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During thermo-mechanical processing, the strain energy stored in the
microstucture of an FCC polycrystalline aggregate is generally reduced by
physical phenomena controlled, at least partially, by mechanisms involving
dislocation cell or grain boundary motion such as recovery, recrystallisa-
tion and grain growth. This work presents a novel coupled phase
field-single crystal constitutive framework capable of describing the
microstructural evolution driven by grain boundary curvature and/or
stored energy during recrystallisation and grain growth. Thus, the
minimisation of stored and grain boundary energies provides the driving
force for grain boundary motion. To describe interface motion, a phase
field model taking into account the stored energy distribution is formulated
and implemented within a continuum mechanics framework. The single
crystal constitutive behaviour is described using a dislocation mechanics-
based crystallographic formulation. The coupling between the grain
boundary kinematics and the crystal plasticity formulation is made
through the dislocation densities and the grain orientations.
Furthermore, the free energy parameters are calibrated from existing
Read–Shockley boundary energy data and those describing grain boundary
mobilities from published experimental data.

Keywords: phase field; grain boundary; recrystallisation; stored energy;
crystal plasticity; finite elements

1. Introduction

In high temperature metal forming processes, metallic alloys undergo important
microstructural changes due to the combined effects of thermo-mechanical loads
which strongly affect their mechanical properties. The evolution of the microstruc-
ture under such conditions generally involves strain hardening, dynamic recovery,
recrystallisation and grain growth. In mechanisms such as recrystallisation and grain
growth, grain boundary motion is driven by the need to minimise its grain boundary
and stored strain energies. The understanding and prediction of such phenomena is
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crucial for an accurate control of the mechanical properties of metal forming
components and for their optimisation.

Generally, the prediction of physical phenomena associated with a moving
interface is of interest in a wide range of areas, such as phase transformations (e.g.
[1–6]), or recrystallisation (e.g. [7–9]). In the past, several modelling approaches have
been used to study grain boundary motion: Monte Carlo [10–12], cellular automata
[13–15], vertex techniques [16,17], level set [18], finite element [19] and phase field
methods [9,20–22]. Amongst all the above numerical approaches, the phase field
method exhibits a major advantage: it does not explicitly need to track the moving
grain boundary or interface. Instead, sharp grain boundaries or interfaces are
replaced by interfacial regions of finite width, defined through the evolution of
suitable fields (the so-called phase fields), which evolve continuously but sharply
across the interface. Two main types of phase field models are used to study
polycrystalline materials: (i) those which rely on a different phase field variable to
describe each individual grain, and (ii) those where a single field is required to
represent the orientation distribution of all grains. The first category has been relied
upon to study mainly grain growth in [21,22] and, more recently, recrystallisation
[8,9]. The second category has two attractive features, both conceptual and practical:
(i) it satisfies the property requirement that the free energy should be independent of
grain orientation, and (ii) only one field is necessary to describe an infinite number of
orientations. This latter approach was originally proposed by Kobayashi, Warren
and Craig Carter (henceforth referred to as KWC) to describe the impingement and
growth of grains following solidification [23,24]. In the same spirit, it is worth
mentioning the work of Lusk [25], which relies on the microforces framework (e.g.
[26]) to be followed in the present paper.

In addition to a suitable approach to model grain boundary motion, the
description of the initial microstructural state which drives recrystallisation processes
is also essential for a proper prediction of the coupled deformation-kinetics
phenomena. For instance, the microstructural conditions which prevail before the
onset of recrystallisation have been based on, e.g. measured microstructural
characteristics [27], numerical predictions obtained from crystal plasticity [9], and
internal state variable visco-plastic constitutive approaches relating the onset to a
critical mean dislocation spacing [7].

In this work, a novel coupled phase field–crystal plasticity framework is proposed
to describe the kinetics of moving grain boundaries and interfaces when driven by
curvature and local stored energy gradients associated with inelastic deformation.
The phase field model of KWC, which accounts only for the interface curvature as a
driving force for grain boundary motion, is here extended in a thermodynamically
consistent way to incorporate explicitly stored energy gradients as an additional
driving force. First, it benefits from the conceptual and practical advantages of the
single phase field mentioned above as opposed to those relying on multi-phase fields,
e.g. [8,9]. Second, the coupling with the stored strain energy is straightforward and
does not require any averaging procedure as in [28]. The framework relies on two
phase field variables to represent the characteristics of the mobile grain boundaries,
namely the crystallinity and the grain orientation, as well as on suitable balance laws
and constitutive equations. The crystallographic deformation is described by the
dislocation mechanics based single crystal model proposed by Cheong et al. [29],
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which enables the contributions of dislocations of pure type to the overall
deformation behaviour to be distinguished. The coupling between the phase field
and the crystal plasticity formulation is done via (i) the incorporation of the stored
strain energy calculated at the crystal plasticity level within the free energy functional
of the phase field model, and (ii) a static recovery term in the evolutionary equations
of the individual dislocation densities to account for the annihilation of dislocations
by a passing grain boundary. Finally, the resulting coupled constitutive framework is
implemented numerically into the finite element method and then calibrated from
analytical solutions and available data.

The paper is structured as follows. The phase field formulation is first presented
in Section 2, where details are given of the proposed free energy functional, the
constitutive equation derived from the first and second laws of thermodynamics, and
the resulting evolution equations for the phase field variables. This section finishes
with the numerical implementation of the phase field formulation in the finite
element method. Section 3 introduces the single crystal formulation used in this
work, and Section 4 deals with the calibration of both the phase field parameters and
the crystal plasticity formulation. Here, the grain boundary energy given by the
phase field model is calibrated against the Read–Shockley energy, and the grain
boundary mobilities and the crystal plasticity model parameters against published
data. In a companion paper [30], the coupled stress-phase field framework will be
validated by comparing the model predictions to analytical solutions and exper-
imental data. The main aspects of the grain boundary motion predictions will be
discussed, and finite element simulations of static recrystallisation phenomena in a
polycrystal aggregate will be presented and analysed.

2. Phase field formulation

2.1. Free energy

The formulation to be presented next is two dimensional, which considerably
simplifies the description of a grain boundary. A grain boundary separates two
crystallographic regions with different orientations. Grain boundary regions lack the
order of crystals and are composed of lattice defects extending over thicknesses of the
order of a few atomic layers (Figure 1a). A two-dimensional (2D) description of a
grain boundary requires only two geometrical degrees of freedom: the inclination
angle of the boundary plane between the two neighbouring crystals, and the
crystallographic misorientation, D� (see Figure 1a). In this work, the free energy will
be assumed to be independent of the inclination angle, and to be an isotropic
function of misorientation.

The general form of the free energy function developed here was inspired by that
previously proposed by KWC [24]. In the KWC formulation, the evolution of the
crystalline grains is described in terms of two fields: the orientation, �, with respect to
some reference frame, and the crystallinity, �, which describes the local crystalline
order. Crystals are assumed to have N-fold symmetry, thus all values of � lie in a
reduced domain [��/N; �/N]. Furthermore, an upper bound value of �¼ 1 is
arbitrarily assigned to a perfect crystal, and a lower bound value of �¼ 0 to complete
disorder (Figure 1b, c). The stored energy is included into the free energy functional
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as follows. Before deformation, all grains are assumed to have a perfect crystal

lattice, thus the crystal order, �, is constant and equal to 1 inside the grains. Within
the grain boundary, the crystallinity varies between 0 and 1 as a function of the
misorientation between grains. In the present extension of the KWC model, we
introduce the fact that, during deformation, the dislocation density increases inside

the grains thus introducing a certain loss of crystallinity and leading to �5 1.
Nevertheless, note that the transgranular lattice disorder induced by the heteroge-
neity of the deformation remains considerably smaller than that within the

high-angle grain boundaries (see Figure 1c). A measure of the lattice disorder
induced by the deformation in a crystal can be the stored energy due to statistically
stored dislocations. This energy is greater in high angle grain boundaries than within
the grains due to their greater disorder. In this work, the energy stored during the

deformation, Est, is introduced explicitly in a rotation-invariant free energy
functional as follows,

Fð�, �,EstÞ ¼

Z
V

 ð�,r�,r�,EstÞdV

¼

Z
V

f ð�Þ þ C �Est �þ
�2

2
jr�j2 þ gð�Þjr�j þ hð�Þjr�j2

� �
dV, ð1Þ

where f(�) is a homogeneous free energy density function accounting for the penalty
due to grain boundary disorder. Following the work of [24], this function is chosen
so as to yield a single well with a minimum at �¼ 1 for perfect crystals,

f ð�Þ ¼
!2

2
ð1� �Þ2: ð2Þ

(a)

(b)

(c)

Δθ

Figure 1. (a) Schematics of a bicrystal composed of a perfect (left-hand side) and a
dislocation-containing (right-hand side) crystal, and typical profiles across the grain boundary
(along x) of (b) orientation angle, �, and (c) crystallinity, �.

Philosophical Magazine 3621

D
ow

nl
oa

de
d 

by
 [

M
r 

Sa
m

ue
l F

or
es

t]
 a

t 1
0:

00
 1

9 
O

ct
ob

er
 2

01
2 



Here, ! is a positive constant related to the grain boundary energy (Section 4.1.1).

The second term in Equation (1) is chosen to be proportional to the normalised
stored energy density, �Est, and scaled by a positive constant, C. This term is linear in

� since the stored energy due to the presence of dislocations is more likely to affect a
perfect crystal and is of no consequence to regions with a complete disordered state.

The stored energy density in Equation (1), Est, is normalised by the maximum value

of the grain boundary energy, Ehgb, to prevent any disordered lattice state from
becoming more stable than that in the grain boundaries. Thus, Ehgb is taken to be the

energy of high angle grain boundaries (neglecting any � type boundaries), so that
�Est¼Est/Ehgb. The third term in Equation (1) introduces a penalty for the gradients

in the order parameter �, with � a positive constant which is also related to the grain

boundary energy (Section 4.1.1). Finally, the linear term, jr�j, is required to obtain a
localised and stable grain boundary while the term h(�)jr�j2 is necessary for a grain

boundary to migrate [31]. Note also that h(�) and g(�) are monotonically increasing
functions of �, as will be shown in Section 4.1.1.

2.2. Principle of virtual power

A continuum-mechanics framework to describe dynamic problems has been

proposed in [4,26,32] based on a balance law for generalised forces associated with

the equilibrium of atoms and defect configurations. In the case of recrystallisation,
the short-range transport of atoms between adjacent mismatched lattices is

introduced via dissipative generalised forces that perform work over the motion of
grain boundaries at continuum length-scales. In this section, the same approach is

used to determine the balance and constitutive laws associated with the free energy.

The microstructure is represented by the two fields previously defined, namely the
crystallinity, �, and the crystal orientation, �. The generalised forces associated with

both fields are characterised by microstresses and by microforces. Here, �� is the
work conjugate microstress to r�, and �� and �ext� are, respectively, the work

conjugate internal and external microforces to �. Furthermore, �� is the microstress

associated with r�, and �� and �ext� are, respectively, the internal and external
microforces associated with �. The method of virtual powers due to the work

performed by these forces is used to determine the balance law equations. The virtual
power of internal forces is expressed as:

PðiÞ ¼

Z
D

�� _�� �
�
� r _�þ �� _� � �

�
� r _�

� �
dV, ð3Þ

¼

Z
D

�
r � �

�
þ ��

�
_�þ

�
r � �

�
þ ��

�
_�

� �
dV �

Z
@D

�
�
�
� n
�

_�þ
�
�
�
� n
�

_�
� �

dS ð4Þ

and that due to the external forces, including distance and contact forces, as

PðeÞ ¼

Z
D

�
�ext� _�þ �ext�

_�
�
dV, ð5Þ
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PðcÞ ¼

Z
@D

�
�c� _�þ �c�

_�
�
dS: ð6Þ

If the power of inertial microforces are neglected, then the principle of virtual power
states that,

PðiÞ þ PðeÞ þ PðcÞ ¼ 0, 8D 2 V, 8 ð _�, _�Þ: ð7Þ

Substitution of Equations (4)–(6) into Equation (7) yields,Z
D

�
r � �

�
þ �� þ �

ext
�

�
_�þ

�
r � �

�
þ �� þ �

ext
�

�
_�

� �
dV ¼ 0, 8D 2 V, 8 ð _�, _�Þ: ð8Þ

Assuming that the field variables � and � are continuous on V, then the following
local equilibrium equations are found,

r � �
�
þ �� þ �

ext
� ¼ 0 in V, ð9Þ

r � �
�
þ �� þ �

ext
� ¼ 0 in V: ð10Þ

When external forces are neglected, the principle of virtual power becomes,Z
@D

�
�
�
� n� �c�

�
_�þ

�
�
�
� n� �c�

�
_�

� �
dS, 8D 2 V, 8 ð _�, _�Þ, ð11Þ

from which the following boundary conditions are obtained,

�
�
� n ¼ �c� on @V, ð12Þ

�
�
� n ¼ �c� on @V: ð13Þ

2.3. Constitutive phase field equations

Neglecting any acceleration power, the energy conservation is written as:

_E ¼ PðeÞ þ PðcÞ þQ, ð14Þ

or equivalently,

_E ¼ �PðiÞ þQ: ð15Þ

Let eint be the internal energy per unit volume, and q the heat flux density vector.
Then the energy balance reads

_eint ¼ �� � r _�þ �
�
� r _� � �� _�� �� _� � r � q: ð16Þ

According to the thermodynamics of irreversible processes, the entropy principle is
given as

_sþ r �
q

T

� �
� 0, ð17Þ

where T denotes the absolute temperature and s the entropy per unit volume.
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By recalling that the free energy density is  ¼ eint�Ts, and combining the

energy and entropy equations, the Clausius–Duhem inequality is obtained. Then,

�ðs _Tþ _ Þ þ �
�
� r _�þ �

�
� r _� � �� _�� �� _� �

1

T
q � rT � 0: ð18Þ

For simplicity, the formulation will henceforth be expressed for isothermal

conditions, thus any temperature rate dependence term will be omitted. The free

energy density is only dependent on �, r�, and r�. Therefore,

_ ð�,r�,r�Þ ¼
@ 

@�
_�þ

@ 

@r�
� r _�þ

@ 

@r�
� r _�, ð19Þ

and Equation (18) becomes,�
�
@ 

@�
� ��

�
_�� �� _� þ

�
�
@ 

@r�
þ �

�

�
� r _�

þ

�
�
@ 

@r�
þ �

�

�
� r _� �

1

T
q � rT � 0: ð20Þ

The microstresses �� and �� are assumed to be independent of _� and _�. They
satisfy the following equations of state,

�
�
¼
@ 

@r�
, ð21Þ

�
�
¼
@ 

@r�
, ð22Þ

s ¼ �
@ 

@T
: ð23Þ

Then,

�

� @ 
@�
þ ��

�
_�� �� _� � 0, ð24Þ

�� ¼ �
@ 

@�
þ �non� , ð25Þ

�� ¼ �
non
� : ð26Þ

The functions �non� and �non� represent non-equilibrium contributions to the internal

forces, �� and ��, respectively. To be consistent with the second law of thermody-

namics, �non� and �non� should satisfy the following condition obtained by substituting

Equations (25) and (26) into (24),

�non� _�þ �non�
_� � 0: ð27Þ
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2.4. Evolution equations of the field variables g and h

From the free energy functional, Equation (1), the following constitutive relations

can be derived:

�
�
¼
@ 

@r�
¼ �2 r�, ð28Þ

�
�
¼
@ 

@r�
¼ gð�Þ

r�

jr�j
þ 2 hð�Þr�, ð29Þ

�� ¼ �
@ 

@�
þ �non� ¼ �f

0ð�Þ � C �Est � g0ð�Þjr�j � h0ð�Þjr�j2 þ �non� , ð30Þ

�� ¼ �
non
� , ð31Þ

with

�non� ¼ ��� _�, ð32Þ

�non� ¼ ���
_�: ð33Þ

Here, �� and �� are inverse mobilities, always posivite, related to the grain boundary

mobility in a non-trivial manner [31]. They are expressed as follows:

�� ¼ ��ðTÞ!
2, ð34Þ

�� ¼ ��ðTÞ!
2 Pmð�ÞPrð�,r�Þ, ð35Þ

where �� and �� are temperature-dependent parameters which define the time-scales

for the evolutions of crystallinity and orientation, respectively. Both of them are

assigned the same temperature dependence through an inverse Arrhenius law

involving an activation energy, Q, so as to recover the usual temperature dependence

of grain boundary mobilities:

��ðTÞ ¼ �
0
� exp

Q

kT

� �
, ð36Þ

��ðTÞ ¼ �
0
� exp

Q

kT

� �
: ð37Þ

It is worth noting that Equation (33) introduces the possibility of lattice rotation, at a

rate controlled by the functions Pm(�) and Pr(�,r�). Following KWC, Pm(�)¼ �
2

since the rotation of a disordered state has no physical meaning. Moreover, as shown

in [31], an additional function Pr must be introduced in order to prevent the rotation

rate from diverging for the sharp interface limit. For that purpose, we have chosen

the following expression:

Prð�,r�Þ ¼ 1þ �r
�
1� expð��s�=jr�jÞ

	
ð38Þ
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where �r is a constant such that �r� 1 so that the characteristic times for the
spurious rotation of the grain core region are very large. In contrast, the
parameter �s defines a length-scale, typically of the order of the grain boundary
width. It must be stressed that Equation (38) is different from the expression
proposed by KWC [24]. Indeed, due to stable states with �5 1 when �Est4 0, it
was found more suitable to rely on �/jr�j rather than on jr�j to define the
maximum allowed rotations. Finally, it should be noted that by choosing
�0� � �0� (or equivalently �����), grain rotations in the absence of mechanical
stresses can be inhibited.

Substituting the expressions for the microstresses and microforces
(Equations 28–31) in the associated balance law equations (9)–(10), the following
evolutionary equations for � and � are obtained,

�� _� ¼ �2r2�� f 0ð�Þ � C �Est � g0ð�Þjr�j � h0ð�Þjr�j2, ð39Þ

�� _� ¼ r � 2 hð�Þr� þ gð�Þ
r�

jr�j

� �
: ð40Þ

It is worth stressing that the presence of �Est in Equation (39) introduces a constraint
on the model parameters. Within the core of a grain, r�� 0 and r�¼ 0, thus
Equation (39) yields a particular value of crystallinity in stationary conditions, ��.
Here,

0 ¼ �f 0ð ��Þ � C �Est ¼ !
2ð1� ��Þ � C �Est: ð41Þ

From Equation (41), one obtains the intra-granular value of crystallinity,

�� ¼ 1� �Est C=!
2: ð42Þ

Since 0 � �� � 1, then it can be seen from Equation (42) that the following condition
must be satisfied by the model parameters,

�Est C=!
2 5 1: ð43Þ

2.5. Evolution equation of the stored energy

In physical phenomena involving moving grain boundaries, the migration through a
given region of the crystal lattice restores a dislocation-free lattice and decreases the
stored energy. Experimental evidence is shown in the TEM micrograph of Figure 2a,
where a dislocation-free region appeared to have been left in the wake of a moving
grain boundary. Such a situation is depicted by the stationary profile of � across a
grain boundary of width 2	 at x/	¼ 
� 0 illustrated in Figure 2b. This profile was
obtained for a heterogeneous distribution of the stored energy: �Est¼ 0 and � ¼ �� ¼ 1
for x/	5 (
� 1); and �Est� 0.65 and � ¼ �� � 0:35 for x/	4 
þ 1 (considering
C/!2

¼ 1).
To account for the changes due to grain boundary migration, the evolution of the

stored energy has to be coupled to the evolutions of � and �. In the region in front of
the grain boundary where _�5 0 (dark grey in Figure 2b), the dislocation density and
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Est remain unchanged. In contrast, they decrease behind the grain boundary, viz. in
the region where _�4 0 (light grey region in Figure 2b). This can be expressed in a
simple form as,

_Est ¼
�Est Cd Aðjr�jÞ _�, if _�4 0,

0, if _� � 0,



ð44Þ

where Cd is a positive constant. The aim of the function A (jr�j) is to localise the
annihilation of the stored energy at the very centre of the grain boundaries. Here, the
following function is used,

Aðjr�jÞ ¼ tanh
�
jr�j2

�
: ð45Þ

Considering the scales over which � varies within a grain boundary, then A(jr�j)� 1
as soon as jr�j 6¼ 0. To illustrate typical evolutions of the stored energy within the
core of a grain boundary (dark grey region in Figure 2), consider simply that
A(jr�j)¼ 1. In that case, integration of Equation (44) for _�4 0 gives,

Est ¼ B expð�Cd �Þ ð46Þ

where B is a constant determined from the initial conditions. Consider then that
initially at time t¼ 0 s, Est¼Est0, and �0¼ 1� �Est0 C/!

2 from Equation (42) (where
�Est0¼Est0/Ehgb), which constitutes an upper bound value for �. Then Equation (46)
becomes,

Est ¼ Est0 exp
�
Cd ð1� �Est0 C=!

2 � �Þ
�
: ð47Þ

Figure 3 shows how the stored energy, normalised by Ehgb, varies with � according to
Equation (47), assuming �Est0¼ 0.6 and C/!2

¼ 1. The stored energy decreases as �
tends to 1, and this happens more rapidly with increasing values of the parameter Cd.

 0

 0.2

 0.4

 0.6

 0.8

 1

- 5  0  5

-0.4

-0.2

 0

 0.2

 0.4

- 5  0  5

 (
ra

d)

(b)(a)

-1 1

Figure 2. (a) TEM observation of the migration of a grain boundary leaving a dislocation free
region in its wake [33]. (b) Stationary profile of crystallinity � with a heterogeneous
distribution of stored energy Est (corresponding orientation profile is shown in the inset).
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When Cd is sufficiently large, �Est goes to zero for values of �5 1 located inside the
grain boundary, which implies a complete statically recovered (dislocation free) state.

2.6. Implementation of the phase-field formulation in the finite element method

The numerical implementation of the phase field model into the finite element
method is an adaptation of the algorithm proposed in [1] for a phase transformation
problem.

2.6.1. Variational formulation

The variational formulation of the phase field partial differential equations

directly follows from the principle of virtual power outlined in Section 2.2. From
Equations (3)–(7), one finds

Fð�	,VÞ ¼

Z
V

�
���
	 � �

�
� r�	

�
dV þ

Z
@V

�c� �
	 dS ¼ 0, ð48Þ

Fð�	,VÞ ¼

Z
V

�
���
	 � �

�
� r�	

�
dV þ

Z
@V

�c� �
	 dS ¼ 0, ð49Þ

where �* and �* are the virtual phase field variables.
The phase field problem is subject to the following initial conditions at time t¼ 0,

�ðx, t ¼ 0Þ ¼ �0ðxÞ, ð50Þ

�ðx, t ¼ 0Þ ¼ �0ðxÞ: ð51Þ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.2 0.4 0.6 0.8 1

C  =  20 25

Figure 3. Evolution of the stored energy given by (47), normalised by Ehgb, from an initial
value of �Est0¼ 0.6 as a function of � for different values of Cd (assuming C/!2

¼ 1).
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2.6.2. Finite element discretisation

The spatial discretisation is generalised to N elements, and the nodal degrees of

freedom are taken to be the lattice order and the crystal orientation. The fields � and
� are approximated at position x within each element and at every time, t, in terms of

their nodal values (with subscript i) and the interpolation functions, Ne
i ðxÞ. Then,

�ðx, tÞ ¼
Xn
i¼1

Ne
i ðxÞ �iðtÞ, �ðx, tÞ ¼

Xn
i¼1

Ne
i ðxÞ �iðtÞ, ð52Þ

�	ðx, tÞ ¼
Xn
i¼1

Ne
i ðxÞ �

	
i ðtÞ, �	ðx, tÞ ¼

Xn
i¼1

Ne
i ðxÞ �

	
i ðtÞ, ð53Þ

r�ðx, tÞ ¼
Xn
i¼1

Be
i ðxÞ �iðtÞ, r�ðx, tÞ ¼

Xn
i¼1

Be
i ðxÞ �iðtÞ, ð54Þ

where n is the number of nodes in the element, e, containing x. The matrix Be
i is

defined by the first derivative of the shape functions, which in the 2D case, is

½Be
 ¼

@Ne
1

@x

@Ne
2

@x
. . .

@Ne
n

@x
@Ne

1

@y

@Ne
2

@y
. . .

@Ne
n

@y

2664
3775:

An implicit Euler scheme is implemented for the time discretisation [34]. Let �(t) and
�(t) be the known values of these variables at time t, and �(tþDt) and �(tþDt) at
time tþDt. Thus, the latter can be expressed in terms of the time increment, Dt, as,

�ðt ¼ 0Þ ¼ �0, ð55Þ

�ðt ¼ 0Þ ¼ �0, ð56Þ

�ðtþ DtÞ ¼ �ðtÞ þ _�ðtþ DtÞDt, ð57Þ

�ðtþ DtÞ ¼ �ðtÞ þ _�ðtþ DtÞDt: ð58Þ

Here, �0, �0 are the initial conditions for the lattice order and the crystal orientation.

The residual of a generic finite element with volume Ve and surface @Ve can be

found by substituting the expressions for the nodal degrees of freedom,

Equations (52)–(53), into the conditions of the variational problem at each instant,

t4 0. Then, �
Reð�, �Þ

�
¼

Re
�ð�, �Þ

Re
�ð�, �Þ


 
,

where,

ðRe
�Þi ¼

Z
Ve
Ne

i ðxÞ�� dV �

Z
Ve

�
BeðxÞ

	
ij
��j dV þ

Z
@Ve

Ne
i ðxÞ�

c
� dS ¼ 0, ð59Þ
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ðRe
�Þi ¼

Z
Ve
Ne

i ðxÞ�� dV �

Z
Ve

�
BeðxÞ

	
ij
��j dV þ

Z
@Ve

Ne
i ðxÞ�

c
� dS ¼ 0, ð60Þ

are the element residuals for the variational formulation of the lattice order and
crystal orientation, respectively. Note that equating the above residuals to zero
follows from the requirement that Equations (48) and (49) should hold for arbitrary
variations of � and �.

The global residual vector is obtained by assembling the element residuals for all
elements using the assembly matrix, [Ae]:

�
Rð�, �Þ

�
¼
XN
e¼1

�
Ae
	
�
�
Reð�, �Þ

�
¼
�
0
�
: ð61Þ

Given a known set of values for the nodal degrees of freedom at time, t, and recalling
that the residual vector is required to vanish at the end of the time step, tþDt, then
this leads to a resulting set of nonlinear equations expressed in terms of the unknown
values of the nodal degrees of freedom at (tþDt). These equations are solved
iteratively using a Newton–Raphson type method. The algorithm requires the
calculation of the generalised stiffness matrix, which is obtained by derivation of
the residual vectors (59) and (60) with respect to the independent degrees of
freedoms, (�, �):

�
Ke

t

	
¼
½Ke

��
 ½K
e
��


½Ke
��
 ½K

e
��


" #
:

Finally, the components of the element’s generalised stifness matrix are given by,

ðKe
��Þij ¼ �

@ ðRe
1Þi

@�ej
¼

Z
Ve
Ne

i @��=@�
e
j

� �
dV �

Z
Ve

�
BeðxÞ

	
ik

�
@��k=@�

e
j

	
dV, ð62Þ

ðKe
��Þij ¼ �

@ ðRe
1Þi

@�ej
¼

Z
Ve
Ne

i @��=@�
e
j

� �
dV �

Z
Ve

�
BeðxÞ

	
ik

�
@��k=@�

e
j

	
dV, ð63Þ

ðKe
��Þij ¼ �

@ ðRe
2Þi

@�ej
¼

Z
Ve
Ne

i @��=@�
e
j

� �
dV �

Z
Ve

�
BeðxÞ

	
ik

�
@��k=@�

e
j

	
dV, ð64Þ

ðKe
��Þij ¼ �

@ ðRe
2Þi

@�ej
¼

Z
Ve
Ne

i @��=@�
e
j

� �
dV �

Z
Ve

�
BeðxÞ

	
ik

�
@��k=@�

e
j

	
dV: ð65Þ

3. Single crystal plasticity formulation coupled to the phase field variables

The dislocation mechanics based single crystal model used in this work is that
proposed by Cheong et al. [29]. This model has been successfully applied to a series
of mechanistic investigations of single crystal and polycrystalline alloys (e.g. see
[35–37]. In this formulation, dislocations are discretised into edge and screw
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components having intrinsically different relative mobilities and are subject to
different dynamic recovery processes. The individual contributions of each disloca-
tion type to the overall deformation behaviour can therefore be distinguished.
Furthermore, the discretisations of the dislocations into pure edge and screw
components enable their different energies per unit length to be taken into account in
the formulation of the strain energy. A brief description of the single crystal model is
presented next (refer to Cheong et al. [29] for further details).

3.1. Thermodynamics single crystal framework

The kinematics for single crystal deformation relies on the classical multiplicative
decomposition of the deformation gradient, F

�
, into an elastic, F

�

e, and a plastic, F
�

p,
component. The velocity gradient is defined as,

L
�

p ¼ _F
�

p � F
�

p�1 ¼
XN
�¼1

_��m� � n�, ð66Þ

where _�� represents the crystallographic slip rate on a generic slip system (�) defined
by the dyadic product between its slip direction (m�) and associated slip plane
normal (n�).

The slip rate, _��, is assumed to be dominated by the thermally activated glide of
dislocations over forest obstacles and the proposed form of _�� is related to the
resolved shear stress, ��, as

_�� ¼ _�0 exp �
F0

kT
1�
j��j � S�T�=�0

�̂0�=�0

� �p
 q� �
sgnð��Þ, ð67Þ

which takes into account the temperature and stress dependence of the activation
energy. In Equation (67), F0 represents the Helmholtz free energy of activation – the
total energy required for a dislocation to overcome an obstacle encountered during
glide, k is the Boltzmann constant, _�0 is a reference slip rate and �̂0 is the maximum
glide resistance at which dislocations can be mobilised without thermal activation.
The exponents p and q describe the shape of the energy barrier versus the resolved
shear stress profile. All elastic interactions are reduced to 0K by the shear moduli
ratio of �/�0 at the temperatures T and 0K, respectively. The athermal slip
resistance, S�T, is defined as,

S�T ¼ �b
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N

�¼1
h�� ��T

q
, ð68Þ

where the overall dislocation density, ��T, is expressed in terms of the pure edge and
pure densities, ��? and ��, respectively. Then,

��T ¼ �
�
? þ �

�
: ð69Þ

In Equation (68),  is a statistical constant, b� the Burgers vector, and h�� represents
the dislocation interaction matrix defined as,

h�� ¼ !1 þ ð1� !2Þ 	
��, ð70Þ

where !1 and !2 are two cross-hardening constants and 	�� is the Kronecker delta.
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In this work, an explicit link between the evolution of the microstructure, given
by that of the dislocation population, and those of the phase field variables is
established through a thermodynamically consistent framework. The slip system
internal variable, S�T, can be expressed in terms of its corresponding thermodynam-
ical state variable, denoted s�. Furthermore, the inelastic part of the free energy
function is given in terms of a generic function of s�, namely  �s , as,

 ¼
X
�

 �s , ð71Þ

where the sum over (�) extends over all potentially active slip systems.
The relation between S�T and s� can be found from Equation (71), since, by

definition,

S�T ¼
@ 

@s�
¼
@ �s
@s�

: ð72Þ

The inelastic part of the free energy function can be expressed as,

 �s ¼
1

2
� ðs�Þ2: ð73Þ

Then,

S�T ¼ �s
�: ð74Þ

The stored energy for an associated crystallographic model, Est, is given by the
difference between the plastic work and the internal dissipation due to the dominant
hardening mechanisms. It can be shown that [38],

Est ¼

Z t

0

@ 

@s�
ds�

dt

� �
dt ¼

Z t

0

X
�

ðS�T _s�Þdt: ð75Þ

Note that the stored energy, Est, from the previous equation is the same as the second
energy term introduced in Equation (1) when C¼Ehgb and �¼ 1. Thus, in this case,
the standard crystal plasticity energy is recovered.

Use of Equations (68), (69) and (74) with the time derivative of Equation (75)
yields an expression for the evolution of the stored energy in terms of those of the
individual dislocation densities. Here,

_Est ¼
1

2
� b2

XN
�¼1

XN
�¼1

h��ð _��? þ _��Þ, ð76Þ

where it is assumed that b�¼ b for �¼ 1, . . . ,N.
The evolution equations for the dislocation densities account for the competing

dislocation storage-dynamic recovery processes prevalent in FCC metals and for the
annihilation of dislocations in the wake of a moving grain boundary. They are
expressed as,

_��? ¼
C?
b

K?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N

�¼1
��T

q
� 2d?�

�
?

� �
j _��j � EstCst Aðjr�jÞ _�, ð77Þ
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_�� ¼
C
b

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N

�¼1
��T

q
� �� K�d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N

�¼1
��T

q
þ 2 d


 � �
j _��j

� Est Cst Aðjr�jÞ _�: ð78Þ

The last term in the above equations introduces an explicit coupling with the phase
field variables (�, �) to account for the static recovery type-mechanism discussed
earlier in the text and described by Equation (44). Furthermore, the parameters
{C?,C(} describe the relative contributions to the overall slip from edge and screw
dislocations, while {K?,K(} are mobility constants associated with their respective
mean free paths. Finally, recovery processes are associated with the parameters
{d?, d(}, which represent critical annihilation distances between opposite sign
dislocations for both edge and screw types. Substitution of the evolution
equations (77) and (78) into (76) results in a general expression for the evolution
of the stored energy. In order to formulate the expressions for _Est consistently in both
the phase field and the crystal plasticity models, consider Equation (76) with (77)
and (78) in the absence of slip (viz., when j _��j ¼ 0). Then,

_Est ¼ �� b2
XN
�¼1

XN
�¼1

h�� Est Cst Aðjr�jÞ _�: ð79Þ

Equating Equations (44) and (79) and recalling Equation (70) leads to the following
expression for the parameter, Cd, in Equation (44):

Cd ¼ Cst�b
2N ð1þN!1 � !2Þ, ð80Þ

in terms of the single crystal constants ,�, b,N,!1 and !2.
The theory is completed by considering the elastic constitutive law,

T
�
¼ C
�

: E
�

e: ð81Þ

Here, T
�
is the lattice-based second Piola–Kirchhoff stress tensor, C

�
is the anisotropic

elasticity tensor, while E
�

e (¼
�
F
�

eT � F
�

e � I
�

	
=2) is the Green–Lagrange strain tensor,

with I
�
, the second-order identity tensor. Furthermore, T

�
can be expressed as,

T
�
¼ ðdetF

�

eÞF
�

e�1 � r
�
� F
�

e�T, ð82Þ

in terms of the Cauchy stress tensor, r
�
.

3.2. Finite element implementation

Details of the numerical implementation of the above constitutive theory in the finite
element method using finite strain assumptions are given separately, see [29] and [39].
The coupling between the phase field and the crystal plasticity formulation within the
finite element framework is outlined in Figure 4, which presents a flow chart
illustrating the exchange of information between the phase field and the crystal
plasticity levels. Each of the two problems is solved independently and sequentially
and the data is exchanged at the end of each time increment. Nevertheless, note that
even though the phase field variables are incorporated in the solution of the
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mechanical problem via Equations (77) and (78), the mechanical analysis is not fully
coupled with the phase field since the stresses are not accounted for in the description
of grain boundary migration. The loss of accuracy associated with such one-way
coupling would depend on the relative effect of the stress on the kinetics of grain
boundary migration. However, this type of experimental information is not generally
readily available. It should also be pointed out that both the phase field and the
single crystal domains rely on the same finite element spatial discretisation, so as to
minimise related errors. Further details about the numerical implementation of the
coupled problem are given in [39].

4. Calibration of the models

The coupled phase field–crystal plasticity framework will be calibrated for pure
aluminium.

4.1. Phase field parameters

4.1.1. Grain boundary energy

For the purpose of calibrating the phase field parameters related to the grain
boundary free energy, it is first convenient to classify grain boundaries into (i) those
whose misorientation angle, D� (¼j�2� �1j in Figure 1), is greater than a certain
transitional value, denoted D�tran, generally known as high angle grain boundaries;

Predicted deformed state by the single crystal model

Stored energy
distribution

Orientation
distribution

Initial conditions for phase field

Predicted grain boundary motion

Dislocation density
distribution

Orientation
distribution

Figure 4. Flow chart illustrating the coupling between dislocation density evolution with the
static recovery associated with grain boundary motion.
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and (ii) those whose misorientation is less than D�tran, referred to as low angle grain
boundaries. The transition angle is typically taken to be around 15� for materials
with cubic crystal lattices. In this work, it will be assumed to be �19� to achieve an
optimal fit to available experimental data (see below). For misorientation angles
smaller than D�tran, the grain boundary energy exhibits a logarithmic dependency on
misorientation and can be well described by the Read–Shockley model [40], as shown
in Figure 5. Note that this model was originally developed for a symmetric tilt
boundary. For greater misorientations (neglecting special � grain boundaries), the
grain boundary energy can be assumed to remain constant and equal to �hgb, that is,
independent of misorientation and boundary plane. Thus,

� ¼
�hgb D ��

�
1� lnD ��

�
for D� � D�tran,

�hgb for D�4D�tran,



ð83Þ

where D �� is the misorientation angle normalised by D�tran. It is important to note
that the stored energy density, Est, is expressed in Jm�3 while the grain boundary
energy is associated with a surface and, therefore, expressed in Jm�2. However, the
thickness of a typical grain boundary, 	, is approximately made up of three to four
atomic layers, as illustrated in Figure 1a. Consider then that if 	� 3.5ap, where ap is
the thickness of an atomic layer as given by the size of the crystal’s primitive unit cell,
then for FCC crystals

	 � 3:5ap ¼
14ffiffiffi
2
p Rat, ð84Þ

where Rat is the atomic radius. For pure Al, Rat¼ 125 pm and the high angle grain
boundary energy is �hgb¼ 0.37 Jm�2, as obtained from the work of [41] on
aluminium foils. Therefore the energy density of a high angle grain boundary of
thickness 	 is,

Ehgb �
�hgb
	
� 300� 106 Jm�3: ð85Þ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 10 20 30 40 50 60

Experiments (Yang et al., 2000)

(J
/m

2 )

 (deg)

Figure 5. Grain boundary energy versus misorientation obtained experimentally by Yang
et al. [41], and analytically using the Read–Shokley model (Equation 83), and the phase field
model with g(�) given by Equation (90).
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To recover the grain boundary energies predicted by Equation (83), we have

followed the KWC approach [24,31] and considered a static planar grain boundary

separating two semi-infinite perfect crystals ( �Est¼ 0) with a given misorientation, D�.
The grain boundary energy is defined as the excess free energy per unit area and can

therefore be obtained by integrating Equation (1) over the whole system, i.e. along

the x-axis normal to the grain boundary plan. For a static grain boundary, h(�)jr�j2

can be omitted as it introduces only a minor contribution. In that case, the

integration of Equation (40) to determine � gives a step function with a jump of

magnitude equal to the misorientation angle, D�, at the grain boundary position

(x¼ 0). Likewise, the integration of Equation (39) to determine � results in a function

which exhibits a cusp at x¼ 0 and a minimum value, �c, which satisfies the implicit

relation g0ð�cÞD� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð�cÞ

p
. Using these solutions, Equation (1) can be split into

two contributions (refer to [23,24,31] for full details):

� ¼

Z þ1
�1

 dx ¼ �dis þ �or, ð86Þ

where �dis arises from the disorder within the grain boundary,

�dis ¼

Z 1
�1

�
f ð�Þ þ

�2

2

d�

dx

���� ����2�dx ¼ 2�

Z 1

�c

ffiffiffiffiffiffiffiffiffiffiffi
2f ð�Þ

p
d�, ð87Þ

and �or accounts for the misorientation between the two abutting grains,

�or ¼

Z 1
�1

gð�Þ
d�

dx

���� ����dx ¼ gð�cÞD�, ð88Þ

For the specific form of the free energy density function, f(�), given by Equation (2),

Equation (86) yields the following excess free energy associated with the grain

boundary,

� ¼ �!ð1� �cÞ
2
þ gð�cÞD�, ð89Þ

where � and ! are constants. A third-order polynomial was chosen for g(�):

gð�Þ ¼ a1�þ a2�
2 þ a3�

3, ð90Þ

where a1, a2 and a3 are parameters which, together with Equation (89)’s � and !,
need to be fitted to the experimental data of [41], and hence match Equation (83)’s

predictions (see Figure 5). Solving the resulting implicit relation for �c from the

previous equations, one obtains

�c ¼
1

3a3�

�
�ða2�þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�þ 1ð Þ

2
�3a3� a1�� 2ð Þ

q �
, ð91Þ

with �¼D�/(�!). Substitution of (91) into Equation (89) provides an analytical

expression for the grain boundary energy as predicted by the KWC model. Good

agreement is obtained between this expression and Equation (83) using the set of

parameters given in Table 1 for the static case. It can be seen in Figure 5 that the

Read–Shockley model and the analytical solution for misorientations smaller than
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the transitional angle are indistinguishable. Recall that the Read–Schockley model is
only valid for misorientations up to this transitional angle.

In dynamic situations, it is necessary to include h(�)jr�j2 in the free energy
functional, as mentioned previously. The following form has been chosen for h(�):

hð�Þ ¼ d �2 þ e, ð92Þ

where we have added a positive constant e to the quadratic part originally proposed
by KWC to provide an indirect measure of the length over which r� extends. When e
increases, the thickness of the grain boundary, its ability to move [30], and its energy
increase. A parametric study has been performed to estimate the values of e which
can be used in dynamic calculations without changing dramatically the grain
boundary properties. The parameters used are given in Table 1 and the results shown
in Figure 6. First, the same good agreement with Equation (83) has been achieved
using e¼ 0 and the same parameters as for the static case, except for a1¼ 1 Jm�2 due
to the presence of h(�)jr�j2 with d¼ 0.45 Jm�1 (see Table 1). For e� 10�3 Jm�3,
changes in the overall behaviour of � versus D� are negligible. For greater values,
typically of the order of 10�2 Jm�3, a significant increase in � is observed for large
misorientations, that is when D�4 20�. It is worth noting that grain boundaries with
small misorientation angles still follow a Read–Shockley type behaviour.

4.1.2. Grain boundary mobility

The mechanism of boundary migration depends on several factors, which include the
grain boundary structure, the temperature and the nature and magnitude of the
forces acting on it. The migration rate is usually reported to be proportional to the
total driving force, P, acting upon the grain boundary:

v ¼MP, ð93Þ

where M is the so-called grain boundary mobility. As shown in [31] with an
asymptotic analysis of the model, when P involves only the energy, �, and the
curvature, �, of the grain boundary (P¼ ��), M is a complex function of the phase
field parameters involving non-trivial integrals, I and J , which need to be computed
numerically. For the general case:

1=M / �� I þ �� J : ð94Þ

The dependence of M on temperature, generally observed to follow an Arrhenius
law, M¼M0exp(�Q/(RT)), can be reproduced by calibrating the activation energy
in Equations (36) and (37) based on available experimental data. It is important to

Table 1. Phase field parameters.

� (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J m�1
p

) ! (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J m�3
p

) a1 (Jm
�2) a2 (Jm

�2) a3 (Jm
�2) d (Jm�1)

Static 0.04 7.50 2.1 0.95 1.35 –
Dynamic 0.04 7.50 1.0 0.95 1.35 0.45
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point out that, even though the activation energy Q and the pre-exponential factors
�0� and �

0
� in Equations (36) and (37) are assumed to be constant, measurements on

specially misoriented boundaries (i.e. low-� boundaries) have shown that Q and (M0

�) exhibit cusps at certain misorientations. This can be observed in the experimental
measurements of [42], reported in Figure 7. Here, average values of those quantities
(given by the (red) horizontal lines in Figure 7) are chosen, namely
M0�¼ 4� 103m2 s�1 and Q¼ 1.7 eV. Finally, individual values of �0� and �0� will
be determined based on the average values of M0� obtained from full analyses of
grain boundary mobilities. This is to be given in the companion article [30] for the
case of the shrinkage of a circular grain embedded in a largely misoriented matrix.

4.2. Single crystal model parameters

The parameters of the single crystal model used here are those published in the
literature for aluminium. The anisotropic elasticity parameters, C11, C12 and C44, are

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10 20 30 40 50 60 70
 (deg)

FE results
Experiments (Yang et al., 2000)

 (
J/

m
2 )

e = 0.0

Figure 6. Grain boundary energies versus misorientation predictions obtained using increas-
ing values of the parameter e in Equation (92).

Figure 7. Grain boundary mobility (a) activation energy (Q) and (b) pre-exponential factor
(M0) as a function of misorientation angle: experiments from [42] (symbols) and average
values chosen in the present work (red horizontal lines).
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temperature-dependent and each have been approximated by a polynomial relation

(units in GPA) [43]:

C11 ¼ 123:32þ ð6:70� 10�8ÞT3 � ð1:13� 10�4ÞT2 � ð7:88� 10�3ÞT, ð95Þ

C12 ¼ 70:65þ ð4:41� 10�8ÞT3 � ð7:55� 10�5ÞT2 � ð4:00� 10�3ÞT, ð96Þ

C44 ¼ 31:21þ ð7:05� 10�9ÞT3 � ð1:22� 10�5ÞT2 � ð8:33� 10�3ÞT: ð97Þ

The flow rule defined by Equation (67) contains five material parameters

( _�0,F0,b�0, p, q), which have been determined for pure Al, see [44]. The uncoupled

(i.e. the last term due to static recovery is not considered) hardening-recovery laws

defined by Equations (77) and (78) contain six parameters (C?,C(,K?,K(, d?, d()

which have been identified by [35] from experimental data previously obtained by

[45]. The flow rule parameters are listed in Table 2 and those from the evolution

equations in Table 3. Finally, the static recovery parameter Cst was chosen to be

10m J�1, a value sufficiently large to annihilate most of the dislocations at the wake

of a moving grain boundary.
In order to verify the validity of the numerical implementation and the

parameters used, finite-element calculations of single crystals subject to uniaxial

tensile loading were performed using the commercial code Zebulon [46]. The 3D

mesh consisted of 44� 4� 4 quadratic 3D elements with reduced integration

(C3D2r). Nodes on each side of the opposite top and bottom faces were constrained

from moving laterally to reproduce the grip constraints. As measured in [45], an

initial misalignment of 0.5� in the Al single crystals away from the [100], [111] and

[112] crystallographic orientations was introduced in the simulations carried out.

A true strain rate of 7.5� 10�5 s�1 was applied at a temperature of 273K.

A comparison between the predicted finite element stress–strain curves and the

experimental data are shown in Figure 8, revealing good agreement.

Table 3. Additional single crystal model parameters for Al.

Ci Ki/b
� (mm�1) di (nm) Y�i (mm)

Edge 0.5 55� 103 7.0 162
Screw 0.5 110� 103 35.0 81

�¼ 45.0GPa ¼ 0.3 b�¼ 0.286 nm !1¼ 1.5 !2¼ 1.2

Table 2. Flow rule parameters for Al.

b�0 (MPa) p q _�0 (s�1) F0 (J)

8.0 0.141 1.1 1.73� 106 3.00� 10�19
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5. Conclusions

In this work, we have introduced a novel a coupled phase field–crystal plasticity

framework that accounts for the microstructural evolution driven by grain boundary

curvature and/or stored energy. The coupled theory relies on two phase field

variables to represent the continuous microstructure evolution through the grain

boundary/interface regions. Its implementation in the finite element method relies on

generalised stresses and their balance forces formulated within the framework of the

thermodynamics of irreversible processes. The phase field model was formulated in

2D to enable the coupled formulation to be expressed using a simpler theoretical

framework than in 3D. In particular, in-plane slip must be considered so that only in-

plane lattice rotations develop, as required by the 2D phase field formulation. Future

work will address 3D effects. Some of the most original aspects of this work are (i)

the fact that the stored energy, and hence the dislocation densities generated during

deformation, is incorporated explicitly in the free energy function of the phase field

theory; and (ii) the static recovery-type mechanism which accounts for the

annihilation of dislocations in the wake of migrating grain boundaries, and the

finite element formulation and implementation of the couple formulations, a task not

to be underestimated.
In this paper, the calibration of the main parameters of the coupled stress-phase

field theory has been presented. In a companion paper [30], the theory will be

validated against known data and analytical solutions, and the results of the

evolution of polycrystalline aggregates during recrystalisation will be presented and

discussed. It is hoped that the simulation and predictive capabilities of the coupled

framework will provide an important theoretical framework for analysing micro-

structural evolution phenomena required for the understanding and optimisation of

thermo-mechanical processes. Although this study has been motivated by the

application of recrystalisation processes, the coupled theory itself is not limited to

such an application, and should be applicable to a wide variety of other situations

Figure 8. Comparison between the predicted true stress–strain response of Al along the [100],
[111] and [112] crystal orientations with experiment data from [45] at 273K.
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involving the interacting effects between plasticity and moving grain boundaries/
interfaces.
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