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a b s t r a c t

This work presents several regularized crack growth models in brittle single crystals based on a combi-
nation of the micromorphic approach and continuum damage mechanics. First, a variant of micromorphic
continuum, the microstrain theory, is chosen to explore the regularization capabilities of enhanced con-
tinua sparing three degrees of freedom compared to the full micromorphic approach. The difficulties in
reaching final fracture of a sample are pointed out and an alternative damage criterion is proposed as a
remedy which leads to a different localization pattern. Secondly, the microdamage formulation which
enhances the numerical efficiency and also eliminates the final fracture difficulty is presented in detail.
For all presented models, analytical solutions for governing differential equations are provided for 1D and
the corresponding finite element simulation results are discussed.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Conventional lifetime assessment models of crystalline solids
are based on crack initiation criteria [1,2]. However, in the case
of single crystals, anisotropic mechanical behaviour resulting from
crystal structure and their general use in complex geometries (tur-
bine industry) necessitates the consideration of crack growth [3].
In single crystals, crack initiation is generally triggered by complex
thermomechanical loading conditions; therefore, the chosen con-
stitutive model should satisfactorily describe the strongly aniso-
tropic and nonlinear behaviour of single crystals under these
various loading conditions.

After the significant work of Rice [4,5], the crystal plasticity the-
ory has received great interest as a candidate to model crack
growth in crystalline solids. In these works, growing cracks are
associated to the crystallographic slip with a visco-plastic relation
and the structure of the localization bands are linked to the slip
systems. Especially in the field of fatigue, growing cracks and strain
localization are mentioned together with the localization of plastic
strain and damage.

In the literature, there are several modelling attempts which
associate damage localization to crystallographic planes and
inelastic deformations [6,7]. In this context, we focused on the con-
tinuum damage model for single crystals proposed by Marchal
et al. [3]. In this model, three damage systems are associated to
each {111} plane in FCC crystals. The first damage system is as-
signed as an opening system, activated by the normal stress, and
mainly reflects a cleavage-like mechanism. The other two accom-
modate in plane deformations and enable arbitrary movements
after fracture. The model allows for non straight crack paths and
crack bifurcation. However, the model is identified for a given
mesh size and type as in many damage models [8]. The mesh
dependency arises from the loss of ellipticity of the continuum
damage model after strong localization. Therefore, the boundary
and initial value problems become ill-posed [9] and the numerical
solution does not converge to a physically meaningful solution.

The main objective of this paper is to solve the above mentioned
mesh dependency problem by exploring the regularization capa-
bilities of the micromorphic theory applied to the continuum dam-
age single crystal model. For that purpose, primarily, the
continuous damage model developed by Marchal et al. is presented
and simplified to concentrate on the regularization problem. In
particular, the framework is limited to brittle cleavage fracture in
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single crystals with one single cleavage plane (suitable for instance
for zinc single crystals). Two variants of the micromorphic contin-
uum are considered. First, the microstrain theory [10] is applied,
which introduces a microstrain tensor associated to each material
point. Secondly, another variant of the micromorphic approach,
microdamage model, is presented and its numerical capabilities
as a powerful regularization technique are illustrated. Finally, sev-
eral illustrative finite element results are presented in the last sec-
tion. For simplicity, all theory and simulations are presented
within the small strain framework.

2. Continuous damage model for single crystals

This model is based on the coupling between viscoplasticity and
damage by introducing an additional damage strain variable _e

�
d,

into the strain rate partition equation:

_e
�
¼ _e
�

e þ _e
�

p þ _e
�

d ð1Þ

where _e
�

e and _e
�

p are the elastic and the plastic strain rates, respec-
tively. The damage strain _e

�
d is decomposed in the following crystal-

lographic contributions:

_e
�

d ¼
XNd
planes

s¼1

_dsns � ns þ _ds
1ns �

sym
ls
1 þ _ds

2ns �
sym

ls
2 ð2Þ

where _ds; _ds
1 and _ds

2 are the strain rates for mode I, mode II and mode
III crack growth, respectively and Nd

planes stands for the number of
damage planes which are fixed crystallographic planes depending
on the crystal structure. Cleavage damage is represented by the
opening ds of crystallographic cleavage planes with the normal vec-
tor ns and other damage systems must be introduced for the in-
plane accommodation along orthogonal directions ls

1 and ls
2, once

cleavage has started (Fig. 1). Material separation is assumed to take
place with respect to specific crystallographic planes, like cleavage
planes in single crystals. Three damage criteria are associated to
one cleavage and two accommodation systems:

f s
c ¼ jns � r

�
�nsj � Ys ð3Þ

f s
i ¼ jns � r

�
�ls

i j � Ys
i ði ¼ 1;2Þ ð4Þ

The critical normal stress Ys for damage decreases as d
increases:

Ys ¼ Ys
0 þ Hds ð5Þ

where Ys
0 is the initial damage stress (usually coupled to plasticity)

and H is a negative modulus which controls material softening due
to damage. Information regarding the evolution of the threshold Ys

i

can be found in [3] Finally, evolution of damage is given by the fol-
lowing equations;

_ds ¼ f s
c

Kd

� �nd

sign ns � r
�
�ns

� �
ð6Þ

_ds
i ¼

f s
i

Kd

� �nd

sign ns � r
�
�ls

i

� �
ð7Þ

where Kd and nd are material parameters.
These equations hold for all conditions except when the crack is

closed ðds < 0Þ and compressive forces are applied ðns � r
�
�ns < 0Þ.

In this case, damage evolution stops ð _ds ¼ _ds
i ¼ 0Þ, corresponding

to the unilateral damage conditions.
This model, complemented by the suitable constitutive equa-

tions for viscoplastic strain, has been used for the simulation of
crack growth under complex cyclic loading at high temperature
[11]. Significant mesh dependency of results was found [12]. In
the present work, the model is simplified and reduced to brittle
‘‘cleavage-like” damage behaviour in single crystals by considering
only one single cleavage plane. The objective is to assess the regu-
larization capabilities of two higher order extensions of the single
crystal damage model.

3. Microstrain continuum

The micromorphic medium introduced by Eringen and Suhubi
[13] possesses a full microdeformation field v

�
, in addition to the

classical displacement field u. Containing additional degrees of
freedom and balance equations, the micromorphic continuum ap-
proach can be considered as the main framework for most general-
ized continuum models [14]. If one introduces a symmetric tensor
by disregarding the skew–symmetric part of the microdeforma-
tion, the theory decays into the microstrain model [10].

3.1. Balance and constitutive equations

A symmetric microstrain tensor v e
�

associated with the macro-
strain e

�
is introduced and considered as a degree of freedom

(DOF) in addition to the displacement vector u:

DOF ¼ fu; v e
�
g ð8Þ

Generalized strain measures can be defined as the strain, rela-
tive deformation and gradient of micro-deformation tensors
respectively:

e
�
¼ u �

sym
$; e

�
¼ e
�
�v e

�
; K

g
¼ v e

�
�$ ð9Þ

The symmetric part of the displacement gradient is denoted by
u �

sym
$. The symmetric force stress tensor r

�
, the relative stress ten-

sor s
�

and a third order stress tensor S
g

are associated with these
strain measures in the work of internal forces. The following bal-
ance of momentum and balance of moment of momentum equa-
tions must be fulfilled:

r
�
þ s
�

� �
:$ ¼ 0 ð10Þ

S
g
:$þ s

�
¼ 0 ð11Þ

where �$ represents the divergence operator. These equations are
coupled by relative stress tensor s

�
. The boundary conditions for

the traction vector t and double traction tensor M
�

read:

t ¼ r
�
þ s
�

� �
:n; M

g
¼ S

g
:n ð12Þ

Elasticity relations are of the form:

r
�
¼ c
�

: e
�

e; s
�
¼ b
�

: e
�
; S

g
¼ A

E

..

.
K
g

ð13Þ

In this work, only the symmetric strain tensor is decomposed
into elastic and damage parts for the sake of simplicity.

Fig. 1. Illustration of the cleavage and two accommodation systems to be
associated to the crystallographic planes.
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e
�
¼ e
�

e þ e
�

d ð14Þ

Considering only cleavage, the evolution equation is derived
from the yield function fc using normality, such as:

_e
�

d ¼ _d
@fc

@ r
�

ð15Þ

For the localization analysis, softening rule (5) and damage cri-
teria (3) are used.

3.2. Application to 1D problem

For the 1D problem, a bar with length L under tension is ana-
lyzed (Fig. 2). For the analysis, a vanishing Poisson ratio is taken
and elastic tensors c

�
and b

�
are assumed equal. Viscosity is excluded

from the solutions and the cleavage plane is normal to direction
two. For the damage threshold function, two different cases are
investigated. First, the yield function which is controlled by the
normal stress jn � r

�
�nj is studied and a comparison between analyt-

ical and numerical results is drawn. As a second case, the yield
function is modified by introducing the relative stress tensor in
addition to the Cauchy stress.

3.2.1. Classical linear softening
Recalling the Eq. (5), one can write the classical linear yield

function in a complete form for 1D as:

fc ¼ jr22j � ðY0 þ HdÞ ð16Þ

From the consistency condition of the yield function, _f c ¼ 0; _d
can be solved as:

_d ¼ 2lð _e22 � _ed
22Þ

H
ð17Þ

where l is the second Lamé constant. Inserting (15) into the above
equation:

_d ¼ 2l _e22

2lþ H
ð18Þ

and for monotonic loading one gets:

d ¼ 2l
2lþ H

e22 �
Y0

2l

� �
ð19Þ

The balance Eqs. (10) and (11) must be taken into account for
the analytical solution:

r22;2 þ s22;2 ¼ 0; S222;2 þ s22 ¼ 0 ð20Þ

r22 ¼ 2lðe22 � ed
22Þ ¼

2l
2lþ H

ðHe22 þ Y0Þ ð21Þ

s22 ¼ 2lðe22 � ve22Þ; S222 ¼ Ave22;2 ð22Þ

and a system of equations is obtained for the unknowns e22;2 and
ve22;2 which can be solved for boundary conditions (12):

He22;2 þ 2lðe22;2 � ve22;2Þ ¼ 0; ð23Þ
Ave22;22 þ 2lðe22 � ve22Þ ¼ 0 ð24Þ

where H ¼ 2lH=ð2lþ HÞ. The strain component e22 can be elimi-
nated from the previous system to get:

ve22;222 �
2lH

AðH þ 2lÞ
ve22;2 ¼ 0 ð25Þ

When H is negative and H þ 2l remains positive, the solution is
sinusoidal:
ve22 ¼ a sinðxx2Þ þ b cosðxx2Þ þ c ð26Þ

with a wave length:

2p
x
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðH þ lÞ

lH

s
ð27Þ

Finally, solving (23) and (24) for e22 and inserting it into (19),
the crack opening d is found to read:

d ¼ 1
2lþ H

½ð2l� Ax2Þve22 � Ax2c� Y0� ð28Þ

From Fig. 3, it is concluded that the damage is regularized
throughout the rod and the computations are perfectly matching
with the analytical solution. However, the model exhibits an
inability to soften up to final fracture (Fig. 7). This is due to the
divergence contribution of the higher order stress S

g
to the relative

stress s
�

as it is postulated in the balance Eq. (11). As long as there
exists gradient of S

g
, the complement relative stress remains. Since

the traction vector on the cleavage plane is related to r22 þ s22, it
cannot vanish even for ever-increasing crack opening. This short-
coming is also mentioned by Engelen et al. in the context of gradi-
ent enhanced approach for softening [15].

As a remedy, a coupling between the force stress r
�

and the rel-
ative stress s

�
must be introduced into the yield function in order to

achieve a total softening in the whole stress space, as investigated
in the next subsection.

3.2.2. Modified damage threshold function
The damage threshold function (3) is modified so as to incorpo-

rate the effective stress r
�
þ s
�
:

fc ¼ n � r
�
þ s
�

� �
� n

����
����� Y ð29Þ

Similar to the first case, for monotonic loading, one gets:

d ¼ 2l
2lþ H

2e22 �
Y0

2l
� ve22

� �
ð30Þ

Fig. 2. 1D rod under tension with an initial imperfection.
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Fig. 3. Comparison between numerical and analytical solution of a 1D rod under
uniaxial tension with a central initial defect for linear softening. The analytical
solution holds for the damaged zone and the rest of the rod behaves purely
elastically ðA ¼ 30 MPa mm2;H ¼ 400 MPa;l ¼ 200000 MPaÞ.
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and stress terms read:

r22 ¼
2l

2lþ H
½ðH � 2lÞe22 þ 2lve22 þ Y0� ð31Þ

s22 ¼ 2lðe22 � ve22Þ; S222 ¼ Ave22;2 ð32Þ

Writing the first balance Eq. (10) and taking the derivative with
respect to the second coordinate one gets:

r22;2 þ s22;2 ¼ 0 ð33Þ

2lðe22;2 � ve22;2Þ þ
2l

2lþ H
½ðH � 2lÞe22;2 þ 2lve22;2� ¼ 0 ð34Þ

which reduces to the following relation:

e22;2 ¼
1
2

ve22;2 ð35Þ

Rewriting the second balance Eq. (11) and taking the derivative,
the following additional relation is obtained:

Ave22;222 þ 2lðe22;2 � ve22;2Þ ¼ 0 ð36Þ

Inserting now (35) into (36) gives:

Ave22;222 � lve22;2 ¼ 0 ð37Þ

The general solution can be written in terms of hyperbolic func-
tions, such as:
ve22 ¼ a sinhðxx2Þ þ b coshðxx2Þ þ c ð38Þ

with the wave length

2p
x
¼ 2p

ffiffiffiffi
A
l

s
ð39Þ

which is independent of H and acts as a length scale for the model.
Note that this solution holds for each side of the defective zone.

Furthermore, the analytical solution for e22 is of the same kind with
different constants such that

e22 ¼ C1 sinhðxx2Þ þ C2 coshðxx2Þ þ C3 ð40Þ

where C1 ¼ 2a;C2 ¼ 2b and C3 ¼ c. c is nothing but the elastic
strain outside the damaged part of the rod, Y0=2l and other con-
stants can be solved by taking S22 ¼ 0 at x2 ¼ 0 and x2 ¼ l.

Fig. 6 shows that the present model is able to describe final frac-
ture of the bar. However, if we take the derivative of (30) and insert
(35) into it, the derivative of damage variable, d, with respect to the
second coordinate, is shown to vanish. This means that damage be-

comes piecewise constant throughout the bar and the damage dis-
tribution is trapped into the element which has the imperfection as
it is illustrated in Fig. 5. Nevertheless, micro and macro strain still
possesses the hyperbolic distribution (Fig. 4). As a result, this var-
iant of the microstrain model is not satisfying.

In general, the higher order stress tensor S
’

could also enter the
yield condition (3). Keeping the normality rule implies that elastic
and plastic parts should be considered for the microstrain v

�
and

the microstrain gradient K
’

. This track, although possible, is not
pursued here (see [16,17]).

4. Microdamage continuum

Alternative micromorphic variables other than the full strain
tensor can be chosen [14]. The strain gradient effect can be limited
to the damage strain e

�
d gradient and more specifically to d in the

case of a single damage system.

4.1. Balance and constitutive equations

In this microdamage theory, the selected microvariable is a sca-
lar microdamage parameter vd instead of a microstrain tensor,
which reduces the number of additional degrees of freedom to
one and provides improved efficiency in computations:
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Fig. 4. Comparison between numerical and analytical solution of a 1D rod under
uniaxial tension with a central initial defect with modified damage threshold
ðA ¼ 2500 MPa mm2;H ¼ 1 MPa;l ¼ 200000 MPaÞ.
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Fig. 5. Damage distribution along the rod for the modified damage threshold. Note
that damage is trapped in the imperfection zone.
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Fig. 6. Comparison between force vs. displacement diagram of a 1D softening rod
for microstrain and microdamage continua.
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DOF ¼ fu; vdg Strain ¼ fe; vd;rvdg ð41Þ

The power of internal forces is extended as

pðiÞ ¼ r
�

: _e
�
þ av _dþ b:rv _d ð42Þ

where generalized stresses a;b have been introduced. The general-
ized balance equations are:

div r
�
¼ 0; a ¼ divb ð43Þ

The free energy density is taken as a quadratic potential in the
elastic strain, damage d, relative damage d� vd and microdamage
gradient rvd:

qw ¼ 1
2
e
�

e : c
�

: e
�

e þ 1
2

Hd2 þ 1
2

vHðd� vdÞ2 þ 1
2

Arvdrvd ð44Þ

where H; vH and A are scalar material constants. Then, the elastic re-
sponse of the material becomes:

r
�
¼ q

@w
@e
�

e ¼ c
�

: e
�

e ð45Þ

The generalized stresses read:

a ¼ q
@w
@vd
¼ �vHðd� vdÞ;b ¼ Arvd ð46Þ

and the driving force for damage can be derived as:

Y ¼ q
@w
@d
¼ dðH þ vHÞ � vHvd ð47Þ

The damage criterion now is:

f ¼ ns � r
�
�ns

��� ���� Y0 � Y ¼ 0 ð48Þ

where Y0 is the initial threshold value for damage activation. Substi-
tuting the linear constitutive equations for generalized stresses into
the additional balance Eq. (43), assuming homogeneous material
properties, leads to the following partial differential equation for
the microdamage

vd� A
vH

Dvd ¼ d ð49Þ

where the macrodamage d acts as a source term. Exactly this type of
Helmholtz equation has been postulated in the so–called implicit
gradient theory of plasticity and damage [18,15,19,20], where the
microvariables are called non local variables and where the general-
ized stresses a and b are not explicitly introduced (see [14,21] for
the analogy between this latter approach and the micromorphic
theory).

4.2. Solution for 1D bar

The damage function can be rewritten for the 1D-rod case as
follows:

f ¼ 2lðe22 � dÞ � Y0 � ðH þ vHÞdþ vHvd ¼ 0 ð50Þ

The system of equations to be solved for e
�
; d and vd reads:

r22;2 ¼ 2lðe22;2 � d;2Þ ¼ 0 ð51Þ
Avd;22 þ vHðd� vdÞ ¼ 0 ð52Þ

Due to the Eq. (51), taking the derivative of (50) with respect to
the second coordinate gives

�d;2ðH þ vHÞ þ vHvd;2 ¼ 0 ð53Þ

Taking the derivative of (52) with respect to the second coordinate
and inserting (53) into (52) gives:

vd;222 ¼
vHH

AðH þ vHÞ
vd;2 ð54Þ

It appears that when HvH
HþvH < 0, the solution for vd is sinusoidal:

vd ¼ a sinðxx2Þ þ b cosðxx2Þ þ c ð55Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHvH=AðH þ vHÞj

p
. Same solution also holds for e and d

with different constants as shown in Fig. 7.
In comparison with the microstrain approach, the microdamage

theory eliminates the final fracture problem without any modifica-
tion since there exists no direct coupling between force stress r

�

 0

 20

 40

 60

 80

 100

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

F
or

ce
 (

N
)

Displacement (mm)

microstrain damage
modified microstrain damage

microdamage

Fig. 7. Comparison between numerical and analytical solutions of a 1D rod under
tension for microdamage continuum. The analytical solution is only valid at the
damage zone, the rest undergoes elastic unloading ðA ¼ 200 MPa mm2;

H ¼ �16000 MPa; vH ¼ 50000 MPa; l ¼ 200000 MPaÞ.

Fig. 8. Crack propagating through a 2D single crystal block with a single inclined
cleavage plane under vertical tension with 8% strain. Field variable d.

Fig. 9. Crack growth in a CT-like specimen under tension. Field variable d.
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and generalized stresses. It provides consistent crack growth on
the cleavage plane with various orientation (Fig. 8 for an inclined
cleavage plane with respect to the load axis).

5. Examples

In this section several FE analyses performed by microdamage
theory are demonstrated.

As a 2D example, a plate under uniaxial tension with an inclined
cleavage plane is investigated (Fig. 8). In order to trigger localiza-
tion, an initial geometric defect is created on the left edge and
the cleavage plane is oriented at 30 degrees from the horizontal
axis. FEA results show that localization path is perfectly matching
with the cleavage plane and the size of the localization band is con-
trolled by x in (55).

In Fig. 9, FEA of a CT-like fracture mechanics specimen under
tension is considered [5]. The analysis is done by creating a cleav-
age plane parallel to the horizontal axis and the loading is per-
formed from the center of the pin. For a given characteristic
length (associated with parameters A ¼ 200 MPa mm2;H ¼
�16000 MPa;vH ¼ 50000 MPa), mesh refinement of the specimen
leads to a unique fracture curve and a finite size crack width, as
shown in Figs. 9 and 10.

6. Conclusion

Three variants of micromorphic continuum and their regulari-
zation capabilities for the modelling of crack propagation in single
crystals have been scrutinized. First, a crystallographic constitutive
model which accounts for continuum damage with respect to frac-
ture planes has been presented. Then, the theory has been ex-
tended from classical continuum to microstrain and

microdamage continua, respectively. It has been shown that both
approaches can be good candidates in solving mesh dependency
and, under circumstances, the prediction of final fracture. Analyti-
cal fits and numerical results showed that both theories are well
suited for FEA and possess great potential for the future modelling
aspects.

The issues to be considered in the future are the proper choice
of the best–suited elements (interpolation functions in particular)
and the coupling with crystal plasticity. Comparison with available
data on crack growth in single crystals, especially cyclic loading in
nickel–based superalloys, will be decisive to conclude on the abil-
ity of such generalized continuum damage approaches to reach
realistic computation of component failure.
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Fig. 10. Mesh independency of the numerical solution for the CT-like specimen
demonstrated in Fig. 9; force vs. displacement diagrams for an increasing number of
total degrees of freedom.
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