of internal forces is then taken as a general linear form on
the rates of the state variables:

pðiÞðQ?Þ ¼ s� : _ee �? þ S�� ..
.
‘ _ee �? þ a _aa? þ b:‘ _aa? þ A _TT ? þ B:‘ _TT ?: ð48Þ

Generalized stresses s� , S�� , a, b, A, B are introduced. Objectivity arguments in
the absence of rotational degrees of freedom and couple stresses have been
used to write the previous form. In particular, it is su‰cient to consider a
symmetric stress tensor s� . The introduction of additional contributions to
the classical power of internal forces, associated with additional degrees of
freedom, represents a systematic approach described in [45] and the refer-
ences quoted therein. In these references, di¤erent examples are provided
dealing for instance with the coupling between thermomechanics and electro-
magnetism. Note that in the present formulation, the temperature itself is
raised to the status of an additional degree of freedom following the same
scheme. The contributions of _aa and ‘ _aa were added to the classical expression
of pðiÞ in [29] in the case of a damage variable. In the same spirit, the contri-
butions of _TT , ‘ _TT were added in [31] to construct the second-grade thermo-
elasticity theory of solids. Similarly, the virtual powers of internal and con-
tact forces read:

pðeÞðQ?Þ ¼ f : _uu? þ F� : _ee �? þ F�� ..
.
‘ _ee �? þ aðeÞ _aa?

þ bðeÞ:‘ _aa? þ AðeÞ _TT ? þ BðeÞ:‘ _TT ?; ð49Þ

pðcÞðQ?Þ ¼ t: _uu? þ F ðcÞ : ðDn _uuÞ þ aðcÞ _aa? þ AðcÞ _TT ?: ð50Þ

The normal gradient of the velocity field at a surface is called Dn _uu (see [26] for
its definition). Volume forces f , volume double and triple forces F� , F�� , and
generalized volume forces aðeÞ, bðeÞ, AðeÞ, BðeÞ are introduced for the sake of
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generality1. Only the contributions in the virtual power of contact forces that
will finally appear in the balance equations are written following arguments
put forward in [26, 45].

The principle of virtual power then states that the virtual power of externally
acting forces is equal to the power of internally acting forces plus the power
of acceleration forces:

PðeÞ þPðcÞ ¼ PðiÞ þ
ð
D

%€uu: _uu? dV ; ð51Þ

for all virtual fields Q? with su‰cient regularity, and for any subdomain D of
the body. Balance equations and boundary conditions are derived from this
principle. The detailed derivation is not given here since it strictly follows
the arguments detailed in [26, 45]. The found balance equations read:

‘:t �þ f � %€uu ¼ 0; with t� ¼ s� � F� � ‘:S�� � ‘:F�� ; ð52Þ

‘:ðb� bðeÞÞ � ða� aðeÞÞ ¼ 0; ð53Þ

‘:ðB � BðeÞÞ � ðA� AðeÞÞ ¼ 0: ð54Þ

The boundary conditions valid on qD with normal n read:

t ¼ t�:nþ 2RS�� : ðnn nÞ �DtðS�� :nÞ; ð55Þ

F ðcÞ ¼ S�� : ðnn nÞ; ð56Þ

aðcÞ ¼ ðb� bðeÞÞ:n; ð57Þ

AðcÞ ¼ ðB � BðeÞÞ:n: ð58Þ

In the classical theory, the vectors b and B do not exist. As a result of the pre-
vious balance equations, the stresses a and A must then vanish also. The clas-
sical balance of momentum equation is then retrieved.

The balance of internal energy introduces the density of internal energy eðZ0Þ.
It reads

% _ee ¼ pðiÞ � ‘:q; ð59Þ

where the power of internal forces is defined by (48).

1Volume couples could also have been introduced but, for that purpose, the skew-symmetric
part of the velocity gradient should have been introduced in the state space Z0. As a result, the
volume double forces are represented here only by a symmetric second-order tensor F� .
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The entropy inequality still reads

% _hhþ ‘:Fb0; with F ¼
q

T
þ k: ð60Þ

The extra entropy flux k also operates on the state space Z0.

3.1.2. Exploitation of the second law according to Coleman–Noll In the ther-
momechanics of solids, the Helmholtz free energy density

CðZ0ÞCCðT ; e �; a;‘T ;‘e �;‘aÞ ¼ %e� %Th ð61Þ

is introduced with the indicated dependence. The entropy production s takes
then the following form:

sTC pðiÞ � % _CC� %h _TT � 1

T
q:‘T þ T‘:kb0: ð62Þ

When the explicit dependence of the constitutive functions on the state vari-
ables Z0 and the expression (48) of the enriched power of internal forces are
taken into account, the previous inequality results in a generalized Clausius–
Duhem inequality:

s� � %
qC

qe �

� �
: _ee �þ S�� � %

qC

q‘e �

� �
..
.
‘ _ee �

þ A� %
qC

qT
� %h

� �
_TT þ B � %

qC

q‘T

� �
:‘ _TT

þ a� %
qC

qa

� �
_aaþ b� %

qC

q‘a

� �
:‘ _aaþ T‘:k� 1

T
q:‘Tb0: ð63Þ

Since _TT , _ee �, _aa, ‘ _TT , ‘ _ee �, ‘ _aa do not belong to the state space Z0, the following
state laws can be derived:

s� ¼ %
qC

qe �
; S�� ¼ %

qC

q‘e �
; ð64Þ

%h ¼ �%
qC

qT
þ A; a ¼ %

qC

qa
; ð65Þ

B ¼ %
qC

q‘T
; b ¼ %

qC

q‘a
: ð66Þ
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As a result, the second law does not restrict the number of state variables on
which the free energy density can depend. In particular, it can be an explicit
function of the strain gradient ‘e �, of the gradient of the additional variable
‘a, and of the temperature gradient ‘T . The former possibility was exploited
in [29] to construct a gradient of damage theory. The latter possibility was
exploited in [31] to formulate linear thermoelasticity constitutive equations
for second-grade media.

3.1.3. Exploitation of the residual inequality After taking the state laws into
account, the residual entropy production inequality is

s ¼ ‘:k� 1

T 2
q:‘Tb0: ð67Þ

Since k a priori is a constitutive function of all state variables Z0, the previous
inequality becomes

qk

qT
:‘T þ qk

qe �
..
.
‘e �þ qk

qa
:‘aþ qk

q‘T
: ‘‘T

þ qk

q‘e �
:: ‘‘e �þ qk

q‘a
: ‘‘a� 1

T 2
q:‘Tb0: ð68Þ

The following relations can then be deduced from the fact that ‘‘T , ‘‘e �,
‘‘a do not belong to Z0:

qk

q‘T
¼ qk

q‘a
¼ 0;

qk

q‘e �
¼ 0: ð69Þ

The inequality is now exploited further making use of Eq. (7). The partial de-
rivatives of k with respect to T , e �, a are then homogeneous functions in ‘T ,
‘e �, ‘a, respectively:

qk

qT
� 1

T 2
q ¼ fqðZ0Þ:‘T ; ð70Þ

qk

qe �
¼ feðZ0Þ ..

.
‘e �; ð71Þ

qk

qa
¼ faðZ0Þ:‘a; ð72Þ
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where the constitutive tensor functions fq, fe, fa of the state variables are for-
mally introduced. However, the left-hand side of Eq. (71) does not depend on
‘e � according to Eq. (69). The only possibility is therefore feC0. Similar ar-
guments hold for the dependence on ‘a, so that fa must vanish. As a result,
the extra-entropy flux can only be a function kðTÞ. In the isotropic case, k
must therefore vanish.

3.2. Second gradient and additional degree of freedom theory with variables Z

If the previous state space is extended to include the rates of the fundamental
variables ðT ; e �; aÞ and of their gradients, and so to coincide with state space Z
of Eq. (14), modifications must be made to the previous theory of gradient-
dependent thermomechanical theory.

The expressions of the enriched powers of internal, external, and contact
forces (48) to (50) are assumed to remain unchanged because second-time
derivatives of the fundamental variables are a priori excluded of these power
densities. As a result, the balance equations and boundary conditions (52) to
(58) still hold. The di¤erences will arise in the functional dependence of the
constitutive functions C and k on the extended state space.

3.2.1. Exploitation of the second law according to Coleman–Noll The consti-
tutive functions

CðZÞCCðT ; e �; a;‘T ;‘e �;‘a; _TT ; _ee �; _aa;‘ _TT ;‘ _ee �;‘ _aaÞ ð73Þ

and kðZÞ are introduced in the entropy inequality (60). This gives

s� � %
qC

qe �

� �
: _ee �þ S�� � %

qC

q‘e �
þ T

qk

q _ee �

� �
..
.
‘ _ee �

þ A� %
qC

qT
� %h

� �
_TT þ B � %

qC

q‘T
þ T

qk

q _TT

� �
:‘ _TT

þ a� %
qC

qa

� �
_aaþ b� %

qC

q‘a
þ T

qk

q _aa

� �
:‘ _aa

þ %
qC

q _TT
€TT þ %

qC

q _ee �
: €ee �þ %

qC

q _aa
€aa

þ %
qC

q‘ _TT
:‘ €TT þ %

qC

q‘ _ee �
..
.
‘€ee �þ %

qC

q‘ _aa
:‘€aaþ Ts� 1

T
q:‘Tb0: ð74Þ
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The entropy production s will be given explicitly in Section 3.2.2. The vari-
ables €TT , €ee �, €aa, ‘ €TT , ‘€ee �, ‘€aa do not belong to the state space Z, so that the fol-
lowing conditions are necessary to fulfill the previous inequality:

qC

q _TT
¼ qC

q _aa
¼ 0;

qC

q _ee �
¼ 0; ð75Þ

qC

q‘ _TT
¼ qC

q‘ _aa
¼ 0;

qC

q‘ _ee �
¼ 0: ð76Þ

Accordingly, the constitutive dependence of the free energy on the state vari-
able is reduced to

CðT ; e �; a;‘T ;‘e �;‘aÞ ¼ CðZ0Þ: ð77Þ

The entropy inequality can be exploited further making use of the condition
(7). There must exist constitutive functions fs, fS, fh, fb, fa, fB of the state
variables Z such that

s� � %
qC

qe �
¼ fsðZÞ : _ee �; ð78Þ

S�� � %
qC

q‘e �
þ T

qk

q _ee �
¼ fSðZÞ ..

.
‘ _ee �; ð79Þ

A� %
qC

qT
� %h ¼ fhðZÞ _TT ; ð80Þ

a� %
qC

qa
¼ faðZÞ _aa; ð81Þ

B � %
qC

q‘T
þ T

qk

q _TT
¼ fBðZÞ:‘ _TT ; ð82Þ

b� %
qC

q‘a
þ T

qk

q _aa
¼ fbðZÞ:‘ _aa: ð83Þ

In the special case for which the stress functions s� , S�� , a, b, A, B do not de-
pend on the rates _TT , _ee �, _aa, ‘ _TT , ‘ _ee �, ‘ _aa, the state laws (64) to (66) are retrieved.
But the previous forms (78) to (83) remain the most general admissible ones
for the state space Z.
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3.2.2. Exploitation of the residual inequality The residual entropy produc-
tion contains the following contributions of the extra-entropy flux:

s ¼ qk

qT
:‘T þ qk

qe �
..
.
‘e �þ qk

qa
:‘a

þ qk

q‘T
: ‘‘T þ qk

q‘e �
:: ‘‘e �þ qk

q‘a
: ‘‘a

þ qk

q‘ _TT
: ‘‘ _TT þ qk

q‘ _ee �
:: ‘‘_ee �þ qk

q‘ _aa
: ‘‘ _aa: ð84Þ

Since neither the variables ‘‘T , ‘‘e �, ‘‘a, nor ‘‘ _TT , ‘‘ _ee �, ‘‘ _aa belong to Z,
the following partial derivatives must vanish:

qk

q‘T
¼ qk

q‘a
¼ 0;

qk

q‘e �
¼ 0; ð85Þ

qk

q‘ _TT
¼ qk

q‘ _aa
¼ 0;

qk

q‘ _ee �
¼ 0: ð86Þ

Constitutive functions fq, fe, fa of the state variables may then exist such that
the Eqs. (70) to (72) still hold. The same reasoning as in Section 3.1.3 leads to
the conclusion that

qk

qe �
¼ 0;

qk

qa
¼ 0: ð87Þ

Accordingly, the extra-entropy flux is reduced to a function

kðT ; _TT ; _ee �; _aaÞ: ð88Þ

3.2.3. Summary The introduction of generalized stresses associated to the
strain gradient, gradient of an additional degree of freedom, and temperature
gradient into an enriched power of internal forces makes it possible to envis-
age general constitutive functions of the form

CðT ; e �; a;‘T ;‘e �;‘aÞ; kðT ; _TT ; _ee �; _aaÞ: ð89Þ

In contrast to the more classical case handled in Section 2, an explicit depen-
dence of the free energy density on the gradient of an additional variable a
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and on the temperature gradient is possible. This has proved to be necessary
in a damage gradient theory of materials [29] and in the thermoelasticity of
second-grade media [31].

The next section gives an alternative way of allowing dependences of the
form (89) without enriching explicitly the power of internal forces.

4. Nonclassical theory with an additional variable satisfying a
balance equation

We will consider again the case of a material where an additional variable a is
relevant for the description of complex material behavior. In our notation,
this is a scalar variable, but the generalization to a tensorial variable or to a
set of several variables is straightforward. Now we introduce a flux of the
additional variable, i.e., we assume a transport of the variable and its di¤er-
ential equation is an evolution–di¤usion equation and not a pure relaxation
equation.

4.1. Results from the exploitation of the dissipation inequality according to Liu

The balance equations of mass, momentum, and energy remain unchanged:

Balance of mass:

_%%þ %‘ � v ¼ 0: ð90Þ

Balance of momentum:

% _vv� ‘ � ðs� � ‘ � S�� Þ � % f ¼ 0: ð91Þ

Balance of internal energy:

% _eeþ ‘ � q� s� : _e �e �� S�� ..
.
‘ _e �e � ¼ 0: ð92Þ

For the additional variable, we have now an evolution–di¤usion equation

da

dt
þ ‘ � Ja ¼ pa; ð93Þ

with a flux term Ja.
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Consequently, the following inequality has to be exploited:

% _hhþ ‘ �FþL%ð _%%þ %‘ � vÞ þLvð% _vv� ‘ � ðs� þ ‘ � S�� Þ � % f Þ

þLeð% _eeþ ‘ � q� t � : _e �e �� S�� ..
.
‘ _e �e �Þ þLað _aaþ ‘ � Ja � paÞb0: ð94Þ

The set of relevant variables for the constitutive functions is supposed to be
the same as in Section 2:

Z ¼ fT ; e �; a;‘T ;‘e �;‘a; _TT ;‘ _TT ; _e �e �;‘ _e �e �; _aa;‘ _aag: ð95Þ

The multiplier Le is identified as �1=T , and Lv is calculated as Lv ¼ 0. The
remaining inequality is linear in the higher derivatives

€TT ;‘ €TT ;€e �e �;‘€e �e �; €aa;‘€aa;‘‘T ;‘‘e �;‘‘a;‘‘ _TT ;‘‘ _e �e �;‘‘ _aa; ð96Þ

and each of them leads to a restriction on constitutive functions. The first set
of equations, corresponding to the higher derivatives €TT , ‘ €TT , €ee �, ‘€ee �, €aa, ‘€aa, leads
to restrictions for the free energy density C ¼ e� Th:

qC

qvi
¼ 0 for vi a ð _TT ;‘ _TT ; _ee �;‘ _ee �; _aa;‘ _aaÞ; ð97Þ

i.e., the free energy density is a function of the variables:

CðT ; e �; a;‘T ;‘e �;‘aÞ: ð98Þ

The next set of equations, corresponding to the higher derivatives ‘‘T , ‘‘e �,
‘‘a, ‘‘ _TT , ‘‘ _ee �, ‘‘ _aa, are relations between the extra entropy flux k and the
flux of the additional variable Ja:

qk

qwi

¼ �La qJa

qwi

for wi a ð‘T ;‘e �;‘a;‘ _TT ;‘ _ee �;‘ _aaÞ: ð99Þ

One of these relations may be used to calculate La, but they do not allow any
further conclusions concerning the extra entropy flux.

4.2. Exploitation of the residual inequality

The resulting expression for the entropy production (which is a state space
function, not involving any higher derivatives) is given in the form of a for-
mal scalar product:
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s ¼

� %
T

qC
qT

� % e
T 2

� %
T

qC
q‘T

þ qk

q _TT
þLa qJa

q _TT

� %
T

qC
qe � þ 1

T
s�

� %
T

qC
q‘e � þ

qk

q _e �e � þLa qJa
q _ee � þ 1

T
S��

� %
T

qC
qa

� %
T

qC
q‘a

þ qk

q _aa þLa qJa
q _aa

qk

qT
þ 1

T 2 qþLa qJa
qT

qk

qe � þLa qJa
qe �

qk

qa
þLa qJa

qa

La

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�

_TT

‘ _TT

_e �e �
‘ _e �e �
_aa

‘ _aa

‘T

‘e �
‘a

pa

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: ð100Þ

Now the last term in the entropy production (100) contains the production of
the additional variable pa. This is a constitutive quantity, depending in gen-
eral on all state space variables. Therefore, not all quantities in the right col-
umn, Eq. (100), are independent, but pa may depend on all other quantities
in the column. Therefore, the entropy production cannot be exploited further
in this case. We end up with the restrictions derived from the Liu procedure,
and the extra entropy flux can be non-zero.

4.3. Summary

Introducing an additional variable with an evolution–di¤usion equation of
motion, the results on constitutive functions from the second law of thermo-
dynamics are much less restrictive than in the case of an internal variable
obeying a relaxation equation, especially as we cannot conclude that the extra
entropy flux k vanishes.

5. Higher gradient theories

We treat now the general case of an n-gradient theory, i.e., gradients of strain
up to order n are included in the domain of constitutive functions Z1. In
addition, the possibility of first-order time derivatives of these deformation
variables being relevant for material behavior is taken into consideration:

Z1 ¼ fT ; e �;‘T ;‘e �; . . . ;‘ðnÞe �; _e �e �;‘ _e �e �; . . . ;‘ðnÞ _ee �g: ð101Þ

It is assumed that the balance of momentum (9) is unchanged. In particular,
no stress tensors of higher order than S�� are introduced. Internal variables are
not taken into account here for the sake of simplicity.
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The higher derivatives are in this case:

_TT ;‘ _TT ;€e �e �;‘€ee �; . . . ;‘ðnÞ€ee �;‘‘T ;‘ðnþ1Þe �;‘ðnþ1Þ _e �e �; _vv: ð102Þ

Corresponding to each higher derivative, there is an equation restricting con-
stitutive functions. From this set of equations, the quantities Lv and Le are
eliminated. Again we introduce the abbreviations free energy C :¼ e� Th
and the extra entropy flux k ¼ F� q

T
.

Le is identified with the inverse temperature:

Le ¼ 1

T
: ð103Þ

From the equation corresponding to the higher derivative _vv, we calculate:

_vv : Lv ¼ 0: ð104Þ

L% cannot be calculated, but is not needed in the following, because neither
the restrictions on constitutive functions, nor the entropy production depend
on L%.

The remaining restrictions on constitutive functions from the second law are:

qC

qT
¼ � e

T
; ð105Þ

qC

qzi
¼ 0; zi a f‘T ; _e �e �;‘ _e �e �; . . . ;‘ðnÞ _e �e �g; ð106Þ

qk

qui
¼ 0; ui a f‘T ;‘ðnÞe �;‘ðnÞ _e �e �g: ð107Þ

In summary, the exploitation of the second law with the balance equations as
constraints has restricted the dependence of the extra entropy flux and of the
free energy density to the following variables:

kðT ; e �;‘e �; . . . ;‘ðn�1Þe �; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �Þ; ð108Þ

CðT ; e �;‘e �; . . . ;‘ðnÞe �Þ: ð109Þ

The free energy density does not depend on any time derivative.
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The entropy production, which is a function of the state space variables, reads
in this example:

s ¼ � %

T

qC

qe �
þ 1

T
s�

� �
: _e �e �þ � %

T

qC

q‘e �
þ qk

q _e �e �
þ 1

T
S��

� �
..
.
‘ _e �e �

þ � %

T
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T

qC
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þ qk

q‘ðn�1Þ _e �e �

� �
�ðnþ2Þ ‘ðnÞ _e �e �

þ qk

qT
þ 1

T 2
q

� �
� ‘T þ qk

qe �
..
.
‘e �þ qk

q‘e �
:: ‘‘e �

þ � � � þ qk

q‘ðn�1Þe �
�ðnþ2Þ ‘ðnÞe �b0: ð110Þ

This inequality is exploited now further making use of Eq. (7).

5.1. Exploitation of the residual inequality

The entropy production is written in the form of a formal scalar product:
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qk

q _e �e � þ 1
T
S��

� %
T

qC
q‘‘e � þ

qk

q _‘e �‘e �
� � �

� %
T

qC

q‘ðnÞe �
þ qk

q‘ðn�1Þ _e �e �
qk

qT
þ 1

T 2 q

qk

qe �
qk

q‘e �
� � �
qk

q‘ðn�2Þe �
qk

q‘ðn�1Þe �

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

�

_e �e �
‘ _e �e �
‘‘ _e �e �
� � �
‘ðnÞ _e �e �
‘T

‘e �
‘‘e �
� � �

‘ðn�1Þe �
‘ðnÞe �

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

: ð111Þ

Again we have found the entropy production in the form of a sum of prod-
ucts of state space variables and derivatives of constitutive functions. Under
the presupposition that the dependence of the constitutive functions on the
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state space variables is continuous, it follows according to Eq. (7) that each
constitutive quantity in the row at the left-hand side is a homogeneous func-
tion of the state space variable in the row at the right-hand side in the same
line. This fact is exploited now, beginning in the last line of Eq. (111):

qk

q‘ðn�1Þe �
¼ f13ðZ1Þ‘ðnÞe �; ð112Þ

where f13 is up to now an arbitrary function of the state space variables. On
the other hand, k does not depend on ‘ðnÞe � as a consequence of the dissipa-
tion inequality (see Eq. [108]) and therefore, the left-hand side of Eq. (112),

qk

q‘ðn�1Þe �
, is also independent of ‘ðnÞe �. Consequently, the only possibility to

fulfill Eq. (112) is:

f13 ¼ 0 ) qk

q‘ðn�1Þe �
¼ 0: ð113Þ

The extra entropy flux does not depend on the ðn� 1Þ-order gradient of strain.

The exploitation of the entropy production proceeds with the line above
in Eq. (111). This shows analogously that k does not depend on the ðn� 2Þ-
order gradient of strain:

qk

q‘ðn�2Þe �
¼ f23ðZ1Þ‘ðn�1Þe �; ð114Þ

where f23 is up to now an arbitrary function of the state space variables. On
the other hand, k does not depend on ‘ðn�1Þe � according to the previous con-
clusion [see Eq. (113)] and therefore, the left-hand side of Eq. (114),

qk

q‘ðn�2Þe �
, is

also independent of ‘ðn�1Þe �, and the only way to fulfill Eq. (114) is:

f23 ¼ 0 ) qk

q‘ðn�2Þe �
¼ 0: ð115Þ

The successive exploitation of the lines in the entropy production (111) shows
that k does not depend on any gradient of strain up to the conclusion

qk

qe �
¼ 0: ð116Þ

Concerning the dependence of the extra entropy flux k on temperature, we
cannot draw any conclusion from the entropy production, because the heat
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flux q in the previous line in Eq. (111) is not restricted by the dissipation
inequality.

The results on the extra entropy flux and the free energy density derived up to
here can be summarized as:

kðT ; _e �e �; _‘e �‘e �; . . . ;‘ðn�1Þ _e �e �Þ: ð117Þ

Apart from temperature, the extra entropy flux depends only on time deriva-
tives, whereas

CðT ; e �;‘e �; . . . ;‘ðnÞe �Þ ð118Þ

does not depend on any time derivative.

Further conclusions are drawn from the exploitation of the remaining lines of
the entropy production. The next line in Eq. (111) results in

� %

T

qC

q‘ðnÞe �
þ qk

q‘ðn�1Þ _e �e �
¼ f33ðZ1Þ‘ðnÞ _e �e �; ð119Þ

with an arbitrary state space function f33.

C and k both do not depend on ‘ðnÞ _e �e �, and therefore the right-hand side of Eq.
(119) is independent of ‘ðnÞ _e �e �. Therefore, Eq. (119) can hold only if f33 ¼ 0.

We conclude:

%

T

qC

q‘ðnÞe �
¼ qk

q‘ðn�1Þ _e �e �
: ð120Þ

The left-hand side of Eq. (120) depends on ðT ; e �;‘e �; . . . ;‘ðnÞe �Þ, whereas the

right-hand side depends on ðT ; _e �e �; _‘e �‘e �; . . . ;‘ðn�1Þ _e �e �Þ. The only common variable
is the temperature T , and we conclude that both sides of Eq. (120) can solely

be functions of temperature. On the other hand,
%

T

qC

q‘ðnÞe �
, as well as

qk

q‘ðn�1Þ _e �e �
are tensors of order nþ 2. An isotropic tensor function cannot be represented
by a scalar variable T . It follows:

%

T

qC

q‘ðnÞe �
¼ 0;

qk

q‘ðn�1Þ _e �e �
¼ 0: ð121Þ

Analogously, the line above in Eq. (111) is exploited and leads to the
conclusions
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%

T

qC

q‘ðn�1Þe �
¼ 0;

qk

q‘ðn�2Þ _e �e �
¼ 0: ð122Þ

The subsequent exploitation of the next lines up to the second but last one
leads to the conclusions that

qC

q‘‘e �
¼ 0;

qC

q‘‘‘e �
¼ 0; . . . ;

qC

q‘ðn�1Þe �
¼ 0;

qC

q‘ðnÞe �
¼ 0; ð123Þ

and

qk

q‘ _e �e �
¼ 0;

qk

q‘‘ _e �e �
¼ 0; . . . ;

qk

q‘ðn�2Þ _e �e �
¼ 0;

qk

q‘ðn�1Þ _e �e �
¼ 0: ð124Þ

5.2. Summary

With the chosen set of variables equation (101) in the domain of the constitu-
tive functions and including the power of the hyperstress S�� in the balance of
energy, we found from the exploitation of the second law of thermodynamics
that the extra entropy flux k and the free energy density C depend solely on
the following sets of variables:

kðT ; _e �e �Þ; ð125Þ

CðT ; e �;‘e �Þ: ð126Þ

The free energy density does not depend on higher order strain gradients, but
only on the strain gradients contributing to the internal power.

Remark: If we had set the hyperstress S�� equal to zero, we could proceed with
the evaluation of the second but last line of the entropy production Eq. (111).
This leads to the conclusion that the extra entropy flux does not depend on _e �e �,
but can only depend on temperature.

In an isotropic material there exists no vector k depending on a scalar and a
second-order symmetric tensor alone [44]. For isotropic materials, it can be
concluded from Eq. (125) that the extra entropy flux vanishes for any order
of gradients of strain included in the theory. These results are valid in general
for any order of strain gradient included in the set of relevant variables in the
beginning. In this sense, the inclusion of higher order strain gradients does
not modify the results of the theory, at least concerning the constitutive
function free energy density and the relation between entropy flux and heat
flux.
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5.3. Generalization to second-order time derivatives

The set of variables in the domain of constitutive functions Z1 Eq. (101) con-
sidered here is general with respect to the order of space derivatives n taken
into account, but time derivatives are restricted to first-order ones. If second-
order time derivatives are included in the state space, i.e., we consider the do-
main of constitutive functions

Z2 ¼ fT ;‘T ; e �;‘e �; . . . ;‘ðnÞe �; _e �e �; _‘e �‘e �; . . . ;‘ðnÞ _e �e �;€e �e �;‘€e �e �; . . . ;‘ðnÞ€e �e �g; ð127Þ

the conclusions on the extra entropy flux and the free energy density are
somewhat weaker:

1. The exploitation of the Liu equations (3) in that case imposes that the
extra entropy flux does not depend on the highest space derivatives:

kðT ; e �;‘e �; . . . ;‘ðn�1Þe �; _e �e �; _‘e �‘e �; . . . ;‘ðn�1Þ _e �e �;€e �e �;‘€e �e �; . . . ;‘ðn�1Þ€e �e �Þ; ð128Þ

and the free energy density does not depend on the second-order time
derivatives:

CðT ; e �;‘e �; . . . ;‘ðnÞe �; _e �e �; _‘e �‘e �; . . . ;‘ðnÞ _e �e �Þ: ð129Þ

2. The consecutive exploitation of the entropy production analogously to the
previous examples leads to the conclusions:

(a) The extra entropy flux depends solely on time derivatives and on
temperature:

kðT ; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �;€e �e �;‘€e �e �; . . . ;‘ðn�1Þ€e �e �Þ: ð130Þ

(b) The dependence of k on ‘ðn�1Þ€e �e � and of C on ‘ðnÞ _e �e � is linear:

k ¼ g1ðT ; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �; €e �e �;‘€e �e �; . . . ;‘ðn�2Þ€e �e �Þ �ðnþ1Þ ‘ðn�1Þ€e �e �

þ g2ðT ; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �;€e �e �;‘€e �e �; . . . ;‘ðn�2Þ€e �e �Þ ð131Þ

C ¼ p1ðT ; e �;‘e �; . . . ;‘ðnÞe �; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �Þ �ðnþ2Þ ‘ðnÞ _e �e �

þ p2ðT ; e �;‘e �; . . . ;‘ðnÞe �; _e �e �;‘ _e �e �; . . . ;‘ðn�1Þ _e �e �Þ; ð132Þ

where g
2

is a vector valued function, and p2 is a scalar valued constitutive
function. g1 and p1 are constitutive functions of tensor order nþ 2.

An interesting example is the case of gradients up to order n ¼ 1, i.e., consti-
tutive functions depending on the variables ðT ;‘T ; e �;‘e �; _e �e �; _‘e �‘e �;€e �e �;‘€e �e �Þ. The ex-
ploitation of the Liu equations leads to the conclusion that the extra entropy
flux does not depend on gradients:

kðT ; e �; _e �e �;€e �e �Þ: ð133Þ
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The exploitation of the entropy production shows that k depends only on
time derivatives of the strain, and the strain itself. The dependence on the
second-order time derivative is linear:

k ¼ k��1ðT ; e �; _e �e �Þ : €e �e �þ k2ðT ; e �; _e �e �Þ: ð134Þ

In isotropic materials, there exists no third-order tensor k��1 and no vector k2

depending on a scalar and a symmetric second-order tensor alone [44]. For
materials of this symmetry, it can be concluded that the extra entropy flux
vanishes, even if the possible dependence on second-order time derivatives is
included at the beginning.

6. Conclusions

The restrictions on constitutive functions obtained in the di¤erent sections of
this paper are summarized in Table 1. It has been shown that the free energy
density of a thermoelastoviscoplastic solid may depend explicitly on an addi-
tional variable, on the gradient of the additional variable, or on the tempera-
ture gradient only if additional balance equations are introduced. Such extra
field equations may be postulated independently as exposed in Section 4 or
originate from an extension of the power of internal generalized forces as pro-
posed in Section 3. As soon as such additional partial di¤erential equations
are introduced, the variable a ceases to be an ‘‘internal’’ variable and must
be regarded as an actual degree of freedom, i.e., an observable and control-
lable quantity, even if the corresponding experimental e¤ort may sometimes
be considerable. In particular, extra boundary conditions are required com-
pared to the classical framework. Their form was also derived from the sys-
tematic approach thus following [45]. Such an explicit dependence of the
free energy on gradient variables is necessary to model size-dependent ther-
momechanical properties. Examples of nonlinear constitutive equations can

Table 1 Thermomechanical settings for strain gradient materials with gradient of internal
variables and of temperature.

Section Additional
di¤erential
equations

Enriched
power of
internal forces

Free energy
density C

Extra-entropy
flux k

2 no no CðT ; e �;‘e �Þ kðT ; _e �e �Þ
3 yes yes CðT ; e �; a;‘T ;‘e �;‘aÞ kðT ; _TT ; _e �e �; _aaÞ
4 yes no CðT ; e �; a;‘T ;‘e �;‘aÞ kðT ; e �; a;‘T ;‘e �;‘a;

_TT ; _e �e �; _aa;‘ _TT ;‘ _e �e �;‘ _aaÞ

The first column indicates whether additional di¤erential equations are introduced. The second
column indicates whether an extension of the power of internal forces is introduced or not,
with respect to original expression for the second gradient theory of Mindlin [25, 26].
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be found for instance in [18]. An alternative way, leading to a gradient depen-
dent free energy density, can be found in [46–48], where in the exploitation of
the dissipation inequality not only the evolution equations are taken into ac-
count, but also the gradients of evolution equations.

We have shown also that for isotropic materials, the second law of thermo-
dynamics implies for a large class of state spaces (either including strain gra-
dients of arbitrary order and first-order time derivatives of all these variables
or including strain, strain gradient, and first-order as well as second-order
time derivatives of these variables) that the extra entropy flux k vanishes,
i.e., that the entropy flux equals the heat flux divided by temperature. In these
cases, there is entropy transport only due to heat transport.

If materials have an internal structure that can change under the action of ex-
ternal fields, internal variables are introduced in order to deal with the more
complicated material behavior [10]. Because these internal variables are un-
known fields in addition to the classical wanted fields, equations of motion
are needed for them. The equation of motion for an internal variable a (which
can be a scalar, or a vector, or a tensor of arbitrary order) can be a relaxation
equation of the form:

da

dt
¼ pa; ð135Þ

with a production pa, which is a state space function. For other additional
variables, it can be an evolution–di¤usion equation:

da

dt
þ ‘ � Ja ¼ Pa; ð136Þ

with a production Pa and a flux of the additional variable Ja. The case of a
state space,

Z3 ¼ fT ; e �; a;‘T ;‘e �; . . . ;‘ðnÞe �;‘a; . . . ;‘ðmÞa; _e �e �;‘ _e �e �; . . . ;‘ðnÞ _e �e �g; ð137Þ

including in addition to the variables in Eq. (101) an internal variable of
arbitrary tensor order and gradients of this internal variable, can be treated
analogously to Sections 2.2 and 5.1, taking into account either the relaxation
equation (135) for the internal variable or the evolution–di¤usion equation
(136). In the case of a relaxation equation for the internal variable, it can be
shown that again the extra entropy flux vanishes, i.e., there is entropy trans-
port only due to a heat flux, and the entropy flux is heat flux divided by tem-
perature. In the other case of an evolution–di¤usion equation for the addi-
tional variable, this conclusion on the entropy flux cannot be drawn. In this
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case, there is an extra entropy flux, which can be interpreted as the flux of
entropy due the flow of the additional variable, i.e., flux of internal order.
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[5] Blenk, S., Ehrentraut, H., Muschik, W., Statistical foundation of macroscopic

balances for liquid crystals in alignment tensor formulation, Physica A, 174
(1991), 119–138.

[6] Blenk, S., Ehrentraut, H., Muschik, W., Papenfuss, C., Mesoscopic orientation
balances and macroscopic constitutive equations of liquid crystals, in: Proc.
7th Intl. Symp. on Continuum Models of Discrete Systems, volume 123–125 of
Materials Science Forum, pp. 59–68, Paderborn, Germany, June 1992.

[7] Ehrentraut, H., Muschik, W., Papenfuss, C., Mesoscopically derived orientation
dynamics of liquid crystals, J. Non-Equilib. Thermodyn., 22 (1997), 285–298.

[8] Blenk, S., Muschik, W., Mesoscopic concepts for constitutive equations of nem-
atic liquid crystals in alignment tensor formulation, ZAMM, 73 (1993), T331–
T333.

[9] Maugin, G.A., Drouot, R., Internal variables and the thermodynamics of mac-
romolecule solutions, Int. J. Eng. Sci., 21 (1983), 705–724.

[10] Maugin, G.A., Muschik, W., Thermodynamics with internal variables, J. Non-
Equilib. Thermodyn., 19 (1994), 217–249.

[11] Maugin, G.A., Muschik, W., Thermodynamics with internal variables, part ii.
Applications, J. Non-Equilib. Thermodyn., 19 (1994), 250–289.

[12] Rice, J.R., Inelastic constitutive relations for solids: an internal-variable theory
and its application to metal plasticity, J. Mech. Phys. Solids, 19 (1971), 433–455.

[13] Muschik, W., Internal variables in non-equilibrium thermodynamics, J. Non-
Equilib. Thermodyn., 15 (1990), 127–137.

[14] Ciancio, V., On the generalized Debye equation of media with dielectric relax-
ation phenomena described by vectorial internal thermodynamic variables, J.
Non-Equilib. Thermodyn., 14 (1989), 239–250.

Thermodynamical Frameworks for Higher Grade Material Theories 351

J. Non-Equilib. Thermodyn. � 2006 �Vol. 31 � No. 4



[15] Ván, P., Internal thermodynamic variables and failure of microcracked materi-
als, J. Non-Equilib. Thermodyn., 26 (2001), 167–189.

[16] Coleman, B.D., Gurtin, M.E., Thermodynamics with internal state variables, J.
Chem. Phys., 47 (1967), 597–613.
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