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The global response of polycrystalline aggregates is investigated, in order to simulate grain size effects in IF ferritic steels.
The mechanics of generalized continua is used to describe the studied phenomena. The polycrystal is regarded as a heteroge-
neous Cosserat medium, and the overall properties are estimated using a specific homogenization technique. To illustrate the
capabilities of the model, some simple bidimensionnal computations are presented for different grain sizes. Afterwards tridi-
mensionnal computations are shown in order to extract the global effect on the mechanical behaviour for grain sizes ranging
from 5µm to 120µm. The finite element response is harder for the smallest grain size, but the model still underestimate the
grain size effect on the tensile response.

1 Introduction

Classical crystal plasticity models are available to derive the overall mechanical properties of polycrystals using efficient
homogenization techniques. However, one important shortcoming of this classical approach is that they do not predict the
grain size effect, well known in physical metallurgy.

In contrast, generalized continuum plasticity models provide an efficient way of describing the phenomena [1, 2]. The
incompatibility of plastic deformation in a heterogeneously deforming crystal is at the origin of size effects. It is related to
the concept of density of geometrically necessary dislocations [3]. The Cosserat model is available to introduce this notion.
Indeed, this approach includes the gradient of the lattice rotation vector, namely the lattice curvature, which is related to the
dislocation density tensor introduced by Nye [4].

The aim of the present work is to reproduce the grain size effect on the overall mechanical behaviour of IF ferritic steels.
Polycrystalline aggregates will be computed using Cosserat crystal plasticity. The Cosserat crystal plasticity approach is
presented in section 2. The main capabilities of the model are then shown with some simple bidimensionnal computations.
Precise modelling of IF steels based on crystal plasticity at a fixed grain size can be found in [6]. The identification of the
model parameters for IF steels requires the tridimensionnal simulations of section 3.

2 Cosserat crystal plasticity model

2.1 Balance and constitutive equations

The material is considered as a heterogeneous Cosserat continuum. The independent degrees of freedom are the displacement
vector ui and the microrotation axial vector φi. In the intermediate relaxed configuration, the vector φi describes the rotation
of a triad of rigid directors, which corresponds to the lattice directions [2]. Within the small perturbation framework, the
Cosserat deformation and curvature tensors are defined by :

eij = ui,j + εijkΦk κij = Φi,j (1)

where εijk is the permutation symbol. In the static case, the force and couple stress tensors associated with the previous
deformation measures, must fulfill two balance equations [7]:

σij,j + fi = 0, µij,j − εijkσjk + ci = 0 (2)

fi and ci are respectively the volume forces and couples. The isotropic elasticity law involves the 2 Lamé constants and 4
additional moduli:

σij = λδije
e
kk + 2µee

(ij) + 2µce
e
{ij} µij = αδijκ

e
kk + 2βκe

(ij) + 2γκe
{ij} (3)

where (ij) and {ij} respectively denote the symmetric and skew-symmetric parts of the tensor. We assume that the elastic
rotations are material rotations. The elastic strain tensor eij is thus quasi-symmetric. The Cosserat microrotations should
follows the lattice rotations. As the parameter µc controls the difference between the Cosserat microrotations and the lattice
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rotations, it is used as a penalty factor in the crystal plasticity formulation. A characteristic intrinsic length le =
√

β/µ can
be defined. The Cosserat deformation measure and the torsion curvature tensor are decomposed into elastic and plastic parts :

ėij = ėe
ij + ėp

ij , κ̇ij = κ̇e
ij + κ̇p

ij (4)

Plastic deformation is due to the activation of plastic slip γs on slip system s :

ėp =
n∑

s=1

γ̇sP s
ij , with P s

ij = ms
i n

s
j (5)

where ms
i and ns

i respectively are the slip direction and the normal to the slip plane for slip systems s. For IF steels, the 24
slip systems {110} < 111 > and {112} < 111 > are retained [6]. In this work, only the plastic lattice bending is taken into
account :

κ̇p
ij =

n∑
s=1

(
θ̇s
⊥
lp

Qs
ij

)
, with Qij = εikln

s
kms

l m
s
k (6)

It is represented for each slip system by the angle θs divided by a second characteristic length lp. Qij is the curvature
orientation tensor corresponding to the contribution of edge dislocations. The set of equations is completed by the flow rules
and hardening laws. Viscoplastic flow rules are adopted for both plastic slip and curvature :

γ̇s = 〈 | τs | − rs

k
〉n sign (τ s), θ̇s = 〈 | νs | − lp rs

c0

lp ks
c

〉nc sign (νs) (7)

where τs = σijP
s
ij and νs = µijQ

s
ij⊥ are respectively the resolved shear stress and the resolved couple stress. If the quantities

in the angle brackets is positive, it denotes a non zero slip and plastic curvature rate. The most important part of the model lies
in the hardening rule :

rs = r0 + Q

n∑
r=1

hsr(1 − exp(−bvr)) + r⊥, vs =| γ̇s | (8)

where rs is the critical resolved shear stress on slip system s. r0 is the initial critical resolved shear stress. Non linear hardening
is introduced and the interaction matrix hrs represents a simplified version of the model used in [6]. An extra-hardening term
r⊥ associated with lattice curvature is added :

r⊥ = QG(
n∑

s=1

|θ|)1/2 (9)

Other extra-hardening laws are summarized and commented in [3]. This function of curvature angle θ is of purely phenomeno-
logical nature. In particular, Ashby [10] recommended that the effect of geometrically necessary dislocations associated with
lattice curvature is more important at the very beginning of plastic flow. The additional hardening term proposed in this work
is relevant because it induces a strong effect at incipient plasticity. The consequences of the introduction of this additional
term is shown in the next paragraph.

2.2 Main capabilities of the Cosserat crystal plasticity model

Simple 2d computations are reported in this section to illustrate the different capabilities of the Cosserat crystal plasticity
model. Finite element simulations results of the shearing of a 2d aggregate are shown on figure 1-(b) and 1-(c). The two
computations are identical, the geometry and orientations of the grains are identical (figure 1-(a)), the value of the applied
mean strain is the same, the whole difference is the absolute size introduced in the mesh which are respectively 120µm and
5µm. Periodic homogenization is used [2]. It allows us to consider small representative volumes [2]

The bending modulus β, introduced by Kröner [8], affects significantly the spreading of the lattice curvature inside the
grains. Physically, this term is related to the density of geometrically necessary dislocations and therefore to the lattice curva-
ture angle over the corresponding intrinsic length θs/lp. Higher values of β promote a larger spreading of lattice curvature for
a given mean strain. Its influence has been captured and it plays an important role in the simulations of grain size effects. Non
homogeneous deformation and lattice rotations in the polycrystal are due to the plastic strain incompatibilities between grains
having different orientations. At the very beginning of intragranular plastic flow, the plastic strain is identical for both grain
sizes, 120µm and 5µm. The lattice rotation maps are also quasi identical for the simulations for the two different grain sizes.
As a result, a large difference is shown in the norm of the lattice curvature tensor results on figure 1-(b). Lattice curvature is
localized near the grain boundaries and it is significantly larger in the smaller grains. The curvature hardening rule (8) induces
higher stress level in the small grains as it is shown on figure 1-(c).
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(a) (b) (c)

Fig. 2 Finite element simulations of the tensile test of tridimensionnal aggregates containing 10 grains : (a) mesh of the grains (b) and
(c) maps of the equivalent plastic strain (unit MPa) after 0.075% mean strain and for a grain size respectively equal to 120µm and 5µm.
Geometricaly an kinematicaly boundary conditions are imposed.

Fig. 3 grain size effect in ferritic steel : experimental and simulated results

4 Conclusions and prospects

Finite element computations of ferritic polycrystalline aggregates are performed in a Cosserat framework. The illustration of
the model capabilities through some simple 2d computations shows the influence of the spreading of lattice curvature inside
grains at the very beginning of plastic flow. The most important part of the model lies in the extra-term in the hardening
rule. The introduction of this non classical term induces higher stress levels for the small grain size. The grain size effect on
the mechanical response is successfully captured for a large spectrum of different grain sizes. But it has been observed that
the mechanical response is still underestimated by this approach. The agreement, in comparison with the tensile experimental
results, is good from a qualitative point of view. More elaborate extra-hardening laws are necessary to reach better quantitative
agreement. Finally, the influence of too coarse meshes or lattice curvature spreading must be investigated.
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[9] S. Forest and R. Sedláček, Philos. Mag. 83, 245–276 (2003).

[10] M. F. Ashby, Philos. Mag. 21, 399–424 (1970).

Minisymposium N4 82

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


