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AbstractÐClassical crystal plasticity can account for slip, kink and shear band formation in metal single
crystals exhibiting a softening behavior. In the case of multiple slip, the stability of symmetric multi-slip
con®gurations depending on the self/latent hardening ratio is investigated. Finite element simulations of
symmetric and symmetry-breaking localization modes in single crystals oriented for double slip in tension
are presented. Some shortcomings of classical crystal plasticity are then pointed out that can be solved
using a Cosserat crystal plasticity model that explicitly takes elastoplastic lattice torsion-curvature into
account. The classical theory predicts for instance the same critical hardening modulus for the onset of slip
and kink banding. This is not the case any more in generalized crystal plasticity, as shown by a bifurcation
analysis and ®nite element simulations of Cosserat crystals. # 1998 Acta Metallurgica Inc.

ReÂ sumeÂÐLa theÂ orie classique de la plasticiteÂ cristalline permet de rendre compte de la formation de bandes
de glissement, de bandes en genou et de bandes de cisaillement dans les monocristaux meÂ talliques. Dans le
cas du glissement multiple, on eÂ tudie la stabiliteÂ des con®gurations de glissement multiple symeÂ trique en
fonction du rapport entre autoeÂ crouissage et eÂ crouissage latent. On preÂ sente des simulations par eÂ leÂ ments
®nis de modes de localisation symeÂ triques et avec brisure de symeÂ trie. Quelques insu�sance de la theÂ orie
classique sont ensuite mises en eÂ vidence. Pour y remeÂ dier, une theÂ orie de Cosserat du monocristal est preÂ -
senteÂ e, qui prend explicitement en compte la courbure-torsion plastique du reÂ seau. En particulier, la theÂ orie
classique preÂ dit le meÃ me seuil d'apparition pour les bandes de glissement que pour les bandes en genou. Ce
n'est plus le cas dans le cadre de la plasticiteÂ cristalline geÂ neÂ raliseÂ e, ainsi que le montrent une analyse de bi-
furcation et des simulations par eÂ leÂ ments ®nis avec le modeÁ le de Cosserat. # 1998 Acta Metallurgica Inc.

ZusammenfassungÐDie Bildung von Gleit, kink and Scherbandern in Einkristallen kann von der klas-
sischen KristallplastizitaÈ t vorhergesagt werden. Im Falle mehrerer gleichzeitig aktivierter Gleitsysteme wird
die StabilitaÈ t solcher Kon®gurationen in AbhaÈ ngigkeit von Selbst/latenter Verfestigung untersucht. FE
Simulationen von symmetrischen und Symmetrie-brechenden Lokalisierungsmoden werden durchgefuÈ hrt.
Ein paar UnzulaÈ nglichkeiten der klassischen KristallplastizitaÈ t werden erwaÈ hnt, die durch die Entwicklung
einer Cosserat Theorie der KristallplastizitaÈ t geloÈ st werden. Dabei wird die elastoplastische KruÈ mmung des
Gitters explizit beruÈ cksichtigt. Die klassische Theorie gibt den gleichen kritischen Verfestigungsmodul fuÈ r
die Bildung von Gleit- und kink BaÈ ndern. Das ist nicht mehr der Fall im Rahmen der generalisierten Theo-
rie, was durch eine Bifurkationsanalyse und FE Simulationen von Cosserat-Kristallen gezeigt wird. # 1998
Acta Metallurgica Inc.

1. INTRODUCTION

1.1. Heterogeneous nature of slip

In the endeavour to connect microscopic physical
mechanisms and the macroscopic mechanical beha-
vior of metal crystals, one of the main di�culties to

be overcome arises directly from the intrinsically
heterogeneous nature of slip: deformation of crys-
talline solids occurs by the development of discrete

slip steps visible sometimes by the necked eye.
NeuhaÈ user [1] gives a very precise typology of these
discrete phenomena, that take place at various

length scales. A glide band is a cluster of surface
steps resulting from single or few dislocations on
closely spaced neighbouring planes. This gives rise
to a rather homogeneous deformation of the speci-

men. In contrast a slip band is a cluster of some

sharp o�sets corresponding to the emergence of

many dislocations on a few close crystallographic
planes. Often the slip bands are again clustered in

units called slip band bundles. The size of these plas-
tic discrete patterns ranges from tens of AÊ for slip

lines to about 1 mm for slip band bundles or

Piobert±LuÈ ders bands.
Mader [2] reports a homogeneous distribution of

slip bands in aluminium single crystals during stage

I. During stage II slip line bundles form and the de-
formation becomes heterogeneous. Slip lines of the

secondary systems are observed. Intense shear
bands and some kink bands appear at stage III

while traces of cross-slip are observed. Kink bands
are also reported in Ref. [3]: they are perpendicular
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to the glide direction. Similar deformation modes
are observed in copper for di�erent temperatures.

Kink bands are also mentioned by Jaoul [4] and
Friedel [5]. Mader and Seeger [3] consider that kink
bands are not spurious e�ects but the natural result

of some dislocation motion. Within kink bands slip
occurs on the primary system but the secondary
system can also be activated. Secondary slip in kink

bands has also been noted in Ref. [6] after 4% of
deformation in aluminium crystals. They remark
that no kink bands are observed in crystals oriented

for polyslip. Kink bands will be precisely de®ned in
the Section 1.2. If multiple slip occurs inside a
localization band, the more general term shear
band will be used.

1.2. Localized bifurcation modes in elastoplasticity

Since Asaro and Rice [7], the occurrence of shear
bands in single crystals has been described by a bi-
furcation analysis of the set of constitutive

equations.
Ideally, localized deformation bands are bounded

by two parallel surfaces S across which the velocity

gradient _�u 
 �r and the stress rate _~sss are discontinu-
ous. However, Hadamard's compatibility conditions
and equilibrium at the interfaces imply:

9�g=( _�u 
 �r) � �g
 �n �1�

( _~sss) � �n � 0 �2�
where �n is the normal to S and the brackets denote
a jump. In the case of elastoplasticity at small

strains, the constitutive equations take the multi-
branch incremental form:

_~sss � L : _~eee �3�
where ~eee is the strain tensor and L the four rank
tensor of the tangent moduli. Equations (1) and (2)
lead to the relationship

~Q�g � 0 �4�
where Qij=nkLikljnl is the acoustic tensor. The sol-

ution can be non-trivial when the acoustic tensor
becomes singular. It can be shown that there is an
equivalence between the loss of ellipticity of the gov-
erning equations and the existence of discontinuous

bifurcation modes [15]. The control parameter of
such a bifurcation analysis in isotropic elastoplasti-
city usually is the hardening modulus H, L being a

function of H.
Asaro and Rice [7] performed such a bifurcation

analysis at large strains for elastoplastic single crys-

tals undergoing single slip. They found two possible
localization modes: slip and kink bands. For slip
bands, the localization plane coincides with the

glide plane of normal �z of the considered slip sys-
tem. In the case of kink bands, the localization
plane is normal to the slip direction �m. These two
localization modes simultaneously become possible

for a critical hardening modulus Hcr which is
slightly positive in the analysis at large strains. If

only localization at incipient plasticity is considered,
Hcr=0. Under such circumstances, strain softening
is required for localized bifurcation modes to occur.

1.3. Local softening mechanisms

Estrin and Kubin [8] have investigated averaged

properties of dislocations over a local volume in
order to calculate a local strain hardening. They
proposed a system of di�erential equations account-

ing for the evolution of densities of mobile and for-
est dislocations including production, annihilation
and interaction terms. Solving this di�erential sys-

tem yields the evolution of local strain hardening H
as a function of axial deformation e. The compe-
tition of hardening and softening terms gives rise to

three distinct domains. In the ®rst domain, H turns
out to be negative. In the intermediate domain, the
material hardens because the forest density is far
from saturation while the density of mobile dislo-

cations stabilizes. Lastly, strain hardening decreases
under the in¯uence of dynamic recovery.
Then a bifurcation analysis based on the study of

possible growth of local ¯uctuations, shows that the
stability domain of uniform deformation is con-
tained in (though smaller than) the region of posi-

tive hardening rate. In the ®rst domain, uniform
slip is unstable. It is suggested that this behaviour is
typical of the occurrence of individual slip lines or
slip bands. In contrast the instability reached at the

end of the third domain for large deformations will
lead to non-uniform deformation like necking or
shear banding. Thus, plastic deformation will

necessarily start in a non-uniform fashion.
Resorting to dislocation dynamics, Canova et

al. [9] have simulated the mechanisms by which pre-

cipitate shearing or the destruction of short range
order lead to glide softening and strain localization.

1.4. Scope of this work

This explains why, in Section 2, material soften-
ing is introduced in the constitutive behavior of

single crystals in order to trigger slip band for-
mation in classical crystal plasticity. The case of
multiple slip is tackled in Section 3 where the stress
is laid on the in¯uence of latent hardening or soft-

ening on the stability of multiple slip con®gur-
ations.
After these analyses within the framework of

classical crystal plasticity, some shortcomings are
pointed out that indicate the necessity of enriching
the description of dislocation populations in the

continuum approach. This is then done within the
framework of a Cosserat theory. A complete set of
kinematic and constitutive equations is presented.

The bifurcation analysis must be carried out again
for the Cosserat crystal. This will be done in the
case of single slip. It will appear that the proposed
theory separates the onsets of the localization
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modes slip/kink bands that are identical in the clas-
sical case.

For the sake of brevity and because localization
phenomena occurring at incipient plasticity is dealt
with, the classical and Cosserat theories are pre-

sented in the case of small deformations. However,
most computations of Sections 2 and 3 have been
performed also using a large strain formulation and

this does not a�ect signi®cantly the presented
results.
The numerical simulations presented in this work

have been performed using the inhouse object-
oriented ®nite element program ZeÂ BuLoN [10]. The
local integration of the constitutive equations is per-
formed using a second order Runge±Kutta method

and, for the global resolution, it is resorted to a
BFGS method. The element used are 20-node
bricks with full or reduced integration (27 or 8

Gauss points).

2. SINGLE SLIP LOCALIZATION MODES

In this section, after recalling the general setting,

the simulation of localization modes in single crys-
tals undergoing single slip in tension is focused on.

2.1. General case

In single crystals, the plastic strain rate is the
sum of the contributions of n slip systems

_~eee p �
Xn
s�1

_gsf~Psg �5�

where ~P
s
= �ms&�zs is the orientation tensor of system

s, dyadic product of the glide vector �ms and the
normal to the slip plane �zs. The brackets represent

the symmetric part. Schmid's law written for each
slip system gives a yield surface with vertexes:

ts ÿ rs � 0 �6�
where ts= ~sss:~P

s
is the resolved shear stress on slip

system s. Mandel's hardening rule [11] involves an
interaction matrix to describe self- and latent hard-
ening:

_rs �
Xn
g�1

H sg _v g with _vs � j _gsj: �7�

In the particular case of single crystals in tension

undergoing symmetric multiple slip on n systems
and assuming a diagonal or isotropic interaction
matrix, the previous expressions simplify and the

expression of the elastoplastic tangent moduli reads

L � Eÿ �E:
~P� 
 � ~P:E�

H � ~P:E: ~P
�8�

where E is the four-rank elasticity tensor, ~P is the

sum of the ~Ps of the activated slip systems (see
Ref. [13] for the expression of H). A bifurcation
analysis has been performed in Ref. [13]. The main

results are recalled in Table 1, that gives in each
case the orientation of the ®rst possible localization
band and the associated critical hardening modulus.
In the case of single slip, the results are the same as

in Ref. [7]: slip and kink bands can form simul-
taneously as soon as the hardening modulus
vanishes.

2.2. Slip and kink banding in a tube

As an introduction to the FE simulations of

strain localization in single crystals, the formation
of a slip and a kink band in a f.c.c. single crystal
tube oriented for single slip in tension is ®rst pre-
sented. The material exhibits a short strain-harden-

ing period followed by strain-softening. A material
defect (a slightly smaller initial critical resolved
shear stress) is introduced in one element to trigger

localization. The following non-linear hardening
law is used instead of equation (7):

rs � rs0 � q1
Xn
r�1

hsr�1ÿ exp�ÿb1vr�� � q2�1ÿ exp�ÿb2vs��

�9�
r0 denoting the initial threshold. The illustrative ma-
terial parameters in the simulation are:

E � 200000 MPa, v � 0:3,

r0 � 50 MPa, q1 � ÿ45 MPa,

b1 � 210, q2 � 22 MPa,

b2 � 900: �10�
The interaction matrix hsr does not play any role in

this section since only single slip will take place. It
will become important in Section 3. The tube axis
coincides with a [123] direction.

The displacement in the initial axis direction only
is prescribed at the upper end. Two bands are
shown to form in Fig. 1. On the developed surface
of the specimen (Fig. 2), it is found that the localiz-

ation zones coincide with the traces of the slip and
kink planes. Such a developed surface can be
obtained experimentally using a polymer ®lm

Table 1. Summary of the results of the bifurcation analysis for single crystals in tension oriented for single and symmetric multiple slip
(after Ref. [13])

Typical tensile direction No. of active slip systems, N Bifurcation planes Critical hardening modulus

[123] 1 slip plane kink plane H = 0
[012] 2 non-crystallographic H<<0
[011] 4 non-crystallographic H = 0
[111] 6 non-crystallographic H<<0
[001] 8 non-crystallographic H<<0
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deposited on the specimen (Fig. 3, after Ref. [14]):
Such sinus curves can be seen but no kink band is

reported in Ref. [14] (for various crystal orien-
tations).

2.3. Mesh dependence issue

The emergence of discontinuous bifurcation
modes is associated with the loss of ellipticity of the
governing equations. The FE simulation of localiz-
ation in the classical framework then displays spur-

ious mesh-dependence. This is of course the case

for the previous results for which slip, kink and

shear bands always have the thickness of one el-

ement. As pointed out in Ref. [13], the introduction

of viscosity as in Section 3 may alleviate the pre-

vious statement. This has already been done in

Ref. [16]. However the problem would be strictly

regularized only in the dynamic case, which is not

done here.

Fig. 1. Slip and kink band formation in a single crystal tube in tension.
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Nevertheless the orientation of the band and the
type of obtained bifurcation modes are mesh-inde-

pendent, at least if quadratic elements are used and
this is the main issue in this article. An ad hoc regu-
larization of the considered localization modes is

not the purpose of this work but rather it is the
physical relevance of such modes predicted by clas-
sical or generalized crystal plasticity theories.

3. MULTIPLE SLIP LOCALIZATION AND LATENT
HARDENING

In Ref. [13], multislip con®gurations that are
expected in tension along given directions have

been considered, when the interaction matrix is iso-
tropic or diagonal. However, Franciosi et al. [17]
have shown that pronounced latent hardening

makes the simultaneous macroscopic activation of
many slip systems locally very unlikely. The pre-
dicted slip systems are observed later at larger

strains. The interaction matrix cannot then be iso-
tropic at the beginning of plastic ¯ow.

3.1. A simple analysis

In the case of multiple slip and to avoid any inde-
terminacy of slip activation, an elastoviscoplastic
formulation of crystal plasticity with threshold is

adopted:

_gs �
�jtsj ÿ rs

k

�n
sign ts �11�

where k and n are viscosity parameters. The quan-

tity in brackets must be positive for the slip rate to

be non-zero.

The bifurcation analysis in Ref. [13] for multislip

has provided bifurcation modes for which sym-

metric slip still occurs inside the band, i.e. the

amounts of slip on the active slip systems remain

equal after bifurcation. This usually leads to non-

crystallographic shear band orientations (see

Table 1), ``non-crystallographic'' meaning that the

orientation of the localization plane depends on

both crystallographic directions and the elastic con-

stants. However some slip systems may be desacti-

vated in the band and other modes become

possible. In the simple case of symmetric double

slip and assuming linear viscosity and hardening, a

very simple analysis provides the main trends of the

in¯uence of latent hardening on the stability of

symmetric multislip localization modes. There

exists:

k _g1 � tÿ t0 ÿH11g1 ÿH12g2,

k _g2 � tÿ t0 ÿH12g1 ÿH11g2:

Fig. 2. Developed surface of the tube of Fig. 1 (same deformation scale as in Fig. 1).
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Hence

kD_g � ÿ�H11 ÿH12�Dg �12�
where Dg = g2ÿg1. If H11ÿH12<0, symmetric slip
may not be stable, meaning that a small pertur-

bation Dg will grow and one slip system may then
accommodate the entire plastic deformation.

3.2. Symmetric and symmetry-breaking modes

The formation of slip and shear bands for double
slip in tension (single crystal plate: tensile direction

[012], secondary direction [521], the systems A3 and
B4 are active) has been investigated numerically for
various latent hardening ratios. In the following,

the hardening law (equation (9)) is used, H11=q1h11
and H12=q1h12 are denoted and the material par-
ameters are:

r0 � 50 MPa, q1 � ÿ45 MPa,

b1 � 210, q2 � 22 MPa,

b2 � 1800, k � 5 MPa s1=n,

n � 2 �13�
(global prescribed strain rate 5�10ÿ5 sÿ1). The results
are the following:

. h11=1, h12=4: Symmetric slip is stable and the
bifurcation modes predicted in Ref. [13] and Table 1
were obtained, with non-crystallographic shear

band orientations. Figure 4 shows that the amounts
of slip due to the two slip systems in the bands
remain equal.

. h11=1, h12=1 (isotropic hardening): The results
are very similar to the previous ones.
. h11=2, h12=1: In this case, mixed modes are

obtained. In one of the two bands the two systems

remain equally active. The other one is a slip band

for the system B4 (Fig. 5).
. h11=4, h12=1: In this case, two slip bands and

a kink band are obtained (Fig. 6).

. h11=1, h12=0 (diagonal matrix): Two slip
bands and one kink band formed (Fig. 7).
In Fig. 7, it can be seen that three-dimensional

calculations are required to take the actual kin-

ematics of double slip into account, although only
one element is used in the thickness. Note that this
last result has been obtained using a large strain

formulation of crystal plasticity according to classi-
cal Mandel's multiplicative decomposition [18]. As
expected, slip and kink band can form simul-

taneously even though lattice rotations are taken
into account.
The obtained bifurcation modes are in qualitative

agreement with the simple stability analysis of
equation (12). It must be noted that softening crys-
tals have been considered so that H11 and H12

become negative. For softening crystals and strong

out of diagonal terms hrs, symmetric slip is stable
and non-crystallographic bands may form. When
the diagonal components are the biggest ones, slip

and kink bands appear because symmetric slip
becomes unstable.

4. COSSERAT SINGLE CRYSTAL PLASTICITY

4.1. Shortcomings of classical crystal plasticity

The predictive capabilities of a constitutive model

of the plastic behavior of single crystals strongly
depends on the accuracy of the description of the
dislocation population inside the volume element of
mechanics. A complete description of this distri-

Fig. 3. Tensile test on a h001i-single crystal superalloy AM1, replica of the surface of the cylindrical
specimen (after Ref. [14]).
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bution would require an in®nite set of correlation

functions as KroÈ ner pointed out [19]. Only two of
them are actually used in practice and in two di�er-

ent contexts.
The continuum theory of dislocations, on the one

hand, resorts exclusively to the so-called dislocation
density tensor ~a introduced by Nye [20]. In other

terms, ~a is directly related to the densities of so-
called geometrically necessary dislocations [21]. On

the other hand, classical crystal plasticity aims at
describing the material hardening under homo-

geneous tension or shear for instance, where ~a does
not play an important role. As a result, classical

crystal plasticity theory involves a set of internal
variables which are related to the scalar dislocations

densities rs traditionally used in metallurgy. The rs

denote in fact the densities of so-called statistically
stored dislocations [21]. However, in the case of

strongly non-homogeneous deformation, ~a may well
be predominant.

A more accurate theory should combine both

descriptions. This can be done within the frame-
work of a non local continuum and in particular of

a Cosserat theory as explained in Ref. [22].
Another rather puzzling aspect of classical crystal

plasticity that arises from the previous localization
analyses is that it predicts that slip and kink bands

can appear simultaneously for the same critical
hardening modulus. But slip and kink bands are

very di�erent localization modes from the physical
point of view. As illustrated on Fig. 8, kink banding

is associated with strong lattice rotation whereas
slip banding does not a�ect crystal orientation

(except in the case of some boundary constraints).
The three-dimensional analysis is performed in

order to see whether additional slip systems are
activated. For the considered amount of lattice ro-
tation inside the band, additional slip systems are

not signi®cantly activated. Accordingly, a kink
band is bounded by two thins regions of intense lat-

Fig. 4. Shear banding in a single crystal plate oriented for double slip (h11=1, h12=4); the pictures
show the equivalent plastic strain and the amounts of slip for each slip system.

FOREST: SINGLE CRYSTAL PLASTICITY 3271



tice curvature associated with high densities of geo-
metrically necessary dislocations. Furthermore, kink

bands are in general not observed at incipient plas-
ticity in f.c.c. crystals but, if at all, much later on
(see Section 1). The fact that classical crystal plas-

ticity does not really distinguish the onsets of slip
and kink banding should be regarded as a short-
coming. This also motivates the following develop-

ments.

4.2. Model presentation

The proposed Cosserat theory for elastoviscoplas-

tic single crystals has been comprehensively pre-
sented in Ref. [22] with full account of ®nite
deformation and curvature. The equations of the

model in the case of small perturbations are simply
recalled, which means small displacement, lattice ro-
tation, deformation and lattice curvature.

The displacement vector at point �x is denoted by
�u(�x). The lattice rotation ~R(�x) with respect to its in-
itial orientation is described by vector �FFF(�x) such
that:

~R � ~1ÿ �EEE�FFF, Rij � dij ÿ EijkFk �14�

where E is the permutation tensor. The Cosserat de-

formation tensor is

~e � �u
 �r � �EEE�FFF, eij � ui; j � EijkFk �15�

and the lattice torsion-curvature tensor reads:

~kkk � �FFF
 �r, kij � Fi; j : �16�

Both deformation and curvature tensors must be

decomposed into their elastic and plastic parts:

~e � ~ee � ~ep, ~kkk � ~kkke � ~kkkp: �17�

The elasticity law in the isotropic case reads:

~sss � E:~ee � l~1 Tr ~ee � 2mf~eeg � 2mcg~eef �18�

~mmm � C:~kkke � a~1 Tr ~kkke � 2bf~kkkeg � 2gg~kkkef �19�

where ~sss and ~mmm, respectively, are the force and

couple stress tensors. The inverted brackets denote

Fig. 5. Shear and slip band formation in a single crystal plate oriented for double slip (h11=2, h12=1).
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the skew-symmetric part. Equations (18) and (19)

involve 6 elasticity moduli, the 2 classical ones and

four additional ones.

Plastic deformation is due to the activation of

slip systems according to

_~ep �
Xn
s�1

_gs~P
s
: �20�

Similarly, plastic torsion-curvature orientation ten-

sors ~Q? and ~Q� exist such that

_~kkkp �
Xn
s�1

_ys?
l?

~Q
s

? �
_ys�
l�

~Q
s

�
 !

�21�

where l?, l� are constitutive characteristic lengths.
The index _ denotes lattice curvature due to edge

dislocations and �w accounts for lattice torsion due
to screw dislocations. The continuum theory of dis-

locations provides a relationship between the dislo-
cation density tensor and the torsion-curvature
tensor [22, 23], from which is deduced

~Q? � �x
 �m, ~Q� �
1

2
~1ÿ �m
 �m �22�

where �x=�z��m is the edge dislocation line vector.

Fig. 6. Slip and kink band formation in a single crystal plate oriented for double slip (h11=4, h12=1).

Fig. 7. Slip and kink band formation in a single crystal
plate oriented for double slip (h11=1, h12=0); three-

dimensional deformed state.
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The viscoplastic formulation (equation (11)) for the

plastic slip rate is still adopted, where ts=~sss:~P
s
.

Note that the force±stress tensor ~sss is not necessarily

symmetric. Similarly and for reasons presented in

Ref. [22], a generalized Schmid law and a curvature

¯ow rule are introduced:

_ys �
� jvsj ÿ lrsc

lksc

�nsc
sign �vs� �23�

with vs=~mmm: ~Q
s
. General hardening laws are pro-

posed in Ref. [22] and particular ones will be used

in the sequel.

Fig. 8. Kink band formation in a single crystal: amount of plastic strain (above) and associated lattice
rotation along a horizontal line intersecting the band (below).
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5. BIFURCATION ANALYSIS FOR COSSERAT
CRYSTALS

In the case of single slip a bifurcation analysis in

Cosserat elastoplasticity is now performed in order to
see the new features brought by the Cosserat theory.

5.1. A simple case

We ®rst consider the case of single slip ~P= �m&�z
before plastic curvature appears and it is asked
whether the slip bands and kink bands studied in
Section 2 are still bifurcation modes for Cosserat

crystals or not (see equations (1) and (2)).
5.1.1. Slip band: �gA�m (glide direction) �n=�z (slip

plane). We investigate the existence of a discontinu-

ity surface of normal �n=�z with the jump

( _~e)A �m
 �z �24�
The equilibrium condition at the interface reads

( _~sss)�z � 0 �25�
Assuming plastic loading on each side. it follows

(L _~e)�z � 0, i:e: �L~P��z � 0 �26�
where the tangent moduli are de®ned in

equation (35). Taking rÇ s=H _g, it gives

EijklPklzj ÿ 1

H � PabEabcdPcd
EijklPklPnmEmnpqPpqzj � 0:

�27�
It can be checked immediately that H = 0 is still a
solution of equation (27). It means that under the
above hypotheses, slip bands are still possible and
lead to the loss of ellipticity of the equations as

soon as the hardening modulus vanishes.
5.1.2. Kink band: �gA�z, �n= �m. We must have now

�L~P
T� �m � 0: �28�

This implies

�z � �L~P
T�: �m � 0

and hence

~P
T
:E:~P

T ÿ �
~P
T
:E:~P��~P:E:~PT�
H � ~P:E:~P

� 0: �29�

One obtains the critical hardening modulus for
which a kink band may appear

H kink � �
~P
T
:E:~P�2

~P
T
:E:~P

T
ÿ ~P:E:~P: �30�

For isotropic elasticity

H kink � ÿ 4mmc
m� mc

<0: �31�

Equation (28) is then ful®lled.
As a result the loss of ellipticity for the kink

band is delayed. The elastic Cosserat modulus, mc is

responsible for this regularizing e�ect. For mc=0
the classical result is retrieved.

5.2. General case

Both plastic deformation and curvature are now
considered:

_~ep � _g~P and _~kkkp �
_y
l
~Q �32�

where ~P= �m&�z and ~Q=�x& �m meaning that edge
dislocations only are considered. The retained hard-

ening rules are

_rs � ~P: _~sss � H _g�H 0 _y �33�

_rsc �
1

l
~Q: _~mmm � Hc

_y �34�

where the instantaneous curvature hardening mod-

ulus Hc and the coupling term H' have been intro-
duced. Note that a thermodynamically consistent
formulation of the model like in Ref. [22] leads to a
symmetric coupling term in equation (34), which is

not included in the present analysis for simplicity.
The linear incremental form of the constitutive
equations can be derived

_~sss � L: _~e� L 0: _~kkk _~mmm � Lc: _~kkk �35�
with

L � Eÿ 1

D
�E:~P� 
 �~P:E� �36�

L 0 � H 0

lDDc
�E:~P� 
 � ~Q:C� �37�

Lc � Cÿ 1

l2Dc
�C: ~Q� 
 � ~Q:C� �38�

and

D � H � ~P:E:~P �39�

Dc � H c � ~Q:C: ~Q=l2 �40�
We investigate the conditions for the existence of a
surface S across which _~e and _~kkk are discontinuous.

Let �n be the normal to the surface at �x$S.
Hadamard compatibility conditions imply that the
jumps are of the form

9��g, �gc�=( _~e) � �g
 �n and ( _~kkk) � �gc 
 �n: �41�
The equilibrium conditions are given by

( _~sss)�n � 0 and ( _~mmm)�n � 0: �42�
They lead to the following conditions�

�n � E � �nÿ 1

D
��n � E:~P� 
 �~P:E � �n�

�
�g

� H 0

lDDc
���n � E:~P� 
 � ~Q:C � �n���gc � 0 �43�
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�
�n � C � �nÿ 1

l2Dc
��n � C: ~Q� 
 � ~Q:C � �n�

�
�gc � 0: �44�

Note that short notations have been adopted but it

must be noticed that by �n�E��n, njEijklnl is meant

here. This holds also for some other expressions

that are not explicitly written in components.

Following [15], the solution of equation (44) is

�gcA��n � C � �n�ÿ1��n � C: ~Q�=l �45�

l2H c � ÿ ~Q:C: ~Q� � ~Q:C � �n���n � C � �n�ÿ1��n � C: ~Q�:
�46�

Restriction to isotropic elasticity now occurs and

for that purpose, the tensors I, Ia and J, Ja, K are

introduced, such that

I~e � f~eg and Ia~e � J~e � Ja~e �g~ef �47�

K~e � tr ~e

3
~1 and J~e � f~eg ÿ tr ~e

3
~1 �48�

and

K� J� Ja � I� Ia � 1 �49�
where 1 is the identity linear operator on non-sym-

metric second-rank tensors. As a result the isotropic

elasticity tensors can be written

C � 3aK� 2bI� 2gIa � �3a� 2b�K� 2bJ� 2gJa:

�50�
Similar relationships hold for E. There exists a very

convenient property

Cÿ1 � 1

3a� 2b
K� 1

2b
J� 1

2g
Ja: �51�

As a result

�n � C � �n � �b� g�~1� �a� bÿ g��n
 �n �52�
and

��n � C � �n�ÿ1 � 1

b� g
~1ÿ a� bÿ g
�b� g��a� 2b� �n
 �n �53�

We get from equation (45)

�gc � gc
�
��n � �m��x� bÿ g

b� g
��n � �x� �m

ÿ 2g�a� bÿ g�
�b� g��a� 2b� ��n � �m���n � �x��n

�
�54�

and from equation (46)

l2H c � �b� g����n � �m�2 ÿ 1� � �bÿ g�2
b� g

��n � �x�2

ÿ ��n � �m�2��n � �x�2 4bg�a� bÿ g�
�a� 2b��b� g� : �55�

Equations (54) and (55) must now be substituted in

equation (43). At this stage, coordinates relative to

the basis ( �m, �z,ÿ�x) are resorted to. This leads to the

following system of equations

�m � mc�
g1

g2

g3

264
375� �l� mÿ mc��nigi �

n1

n2

n3

264
375

ÿ 1

D
��m� mc�n2g1 � �mÿ mc�n1g2�

� �m� mc�n2
1

0

0

264
375� �mÿ mc�n1

0

1

0

264
375

0B@
1CA

� H 0gc

lDDc

�
�b� g�n21 �

�bÿ g�2
b� g

n23

ÿ 4bg�a� bÿ g�
�a� 2b��b� g� n

2
1n

2
3

�

� �m� mc�n2
1

0

0

264
375� �mÿ mc�n1

0

1

0

264
375

0B@
1CA � 0

Two cases can be distinguished but the details of

the calculation are not given:

. n3=0:

Then g3=0 and

g1 �ÿ H 0gc

DDc �b� g�n21n2
�
�m� mc���m� mc�

� �l� mÿ mc�n22 ÿ
1

D
�mÿ mc�2n21�

ÿ �mÿ mc�n21��l� mÿ mc� ÿ
1

D
�m2 ÿ m2c��

�
=D

�56�

g2 �ÿH 0gc

DDc �b� g�n31
�
�mÿ mc���m� mc�

� �l� mÿ mc�n22 ÿ
1

D
�m� mc�2n22�

ÿ �m� mc�n22��l� mÿ mc� ÿ
1

D
�m2 ÿ m2c��

�
=D

�57�
where D is the determinant of the system.

. n3$0: For the sake of simplicity, the expressions

are not given in this case.

5.2.1. Extrema of Hc(�n). We now look for the

critical hardening modulus for which the ®rst plas-

tic/plastic bifurcation becomes possible. As in

Ref. [13], the Lagrangian function is considered

L��n, l� � H c��n� ÿ l�n21 � n22 � n23 ÿ 1�: �58�

When written in components, equation (46)

becomes
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Hc��n� � �b� g��n21 ÿ 1� � �bÿ g�2
b� g

n23

ÿ n21n
2
3

4bg�a� bÿ g�
�a� 2b��b� g� �59�

The maximization procedure leads to the three fol-
lowing cases:
. �n=�x: However, this implies �gc=�g=0. No bifur-

cation is possible in that case.
. �n= �m and gc�x:
Then

�g � ÿgc H 0�mÿ mc�
l�H�m� mc� � 4mmc�

�z: �60�

This corresponds to a kink band. Contrary to the
classical case, for a given amplitude of the curvature
rate jump gc at the surface, the amplitude of the

strain rate jump is no longer arbitrary. The critical
hardening modulus is

Hc � 0: �61�
The case gc=0 has already been treated in Section
5.1.
. n1n3$0:

In this case, Hc<0 is found.
5.2.2. Conclusion of the bifurcation analysis. If

curvature and deformation are decoupled (no lattice
rotation gradients), slip bands are still possible bi-

furcation modes (Section 5.1). In the coupled case,
the ®rst possible mode is the kink band that can
appear if the Cosserat hardening modulus Hc

vanishes. The use of a positive Hc leads to the regu-
larization of the kink band. If a coupling exists
between slip and curvature in equation (34) the

amplitudes of the deformation rate and curvature
rate jumps are not arbitrary any more.

5.3. Simulation of localization modes in Cosserat
crystals

It is possible to perform three-dimensional FE
calculations using the previous model, although it

involves many degrees of freedom and internal vari-
ables. At each node, the six degrees of freedom are
the displacement �u and the lattice rotation �FFF. At
each Gauss point, 36 internal variables must be

integrated, namely the vs, ys? and ys�. For simplicity
the ys� is not introduced.
To illustrate a major di�erence between the

Cosserat theory and classical plasticity, the tension
of a plate (of size 1L unit length) oriented for single
slip with a material defect leading to kink band for-

mation in the classical case [Fig. 8(a), axis 36[238],
axis 16[19101]] is considered again.
Let us ®rstly investigate the in¯uence of Cosserat

elasticity on kink banding. The chosen additional
elastic constants are, mc=100000 MPa,
b = g= 1000 MPa L2, a = 0. The hardening law
reads

r � r0 � q1�1ÿ exp�ÿb1v�� � q2�1ÿ exp�ÿb2v�� �H 0y
�62�

(single slip) with the same material parameters as in
(10) and additionally: H' = 600 MPa. A high value
of r0

c is chosen so that curvature remains purely
elastic. The applied boundary conditions are the

following: prescribed displacements of the lower
and upper sides of the plate in direction 3, the
whole boundary is free of forces (except on the

upper and lower sides in direction 3) and micro-
couples. On Fig. 11 the overall load±displacement
curve of this test is compared to the homogeneous

response (strain-softening material) and to the clas-
sical response characterized by a sharp load drop
corresponding to kink band formation. Instead the
curve follows the homogeneous one until a devi-

ation is observed corresponding to the formation of
two slip bands (Fig. 9), although the position of the
defect would rather promote kink banding.

Additional slip systems are not signi®cantly acti-
vated.
Plastic curvature is now introduced, which seems

to be physically more relevant. The Cosserat elas-
ticity constants are now taken so small that the
classical elastic response of the material is unaf-

fected. The additional parameters are:

r0c � 0:0005 MPa, kc � 0:01 MPa s1=nc ,

nc � 1, l � 1L, Hc � 0: �63�
In this case again, the expected kink band does not
form. Instead, a slip band forms [Fig. 10(a)] and a

re¯ected kink band tends to form. Finally this de-
formation pattern is replaced by a slip band bundle
[Fig. 10(b)]. Figure 11 shows the load drop associ-
ated with localization and subsequent hardening

due to the local site of plastique curvature at the
intersection of the band and the boundary with pre-
scribed displacements.

In the two cases, kink band formation has been
precluded leading to preferred slip band formation.

6. CONCLUSIONS

We have shown that classical crystal plasticity
can account for several observed localization

phenomena like slip, kink and shear band for-
mation in single crystals. Depending on the latent/
self hardening ratio, symmetric multislip con®gur-

ations may be stable or not. Since non-crystallo-
graphic shear bands like in Fig. 4 are usually not
observed experimentally at the inception of plastic

¯ow, the present results would advocate for leading
diagonal terms in the interaction matrix, at least in
the softening regime of the material behavior.

There exist several generalized crystal plasticity
models in literature that usually involve higher
order gradients. Second order gradients of the
amount of slip or dislocation densities can be intro-
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duced in the hardening law of each slip system as
proposed in Ref. [24]. The theory used in Ref. [25]

is a full second gradient theory within the frame-
work set in Refs [27, 28]. The resulting kinematics
of plastic lattice torsion-curvature proposed in

Ref. [26] is the same as that derived in the work
from the continuum theory of dislocations, so that
the second gradient and the Cosserat theory of crys-

tal plasticity share several common features.
However the link between the dislocated crystal and

the Cosserat continuum has been seen since
GuÈ nther [29] and KroÈ ner [30]. Furthermore the
Cosserat theory presented in Ref. [22] is a natural

extension of Mandel's work in ®nite crystal
plasticity [18].
The aim of such a generalized crystal plasticity

theory is not the regularization of localization
modes in crystals but the enrichment of the conti-
nuum description of dislocation population. The

main result of the bifurcation analysis presented in
Section 5 is that the bifurcation modes slip/kink

bands which are identically predicted by the classi-
cal theory, have been separated: kink bands can
occur later than skip bands, as observed experimen-

tally. The new critical hardening modulus for kink
banding has been given. The FE simulations have
shown that kink bands may even be precluded.

However, the Cosserat theory does not a�ect slip
banding at all since slip banding induces no lattice

curvature. This statement also holds in the case of
second grade crystal plasticity [25] since, as pointed
out in Ref. [26], a slip gradient along the normal to

the slip plane does not result in the storage of geo-
metrically necessary dislocations. It means that the
Cosserat and second grade theories do not regular-

ize slip banding in the static case.
The biggest remaining issue is the determination

of the additional parameters arising in generalized

Fig. 9. Slip band formation in a Cosserat crystal supporting only elastic curvature: kink band formation
like in Fig. 8 has been precluded.
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Fig. 10. Strain localization in an elastoviscoplastic Cosserat crystal: slip band formation (above) fol-
lowed by slip band bundle formation (below).
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crystal plasticity. The coe�cients used in this work
are only illustrative. The characteristic length l is

thought to be the size of the volume element
retained for the Cosserat mechanics and depends on
the ®nal application one aims at. It must be large

enough for this volume element to contain a large
amount of dislocations. ``Latent'' bending tests
(bending followed by tension) on single crystals can

lead to the determination of H' in equation (33)
which accounts for additional resistance to slip due
to lattice curvature. This parameter and also Hc

(see equation (34)) then control kink band width

that may be measured experimentally in some cases.
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