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Strain-aging constitutive models are suitable to simulate the formation and
propagation of Lüders bands in complex specimens and components. The
identification of the corresponding material parameters is difficult because
the strain localization phenomena associated with the Lüders behavior
must be taken into account. The spurious mesh dependence of standard
finite element simulations of Lüders band propagation is illustrated in the
present work and removed using a strain gradient plasticity model.
Furthermore the gradient approach introduces a characteristic size
corresponding to the finite dimension of the Lüders band front as observed
from strain field measurements. The parameters are identified from the
experimental measurement of the peak stress and plastic strain carried by
the band for a C-Mn steel over a temperature range from �150�C to room
temperature and for several strain rates. The validity of the model is tested
on 3D simulations of the Lüders band propagation in a strain gradient
plasticity medium.

Keywords: Lüders bands; computational mechanics; strain gradient plas-
ticity; strain localization; parameter identification; static strain aging

1. Introduction

The sharp yield point phenomenon was discovered in 1842 by Piobert in mild steel
sheets hit by bullets [1]. Also described by Lüders in 1860 [2], it occurs in body-
centered cubic (bcc) polycrystals at room temperature, and has often been observed
in ferritic steels [3]. Many structural materials are subject to strain aging that can
induce inhomogeneous yielding. The transition from elastic to plastic deformation is
characterized by a material instability known as the Lüders phenomenon. The
macroscopic effect of the instability is the emergence and subsequent propagation of
plastic deformation bands. In a tensile sample loaded at constant cross-head velocity,
it is associated with a band of localized dislocation activity traveling along the
sample. The band nucleation, usually at one grip, corresponds to a drop in stress,
from the upper yield point to the lower yield point. The plastically strained area then
spreads along the sample. A clear band front separates this area from the
undeformed one, into which it propagates, until the sample is uniformly stretched
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at the so-called Lüders strain level. From this point onwards, the deformation
proceeds uniformly in the sample.

Many observations of the Lüders phenomenon are available in the literature. It
has been mainly observed in iron and steels [4–11]. However, only limited attention
has been paid to the description of the band front zone. The interface located
between the non-deforming and the deformed area seems, at first glance, to be a zone
of discontinuity of plastic strain. Detailed observations of the front by means of
recent strain field measurement methods reveal that this interface is rather diffuse
and may involve a large number of grains in the transition zone [12]. The
characteristic width of the band front has been measured in [13,14]. This length is
estimated to be several hundred micrometers by optical observations. Over this
distance the plastic strain varies continuously from the maximal value inside the
band to zero. The digital image correlation is the best-suited method to investigate
the Lüders phenomenon, as proved in [5,6,12,15]. This technique allows us to collect
information about the orientation, propagation and the level of plastic strain of
Lüders bands. It is also known that the Lüders strain is strongly sensitive to grain
size [16,17].

Cottrell and Bilby [18] attributed the upper yield stress in steels to the pinning of
dislocations by carbon and nitrogen atoms which naturally tend to form
‘‘atmospheres’’ around them. They postulated that initial yielding requires a
higher stress in order to pull the dislocations out of their atmospheres. Once released,
the dislocations can be moved by a lower stress. The pinning effect of interstitial
impurities is widely accepted for several reasons including the reappearance of the
Lüders effect following mild heat treatment which allows these atoms to migrate and
repin the dislocations, which is characteristic of static strain aging.

The simulation of Lüders band formation and propagation in testing samples
and industrial components requires the definition of suitable nonlinear constitutive
equations capturing the effect of static strain aging. Two main classes of models have
been used for that purpose. The first class is based on the classical elastic–viscoplastic
model with von Mises plasticity and phenomenological equations for softening and
hardening behavior, as suggested in [19] where the Lüders band propagation is
explicitly simulated based on the finite element method. The second class of models
takes into account the physical origin of strain aging, i.e. the pinning of dislocations
by solute atmospheres that diffuse during straining or waiting, by means of an
internal variable called the aging time [20–23]. A model based on mesoscale field
dislocation mechanics is presented for the dislocation–solute interaction and applied
to the study of strain aging in [24,25].

The finite element method has been applied in the case of the Lüders effect to
accurately reproduce experimental tensile tests and to validate material models and
parameters. Some simulations have been performed in 2D [3,8,19] and in 3D [5].
However, no indication was given in these contributions of a systematic identifica-
tion strategy of the material parameters from experimental data. The main difficulty
of material parameter identification of a strain-aging models lies in the fact that
strain localization phenomena must be taken into account, which requires finite
element simulations. Also, the existing literature does not mention the possible mesh
dependency of the finite element results when simulating Lüders band formation and
propagation.
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The objective of the present work is to propose a systematic methodology of
identification of a static strain-aging model from the experimental tensile curves for a
C-Mn steel over a large range of temperatures. The originality of the method is that
strain localization phenomena are taken into account but the number of finite
element simulations during the parameter optimization is limited to a minimum. For
that purpose, we will show that some parameters can be calibrated from volume
element simulations and that only a limited number of finite element simulations are
finally needed to validate the whole procedure. An original contribution of this work
is to show that finite element simulations of Lüders band formation propagation
based on standard finite element methods, as used in previous simulations in the
literature, are strongly mesh dependent, especially regarding the determination of the
plateau stress and Lüders strain. To get rid of mesh dependency in our simulations, a
regularization method is introduced based on the micromorphic generalized
continuum [26]. Motivations for such a regularization procedure originate from
contributions in [22,27–29] which advocate that strain gradient plasticity effects play
a significant role in the propagation of the Lüders band front. The proposed model
contains an intrinsic length that accurately accounts for the finite width of the
Lüders band front, as observed from strain field measurements from the literature
[12] and from this work.

This work is divided into four parts. In Section 2, the experimental aspects are
presented regarding the material and the mechanical tests. The digital image
correlation method has been used to highlight the Lüders phenomenon, see [5,15].
Section 3 starts with a theoretical mechanical analysis of a Lüders band within the
rate-independent framework. Then, a phenomenological elasto-plastic model is used
to simulate Lüders band formation and propagation. As suggested in [19] the strain
localization of the Lüders band is induced by the introduction of a phenomenolog-
ical local softening behavior. The nonlinear material behavior is modeled using a
classical von Mises plasticity model. The strong mesh dependence of the results is
illustrated using different kinds of mesh topology. The introduction of viscosity
effects slightly alleviates the pathological behavior but is not sufficient to get rid of
the spurious mesh dependence. In Section 4, the main purpose is to propose mesh
objective simulations of Lüders band propagation by incorporating a finite size band
front. Finally in Section 5, an original strategy of identification is proposed for a
constitutive model accounting for mechanical static strain aging. It is applied to a
C-Mn steel for temperatures ranging from �150�C to room temperature. The model
is able to reproduce the peak and plateau stresses, the Lüders strain and the
associated strain rate sensitivity from 10�5 s�1 to 10�1 s�1. The identification is
validated on 2D and 3D simulations of Lüders band propagation in Section 5.5.

2. Experimental

2.1. Material

All experiments were conducted on a C-Mn steel (A42) whose chemical composition
is detailed in Table 1. This alloy is very sensitive to strain aging due to the small Al
content. The material is extracted from a seamless secondary coolant pipe obtained
by a circular rolling process. The microstructure is composed of ferrite and pearlite in
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alternate bands along planes parallel to the axial and circumferential directions. The
crystallographic texture was not analyzed. However, the section of the cylindrical
tensile specimen remains circular up to fracture strain. So, the mechanical behavior is
rather isotropic at least in the long and short transverse plane. By extension, we
considered the mechanical behavior as fully isotropic, weakly affected by the
morphological texture, nor by the crystallographic texture.

2.2. Mechanical response

The tensile tests were conducted using a 25 kN load cell servo-hydraulic testing
machine. The cylindrical tensile test specimen geometry is given in Figure 1. The
diameter of the gauge section of the cylindrical specimen was 6mm and the gauge
length was 42mm. Loading of the specimens was applied quasi-statically by
prescribing a constant velocity for the stroke of the actuator in the testing device.
The velocities of the actuator were calculated to prescribe nominal gauge length
strain rates of 10�5, 10�3 and 10�1 s�1. The average strain over a 25mm length at the
center of the specimen is measured using an extensometer. Six different temperatures
(�150, �100, �50, 0 and 20�C) were investigated.

The results of tensile tests are presented in Figures 2–3 and Tables 2–3. The upper
yield point is the maximum stress following the linear elastic regime where the
deformation is expected to be still homogeneous. At this point, the Lüders bands
nucleate locally in the specimen and the load drops to the lower yield point.

Figure 1. Tensile test specimen (TC6).

Table 1. Chemical composition (weight percent) of the carbon manganese steel A42 used in
this work.

Steel C N Al Si P S V Cr Mn Ni Cu Nb Mo Sn

A42 0.15 0.004 0.019 0.19 0.034 0.021 50.002 0.034 0.73 0.05 0.041 50.002 0.006 0.003
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Further stretching occurs at a relatively constant load due to the propagation of
Lüders bands. The deformation in the specimen is strongly inhomogeneous at this
time. Under continued extension, the Lüders bands spread over the whole length of
the specimen until the entire test gauge length has yielded. This happens at a strain

Figure 2. Tensile test stress–strain results from extensometer at 10�3 s�1.
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Figure 3. Tensile stress–strain curves at room temperature at three different strain rates.
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level called the Lüders strain. Beyond this strain level, deformation is homogeneous.
The material exhibits a yield point at all tested strain rates and in general both the
upper and lower points increase while increasing the strain rate. On the other hand,
the upper and lower points increase with decreasing temperature. By looking closely
at the curves of Figure 2, one can notice the existence of a plateau at all
temperatures. The plateau length is two times higher at �150�C than at room
temperature. The height of the peak increases also when the temperature decreases.
At room temperature, the height of the peak with respect to the plateau stress is
around 25MPa whereas at �150�C, it is almost 95MPa.

Figure 3 highlights the importance of the strain calculation method. The gauge
length extensometer is 25mm whereas the specimen gauge length is 42mm. Therefore
if the Lüders band initiates outside of the extensometer, the strain evolution due to
Lüders strain localization is not recorded. The stress drop just after the peak is sharp.
If the strain is estimated by using the stroke displacement, the whole specimen gauge
length is accounted for and the whole propagation of the Lüders bands is captured.
The strain based on stroke displacement is calculated using a correction of the
machine stiffness estimated from the elastic strain measured using the extensometer.

2.3. Strain field measurements

Full field images of the sample surface were collected and a DIC technique with the
help of the VIC3D software (VIC3D and Correlated Solutions Incorporated) was
used to evaluate strain fields. The 3D system used two 4-megapixel CCD cameras
connected by firewire to a data collection PC. Frames rates up to 4Hz were achieved
and image collection was synchronized to load frame output values of load and

Table 3. Tensile test results for different strain rates at room temperature.

Strain
rate (s�1)

Upper
yield (MPa)

Lower
yield (MPa)

Lüders
strain (%)

10�5 285.4 251.7 1.54
10�3 273.8 248.4 1.55
10�1 367.6 309.2 2.42

Table 2. Tensile test results for different temperatures at 10�3 s�1.

Temperature
(�C)

Upper
yield (MPa)

Lower
yield (MPa)

Lüders
strain (%)

20 273.8 248.4 1.55
0 315.1 275.7 1.18

�50 351.2 306.8 2.04
�100 449.2 397.7 2.67
�150 663.9 569.7 3.1
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cross-head displacement. The camera has a fixed focal length of 50mm. The strain
analysis was based on 15 by 15 pixel facet sizes for the correlation and a step size of 6
pixels between subset centers. The DIC technique provides useful information about
the level of strain in a Lüders band, the orientation of the Lüders band and the band
front. The Lüders strain is determined in the same way as [5] with DIC.

Figure 4 shows the contour of the axial strain component at three different time
steps, during the propagation of the Lüders band in a test at 10�3 s�1 strain rate and
room temperature. Some strain profiles along a vertical line cutting through the
Lüders bands are also presented. The band initiates in the middle of the specimen.

Distance along the specimen (mm)

A
xi

al
st

ra
in

35302520151050

0.02

0.015

0.01

0.005

0

(a)

(b)

Figure 4. (a) Force–time curve for one DIC test and the full field axial strain profiles in the
vertical direction at three different time steps in the vertical direction for a specimen tested at a
strain rate of 10�3 s�1; (b) axial strain profiles along a vertical line taken from the strain fields
at six time steps.
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The band front is oriented at about 55� from the tensile axis and moves on each side
until it fills the whole sample. The strain profiles display several bumps indicating the
possible formation of multiple Lüders bands or change of band plane which may
occur in cylindrical specimens. There is no real strain discontinuity but rather a
smooth front band zone extending over a few millimeters.

3. Simulation of the Lüders phenomenon

3.1. Mechanical analysis of a Lüders band

Figure 5 shows a region of a material sample including a Lüders band in a given area
denoted by (a). It is assumed that the remainder of the specimen, denoted by (b), is
not affected by the plastic strain localization. The existence of two parallel perfect
interfaces is assumed in this first simple mechanical analysis. The stress and strain
states are studied in the case of overall uniaxial tension. The normal vector n located
at the interface (a)/(b) admits the following components in the coordinate frame
(x, y) indicated in the figure:

n ¼
� sin �
cos �
0

2
4

3
5 ð1Þ

where � is the angle between the y-axis and the normal n.

3.1.1. Stress state

The condition of continuity of the traction vector at the interface is written as

½½r
�
�� � n ¼ 0 ð2Þ

where the double brackets denote the discontinuity at an interface point. The
homogeneous Lüders stress in the band is called r

�

a, and r
�

b denotes the homogeneous

Figure 5. Mechanical state for a material domain containing a Lüders band in a tensile test.
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stress tensor outside the band corresponding to a tensile stress state � in the
y-direction. Then Equation (2) implies:

r
�

b:n ¼

0

� cos �

0

2
64

3
75 ¼ r

�

a � n ¼

�axy cos �

�ayy cos �

0

2
64

3
75 ð3Þ

from which we deduce that �ayy ¼ �, �
a
xy ¼ 0. The presence of free lateral surfaces also

implies that �axx ¼ 0. As a result, we obtain r
�

a ¼ r
�

b and the stress state is found to be
homogeneous in the tensile specimen.

3.1.2. Plastic strain state

In an isotropic material undergoing simple tension in the direction y, the plastic
strain states in the sample in the areas (a) and (b) take the form:

e
�

p
a

� �
¼

�
"pa
2

0 0

0 "pa 0

0 0 �
"pa
2

2
66664

3
77775; e

�

p
b

� �
¼

�
"pb
2

0 0

0 "pb 0

0 0 �
"pb
2

2
66664

3
77775 ð4Þ

The total strain jump at the (a)/(b) interface must fulfill the Hadamard compatibility
conditions [30]. Since the stress state has been shown to be homogeneous, the total
strain jump coincides with the plastic strain jump at the interface. It has the form:

½½e
�

p�� ¼
1

2
g� nþ n� g
� �

ð5Þ

where g is the intensity of the plastic strain discontinuity to be determined. Equations
(4) and (5) lead to:

"pb � "
p
a

� � � 1
2 0 0

0 1 0

0 0 � 1
2

2
64

3
75 ¼

�g1 sin �
g1 cos � � g2 sin �

2
0

g1 cos � � g2 sin �

2
g2 cos � 0

0 0 0

2
66664

3
77775 ð6Þ

As a result of (6), a strain discontinuity is possible if the angle between the band
normal and the vertical axis takes the following value:

tan2 � ¼
1

2
;

�

2
� � ¼ 54:7� ð7Þ

3.2. Constitutive equations

The main macroscopic features of the Lüders phenomenon can be simulated using
the finite element method. In references [19] and [9] the chosen constitutive equations
rely on a linear softening branch followed by a linear hardening branch in the
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work-hardening material function. In the case of the tension of a plate, the initial
softening part induces strain localization inside a band and the subsequent hardening
behavior leads to the propagation of the band front until the whole plate is filled.
The same paradigmatic idea is used in the present work, but nonlinear local behavior
is introduced here in the form of exponential hardening functions with the objective
of having smooth and differentiable hardening functions. The yield stress for a given
amount of accumulative plastic strain p is called R(p):

Rð pÞ ¼ R0 þQ1 1� e�b1p
� �

þQ2 1� e�b2p
� �

þQ3 1� e�b3p
� �

ð8Þ

where R0 is the initial yield strength, and Q1, Q2, Q3, b1, b2 and b3 are material
parameters with Q1, Q34 0 and Q25 0. The corresponding values of the parameters
are given in Table 4. A Voce classic strain hardening behavior is introduced in the
first part of the equation [31]. An additional softening term is added with a negative
coefficient Q2 to model in a purely phenomenological way static strain aging. The
third additional hardening is used to round off the first peak in the local law and
provide a better convergence in the finite element calculations. For the elastic
behavior the Young’s modulus is 210GPa and Poisson’s ratio is 0.3. The resulting
local behavior is plotted in Figure 7a. The dislocations are initially locked by solute
carbon and nitrogen atoms, and the increase in yield strength represents the stress
that has to be overcome to unlock or multiply these dislocations. Once this threshold
is overcome, a rapid multiplication of mobile dislocations occurs, which is
represented by the decrease of the yield stress. This softening behavior leads to
plastic strain localization. After the propagation of the band throughout the
specimen, homogeneous hardening takes place.

3.3. Numerical results: evidence of mesh dependency

Two-dimensional simulations were carried out using the finite element code
Zset [32]. The global size of the considered dogbone tensile specimen under plane
stress conditions is 64mm length and 14mm width. The gauge length area has 36mm
length and 6mm width. Various types of meshes are presented in Figure 6, including
different element shapes and mesh refinement. We give them the following names:

. Regular mesh: square elements with two levels of refinement; the mesh size is
equal to 0.5mm in Figure 6a and to 0.25mm in Figure 6b.

. Random mesh: randomly distributed triangular elements as shown in
Figure 6c.

. Oriented mesh: two levels of refinement for oriented triangular elements,
see Figure 6d and e; the rows of triangular elements are oriented along
lines at an angle of 54.7� with respect to the tensile direction,

Table 4. Parameters for the phenomenological plasticity model of Section 3.2.

R0 (MPa) Q1 (MPa) b1 Q2 (MPa) b2 Q3 (MPa) b3

325 325 12 �60 200 20 2000
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following Equation (7). As a result, the Lüders bands will be parallel to
element edges. This configuration naturally allows strain jumps along the
element edges and leads to a proper description of strain discontinuities.

For each mesh, the number of degrees of freedom (DOF) is given in the caption of
Figure 6. The boundary conditions are indicated in Figure 6a. The load consists of a

(a)

(b)

(c)

(d)

(e)

Figure 6. Different meshes tested and boundary conditions: (a) boundary conditions, (b)
regular (13442 DOF), (c) random (30792 DOF), (d) oriented (8024 DOF) and (e) fine oriented
(14248 DOF).
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head displacement of 1mm along the vertical axis. Simulations have been carried out
under plane stress conditions with the small deformation hypothesis. All the elements
have quadratic shape functions and reduced Gauss integration.

Figure 7 shows the resulting curves, namely the overall stress (F/S0) as a function
of an overall plastic strain defined as follows. The total strain is calculated using a
numerical extensometer, i.e. it is defined as the ratio of the relative displacement of
two points along a vertical line, divided by the initial distance between them. The
elastic strain is subtracted from the global strain to obtain an overall plastic strain.
As experimentally observed, the macroscopic behavior exhibits a plateau whose

random
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Figure 7. Overall curves from the finite element solutions of a tensile test with a standard
plasticity model for different mesh types and the same material parameters: (a) regular and
random meshes, (b) oriented meshes. The overall strain rate is constant and equal to 10�4 s�1.
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length is called the Lüders strain. The plateau displays oscillations which are found
to depend on the mesh type. The strongest oscillations are found in the case of the
oriented meshes which give a proper description of the strain discontinuity at the
front of the Lüders band.

The kinematics of the band propagation for the oriented mesh is shown in
Figure 8. The accumulative plastic strain field is given at three particular steps (a), (b)
and (c) indicated on the overall loading curve of Figure 7b. Two bands propagate in
the sample but they move forward successively. The plastic strain inside the band is
"p� 0.012 which is in agreement with the Lüders strain obtained from the overall
loading curve, "L� 0.012. Each oscillation corresponds to the plastification of one
row of elements. When plastic straining starts ahead of the Lüders band front, the
stress drops to a minimal value and then increases again towards the maximal value,
following the constitutive law (8). At that latter point, the next row of elements is
plastically activated. This scenario explains the huge oscillations in Figure 7b.

The strain profile shown in Figure 9 corresponds to the iso-plastic strain map of
Figure 8a. The head band front is stopped when the foot band front propagates. The
level of Lüders strain is the same as evaluated from Figures 7b and 8. The profile
strain of the Lüders band is a square pulse, with a clear discontinuity, as modeled
in [33].

4. Strain gradient plasticity model

4.1. Motivation

The numerical results in Section 3.3 reveal a strong mesh dependency of the plateau
regime of the overall loading curves. Oscillations of various amplitudes are obtained
that culminate in the case of element edges parallel to the front band.

Figure 8. Lüders band propagation for the oriented mesh of Figure 6d. The color scale
indicates the level of the plastic strain.
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Such oscillations prevent us from determining a precise value for the plateau stress.
On the other hand, the standard model predicts a sharp transition from the Lüders
band to the plastically undeformed zone, see Figure 9. This in contradiction with
strain field measurements indicating the existence of a smooth front band zone.
A smooth front band whose width can be controlled by specific material parameters
is needed.

Both numerical and physical limitations can be solved by resorting to a strain
gradient plasticity model as recommended in [22,27,28] for the simulation of the
Lüders phenomenon. Strain gradient plasticity can be regarded as a mathematical
regularization method that restores the well-posedness of the boundary value
problem in the presence of strain-softening effects [26]. On the other hand, it
introduces an intrinsic length in the mechanical model which reflects some aspects of
the underlying microstructure of the material, here related to the cooperative
deformation of grains of given size in a polycrystal. The ‘‘Aifantis’’-type Laplace
term is introduced in this work in a purely phenomenological way to suppress the
spurious mesh dependence observed with the standard model. However, there exist
more fundamental motivations related to the diffusive character of dislocation
motion and the induced dislocation structure formation, as discussed in reference
[22] for dynamic strain aging and in reference [29] for Lüders band propagation in
polycrystals. Nevertheless, we are not in a position here to justify the characteristic
size of the Lüders band front from microstructural considerations.

The strain gradient plasticity model considered in the present work belongs to the
class of so-called micromorphic theories presented in [26]. It has the advantage that
its implementation in a finite element program is rather straightforward and that,
with a convenient choice of material parameters, it reduces to the well-known
Aifantis strain gradient plasticity model.

Band Front

HEADFOOT

Distance along the specimen (mm)

Pl
as

tic
st

ra
in

35302520151050

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Figure 9. Plastic strain along the specimen’s vertical axis. This graph is deduced from the
iso-strain map of Figure 8a.
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4.2. Theory

The classical non-regularized model describes an elastoplastic material behavior

characterized by the tensor of elastic moduli K
�
�

and the nonlinear hardening variable

R. In the micromorphic extension of this classical model, a new degree of freedom,

p�, is introduced which has the physical meaning of a plastic microdeformation (see

[26] for a more detailed presentation of the model). It has to be compared to the

accumulative plastic strain p. Under homogeneous loading conditions, we have

p�¼ p, whereas the plastic microdeformation can differ from p in the presence of

strong strain gradients. Two additional material parameters are introduced, namely,

the coupling modulus H� (unit MPa) and the micromorphic higher order modulus A
�

(unit MPa m2).

r
�
¼ K

�
�

: ee
�

ð9Þ

a ¼ �H�ð p� p�Þ ð10Þ

b
�
¼ A

�
� rp� ð11Þ

R ¼ Rð pÞ þH�ð p� p�Þ ð12Þ

where a and b represent generalized stresses conjugate to the plastic microdeforma-

tion and its gradient, respectively, in the generalized work of internal forces. The

classical and generalized stress tensors must fulfill two balance equations in the form

of divergence equations:

div r
�
¼ 0, div b� a ¼ 0 ð13Þ

in the absence of body forces and in the static case.
When inserted in the additional balance, the state laws lead to the following

partial differential equation:

p� �
1

H�
divðA

�
� rp�Þ ¼ p ð14Þ

Let us specialize this equation to the case of isotropic materials, for which the second

order tensor of micromorphic stiffness reduces to A
�
¼ A1

�
which involves a single

additional material parameter. Equation (14) then becomes:

p� � l2cDp� ¼ p, with l2c ¼
A

H�
ð15Þ

where lc is the characteristic length of the model.
As a result, the hardening function can also be written:

R ¼ Rð pÞ � ADp� ð16Þ

The material parameter H� can also be seen as a penalty coefficient that forces the

relative plastic strain e¼ p� p� to remain small. It can be shown that a high value of
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H� keeps e close to zero. In that case, the plastic microdeformation p� in the
hardening law (16) can be replaced by p itself:

R ¼ Rð pÞ � ADp ð17Þ

which is exactly the Aifantis strain gradient plasticity model, see [34]. In that case,

there is one single new material parameter, namely lc.

4.3. Regularization

The same meshes and database as in Section 3.3 have been used in order to validate

the regularization power of the model. In Figure 10, the macroscopic stress-plastic
strain curves with the meshes of Figure 6 are plotted. The large oscillations have
disappeared for the oriented meshes. All types of meshes converge toward a unique
solution with the same plateau level, provided a sufficient number of elements is used.

In the same way as in Section 3.3, the evolution of plastic strain is plotted in
Figure 11. This evolution is much more diffuse than in the absence of regularization.
In particular the strong discontinuity observed with the classical model is replaced by
a smooth transition from the Lüders band to the plastically undeformed domain.

This tendency is confirmed with the observation of the plastic strain along the
specimen’s vertical axis shown in Figure 12. The shape of the plastic distribution is
similar to the one found in the theoretical analysis [35].

The characteristic length lc was chosen equal to 3.16mm, with A¼ 105 MPamm2

and H�¼ 104 MPa. Other simulations were carried out with different characteristic
lengths and the plateau level has been found to be independent of the
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Figure 10. Overall curves obtained from finite element simulations of a tensile test with the
microplasticity model for each mesh type and the same material parameters. The strain rate is
constant and equal to 10�4 s�1, lc¼ 3.16mm.
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characteristic length at least if the element size remains small compared to lc.

The characteristic length was found to control the front band width. Convergence

with respect to mesh discretization is reached when the element size in the front band

zone is at least five times smaller than the characteristic length lc.

Figure 11. Lüders band propagation in the oriented mesh of Figure 6d with the
microplasticity model. Field of accumulative plastic strain.
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Figure 12. Plastic strain along the specimen’s vertical axis. This graph is deduced from the iso-
strain map of Figure 11.
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The additional material parameter A and the corresponding characteristic length
lc were chosen in such a way that the computed front band width is in agreement with
the front band width found in the strain field measurements of Section 2.3.

5. Identification of the material parameters of the static strain-aging model

The simulation of strain aging requires a suitable choice of an elastoviscoplastic
model based on strain-aging physical mechanisms of pinning and unpinning of
dislocations. The previous elastoplastic model with softening is not sufficient to
account for several Lüders effects like prestraining followed by thermal aging. The
model retained in this work and initially proposed by McCormick [20,21] is based on
an internal variable ta called the aging time. It has been implemented in the finite
element code Zset [23,26,36]. The numerical local integration of the constitutive
equations is performed using a mixed approach between classical Runge–Kutta and
implicit Newton methods. This original method allows us to limit local divergences
and provides an evaluation of the consistent tangent matrix for the global implicit
resolution of the finite element scheme.

The strain rate tensor e
�

E is split into elastic and plastic contributions, the evolution
of the latter being given by the plastic flow rule. The stress is computed from the
elastic strain e

�
e through Hooke’s law:

e
�

E ¼ e
�

E
e þ e

�

E
p, r

�
¼ ,

�
�

: e
�
e ð18Þ

The plastic strain is computed from the normality law rule and the equivalent plastic
strain rate _p follows a thermal activation law defined as:

e
�

E
p ¼ _pn

�
, n

�
¼
@f

@r
�

¼
3

2

s
�

J2ðr
�
Þ

ð19Þ

_p ¼ _p0 sinh
f

K

� 	
¼ _"0 exp �

Ea

kBT

� 	
sinh

Vah fðr
�
, �, taÞi

kBT

 !
ð20Þ

where T is the temperature in kelvin, kB is Boltzmann’s constant and _"0, Ea and Va

are respectively a strain rate parameter, the activation energy and the activation
volume of the physical mechanisms of plasticity.

The function f is the yield function which is based on a von Mises criterion with
isotropic hardening:

fðr
�
, �, taÞ ¼ J2ðr

�
Þ � Rð�Þ � RaðtaÞ ð21Þ

Rð�Þ ¼ �0 þ ��b
ffiffiffi
�
p

, _� ¼ A 1�
�

B

� �
_p, R0 ¼ �0 þ ��b

ffiffiffiffiffi
�0
p

ð22Þ

where J2ðr
�
Þ is the von Mises invariant of the stress tensor. The dislocation density �

is introduced in the model (initial value �0). The classical strain hardening is given by
the term R(�) which follows the evolution law defined in Equation (22), the
parameters characterizing the evolution law of this variable being A and B.
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The dislocation density evolution rule is driven by the cumulative plastic strain rate
_p, as done for instance in [24]. The yield stress R0 is the initial ‘‘microscopic yield
stress,’’ corresponding to the yield stress that would be measured in the same steel in
the absence of static strain aging.

The second hardening term, Ra(ta), is induced by strain aging, following
[23,37,38]. It depends on a new internal variable ta called the aging time. It takes
the form:

RaðtaÞ ¼ P1CsðtaÞ, with Cs ¼ 1� exp �
ta
t0

� 	n� �
ð23Þ

_ta ¼ 1�
ta _p

!
ð24Þ

The strain-aging term Ra is proportional to the variable Cs that is related to the over-
concentration of solute atoms around pinned dislocations. This variable increases
with the aging time ta, the totally pinned state being given by Cs¼ 1. The unpinned
state corresponds to Cs¼ 0. The parameter P1 corresponds to the maximal additional
stress needed to switch between pinned and unpinned states. The parameter t0 and
the power n control the kinetics of the pinning process. Another parameter labeled !
appears in the evolution law of the aging time. It is related to the incremental strain
resulting from the jump of unpinned dislocations.

5.1. Identification procedure at the material point level

Classically in tensile tests, the experimental results are obtained on specimens in
which the mechanical fields are homogeneous in most of their gauge length, so that
the specimen can be considered as a volume element. The parameters are identified
from the comparison between experimental and simulation results based on standard
optimization procedures. However, the identification procedure of a strain-aging
model from experimental data significantly differs from the usual identification
approach. This is due to the fact that some model parameters are related to the strain
localization patterns that develop on the specimen surface and to the corresponding
peak and plateau on the tensile curve. That is why many finite element simulations
on full specimens were necessary in [39] for the identification of the complete strain-
aging model over a large range of temperature. These costly finite element
simulations lead to a long and difficult identification process. In the case of
Lüders behavior, we show in the present work that the identification procedure can
be limited to material point evaluations. The new identification procedure is then
decomposed into two main steps:

. Optimization: volume element simulations are carried out for the identifi-
cation of all parameters. The originality in this work is to identify the 12
parameters of the model, accounting for strain hardening, viscosity and
aging, from volume element simulations.

. Validation: finite element simulations on a 2D tensile sample under plane
stress conditions are carried out to validate the optimization. The objective
of the identification at this stage is to obtain the correct orientation of the
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Lüders band and to validate the correlation between experimental and
numerical strain–stress tensile curves.

5.2. Hardening and viscosity

First of all, the hardening and viscosity parameters are identified. In this first
step, the Lüders peak and the Lüders strain are not taken into account. The
parameters are determined from 20 to �150�C from the tensile curves at two
strain rates, 10�3 and 10�5 s�1 (see Figure 13). The following notations are
introduced:

_p0ðTÞ ¼ _"0 exp �
Ea

kBT

� 	
ð25Þ

KðTÞ ¼
kBT

Va
ð26Þ

The viscoplastic parameters are identified by tensile tests at different strain rates. The
value of the activation energy is equal to 0.6 eV as it should be [24]. The value of _"0 is
chosen in order to get always a positive strain rate sensitivity as observed in the
investigated temperature and strain rate range.

The parameters A, B and �0 are also fitted using experimental curves from which
the peak and lower yield point are excluded. Table 5 shows the optimized
parameters. The Burgers vector is equal to 0.228 nm [39] and the initial dislocation
density, �0, is equal to 1013m�2 [36]. Note that the values of A and B are rather high.
Between 0 and 16% of plastic strain, at room temperature, there is approximately
300MPa of hardening. The dislocation density equivalent at 16% of plastic strain

model 10−5 s−1
model 10−3 s−1

experimental–10−5 s−1
experimental–10−3 s−1

T=-150◦C

T=20◦C

Plastic strain

F S0
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Pa
)
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800

700

600
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400

300
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100

0

Figure 13. Identification for 20 and �150�C at 10�3 and 10�5 s�1.
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must be around 2.5	 1015m�2. The chosen values of the parameter A and B are

compatible with such a hardening and such dislocation densities. This dislocation
density is probably too high and has not been checked by TEM observations. The

necessity of such values for calibrating the model suggests that our hypothesis of
almost total unpinning after the Lüders peak is probably exaggerated and is

compensated for by too much hardening in our model. Additional elaborate
experiments will be required to estimate the unpinning ratio in the Lüders
phenomenon.

5.3. Aging

After the previous step, the parameters which govern the aging contribution are
calibrated. The identification of parameters P1, t0 and n is explained first. The strain-

aging hardening contribution Ra is controlled by: P1, t0, n, ! and by the initial aging
time ta0. The value of ! essentially influences the localization pattern in the 3D
simulation [36]. This parameter ! is kept constant here and equal to 5	 10�4,

after [36].

5.3.1. Parameter t0 and initial condition ta0

The existence of aging prior to deformation is modeled by means of a non-vanishing
initial value ta0 of the internal variable ta. The characteristic time t0 then controls the

relaxation of the concentration Cs(ta) from its initial value Cs(ta0), which corresponds
to the unpinning stage in the Lüders phenomenon. Figure 14 illustrates the
relaxation profiles depending on the ratio ta0/t0. When ta04 t0, the profile is rather

flat at the beginning of plastic flow so that, in the finite element simulation, strain
localization will be postponed. A suitable description of the peak stress therefore

requires ta0
 t0. In this work, we take ta0¼ t0, so that there is a fixed point at p¼ 0.
The main advantage of choosing ta0¼ t0 is that Cs remains constant and equal to 0.63

when p¼ 0 for any value of the parameter n. t0 is fitted to control the unpinning level
which is represented at the bottom of Figure 15. The t0 value must be such as to
minimize the pinning level when p!þ1.

Table 5. Model parameters for viscosity, hardening and elasticity.

T (�C) �150 �100 �50 0 20
E (GPa) 214 220 219 221 218
	 0.3 0.3 0.3 0.3 0.3
R0 (MPa) 170 147 107 130 136
�0 (MPa) 150 127 87 110 116
A (m�2) 2.256	 10þ16 3.503	 10þ16 4.149	 10þ16 3.873	 10þ16 3.086	 10þ16

B (m�2) 1.474	 10þ16 9.204	 10þ15 8.082	 10þ15 5.118	 10þ15 5.115	 10þ15

_"0 (s�1) 6.2 6.2 6.2 6.2 6.2
Ea (eV) 0.6 0.6 0.6 0.6 0.6
Va (b

3) 27 59 90 121 133
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5.3.2. Parameter P1

The parameter P1 controls the contribution of the pinning process on the flow stress.
It can be interpreted as the interaction force between mobile dislocations and solute

atoms. The amplitude of the Lüders peak stress is directly related to the value of P1.
Figure 16 illustrates the procedure to determine P1 from Ra0¼Ra(0)¼ 0.63P1. The
value of Ra0 can be directly identified from the peak stress and the initial yield stress
R0 in the absence of aging. The value of P1 follows.

5.3.3. Parameter n

The parameter n controls the hatched area in the relaxation of Cs, as shown in
Figure 15. This parameter is calibrated in order to fulfill Maxwell’s equal area rule.

ta0<t0

ta0>t0

t0=ta0

p

C
s

0.0140.0120.010.0080.0060.0040.0020

1

0.8

0.6

0.4

0.2

0

Figure 14. Profiles of Cs as a function of p during a tensile test depending on the initial value
ta0 compared to material parameter t0.
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Figure 15. Evolution of the aging contribution Ra(p)/P1 as a function of plastic strain and the
role of the parameters t0 and n.
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According to this rule, the plastic dissipation between p¼ 0 and p¼ pL, formed by

the area A(n) multiplied by P1 in Figure 15, must be equal to the experimental area

below the plateau. This area multiplied by P1 is equal to the product of the plateau

stress �pL and the Lüders strain pL. It is recalled that the Lüders strain is the
intersection between the plateau and the hardening curve without aging (material

point without aging) in Figure 16.
Table 6 shows the optimized aging parameters for all temperatures.

5.4. Validation by means of 2D finite element simulations

The previous identification strategy has the advantage that it does not require any

finite element simulation on the whole sample. The localization is taken into account

by considering the peak stress and the existence of Maxwell’s rule for the dissipated
energy, but the simulations are limited to material point evaluations. This is in

contrast to existing identification procedures for such models, for instance in [39].

volume element without ageing
volume element identified

experimental curve
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Ra0
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240
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Figure 16. Determination of parameter P1 from the experimental curve including the peak
stress.

Table 6. Model parameters for aging.

T (�C) �150 �100 �50 0 20
P1 (MPa) 381 304 282 221 183.2
t0 (s) 3.49	 1013 1.24	 1012 2.81	 108 1.01	 105 1.59	 104

ta0 (s) 3.49	 1013 1.24	 1012 2.81	 108 1.01	 105 1.59	 104

! 5	 10�4 5	 10�4 5	 10�4 5	 10�4 5	 10�4

n 0.137 0.144 0.199 0.306 0.334
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However, finite element simulations are necessary to validate the ability of the
model to capture the main features of the strain localization phenomena. The first
validation is performed by means of 2D finite element simulation of Lüders band
formation and propagation. The predicted overall load–displacement curves for the
tensile tests can be compared to the experimental ones. It includes the peak height,
the plateau level and the Lüders strain. These results are given in Figure 17 which
shows the simulated and experimental tensile curves at _" ¼ 10�3 s�1 for various
temperatures. The predicted Lüders peak height and the plateau level are in good
agreement with the experimental ones. The Lüders strain is almost identical to the
experimental plateau length.

5.5. Validation on 3D samples

It is well-known that the strain localization phenomena can be quite different in 2D
and 3D because plane stress conditions are more prone to localization [40]. That is
why the final validation is performed on the real 3D specimen geometry. Attention is
focused on the formation of an inclined Lüders band with the proper orientation as
observed experimentally in Section 2.3. The geometry of the specimen is the same as
the experimental one in Figure 1. The boundary conditions are shown in Figure 18a.
Figure 19 shows the evolution of cumulative plastic strain at the strain rate of
10�3 s�1 with the boundary conditions (a). The band front is found to be rather
horizontal which is in contradiction to the theoretically and experimentally expected
orientation.

In fact, the simulated band orientation strongly depends on the strain rate. For,
the simulation at the strain rate of 10�7 s�1 with the same boundary conditions leads
to a properly inclined band. Simulations at higher strains lead to conical bands with
a horizontal intersection with the outer surface of the specimen, in contrast to the
experimental results. In a cylindrical specimen, all inclined bands making an angle of
55� with respect to the tensile axis are theoretically allowed strain localization modes.

simulation
experimental
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−50◦C
0°C
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Figure 17. Comparison between experimental and simulation curves for all the temperatures
at the strain rate 10�3 s�1.
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In the finite element simulation, all of them can occur with the same probability.

When they all form simultaneously, a conical localization zone is obtained as in

Figure 19. Any perturbation can lead to a symmetry-breaking mode made of a single

inclined band as discussed in the next paragraph. If the material is highly unstable, a

numerical perturbation which is inevitable in computational mechanics, is sufficient

to induce such symmetry breaking. However, viscosity can stabilize the cone-shaped

mode. Currently, there is no theoretical tool that can tell us from the values of the

material parameters including viscosity, whether a symmetry-breaking or a cone-

shaped mode will occur. To check it, the full finite element perturbation must be

performed. Several localization criteria are available, as discussed in [41], but,

in their present form, they cannot be used to predict which possible localiza-

tion mode will finally occur in the simulation. This is an incentive for future

research on the imperfection sensitivity of strain localization phenomena in

elastoviscoplasticity.
To trigger inclined Lüders bands at higher strain rates, we have found that a

perturbation to the previous boundary conditions must be introduced, as shown in

Figure 18b. The loading condition consists of a head displacement of 6.72mm along

the vertical axis. The strain rate is equal to 10�3 s�1. A small horizontal head

displacement of 100 mm is also prescribed which corresponds to 1.5% of the vertical

displacement. Such small perturbations are expected to occur in the mechanical

testing system. The propagation of the Lüders band can be seen in Figure 20.

(a) (b)

Figure 18. 3D mesh and boundary conditions. (a) Prescribed vertical displacement;
(b) superimposed vertical and horizontal prescribed displacements.
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It started from one grip of the specimen. The orientation of the front band is

determined by visualizing the plastic strain rate.
The profiles of plastic strain along a vertical line on the outer surface of the

specimen are given in Figure 21 at different stages of the progress of the Lüders

band. A smooth band front is observed on all profiles. A bump is observed at the

lower part of the band, probably due to the formation of overlapping bands coming

from the grip zone of the specimen. Such bumps are reminiscent of the oscillations

observed on the experimental profiles of Figure 4.

6. Conclusion and outlook

An original identification procedure has been proposed to determine the material

parameters of a constitutive elastoviscoplastic model accounting for Lüders effects in

a C-Mn steel over a large temperature range. The model has been calibrated from the

knowledge of the peak stress, plateau stress, Lüders strain and from the extrapo-

lation of the intrinsic hardening behavior. It is based on a modified Estrin–Kubin–

McCormick model [42]. This identification method enables separated calibration of

viscosity, hardening and aging parameters.

Figure 19. Evolution of cumulative plastic strain at the strain rate 10�3 s�1 with the boundary
conditions of Figure 18a. View of the outer surface (left), 3/4 of the specimen (middle), and
one half of the specimen (right).
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It represents a significant improvement with respect to previous identification
methods relying on systematic computationally expensive finite element simulations.
The Lüders strain was determined from the strain field in cylindrical tensile
specimens measured by DIC. The strain fields were accurately reproduced by the 3D

Figure 20. (a) Evolution of cumulated plastic strain at the strain rate 10�3 s�1 with the
boundary conditions of Figure 18b. (b) Section of the specimen with the plastic strain rate field
to measure the band orientation with respect to the tensile axis.
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(b)

Figure 21. Plastic strain profiles along a vertical line drawn on the outer surface of the specimen
(dotted black line) at four different stages of the progress of the Lüders bands in a tensile test
at a strain rate 10�3 s�1: (a) corresponding plastic strain field; (b) plastic strain profiles.
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finite element simulations provided that loading imperfections are introduced to
trigger instable inclined Lüders band formation.

Spurious mesh effects were evidenced in the conventional simulation of Lüders
band formation and propagation which were unnoticed in the existing literature.
A regularization procedure was proposed based on a strain gradient plasticity model
to get rid of any mesh dependency. The introduction of a characteristic length into
the model was also motivated by the observation that the Lüders band front is not
associated with a sharp strain discontinuity. The physical mechanisms underlying the
existence of a mm-size band front zone remain to be investigated especially regarding
the cooperative deformation modes at work inside the grains of the polycrystal.

Complex strain localization phenomena take place at notches and crack tips in
strain-aging materials. Accordingly, neglecting them in the design of engineering
components is not without consequence regarding failure assessment. Fracture
properties of the considered steel in the ductile regime and in the ductile-to-brittle
transition will be reexamined considering the more precise constitutive equations
derived in this work.
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[17] D.J. Dingley and D. McLean, Acta Metall. 15 (1967) p.885.
[18] A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. A 62 (1949) p.49.

3616 A. Marais et al.

D
ow

nl
oa

de
d 

by
 [

E
co

le
 N

at
io

na
le

 S
up

er
ie

ur
e 

de
s 

M
in

es
],

 [
A

. M
ar

ai
s]

 a
t 0

2:
59

 1
8 

O
ct

ob
er

 2
01

2 



[19] H. Tsukahara and T. Iung, Mater. Sci. Eng. A 248 (1998) p.304.
[20] L.P. Kubin and Y. Estrin, Acta Metall. 33 (1985) p.397.
[21] P.G. McCormick, Acta Metall. 36 (1988) p.3061.
[22] P. Hähner, Mater. Sci. Eng. A 164 (1993) p.23.

[23] M. Mazière, J. Besson, S. Forest, B. Tanguy, H. Chalons and F. Vogel, Comp. Meth.
Appl. Mech. Eng. 199 (2010) p.734.

[24] C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin and Y. Estrin, Mater. Sci.

Eng. A 400–401 (2005) p.226.
[25] S. Varadhan, A.J. Beaudoin and C. Fressengeas, J. Mech. Phys. Sol. 57 (2009) p.1733.
[26] S. Forest, J. Eng. Mech. 135 (2009) p.117.
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