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Overview

Heterogeneous materials like metal polycrystals

and metal matrix composites exhibit a size-

dependent mechanical elastoplastic and fracture

behavior. Generalized continuum theories can be

used for the constitutive behavior of each constit-

uent in order to predict such size effects.

Extended homogenization methods are then

needed to compute the effective properties of
composite higher-order materials. Higher-order

continua include the Cosserat medium for which

the material point is endowed with independent

translational and rotation degrees of freedom and

the micromorphic continuum which accounts for

the full microdeformation of a triad of directors

attached to the material point. An asymptotic

multiscale expansion method is used here to

derive the effective properties of heterogeneous

linear elastic micromorphic media. The type of

continuum theory representing the effective

medium is shown to be either a Cauchy, Cosserat,

microstrain, or full micromorphic model,

depending on the ratio between the characteristic

lengths of the micromorphic constituents and

the size of the heterogeneities. Applications

deal with fiber size effects in metal matrix com-

posites and with the grain-size effect in

polycrystals.
Introduction

The mechanics of generalized continua repre-

sents extensions of the classical Cauchy contin-

uum mechanics that incorporate some aspects of

the microstructure underlying the material point.

Directors can be attached to each material point

that evolve in a different way than the material

lines. They account for privileged physical direc-

tions existing in the microstructure like lattice or

fiber directions. In addition to the usual motion of

the material point, the associated directors can

rotate or even deform with straining. The

microrotation case corresponds to the Cosserat

continuum, whereas microdeformation is possi-

ble in the micromorphic continuum [6]. The

Cosserat and micromorphic media are examples

of higher-order continuum theories that are char-

acterized by additional degrees of freedom of the

material points. In the micromorphic continuum

designed by Eringen and Mindlin [7, 13], the

directors can also be distorted, so that a second-

order tensor is attributed to each material point.

Such higher-order media are sometimes called

continua with microstructure. This name has

now become misleading in the sense that even

Cauchy material models can integrate some
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aspects of the underlying microstructure as illus-

trated by classical homogenization methods used

to derive the effective properties of composites.

However, generalized continua incorporate

a feature of the microstructure which is not

accounted for by standard homogenization

methods, namely, their size-dependent material

response. They involve intrinsic lengths directly

stemming from the microstructure of the

material.

The links between the micromorphic contin-

uum and the behavior of crystalline solids have

been recognized very early by Eringen himself

[4]. Lattice directions in a single crystal can be

regarded as directors that rotate and deform. The

fact that lattice directions can be rotated and

stretched in a different way than material lines

connecting individual atoms, especially in the

presence of static or moving dislocations, illus-

trates the independence between directors and

material lines in a micromorphic continuum,

even though their deformations can be related at

the constitutive level.

The identification of a micromorphic contin-

uum from the discrete atomic single-crystal

model is possible based on suitable averaging

relations proposed in [3]. These works contain

virial formula for the higher-order stress tensors

arising in the micromorphic theory. This atomis-

tic-based approach can be used to predict phonon

dispersion relations; see for instance [4] for the

study of dispersion of waves in a dislocated

crystal.

If single-crystalline materials can be regarded

as micromorphic media, then polycrystalline

materials must be seen as a mixture of

micromorphic media. The effective behavior of

such materials can therefore be obtained by

means of homogenization methods well known

in the mechanics of heterogeneous materials

[16, 18]. Classical homogenization methods can

be used to account for the influence of the volume

fraction, distribution, and morphology of the dif-

ferent constituents of the heterogeneous material,

but they are not able to predict size effects. The

authors in [20] propose to incorporate intrinsic

length scales in the constitutive behavior of the

constituents by means of a strain-gradient theory
of plasticity. Reasons for introducing generalized

continuum models in the mechanics of heteroge-

neous materials are twofold. Firstly, it is a natural

way to obtain an explicit dependence of the effec-

tive properties of composites or multiphase mate-

rials on the absolute size of the constituents

within a continuum model and to account for

size effects observed for instance in materials

strengthened by inclusions, fibers, or precipitates

[1]. On the other hand, generalized continua can

be used to limit strain localization phenomena

that may occur in one constituent when it exhibits

a strain-softening behavior [14]. If the constitu-

ents of a heterogeneous material are described by

a generalized continuum like second grade,

Cosserat, or micromorphic media, specific

homogenization methods must be designed to

derive its effective behaviour. The questions are

the following: Does a homogeneous substitute

medium exist? Under which conditions does it

still have a nonlocal character? What is the rela-

tion between the effective characteristic length

and that of the constituents? Bounds and esti-

mates of the overall properties of heterogeneous

linear couple stress media have been proposed for

instance in [17]. Although most physically rele-

vant applications deal with plasticity or damage

phenomena, a first step is to develop homogeni-

zation methods for generalized continua in the

case of linear elasticity [9]. These methods can

then be applied to nonlinear behavior by intro-

ducing some linear comparison solids.

In this entry, the attention is focused on the

case of heterogeneous micromorphic media with

periodic microstructure. For that purpose, asymp-

totic methods classically used for periodic het-

erogeneous materials [15] are applied to linear

elastic micromorphic constituents. The main

interest of asymptotic methods in homogeniza-

tion theory lies in the fact that it can provide the

form of the balance and constitutive equations of

an effective medium without any assumption

on their nature and form. In particular, the nature

of the effective medium for a mixture of

micromorphic media will not be assumed

a priori but rather will be an essential outcome

of the asymptotic analysis. Asymptotic methods

have been used in [2] to get solutions of higher
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orders to the problem of the effective properties

of periodic heterogeneous classical media. In

contrast, the present analysis is restricted to the

first orders in the asymptotic developments, but

the method is applied to the case of periodic

heterogeneous micromorphic media.

Homogenization of Cosserat composites is

considered in the reference [9, 12, 19]. It is

a special case of the situation envisaged in

this entry. Note that this situation is different

from that of a classical heterogeneous Cauchy

material that can be homogenized into a Cosserat

continuum by suitable homogenization tech-

niques [11].

Regarding notations, the tensor product of two

vectors is � , with �
s
and �

a
respectively deliv-

ering the symmetric and skew–symmetric parts

of the tensor product of two vectors. A wide use

of the nabla operator = is made in the sequel. The

notation used for the gradient and divergence

operators are the following:
aH ¼ a;i�ei; �a� H ¼ ai; j �ei � �ej; �a:H ¼ �aij; j �ei

where a, a and �a respectively denote scalar, first-
and second-rank tensors. The ð�eiÞi¼1;2;3 are the

vectors of an orthonormal basis of space, and the

associated Cartesian coordinates have been used.

Third-, fourth-, fifth-, and sixth-rank tensors are

respectively denoted by ��a (or ��a), a


, ���
a, and ���

a.

Indices can be contracted as follows:

�a : �b ¼ aijbij,
��a : �b ¼ aijkbjk�ei; a


: �b ¼ aijklbkl�ei � �ej;

�a : A
 : �b ¼ aijAijklbkl; ��a
..
.
��b ¼ aijkbijk
Linear Elastic Micromorphic Media

The balance and constitutive equations of the

micromorphic continuum are recalled briefly in

the linear elastic framework. The motion of

a micromorphic bodyO is described by two inde-

pendent sets of degrees of freedom: the displace-

ment u and the microdeformation �x attributed to
each material point. The microdeformation

accounts for the rotation and distortion of a triad

associated with the underlying microstructure

[6]. The microdeformation field is generally not

compatible. The microdeformation can be split

into its symmetric and skew–symmetric parts:
�x ¼ �x
s þ �x

a ð1Þ

that are called respectively the microstrain and

the Cosserat rotation. The associated deformation

fields are the classical strain tensor �«, the relative
deformation �e, and the microdeformation gradi-

ent tensor ��k defined by:

�«¼�u�
s
H; �e¼�u�H��x; ��k¼�x�H ð2Þ

The symmetric part of �e corresponds to the

difference of material strain and microstrain,

whereas its skew–symmetric part accounts for

the relative rotation of the material with respect

to microstructure. The analysis is restricted to

small deformations, small micro-rotations, small

microstrains, and small microdeformation gradi-

ents. The microdeformation gradient can be split

into two contributions:

��
k ¼ ��k

s þ ��k
a; with ��

ks ¼
�
xs � H; ��k

a ¼
�
xa � H

ð3Þ

The statics of the micromorphic continuum is

described by the symmetric simple stress tensor

�s, the generally non-symmetric relative force–

stress tensor �s, and the third-rank double stress

tensor ��m. These tensors must fulfill the local form

of the balance equations in the static case, in the

absence of body simple nor double forces for

simplicity:
�s þ �s
� �

� H ¼ 0; ��m � Hþ �s ¼ 0 onO ð4Þ

The constitutive equations for linear elastic

centrosymmetric micromorphic materials read

�s ¼ a


: �«; �s ¼ b



: �e; ��m ¼ ���c

..

.
��k ð5Þ
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The elasticity tensors display the major

symmetries:

aijkl ¼ aklij; bijkl ¼ bklij; cijkpqr ¼ cpqrijk

ð6Þ

and
��
a has also the usual minor symmetries. The

last constitutive law can be written in the form

��m ¼ ���c
s_:��k

s þ ���c
a_:��k

a ð7Þ

For the sake of simplicity, the tensors ���
cs and ���

ca

are supposed to fulfill the following conditions:

csijkpqr ¼ csjikpqr; c
a
ijkpqr ¼ �cajikpqr ð8Þ

thus assuming that there is no coupling between

the contributions of the symmetric and skew–

symmetric parts of �k to the third-rank stress

tensor.

The setting of the boundary value problem on

bodyO is then closed by the boundary conditions.

In the following, Dirichlet boundary conditions

are considered of the form

�uð�xÞ ¼ 0; �xð�xÞ ¼ 0; 8�x 2 @O ð9Þ

where @O denotes the boundary of O. The equa-
tions (2), (4), (5), and (9) define the boundary

value problem P.
Multiscale Asymptotic Expansion
Method

The multiscale asymptotic expansion method is

exposed in details in the case of heterogeneous

micromorphic media so that the reader will be in

the position of applying it readily to other similar

situations.

The heterogeneous material under study is

a mixture of micromorphic constituents, i.e.,

a heterogeneous micromorphic medium. One

investigates the nature of the resulting homoge-

neous equivalent medium by means of asymp-

totic methods. The multiscale asymptotic method

from [15] is especially adequate for this purpose

since the nature of the effective medium is not
postulated a priori but rather is the result of the

analysis. The microstructure of the material is

assumed to be periodic. The heterogeneous mate-

rial is then obtained by space tessellation

with cells translated from a single cell Yl. The

period of the microstructure is described by three

dimensionless independent vectors �a1; �a2; �a3
� �

such that
Yl ¼


�x ¼ xi�ai; xij j<

l

2

�
where l is the characteristic size of the cell. We

call
��
al,
��
bl and

���
cl the elasticity tensor fields of

the periodic micromorphic material. They are

such that

8�x 2 O; 8 n1; n2; n3ð Þ 2 Z3=�x

þ lðn1�a1 þ n2�a2 þ n3�a3Þ 2 O

��
alð�xÞ ¼ ��a

lð�xþ lðn1�a1 þ n2�a2 þ n3�a3ÞÞ

��
blð�xÞ ¼ ��b

lð�xþ lðn1�b1 þ n2�b2 þ n3�b3ÞÞ

���
clð�xÞ ¼ ���c

lð�xþ lðn1�a1 þ n2�a2 þ n3�a3ÞÞ
Dimensional Analysis

The first step of a multiscale expansion analysis is

the dimensional analysis which is necessary to

identify the small parameters of the problem. The

size L of body O is defined for instance as

the maximum distance between two points.

Dimensionless coordinates and displacements

are introduced:
�x
 ¼ �x

L
; �u
ð�xÞ ¼ �

uð�xÞ
L

; �x
ð�xÞ ¼ �xð�xÞ ð10Þ

The corresponding strain measures are
�«
ð�xÞ ¼ �u �

s
H ¼ �«ð�xÞ;

�e
ð�x
Þ ¼ �u

 � H � �x
 ¼ �eð�xÞ

ð11Þ

��k
ð�xÞ ¼ �x

 � H ¼ L ��kð�xÞ ð12Þ

with H ¼ @�
@x

i

� 
�ei ¼ LH. Similarly,



Asymptotic Analysis of Heterogeneous Micromorphic Elastic Solids 243 A

A

��k
sð�xÞ ¼ �x

s � H ¼ L �k
sð�xÞ

��k
að�x

Þ ¼ �x
a � H ¼ Lkað�xÞ

ð13Þ

It is necessary to introduce next a norm of the

elasticity tensors:
A ¼ Max
�x2Yl

alijklð�xÞ
��� ���; blijklð�xÞ

��� ���� 
Cs ¼ Max

�x2Yl
cslijkpqrð�xÞ
��� ���

Ca ¼ Max
�x2Yl

calijkpqrð�xÞ
��� ���

whereby characteristic lengths ls and la can be

defined as Cs ¼ Al2s ;C
a ¼ Al2a.

The definition of dimensionless stress and

elasticity tensors is as follows:
�s
ð�xÞ ¼ A�1�sð�xÞ; sð�xÞ ¼ A�1sð�xÞ;

��
mð�xÞ ¼ ðALÞ

�1
��
mð�xÞ

��
að�xÞ ¼ A�1

��
alð�xÞ; ��b

ð�xÞ ¼ A�1
��
blð�xÞ;

���
csð�xÞ ¼ ðAl2s Þ

�1
���
cslð�xÞ; ���

cað�xÞ ¼ ðAl2aÞ
�1
���
calð�xÞ

Since the initial tensors
��
al;
��
bl and

���
cl are

Yl-periodic, the dimensionless counterparts are

Y-periodic:
Y ¼ 1

l
Y; Y ¼ �y ¼ yi�ai; yij j<

1

2


 �
ð14Þ

Y is the (dimensionless) unit cell used in the

following asymptotic analyses. As a result, the

dimensionless stress and strain tensors are related

by the following constitutive equations:
�s
 ¼

��
a : �«

; �s
 ¼

��
b : �e

;

��m
 ¼ ls

L

� 	2

���
cs ..

.
��k
s þ la

L

� 	2

���
ca..

.
��k
a

ð15Þ

The dimensionless balance equations read
8�x
 2 O; ð�s

 þ �s
Þ � H ¼ 0; ��m

 � H þ �s
 ¼ 0

ð16Þ
A boundary value problem P can be defined

using equations (12), (15), and (16), complemented

by the boundary conditions:
8�x 2 @O; �u
ð�xÞ ¼ 0; �x

ð�xÞ ¼ 0 ð17Þ
The Homogenization Problem

The boundary value problem P is treated here as
an element of a series of problems ðP«Þ«>0 onO

.
The homogenization problem consists in the

determination of the limit of this series when

the dimensionless parameter e, regarded as small,

tends towards 0. The series is chosen such that

P
e¼ l

L
¼ P

The unknowns of boundary value problem P«

are the displacement and microdeformation fields

�u
« and �x

« satisfying the following field equations

on O:
�s
e¼

��
ae : ð�u«�

s
HÞ; �s

e¼
��
be : ð�ue�H ��x

eÞ;

��
me¼

���
ce ..
.
ð
�
xe�HÞ

ð18Þ

ð�s
e þ �s

eÞ � H ¼ 0; ��m
e � H þ �s

e ¼ 0 ð19Þ

Different cases must now be distinguished

depending on the relative position of the consti-

tutive lengths ls and la with respect to the char-

acteristic lengths l and L of the problem. Four

special cases can be distinguished for the present

asymptotic analysis. The first case corresponds

to a limiting process for which ls=l and la=l

remain constant when l=L goes to zero. The

second case corresponds to the situation for

which ls=L and la=L remain constant when l=L

goes to zero. The third (resp. fourth) situation

assumes that ls=l and la=L (resp. ls=L and la=l)
remain constant when l=L goes to zero. These

assumptions lead to four different homogeniza-

tion schemes labeled HS1 to HS4 in the sequel.

The homogenization scheme 1 (resp. 2) will be
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relevant when the ratio l=L is small enough and

when ls; la and l (resp. L) have the same order of

magnitude.

Accordingly, the following tensors of elastic

moduli are defined:
��
að0Þ

�
�y
�
¼
��
að lL�yÞ; ��

bð0Þ
�
�y
�
¼
��
b
�
l
L�y
�
ð20Þ

��
cð1Þ
�
�y
�
¼ ls

l

� �2
��
c
�
l
L�y
�
;

��
cð2Þ
�
�y
�
¼ ls

L

� �2
��
c
�
l
L�y
�
ð21Þ

��
csð1Þ ð�yÞ ¼

ls
l

� �2
��
cs
�
l
L�y
�
;

��
cað1Þ

�
�y
�
¼ la

l

� �2
��
ca
�
l
L�y
�

ð22Þ

��
csð2Þ

�
�y
�
¼ ls

L

� �2
��
cs
�
l
L�y
�
;

��
cað2Þ

�
�y
�
¼ la

L

� �2
��
ca ð lL�yÞ

ð23Þ

They are Y-periodic since
��
a;
��
b and

��
c are

Y-periodic. Four different hypotheses will be

made concerning the constitutive tensors of prob-

lem P«:

Assumption 1 :
��
ae �x

� �
¼
��
að0Þ e�1�x

� �
��
be �x

� �
¼
��
bð0Þ e�1�x

� �
and

��
ce �x

� �
¼ e2

��
cð1Þ e�1�x

� �
Assumption 2 :

��
ae �x

� �
¼
��
að0Þ e�1�x

� �
��
be �x

� �
¼
��
bð0Þ e�1�x

� �
and

��
ce �x

� �
¼
��
cð2Þ e�1�x

� �
Assumption 3 :

��
ae �x

� �
¼
��
að0Þ e�1�x

� �
��
be �x

� �
¼
��
bð0Þ e�1�x

� �
and

��
cse �x

� �
¼ e2

��
csð1Þ e�1�x

� �
��
cae �x

� �
¼
��
cað2Þ e�1�x

� �
Assumption 4 :

��
ae �x

� �
¼
��
að0Þ e�1�x

� �
be �x

� �
¼
��
bð0Þ e�1�x

� �
and

��
cse �x

� �
¼
��
csð2Þ e�1�x

� �
��
cae �x

� �
¼ e2

��
cað1Þ e�1�x

� �
Assumptions 1 and 2 respectively correspond

to the homogenization schemes HS1 and HS2.

Both choices meet the requirement that
�
e ¼ l

L

	
)
�
��
ae ¼

��
a and

��
ce ¼

�
l

L

	2

��
c
	

Assumptions 3 and 4 respectively correspond

to the homogenization schemes HS3 and HS4.

Both choices meet the requirement that�
e ¼ l

L

	
)
�
��
ae ¼

��
a;

��
cse ¼

�
ls
L

	2

��
cs and

��
cae ¼

�
la
L

	2

��
ca
	

It must be noted that, in our presentation of the

asymptotic analysis, the lengths l; ls; la and L are

given and fixed, whereas parameter « is allowed

to tend to zero in the limiting process. In the

sequel, the stars  are dropped for conciseness.
Multiscale Asymptotic Expansion of the
Fields

In the setting of the homogenization problems,

two space variables have been distinguished: �x
describes the macroscopic scale and �y is the local
variable in the unit Y.According to the method of

multiscale asymptotic developments, all fields

are regarded as functions of both variables �x
and �y. It is assumed that they can be expanded

in a series of powers of small parameter «. In

particular, the displacement, microdeformation,

and simple and double stress fields are supposed

to take the form
�u
eð�xÞ ¼ �u0ð�x; �yÞ þ e�u1ð�x; �yÞ þ e2�u2ð�x; �yÞ þ . . .

�X
eð�xÞ ¼ �X1

ð�x; �yÞ þ e�X 2
ð�x; �yÞ þ e�X 3

ð�x; �yÞ þ . . .

�s
eð�xÞ ¼ �s0

ð�x; �yÞ þ e�s1
ð�x; �yÞ þ e�s2

ð�x; �yÞ þ . . .

�s
eð�xÞ ¼ �s0ð�x; �yÞ þ e�s1ð�x; �yÞ þ e2�s2ð�x; �yÞ þ . . .

��m
eð�xÞ ¼ ��m0

ð�x; �yÞ þ e��m1
ð�x; �yÞ þ e2��m2

ð�x; �yÞ þ . . .

where the coefficients �uið�x; �yÞ; �xi
ð�x; �yÞ;

�sið�x; �yÞ; �sið�x; �yÞ and �mi
ð�x; �yÞ are assumed to

have the same order of magnitude and to be

Y-periodic with respect to variable �y �y ¼ �x=e
� 

.

The average operator over the unit cell Y is

denoted by
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�h i ¼ 1

jYj

Z
Y

�dV

As a result,
<�u
e> ¼ �U0

þ e�U1
þ . . . and <

�
xe> ¼ �eX2

þ . . .

ð24Þ

where �Ui ¼ <�ui> and �Xi
¼ <

�
x
i
>. The gradient

operator can be split into partial derivatives with

respect to �x and �y:

H ¼ Hx þ
1

e
Hy ð25Þ

This operator is used to compute the strain

measures and balance equations:
�«
e ¼ �e

�1
�«�1 þ �«0 þ e1�«1 þ . . .

¼ e�1�u0�
s
Hy þ ð�u0�

s
Hx þ �u1�

s
HyÞ

þ eð�u1�
s
Hx þ �u2�

s
HyÞ þ . . .

�e
e ¼ e�1�e�1 þ �e0 þ e1�e�1 þ . . .

¼ e�1�u0 � Hy þ ð�u0 � Hx þ �u1 � Hy � �x1
Þ

þ eð�u1 � Hx þ �u2 � Hy � �x2
Þ þ . . .

��k
e ¼ e�1��k�1

þ ��k0
þ e1��kþ . . .

¼ e�1
�
x
1
� Hy þ ð�x1

� Hx þ �x2
� HyÞ

þ eð
�
x
2
� Hx�

x
3
� HyÞ þ . . .

ð�s
e þ �s

eÞ � Hx þ e�1ð�s
e þ �s

eÞ � Hy ¼ 0;

��m
e � Hx þ e�1��m

e � Hy þ �s
e ¼ 0

ð26Þ

Similar expansions are valid for the tensors

��k
s; ��k

a. The expansions of the stress tensors are

then introduced in the balance equations (26), and

the terms can be ordered with respect to the

powers of e. Identifying the terms of same

order, we are lead to the following set of

equations:
� order e�1; ð�s0
þ �s0Þ � Hy ¼ 0 and ��

m
0
� Hy ¼ 0

� order e0; ð�s0
þ �s0Þ � Hx þ ð�s1

þ �s1Þ � Hy ¼ 0 and

��S0
� Hx þ ��S1 � Hy þ �s1 ¼ 0
The effective balance equations follow from

the first above equation by averaging over the

unit cell Y and, at the order e0, one gets
�S0
þ �S0

� �
� H ¼ 0 and ��

M
0
� Hþ �S0 ¼ 0

ð27Þ

where effective stress tensors are defined as the

following averages �S0
¼ <�s0

>; �S0 ¼ <�s0>
and ��M0

¼ <��m0
>.
Homogenization Scheme HS1

For the first homogenization scheme HS1 previ-

ously defined, the equations describing the local

behavior are
�s
e ¼

��
að0Þ

�
�y
�
: �«

e; �s
e ¼

��
bð0Þ

�
�y
�
: �e

e and

��m
e ¼ e2

���
cð1Þ
�
�y
�...��ke

ð28Þ

At this stage, the expansion (26) can be

substituted into the constitutive equations (28).

Identifying the terms of same order, one gets

• order e�1,
��
að0Þ : �«�1 ¼ ��a

ð0Þ : �u0�
s
Hy

� 
¼ 0

��
bð0Þ : �e0 ¼ ��b

ð0Þ : �u0 � Hy

� �
¼ 0

ð29Þ

• order e0,

�s0
¼
��
að0Þ : �e0; �s0¼��b

ð0Þ : �e0; ��m0
¼ 0 ð30Þ

• order e1,
�s1
¼
��
að0Þ : �e1; �s1 ¼ ��b

ð0Þ : �e1; ��m1
¼
���
cð1Þ..

.
��k�1

ð31Þ

The equation (21) implies that �u0 does not

depend on the local variable �y:

�u0ð�x; �yÞ ¼ �U0
ð�xÞ
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At the order e0, the higher-order stress tensor
vanishes, ��M0

¼ <��m0
> ¼ 0.

Finally, the fields ð�u1; �x1
; �s0

; �s0; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:

�«0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0 ¼ �U0

� Hx

þ �u1 � Hy � x1

��k�1
¼ �x1

� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0; m1 ¼ ���c
ð1Þ : �k�1

ð�s0
þ �s0Þ � Hy ¼ 0; ��m1

� Hy þ �s0 ¼ 0

8>>>>>>>>><>>>>>>>>>:
ð32Þ

The boundary conditions of this problem are

given by the periodicity requirements for the

unknown fields. A series of auxiliary problems

similar to (32) can be defined to obtain the solu-

tions at higher orders. It must be noted that these

problems must be solved in cascade since, for

instance, the solution of (32) requires the

knowledge of �U0
. A particular solution �x for

a vanishing prescribed �U0
�
s
Hx is �x ¼ �U0

�
a
Hx.

It follows that the solution ð�u1; �U0
�
a
Hx � �x1

Þ to
problem (32) depends linearly on �U0

�
s
Hx, up to

a translation term, so that
�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��x

ð1Þ
u

�
�y
�
: ð�U0

�
s
HÞÞ þ . . .

ð33Þ

�x
e ¼ �U0

�
a
Hx þ

��
xð1Þ
x
ð�yÞ : �U0

�
s
Hþ . . . ð34Þ

where concentration tensors ��X
ð1Þ
u

and
��
Xð1Þ
x

have

been introduced, the components of which are

determined by the successive solutions of the aux-

iliary problem for unit values of the components of

�U0
�
s
H. Concentration tensor ��X

ð1Þ
u

is such that its

mean value over the unit cell vanishes.

The macroscopic stress tensor is given by

�S0
¼ <�s0

> ¼ <
��
að0Þ : ð

��
1þ Hx�

s

��X
ð1Þ
u
Þ> :

ð�U0
�
s
HÞ ¼

��
Að1Þ
0

: ð�U0
�
s
HÞ

ð35Þ
Accordingly, the tensor of effective moduli

possesses all symmetries of classical elastic

moduli for a Cauchy medium: A
ð1Þ
0ijkl ¼ A

ð1Þ
0klij

¼ A
ð1Þ
0jikl ¼ A

ð1Þ
0ijlk.

The additional second-rank stress tensor can

be shown to vanish:
�S0 ¼ <�s0> ¼ <� ��m1
� Hy> ¼ 0 ð36Þ

The effective medium is therefore governed

by the single equation:
�S0
� H ¼ 0 ð37Þ

The effective medium turns out to be a Cauchy

continuum with symmetric stress tensor.
Homogenization Scheme HS2

For the second homogenization scheme HS2, the

equations describing the local behavior are
�s
e ¼

��
að0Þ
�
�y
�
: �e

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e; and

��m ¼ ���c
ð2Þ�
�y
�...��ke

ð38Þ

The different steps of the asymptotic analysis

are the same as in the previous section for HS1.

We will only focus here on the main results. At

the order e�1, one gets

��
að0Þ : �e�1 ¼ 0;

��
bð0Þ : �e�1 ¼ 0; ���

cð2Þ..
.
��k�1
¼ 0

ð39Þ

This implies that the gradients of �u0 and
�
x
1

with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; �

x
1
ð�x; �yÞ ¼ �X1

ð�xÞ ð40Þ

The fields ð�u1; �x1
; �s0; ��m0

Þ are solutions of the
two following auxiliary boundary
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value problems defined on the unit cell:
A
�«0 ¼ �U0
�
s
Hx þ �u1�

s
Hy

�e0 ¼ �U0
� Hx þ �u1 � Hy � �X1

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

ð�s0
þ �s0Þ � Hy ¼ 0

8>>>>>>><>>>>>>>:
��k0
¼ �X1

� Hx þ �x2
Hy

��m0
¼
����
cð2Þ..

.
��k0

; ��m0
� Hy ¼ 0

8><>:
We are therefore left with two decoupled bound-

ary value problems: the first one with main

unknown �u1 depends linearly on �U0
�
s
Hx and

�U0
� Hx � �X1

, whereas the second one with

unknown
�
x
2
is linear in �X1

� Hx. The solutions

take the form
�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��X

ð2Þ
u
ð�yÞ : ð�U0

�
s
HÞ

þ
��
Xð2Þ

e
ð�yÞ : ð�U0

� H� �X1
ÞÞ þ . . . ;

�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ���X

ð2Þ
k
ð�yÞ

..

.
ð�X1
� HÞÞ þ . . .

ð41Þ

where concentration tensors ��X
ð2Þ
u
; ��X
ð2Þ
e

and
���
Xð2Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

� H� �X1
and �X1

� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by

�S0
¼ <

��
að0Þ : ð

��
1þ Hy�

s

��X
ð2Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
að0Þ : ðHy�

s

��X
ð2Þ
e
Þ> : ð�U0

� H� �X1
Þ

�S0 ¼ <�s0> ¼ <
��
bð0Þ : ðHy � ��X

ð2Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ : ðHy � ��X

ð2Þ
u
Þ> : ð�U0

� H� �X1
Þ

��M0
¼ <��m0

> ¼ <���
cð2Þ..

.�
���
1þ Hy � ���X

ð2Þ
k


>..
.
�X1
� H

None of these tensors vanishes in general,

which means that the effective medium is a full
micromorphic continuum governed by the bal-

ance equations (27).
Homogenization Scheme HS3

In the case HS3, the equations describing the

local behavior are
�s
e ¼

��
að0Þ
�
�y
�
: �«

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e

��m
e ¼ e2���

csð1Þ
�
�y
�...��kse þ ���c

sð2Þ�
�y
�
��k
ae

ð42Þ

At the order e�1, one gets
��
að0Þ : �«�1 ¼

0;
��
bð0Þ : �e�1 ¼ 0;

���
cað2Þ..

.
��k
a

�1
¼ 0.

This implies that the gradients of �u0 and
�
x0

1
with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; ��

xa

1
ð�x; �yÞ ¼ �X

a
1
ð�xÞ ð43Þ

The fields ð�u1; �x
s

1
;
�
xa

2
;
�
xa

3
; �s0

; �s0; ��m0
; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:

�e0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0�U0

� Hx

þ �u1 � Hy � �X
a
1
�
�
xs

1

��k
s

�1
¼
�
xs

1
� Hy; ��k

s

�1
¼ �X

a
1
� Hx�

xa

2
� Hy

��k
a

1
¼
�
xa

3
� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

��m0
¼
���
cað2Þ..

.
��k
a

0
; ��m1

¼
���
csð1Þ..

.
�k
s
�1 þ ���

csð2Þ..
.
�k
a
1

ð�s0
þ �s0Þ � Hy ¼ 0; ��m0

� Hy ¼ 0;

��m0
� Hx þ ��m1

� Hy þ �s0 ¼ 0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
This complex problem can be seen to depend

linearly on

�U0
�
s
H; �U0

�
a
��X

a
1
and �X

a
1
� H. The solutions

take the form

�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��X

ð3Þ
u

�
�y
�
:

ð�U0
�
s
Hþ ��X

ð3Þ
e

�
�y
�
: �U0
�
a
H� �X

a
1
ÞÞ þ . . .

ð44Þ
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�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ���X

ð3Þ
k
ð�yÞ..

.
�X

a
1
� HÞÞ þ . . .
ð45Þ

where concentration tensors ��X
ð3Þ
u
; ��X
ð3Þ
e

and ��X
ð3Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

�
a
H� �X

a
1

and �X
a
1
� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by
�S0
¼<

��
að0Þ : ð

��
1Hx�

s

��
Xð3Þ

u
Þ> : ð�U0

�
s
HÞ þ<

��
að0Þ :

ðHx�
s

��
Xð3Þ
u
Þ> : ð�U0

�
a
H� �X

a
1
Þ

�S0 ¼<�s0> ¼ <
��
bð0Þ : ðHx � ��X

ð3Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ : ðHx � ��X

ð3Þ
e
Þ> : ð�U0

�
a
H� �X

a
1
Þ

��
M

0
¼<��

m
0
> ¼ <���

cað2Þ..
.
ð
��
1Hy�

s

��
Xð3Þ

k
Þ>..

.
�X

a
1
� H

They must fulfill the balance equations (27).

Note that ��m0
and therefore ��M0

are skew symmet-

ric with respect to their first two indices. The

averaged equation of balance of moment of

momentum implies that �S0 is symmetric. The

macroscopic degrees of freedom are the displace-

ment field �U0
and the symmetric strain tensor �X

a
1
.

The found balance and constitutive equations are

therefore that of a Cosserat effective medium.

The more classical form of the Cosserat theory

is retrieved once one rewrites the previous equa-

tions using the axial vector associated to the

skew–symmetric tensor �X
a [6].
Homogenization Scheme HS4

In the last considered case, the equations describ-

ing the local behavior are

�s
e ¼

��
að0Þ
�
�y
�
: �e

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e;

��m
e ¼

���
csð2Þ

�
�y
�...��kae

ð46Þ
At the order e�1, one gets
��
að0Þ : �e�1 ¼ 0;

��
bð0Þ : �e�1 ¼ 0;

���
csð2Þ..

.
��k
s

�1
¼ 0

This implies that the gradients of �u0 and
�
xs

1
with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; �

xs

1
ð�x; �yÞ ¼ �X

s
1
ð�xÞ ð47Þ

The fields ð�u1; �x
a

1
;
�
xs

2
;
�
xs

3
; �s0

; �s0; ��m0
; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:
�e0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0 ¼ �U0

� Hx

þ �u1 � Hy � �X
s
1
�
�
xa

1

��k
a

�1
¼
�
xa

1
� Hy; ��k

s

0
¼ �X

s
1
� Hx þ �x

s

2
� Hy; ��k

a

�1

¼
�
xs

2
� Hx þ �x

s

3
� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

��m0
¼
���
csð2Þ..

.
��k
s

0
; ��m1

¼
���
cað1Þ..

.
�k
a
�1 þ ���

csð2Þ�k
s
1

ð�s0
þ �s0Þ � Hy ¼ 0; ��

m
0
� Hy ¼ 0; ��

m
0
� Hx

þ ��m1
� Hy þ �s0 ¼ 0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
This complex problem can be seen to depend

linearly on �U0
�
s
H; �U0

�
s
H� �X

s
1
and �X

s
1
� H.

The solutions take the form
�u
e
�U0
ð�xÞ þ eð�U1

ð�xÞ��X
ð4Þ
u
ð�yÞ : ð�U1

�
s
HÞ

þ ��X
ð4Þ
e

: ð�U1
�
s
H� �X

s
1
ÞÞ þ . . .

�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ��X

ð4Þ
k
ð
�
yÞ..
.
ð�X

s
1
� HÞÞ þ . . .

where concentration tensors ��X
ð4Þ
u
; ��X
ð4Þ
e

and ��X
ð4Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

�
s
H� �X

s
1

and �X
s
1
� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by



Asymptotic Analysis of Heterogeneous
Micromorphic Elastic Solids, Table 1 Homogeniza-

tion of heterogeneous micromorphic media: nature of the

homogeneous equivalent medium depending on the values

of the intrinsic lengths of the constituents

Homogenization

scheme

Characteristic

lengths

Effective

medium

HS1 ls � l; la � l Cauchy

HS2 ls � L; la � L Micromorphic

HS3 ls � l; la � L Cosserat

HS4 ls � L; la � l Microstrain
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�S0
¼<

��
að0Þ : ð

��
1þ Hx�

s

��
Xð4Þ

u
Þ> : ð�U0

�
s
HÞ

þ<
��
að0Þ : ðHy�

s

��
Xð4Þ
e
Þ> : ð�U0

�
s
H� �X

s
1
Þ

�S0 ¼<�s0> ¼ <
��
bð0Þ : ðHy�

s

��X
ð4Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ> : ð�U0

�
s
H� �X

s
1
Þ

��
M

0
¼<��

m
0
> ¼ <���

csð2Þ..
.
ð
��
1þ Hy � ��X

ð4Þ
k
Þ>..

.
ð�X

s
1
� HÞ

They must fulfill the balance equations (27).

Note that ��m0
and therefore ��M0

are

symmetric with respect to their first two indi-

ces. The averaged equation of balance of moment

of momentum implies that �S0 ¼ �<��m0
> � H is

symmetric. The macroscopic degrees of freedom

are the displacement field �U0
and the symmetric

strain tensor �X
s
1
.

Such a continuum is called a microstrain

medium [8].

As a conclusion, depending on the relative con-

tributions of the various intrinsic length scales of

the micromorphic continuum, different effective

media are obtained, as summarized in Table 1. The

effective medium can be of micromorphic,

microstrain, Cosserat, or Cauchy type. A similar

situation is found in the case of the homogeniza-

tion of heterogeneous Cosserat media. Depending

on the ratio between the Cosserat characteristic

length la and the sizes l; L, the effective medium

will be a Cauchy continuum with body couples or

a full Cosserat continuum [9].
Applications

The approach is applied to two important classes

of materials, namely, composite and polycrystal-

line materials. The auxiliary problems evidenced

in the previous homogenization method are

solved by means of the finite element method

with well-suited boundary conditions.
Fiber or Particle Composites

The reinforcement induced by fibers and particles

embedded in a matrix material depends on their
volume fraction and arrangement but also on

their size compared to the characteristic size

of the microstructure elements of the matrix.

The former effect is satisfactorily accounted

for by standard homogenization methods. The

latter can be described by considering that

both the matrix and inclusions are Cosserat

materials having different intrinsic length la.
The effective properties of such a composite

are found by solving auxiliary problems of the

unit cell. The unit cell corresponding to a square

arrangement of fibers with a volume fraction of

0.4 is shown in Fig. 1. According to scheme

HS3, the displacement microrotation fields

are searched for in the following form in the

unit cell:
�u
�
�y
�
¼ �E � �yþ �v

�
�y
�

�x
a
�
�y
�
¼ ��K � �yþ �j

a
�
�y
�

The fluctuation displacement �v and the skew–

symmetric microrotation fluctuation �j
a are

periodic. The macroscopic deformation �E and

curvature ��K are prescribed to the unit cell. The

computation of the mean elastic energy contained

in the deformed unit cell is used to identify the

microscopic elastic moduli. According to Hill–

Mandel’s lemma that can be derived from the

previous homogenization procedure, the macro-

scopic strain energy is the mean value of the local

one over the volume element:
�S : �Eþ ��M
..
.
��M ¼ <�s : �eþ ��m

..

.
��k> ð48Þ
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Heterogeneous
Micromorphic Elastic
Solids, Fig. 1 Solution of

the auxiliary problem in the

homogenization of

Cosserat fiber composites:

unit cell of the composite

material (top right), simple

shear (top right), mean

relative rotation (bottom
left), and mean curvature

(bottom right), under plane
strain conditions
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Figure 1 shows how mean shear, relative rota-

tion, and curvature can be applied successively to

a unit cell.
Polycrystalline Materials

The previous homogenization method can be

extended, at least in a heuristic way, to nonlinear

micromorphic constitutive equations in order to

predict size effects in the plasticity of polycrys-

tals. The reader is referred to [5] for a detailed

presentation of such models and a more complete

description of polycrystal homogenization. The

computation of polycrystalline aggregates based

on standard crystal plasticity models follows

the rule of classical homogenization theory in

the sense that a mean strain is prescribed to

a volume element of polycrystalline materials
using suitable boundary conditions like strain-

based, stress-based, or periodic ones. The struc-

ture of the boundary value problem is modified if

a generalized continuum approach is used inside

the considered volume element. The grain bound-

ary conditions represent an important new feature

of the theory. At any interface of a micromorphic

continuum, there may exist some jump condi-

tions for the degrees of freedom of the theory

and the associated reactions, namely, the simple

and double tractions. As a first approximation,

however, the displacement vector and the

microdeformation tensor can be assumed to be

continuous at grain boundaries. As a result, the

simple and double tractions also are continuous.

The continuity of microdeformation is a new

grain boundary condition that does not exist in

classical crystal plasticity. It will generate bound-

ary layers at grain boundaries which are essential
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for the observed size effects [5, 10]. In that way,

material parameters of the micromorphic model

can be identified in order to quantitatively

describe the well-known Hall–Petch relationship

which is a direct correspondence between

the overall stress and the grain size at a given

plastic strain.
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Synonyms

Decay rate; Longtime behavior in

thermoelasticity
Overview

We are interested to study the longtime behavior

for a linear one-dimensional thermoelastic sys-

tem where the hyperbolic elastic system is joined

with the parabolic heat equation. By some results

in semigroup theory, we prove the exponential

decay of the solutions related to the associated

initial boundary value problem. For a detailed

study in more general cases, some references

are given at the end of this section.
A Simple Model in Thermoelasticity

The One-Dimensional Linear Thermoelastic

System

For T > 0, we consider the following one-

dimensional linear thermoelastic system:
utt � a uxx þ g yx ¼ 0 in ð0; ‘Þ � ð0; TÞ ð1Þ

yt � k yxx þ g uxt ¼ 0 in ð0; ‘Þ � ð0; TÞ ð2Þ

supplemented with initial conditions

http://dx.doi.org/10.1007/978-94-007-2739-7_100138
http://dx.doi.org/10.1007/978-94-007-2739-7_100397
http://dx.doi.org/10.1007/978-94-007-2739-7_100397
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