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Numerical Modeling of Fatigue Crack
Growth in Single Crystals Based on

Microdamage Theory

OZGUR ASLAN,* STÉPHANE QUILICI AND SAMUEL FOREST

Centre des Matériaux, Mines ParisTech, UMR CNRS 7633, BP87,
91003 Evry Cedex, France

ABSTRACT: Proper life-time prediction modeling of single crystalline components
is of increasing importance due to their common use in turbine industry. Viscoplastic
damage approaches are of great interest in that context. However, mechanical prop-
erties of single crystals are strongly anisotropic and nonlinear in service conditions,
bringing certain complexity into constitutive and numerical modeling. The aim of
this work is to develop a thermodynamically consistent constitutive model based on
generalized continua in order to simulate fatigue crack initiation and growth in single
crystals. For that purpose, a standard crystal plasticity model is taken as a basis and
coupled with the continuous damage model developed by Marchal et al. (2006a)
[Marchal, N., Forest, S., Remy, L. and Duvinage, S. (2006a). Simulation of
Fatigue Crack Growth in Single Crystal Superalloys Using Local Approach to
Fracture, In: Moinereau, D., Steglich, D. and Besson, J. (eds.), Local Approach to
Fracture, 9th European Mechanics of Materials Conference, Euromech�Mechamat,
Moret�Sur�Loing, France, Presses de l’Ecole des mines de Paris, pp. 353�358]. As a
variant of micromorphic theory, microdamage approach is applied to the model in
order to obtain a regularized continuum damage formulation which solves mesh
dependency problem by introducing an intrinsic length scale. A detailed finite ele-
ment implementation procedure and its validation for monotonic crack growth are-
shown. Fatigue crack growth analyses have been performed on a single edge notched
geometry and a comparison between numerical and experimental results is presented.

KEY WORDS: crystal plasticity, damage mechanics, ductile fracture, localization,
crack growth, regularization, micromorphic theory.
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INTRODUCTION

T
HE PROPERMODELING of crack growth under cyclic loading is essential for
the life-time assessment of single crystals. A deep understanding of

plasticity and fatigue damage is necessary for a realistic coupling of these
two phenomena resulting in crack initiation and propagation. For instance,
a node release technique (Kiyak et al., 2007) is uncoupled and does not
consider crack initiation under fatigue loading, although the plastic zones
are well described and crack openings are well predicted. In that sense, this
approach cannot be considered as fully predictive.

In the literature, there have been many attempts which consider a cou-
pling between plasticity and damage generally formalized in the framework
of continuum damage mechanics. The models present a weak coupling
(Simo and Ju, 1989; Lemaitre and Chaboche, 1994; Murakami et al.,
1998) possess two independent flow rules for damage and plasticity which
is not realistic for life-time prediction modeling under fatigue loading.
Moreover, there are other attempts proposing a relatively strong coupling
considering a single associated flow rule for the evolutions of plasticity and
damage (Gurson, 1977; Tvergaard and Needleman, 1984; Mahnken, 2002).
Another possible way of coupling could be keeping the flow rules separate
but strongly relating the potentials for plasticity and damage, i.e., each flow
rule becomes strongly dependent on the other as proposed in (Voyiadjis and
Deliktas, 2000; Musienko and Cailletaud, 2009).

Concerning crystallographic materials, strong relation between plasticity
and crack growth has been shown by (Leverant and Gell, 1975; Crompton
and Martin, 1984; Aswath, 1994). The first attempt to use a plasticity theory
to model crack growth has been performed by (Rice, 1987). The crack tip
plastic zones in a single crystal grain were further studied by (Gall et al.,
1996). In connection with the latter approach (Voyiadjis and Deliktas,
2000), damage localization has been associated to the crystallographic
planes and inelastic deformations (Qi and Bertram, 1999; Ekh et al.,
2004). A recent predictive cohesive approach has also been proposed by
(Bouvard et al., 2009), where plasticity and damage are coupled in order
to model creep-fatigue crack growth in single crystals with a prescribed
crack path.

The model presented in this article associates damage to each {1 1 1} plane
in FCC crystals where the damage initiation is strongly related with accu-
mulated plastic slip as it was formerly proposed by Marchal et al. (2006a).
For every damage plane, three damage systems are defined. The first system
represents an opening system, while the other two stand for in-plane defor-
mations in order to simulate mode II and mode III loadings and to enable
arbitrary displacements after fracture. The main advantage of the approach
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against the methods with prescribed crack paths, like cohesive zone model
(CZM) (Bouvard et al., 2009), is the multi-plane damage descriptions which
allow to simulate nonstraight crack paths with branching and crack
bifurcation.

In the previous work (Aslan and Forest, 2009), mesh dependency of the
model for brittle damage has been overcome by a regularization procedure
based on microdamage theory derived from micromorphic approach intro-
duced by (Eringen and Suhubi, 1964). The main motivation for switching to
a higher order continuum theory was introducing an intrinsic length-scale in
order to capture size effects and to deal with mesh size and alignment
dependency of the approach within a thermodynamically consistent frame-
work. The main objective of this article is to propose a continuum damage
crystal plasticity strategy in order to simulate crack growth in a single crystal
under fatigue loading. In particular, a regularization procedure is proposed
to ensure mesh independence of the finite element simulation results. For
that purpose, first of all, an updated formulation of the coupled approach is
given. Secondly, the theory is shown to be well suited for a finite element
formulation and a detailed implementation procedure of an implicit scheme
is presented. Afterwards, the numerical model is validated for monotonic
loading. Finally, finite element analysis of a single edge notched (SEN)
specimen is demonstrated and a comparison between numerical and experi-
mental results has been done.

STRAIN-BASED DAMAGE MODEL COUPLED WITH CRYSTAL

PLASTICITY

In this model, viscoplasticity and damage are coupled by introducing an
additional damage strain variable _e

~

d, into the strain rate partition equation:

_e
~
¼ _e

~

e þ _e
~

p þ _e
~

d ð1Þ

where _e
~

e and _e
~

p are the elastic and the plastic strain rates, respectively. The
elastic response of the model takes the standard form:

r
~
¼ c

~~
: e

~

e ð2Þ

In principle, the elastic properties should be affected by damage. However,
following the tradition in ductile fracture Besson (2009), it may be neglected
when the damage strain is significantly higher than elastic strain. Therefore,
the damage is defined as a strain-like variable and material softening is
achieved through the damage criteria defined in Equations (9) and (10).
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The flow rule for plastic part is written at the slip system level and the plastic

strain rate _e
~

p is obtained with the orientation tensor m
~

s:

m
~

s ¼
1

2
ðns � l s þ l s � nsÞ ð3Þ

where ns is the normal to the plane of slip system s and l s stands for the

corresponding slip direction. Then, plastic strain rate reads:

_e
~

p ¼
XNslip

s¼1

_� sm s ð4Þ

The flow rule on slip system s is a classical Norton rule with threshold.

_�s ¼
j� s � xsj � r s

K

� �n
signð� s � xsÞ ð5Þ

where rs and xs are the variables for isotropic and kinematic hardening,

respectively and K and n are the material parameters to be fit (Nouailhas

and Cailletaud, 1995). In this study, isotropic hardening is considered con-

stant and no interaction between slip systems is accounted. Therefore, iso-

tropic hardening becomes:

r s ¼ r0 ð6Þ

The kinematic hardening is taken as nonlinear:

xs ¼ C� s with _� s ¼ _� s �D _� s� s ð7Þ

where C and D are material constants and _� s ¼ j _� sj.
The damage strain _e

~

d is decomposed in the following crystallographic

contributions:

_e
~

d ¼
XNdamage

s¼1

_� scn
s
d � n s

d þ
_� s1n

s
d �
sym

l sd1 þ
_� s2n

s
d �
sym

l sd2 ð8Þ

where _� s, _� s1 and _� s2 are the strain rates for mode I, mode II, and mode III

crack growth, respectively and Nd
damage stands for the number of damage

planes which are fixed crystallographic planes depending on the crystal

structure. Cleavage damage is represented by the opening �s of crystallo-

graphic cleavage planes with the normal vector ns and other damage systems

must be introduced for the in-plane accommodation along orthogonal direc-

tions l s1 and l s2, once cleavage has started (Figure 1). Material separation is

assumed to take place with respect to specific crystallographic planes,

{1 1 1}. In this study, even though the term cleavage refers to the crack
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opening defined for mode I; it actually does not imply a physical metal

cleavage phenomenon which is not directly observed in single crystal

nickel base superalloys.
Three damage criteria are associated to one cleavage and two accommo-

dation systems:

f sc ¼ n s
d � r

~
�n s

d

����
����� Ys

c ð9Þ

f si ¼ n s
d � r

~
�l sdi

����
����� Ys

i ði ¼ 1, 2Þ ð10Þ

The critical normal stress Ys for damage decreases as � increases:

Ys
c ¼ Ys

0 þH� sc , Ys
i ¼ Ys

0 þH� si ð11Þ

where Ys
0 is the initial damage stress (usually coupled to plasticity) andH is a

negative modulus which controls material softening due to damage. Finally,

evolution of damage is given by the following equations;

_� sc ¼
f sc
Kd

� �nd
sign n s

d � r
~
�n s

d

� �
ð12Þ

_� si ¼
f si
Kd

� �nd
sign n s

d � r
~
�l sdi

� �
ð13Þ

where Kd and nd are material parameters.

Figure 1. Illustration of the cleavage and two accommodation systems to be associated to
the crystallographic planes.
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These equations hold for all conditions except when the crack is closed
(� sc 5 0) and compressive forces are applied (n s

d � r
~
�n s

d 5 0). In this case,
damage evolution stops ( _� sc ¼

_� si ¼ 0), due to the unilateral damage condi-
tions (a detailed explanation is provided in the next section).

Coupling between plasticity and damage is generated through initial
damage stress Y0 in (11) which is controlled by cumulative slip variable gcum:

_�cum ¼
XNslips

s¼1

j _� sj ð14Þ

Then, Y0 takes the form:

Ys
0 ¼ �

c
n e���cum þ �ult ð15Þ

This formulation suggests an exponential decaying regime from a prefer-
ably high initial cleavage stress value �cn, to an ultimate stress, sult which is
close to but not equal to zero for numerical reasons and � is the parameter
controlling the coupling rate. Note that the coupling established in this
approach is not reciprocal. The coupling between plane separation and
plasticity is justified by the following physical metallurgical fact. When dis-
locations accumulate at some location in a crystal, local stresses become
higher and can trigger plane separation, or even cleavage like in zinc
(Parisot et al., 2004). The reverse coupling of damage on plasticity has no
clear physical interpretation simply because the damage mechanisms are in
fact intrinsically linked to plasticity. Therefore, the coupling is performed
only in one way.

This model, complemented by the suitable constitutive equations for vis-
coplastic strain, has been used for the simulation of crack growth under
complex cyclic loading at high temperature (Marchal et al., 2006b).
Significant mesh dependency of results was found (Marchal, 2006). In this
study, regularization of damage field is achieved by switching from classical
to microdamage continuum as proposed in (Aslan and Forest, 2009).

MICRODAMAGE CONTINUUM

The foundation of the microdamage continuum lies in micromorphic
theory introduced by (Eringen and Suhubi, 1964) which introduces a
full microdeformation field �

~

, in addition to the classical displacement
field u. Containing additional degrees of freedom and balance equations,
the micromorphic continuum approach can be considered as the main
framework for most generalized continuum models Forest (2009).
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Alternative micromorphic variables other than the full strain tensor can be
chosen Forest (2009). The strain gradient effect can be introduced through
the gradient of damage strain, "

~

d and more specifically through the gradient
of cumulative damage variable, �cum.

_�cum ¼
XNplanes

s¼1

j _� sc j þ j
_� s1 j þ j

_� s2 j ð16Þ

Balance and Constitutive Equations

In microdamage theory, the selected microvariable is a scalar microdam-
age degree of freedom (DOF)��, in addition to the displacement DOFs u.
The DOFs and the extended state space on which constitutive functions may
depend are as follows:

DOF ¼ fu, ��g STRAIN ¼ f"
~
, ��,r ��g ð17Þ

The power of internal forces is extended as

pðiÞ ¼ r
~

: _e
~
þ a � _�þ b:r � _� ð18Þ

where generalized stresses a, b have been introduced. The generalized bal-
ance equations are (Aslan and Forest, 2009):

div r
~
¼ 0, ð19Þ

a ¼ div b ð20Þ

The boundary conditions for the traction vector t and generalized traction ac
reads:

t ¼ r
~
:n, ac ¼ b:n ð21Þ

The free energy density is taken as a quadratic potential in the elastic strain,
damage �, relative damage �cum �

�� and microdamage gradient r��:

	 ¼
1

2
e
~

e : c
~~

: e
~

e þ
1

2

XNdamage

s¼1

H�2s þ
1

2
�Hð�cum �

��Þ2 þ
1

2
Ar��r�� ð22Þ

where H, �H and A are scalar material constants. Then, the elastic response
of the material becomes:

r
~
¼ 	

@ 

@e
~

e ¼ c
~~

: e
~

e ð23Þ
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The generalized stresses read:

a ¼ 	
@ 

@��
¼ � �Hð�cum �

��Þ , b ¼ Ar�� ð24Þ

and the driving force for each damage system can be derived as:

Ys ¼ 	
@ 

@� s
¼ H� s þ �Hð�cum �

��Þ ð25Þ

The damage criterion now is:

f s ¼ n s � r
~
�n s

����
����� Yc ¼ 0 ð26Þ

where Yc is the critical stress for the damage evolution.

Yc ¼ Y0 þ Ys ð27Þ

Inserting the generalized stress terms into the balance law (20) and assum-
ing homogeneous material properties, the following differential form can be
deduced:

���
A
�H

��� ¼ �cum ð28Þ

where the macrodamage �cum can be considered as a source term. As pre-
viously mentioned in (Aslan and Forest, 2009), this type of Helmholtz equa-
tions appear in the so�called implicit gradient theory and it is variants, as an
additional equilibrium equation (Peerlings et al., 2001, 2004; Engelen et al.,
2003; Germain et al., 2007). However, in these approaches generalized stres-
ses a and b are not explicitly introduced and the microvariables are called
non-local variables (Dillard et al., 2006; Forest, 2009). Note that the relative
damage term, (�cum�

��) is introduced in the free energy density function,
	 . A very high value of �H results in an excessive contribution to the free
energy which appears as a penalization term. Therefore, considering an
admissible solution of a mechanics problem, a high value of �H keeps the
relative damage term minimum like in a Lagrangian optimization problem
and the value of �cum is enforced to be close to ��. In the limit case,
(�cum¼

��), the formulation leads to a gradient model.

Analysis of 1D Bar

In order to demonstrate the regularization capabilities of the approach
and investigate the crack closure phenomenon under fatigue loading, a bar
with a length of 2.5mm under tension is studied (Figure 2). A cleavage plane
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normal to direction 2 is taken and an initial defect is introduced at the center

with a slightly reduced initial damage threshold.
Recalling the work (Aslan and Forest, 2009), it is known that for pure

damage case the solution for �� is sinusoidal

�� ¼ � sinð!x2Þ þ 
 cosð!x2Þ þ � ð29Þ

where ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH �H=AðHþ �HÞj

p
and the solutions for e22 and � are of the

same type with different constants. Figure 3 demonstrates the harmonic

solutions for �� and �. It is worth mentioning that the penalization between

microdamage and damage variable in the damage criterion (22),
�H(�cum�

��), stabilizes the softening term, H�; therefore, the critical

–0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  0.5  1  1.5  2  2.5
Coordinate x2 (mm)

Microdamage
Damage

Figure 3. Comparison of damage and microdamage values penalized in free energy
density function (22).

Figure 2. 1D rod under tension with an initial imperfection and the regularization of damage
field after a finite element analysis. Field variable �cum (A¼500 MPa.mm2, H¼�15,000 MPa,
�H¼30,000 MPa, �n

c¼1000 MPa, �ult¼1000 MPa).
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stress for damage evolution takes the same value throughout the regularized

damage zone (Figure 4).
when a material element is broken, the stored energy, especially the energy

stored by generalized stresses should vanish. Therefore, an exponential drop

for the modulus A is suggested:

b ¼ Ae�Q�cumr �� ð30Þ

where Q is a material parameter. Note that due to the decay of the modulus

A, the characteristic length starts to shrink which results in a steeper soft-

ening regime as it is illustrated in Figure 5.
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Figure 4. Evolution of critical damage stress stabilized throughout the damaged zone.
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Figure 5. Plots for a 1D softening rod with an exponentially decaying modulus. (a) Force vs.
displacement diagram; (b) Shrinkage of the damage band.
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Crack Closure Effects

Finite element analysis of plasticity-induced fatigue crack growth necessi-
tates particular investigation of crack closure phenomenon. The main
mechanism behind crack closure is the large tensile plastic strains developed
near the crack tip. In a cyclic loading regime, during unloading, previously
initiated plastic strains are not fully recovered; therefore, behind the crack
tip, formation of a plastic wake develops which reduces the driving force for
crack growth. Moreover, during unloading, the zone near the crack tip
which has already been plastically deformed, undergoes compression. The
compressive residual stress in the vicinity of the crack tip strongly effects the
crack tip driving force and a proper treatment in mechanical behavior
becomes necessary.

In the literature, crack closure problem was first investigated by Elber
(1970) and a more general overview for finite element analysis is recently
presented by (Solanki et al., 2004). In this study, a special treatment of crack
closure phenomenon has been established in the numerical model such that a
previously damaged Gauss point deforms continuously, if the critical
damage stress is reached under compressive forces (n s

d � r
~
�n s

d 5 0). In that
condition, when the crack is unilaterally closed (� sc � 0) damage evolution
stops ( _� sc ¼

_� si ¼ 0) as it is pointed out in the previous section.
Figure 6(a) demonstrates the crack closure behavior of a 1D specimen

subjected to tensile and compressive forces respectively, where plasticity is
excluded for a clear representation. The specimen is first broken under
tension and then crack opening is closed under compression. Note that
the specimen recovers its elastic behavior when the opening is entirely
closed. Figure 6(b) shows the behavior of the same specimen under conse-
cutive tensile and compressive forces without causing final fracture similar

Figure 6. Force vs. displacement diagram of a 1D softening rod under fatigue. (a) Final
fracture occurs in the first cycle; (b) Material is damaged partially.

Numerical Modeling of Fatigue Crack Growth 11
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to a possible loading cycle under fatigue. From the figure, one can also
observe that during unloading and compression, elastic behavior is pre-
served up to the critical damage stress, Yc, and the specimen deforms
again continuously up to the crack closure. The value of critical damage
stress does not change since the unrecoverable damage variable �cum stays
constant due to the unilateral damage conditions. The corresponding finite
element results are illustrated in Figure 7 (a) and an elastoplastic case for
fatigue is shown up to final fracture in Figure 7 (b).

FINITE ELEMENT IMPLEMENTATION

Variational Formulation and Discretization

The variational formulation of the microdamage approach can be derived
directly from the principle of virtual power (18):

�

Z
�

pðiÞdVþ

Z
@�

pðcÞdS ¼ 0 ð31Þ

�

Z
�

ðr
~

: _e
~
þ a � _�þ b:r � _�ÞdVþ

Z
@�

ðt:u_þ ac
� _�ÞdS ¼ 0 ð32Þ

Finite element discretization of the displacement field u and the microdam-
age field �� take the following form:

u ¼ Nudu, ru ¼ Budu,
�� ¼ N�d�, r�� ¼ B�d� ð33Þ

(a)
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(b)

DamageCrack opening

Figure 7. (a) Demonstration of crack opening and damage evolution under cyclic loading
for a 1D rod. (b) Representation of material damaging under fatigue.
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where du and d� are the nodal DOFs. Nu and N� represent the shape func-

tions and Bu and B� stand for their partial derivatives with respect to the

coordinates. In this study we use isoparametric quadratic elements for both

types of DOFs (Nu¼N�).
Finally, the discretized equilibrium equations read:Z

�

BT
u r

~
dV ¼

Z
�

Nu
T f dVþ

Z
�

Nu
Tt dS ð34Þ

Z
�

ðN�
Taþ B�

TbÞdV ¼

Z
�

N�
TacdS ð35Þ

Implicit Incremental Formulation

A fully implicit Newton�Raphson incremental formulation is developed

for solving (34) and (35). The corresponding time discretization is now

introduced. Using the known values of the state variables "
~

eðtÞ, � sðtÞ (inte-

grated from _� s ¼ j _� sj), � sc,iðtÞ, �
s
cumðtÞ for the current time step, the values at

tþ�t are estimated by a straight forward linearization procedure.

e
~

eðtþ�tÞ ¼ �t _e
~

e
ðtþ�tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�e

~

e

þe
~

eðtÞ ð36Þ

� sðtþ�tÞ ¼ �t _� sðtþ�tÞ þ � sðtÞ ð37Þ

� sc,iðtþ�tÞ ¼ �t _� sc,iðtþ�tÞ þ � sc,iðtÞ ð38Þ

� scumðtþ�tÞ ¼ �t _� scumðtþ�tÞ þ � scumðtÞ ð39Þ

Note that for the sake of simplicity, kinematic hardening variable is not

included in this presentation. The necessary terms for the implementation

are provided by (Cailletaud and Chaboche, 1995).
The presented model is implemented into the FE code ZeBuLoN (Besson

et al., 1998), using a ��method for the local integration. In order to calculate

the state variable increments, the residuals and their Jacobian are written as

follows:

Re
~

e ¼ �e
~

e þ�e
~

p þ�e
~

d ��e
~

ð40Þ

¼ �"e þ
XNslip

s¼1

m
~

s�� ssignð� s � xsÞ ð41Þ

Numerical Modeling of Fatigue Crack Growth 13

 at Hacettepe Univeristy on February 1, 2011ijd.sagepub.comDownloaded from 

http://ijd.sagepub.com/


þ
XNplanes

s¼1

�� scn
s
d � n s

d þ�� si n
s
d � l sdi ði ¼ 1, 2Þ ð42Þ

R� s ¼ �� s ��t
� s

K

� �n
ð43Þ

R� sc ¼ �� sc ��t
f sc
Kd

� �nd
signðn s

d � r
~
�n s

dÞ ð44Þ

R� s
i
¼ ��ic ��t

f si
Kd

� �nd
signðn s

d � r
~
�l sdiÞ ð45Þ

R� scum ¼ ��cum ��
XNplanes

s¼1

� sc
�� ��þ � s1

�� ��þ � s2
�� �� !

ð46Þ

J½ � ¼
@fRg

@f�#g
¼ 1��t

@f _#g

@f�#g

�����
tþ�t

ð47Þ

where fRgT ¼ fR"e , R� s , R� sc , R� s
i
, R�cumg and v stands for the internal state

variables to be integrated locally. Then, the Jacobian matrix becomes:

J½ � ¼

@R"e

@�"e
@R"e

@�� s

@R"e

@�� sc

@R"e

@�� si

@R"e

@��cum
@R� s

@�"e
@R� s

@��e
@R� s

@�� sc

@R� s

@�� si

@R� s

@��cum
@R� sc
@�"e

@R� sc
@��e

@R� sc
@� sc

@R� sc
@�cum

@R� sc
@�cum

@R� s
i

@�"e
@R� s

i

@��e
@R� s

i

@� sc

@R� s
i

@� si

@R� s
i

@�cum
@R�cum
@�"e

@R�cum
@��e

@R�cum
@�� si

@R�cum
@�� sc

@R�cum
@��cum

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð48Þ

After convergence, the ��method allows the calculation of the tangent

matrix of the behavior. R can be decomposed into two parts as:

fRg ¼ fRig � fReg ð49Þ

where Re corresponds to the applied load. After the convergence (i.e.

fR}& f0}), an infinitesimal variation can be applied to the residual equation

such as:

�fRg ¼ f0g ¼ �fRig � �fReg ð50Þ
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which can be rewritten in the form:

��# ¼ J½ ��1�fReg ð51Þ

For the calculation of elastic strain increment, above relation reads:

��e
~

e ¼ Je
~~

��e
~
, ��r

~
¼ C

~~

: Je
~~

��e
~

ð52Þ

where ½Je
~~

� is the upper left part of [J]�1:

J½ ��1¼

	
Je
~~



Jij
	 


Jji
	 


Jjj
	 


" #
ð53Þ

Note that a consistent tangent matrix can directly be obtained from [C
~~

: Je
~~

]
and it is non-symmetric, since the coupling between plasticity and damage is
established in one way. The Jacobian matrix terms are provided in Tables 1�4.

MODEL VALIDATION

For the model validation, a 2D single crystal CT-like specimen under
monotonic loading is analyzed. The corresponding finite element mesh is
given in Figure 8. Analyses are performed for two different crack widths,
obtained by furnishing different material parameters which control the size
of intrinsic length scale, L (Figure 9). The propagation of a crack, corre-
sponding stress fields and the comparison with classical elastic solutions are
given in Figure 10. This comparison shows that the microdamage model is
able to reproduce the elastic stress concentration at the crack tip except very

Table 1. Jacobian matrix terms for ee.

@R"e

@�"e
¼ I

~~

@R"e

@��
~

s ¼ signð�s � xsÞm
~

s

@Re
~

e

@��s
c

¼ ns
d � ns

d

@Re
~

e

@��s
i

¼ ns
d � lsdi

ðn ¼ 1, 2Þ

@Re
~

e

@��s
i

¼ 0
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close to the crack tip where finite stress values are predicted. Moreover, the
size of the zone of departure from the elastic solution is comparable with the
size of the intrinsic length scale (process zone & 3�L).

Another 2D example, namely a plate under uniaxial tension with several
cleavage planes, is investigated (Figure 11). In order to trigger localization,

Table 3. Jacobian matrix terms for �s
c,i.

@R�s
c

@�e
~

e ¼ �hð f Þc : ðns
d � ns

dÞ, hð f Þ ¼ �t
nd

Kd

fs
c

Kd

� �nd�1

@R�s
i

@�e
~

e ¼ �hð f Þc : ðns
d � lsdi

Þ

@R�s
c

@��s
¼ �signðns

d � r
~
�ns

dÞhð f Þr
~

ncde�d�cum

@R�s
i

@��s
¼ �signðns

d � r
~
�lsdi
Þhð f Þrc

nde�d�cum

@R�s
c,i

@�s
c,i

¼ I
~

@R�s
c

@�s
cum

¼ signðns
d � r

~
�ns

dÞhð f Þ
�H þ

XNplanes

s¼1

signðns
d � r

~
�ns

dÞhð f ÞH

@R�s
i

@�s
cum

¼ signðns
d � r

~
�lsdi
Þhð f Þ�Hþ

XNplanes

s¼1

signðns
d � r~
�lsdi
Þhð f ÞH

Table 2. Jacobian matrix terms for ts.

@R�s

@�"
~

e ¼ �signð�s � xsÞgð f Þðc
~~

: m
~

sÞ, gð f Þ ¼ �t
�s

K

� �n�1

@R�s

@��e
¼ I

~
� gð f Þ

@�s

@�s

@R�s

@��s
c,i

¼ 0

@R�s

@��s
cum

¼ 0
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an initial geometric defect is created on the left edge. First, a cleavage plane
is oriented at 30� from the horizontal axis. FEA results show that localiza-
tion path is perfectly matching with the cleavage plane and the size of the
localization band is controlled by ! in (29)(Figure 11 (a)). Second,
two orthogonal cleavage planes are placed with an orientation of 45�

from the horizontal axis representing {1 1 1} planes. For the former case,

Figure 8. Finite element mesh of the CT-like specimen.

Table 4. Jacobian matrix terms for dcum.

@R�cum

@�"e ¼ 0

@R�cum

@��s ¼ 0

@R�cum

@��s
c

¼ �signðns
d � r

~
�ns

dÞ

@R�cum

@��s
i

¼ �signðns
d � r

~
�lsdi
Þ

@R�cum

@��cum
¼ 1
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damage�plasticity coupling leads to merged localization bands forming a
straight crack path which can be considered as a type of ductile crack
(Figure 11 (b)). For the latter case, plasticity is excluded from the calculation
and crack path is allowed to choose its path between the orthogonal planes
resulting in a brittle type of crack propagation (Figure 11 (c)).
Corresponding FE results validate that the model is able to predict crack
bifurcation. However, physical relevance of this fracture has to be investi-
gated in the future.

APPLICATION TO FATIGUE CRACK GROWTH IN SINGLE

CRYSTALS

In this section, the crack growth tests of superalloy PWA1483 performed
at 950�C and presented in Marchal (2006) are simulated. For this purpose,

Figure 9. Crack growth in a 2D single crystal CT-like specimen with a single cleavage plane
aligned through the horizontal axis under vertical tension. Field variable �cum.
(a) A=100 Mpa mm2, H=�20,000 Mpa and �H=30,000 Mpa; (b) A=150 MPa mm2,
H=�10,000 MPa and �H=30,000 MPa.
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a standard SEN specimen geometry is used (Figure 12). The mesh and the

boundary conditions are provided in Figure 13. As an initial defect, a

2.25mm long artificial crack is introduced and the geometric symmetry is

taken into account. Crack tip zone is regularly meshed and element size is

0

200

400

600

800

1000

28 30 32 34 36 38 40 42 44

σ M
P

a

Coordinate x1 (mm)

Crack-growth simulation, t=44s
Elastic solution

Crack-growth simulation, t=52s
Elastic solution

Crack-growth simulation, t=60s
Elastic solution

Figure 10. Evolution of the crack and the stress fields in a CT-like specimen compared with
corresponding elastic solutions.

Figure 11. Crack growth in a 2D single crystal block with a single inclined cleavage plane
(a) and two orthogonal planes oriented at 45� (b), and (c) under vertical tension with 10 %
strain. Field variable �cum.
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fixed to 2 mm which is considered as a representative value concerning crack

growth in single crystals. All elements are chosen to be 2D quadratic

10-node bricks with reduced integration. A single cleavage plane is fixed

to horizontal axis and the crack is oriented as (0 0 1)[1 0 0]. A sinusoidal

cyclic loading regime is applied to the geometry with an R ratio¼ 0.1 with

a frequency of 0.1Hz as it is defined in Marchal (2006). The parameter

identification procedure has been performed for �K¼ 25, 35, 45 and

60MPa
ffiffiffiffi
m
p

respectively, where �K is related to the applied force and the

geometry with the relation:

KI ¼
F

B
ffiffiffiffi
w
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanð
a2wÞ

p
cosð
a2wÞ

0:752þ 2:02
a

w
þ 0:37 1� sinð


a

2w
Þ

h i3� �( )
ð54Þ

Figure 13. Illustration of the finite element mesh of the SEN specimen with boundary
conditions.

Figure 12. Illustration of a SEN geometry corresponding to the Equation (54), where B is the
specimen thickness.
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The parameter values used for the life-time prediction are provided in

Table 5. One can observe that parameters for the Norton rule are taken

in the same order of plastic parameters. A and �H which mainly control the

characteristic length were identified in order to obtain a damage band size of

8 mm for the full geometry. The parameters �, �cn and H control the crack

Figure 14. Demonstration of the FEA results of the SEN specimen after 10 cycles for
(a) opening stress, �22, (b) cumulative damage, �cum and (c) plastic strain normal to the
crack propagation direction, "p

22.

Table 5. Microdamage parameters for the life-time assessment of PWA1483.

Parameters
A

(MPa mm2) ?
Kd

(MPa s1/n) nd
rc

n

(MPa)

�H
(MPa)

H
(MPa)

pult

(MPa)

Values 2.0 3.0 550 6.5 1200 30000 �15000 0.1
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initiation and crack growth rate. Therefore, they were identified from the

experimental data provided in Figure 15. The initial threshold value for �K

determines the �cn and from the slope of the da/dN versus �K diagram, one

can identify the parameters �, H. Several FEA results are shown in

Figure 14. First, FEA maps for opening stress, s22 are provided. As it is

noticed from the figure, the stress field perfectly moves with the crack tip

and the broken elements undergo zero stress representing a realistic crack.

The exact place of the crack tip can be easily tracked by the damage field

demonstrated at the middle and the plastic wake zone induced by the crack

growth is presented underneath. The ability of the model to predict crack

growth rate is demonstrated in Figure 15. Experimental and numerical

results indicate that model predictions are in good agreement with the

experimental observations. The parameter values used for the life-time pre-

diction are provided in Table 5.

Figure 15. Comparison between the numerical simulation and the experimental data of the
fatigue test performed for PWA1483.
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CONCLUSION

A numerical model of fatigue crack growth in single crystals based on
microdamage theory is proposed. First, the crystal plasticity model coupled
to continuum damage is presented. The damage initiation is strongly related
with the accumulated plastic slip, through the damage threshold function.
Then, the approach is further developed by conducting a regularization
procedure based on microdamage continuum. A 1D geometry is scrutinized
for the observation of stable critical damage stress evolution and the crack
closure phenomenon. It has been shown that the model is capable of simu-
lating crack closure in the desired way successfully.

After giving the details of numerical implementation procedure, the model
is validated through several 2D specimens under monotonic loading. The
results have shown that the model is able to reproduce the elastic stress
concentration at the crack tip and predict the crack bifurcation by defining
multi-plane damage systems which could be considered as the main advan-
tage compared to the CZMs where the crack paths are predefined. After the
model validation, a parameter fitting procedure is performed in order to
simulate the crack growth tests performed on single crystal PWA1483 at
950�C. A standard SEN specimen has been analyzed for several �K values
and a good agreement between the experimental data and the numerical
results has been found.

As a prospective issue, introducing a multi-plane damage system, a bifur-
cation analysis under realistic creep-fatigue loadings are to be considered.
The influence of crystal orientation and mixed mode loadings (modes I and
II) on crack growth rate are to be investigated. Moreover, combining crystal
plasticity, continuum damage and a strain gradient formulation, the model
possess a great potential for modeling fatigue crack growth in polycrystals.
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Européenne des Eléments Finis, 7: 567�588.

Bouvard, J.L., Chaboche, J.L., Feyel, F. and Gallerneau, F. (2009). A Cohesive Zone Model
for Fatigue and Creep-fatigue Crack Growth in Single Crystal Superalloys, International
Journal of Fatigue, 31: 868�879.

Cailletaud, G. and Chaboche, J.L. (1995). Integration Methods for Complex Plastic
Constitutive Equations, Computer Methods in Applied Mechanics and Engineering, 133:
125�155.

Crompton, J.S. and Martin, J.W. (1984). Crack Tip Plasticity and Crack Growth in a Single-
crystal Superalloy at Elevated Temperatures, Materials Science and Engineering, 64:
37�43.

Dillard, T., Forest, S. and Ienny, P. (2006). Micromorphic Continuum Modelling of the
Deformation and Fracture Behaviour of Nickel Foams, European Journal of Mechanics
A/Solids, 25: 526�549.

Ekh, M., Lillbacka, R. and Runesson, K. (2004). A Model Framework for Anisotropic
Damage Coupled to Crystal (Visco) Plasticity, International Journal of Plasticity, 20:
2143�2159.

Elber, W. (1970). Fatigue Crack Closure Under Cyclic Tension, Engineering Fracture
Mechanics, 2: 37�45.

Engelen, R.A.B., Geers, M.G.D. and Baaijens, F.P.T. (2003). Nonlocal Implicit Gradient-
enhanced Elasto-plasticity for the Modelling of Softening Behaviour, International
Journal of Plasticity, 19: 403�433.

Eringen, A.C. and Suhubi, E.S. (1964). Nonlinear Theory of Simple Microelastic Solids,
International Journal of Engineering Science, 2: 189�203, 389-404.

Forest, S. (2009). The Micromorphic Approach for Gradient Elasticity, Viscoplasticity and
Damage, ASCE Journal of Engineering Mechanics, 135: 117�131.

Gall, K., Sehitoglu, H. and Kadioglu, Y. (1996). FEM Study of Fatigue Crack Closure Under
Double Slip, Acta Metallurgica, 44: 3955�3965.

Germain, N., Besson, J. and Feyel, F. (2007). Simulation of Laminate Composites
Degradation Using Mesoscopic Non�local Damage Model and Non�local Layered
Shell Element, Modelling and Simulation in Materials Science and Engineering, 15:
S425�S434.

Gurson, A.L. (1977). Continuum Theory of Ductile Rupture by Void Nucleation and Growth.
part i: Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering
Materials and Technology, 99: 2�15.

Kiyak, Y., Fedelich, B. and Pfennig, A. (2007). Simulation of Crack Growth Under Low Cycle
Fatigue at High Temperature in a Single Crystal Superalloy, Engineering Fracture
Mechanics, 75: 2418�2443.

Lemaitre, J. and Chaboche, J.-L. (1994). Mechanics of Solid Materials, Cambridge, UK,
University Press.

Leverant, G. and Gell, M. (1975). The Influence of Temperature and Cyclic Frequency on the
Fatigue Fracture of Cube Oriented Nickel-based Supperalloy, Metallurgical Transactions
A, 6A: 367�371.

Marchal, N. (2006). Propagation de Fissure en Fatigue-fluage á Haute Température de
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