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Abstract

An extensive experimental programme and detailed mechanical analysis were performed to test and model
the statistical response of metallic foams under complex loading conditions. Tensile tests were performed
on more than 80 specimens of closed-cell aluminium foams with four di%erent specimen sizes. These test
results show a large scatter and a signi7cant size e%ect especially on standard deviation. The average fracture
stress and, more signi7cantly, the corresponding scatter decrease for increasing volume sizes. An attempt is
made to use the Weibull statistical analysis to interpret these variations. A Weibull modulus close to 8 is
found. Compression tests were also carried out. Both mean fracture stress in tension and mean peak stress in
compression and the corresponding dispersions are correctly described by a single set of Weibull parameters.
The statistical model is extended to multi-axial loading conditions by introducing an e%ective stress measure
involving both the deviatoric part of the stress tensor and its trace. One additional parameter is identi7ed
using the average shear yield stress obtained from pure shear tests and torsion tests on solid bars. It is
shown that the model is able to predict the dispersion found for the shear strength. Two types of combined
tension/compression–torsion loading conditions were then tested experimentally. The non-proportional loading
path consists of a tension test followed by torsion, keeping the axial stress constant. In the proportional
loading path, shear and axial stress follow a straight line in the stress space. The corresponding surface of
average yield/fracture stress is found to be symmetric. The experimental results are in good agreement with
the predictions of the statistical model. The model predicts a bell-shaped surface for the 7rst loading path
and a quasi-elliptic one for the proportional one. The scatter found in the description of this surface is also
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accounted for accurately by the model. A brief discussion of an extension of Beremin’s micromechanical
model to the statistical failure of brittle foams is presented.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, processing techniques for aluminium foams have been improved. These materials are be-
coming available for use in applications such as lightweight energy absorption devices for automotive
industry (see e.g. Refs. [1,2]). The mechanical properties of these foams are now well-understood
and design tools are available to include these materials in structural components [3,4]. However,
successful industrial applications require not only a precise assessment of their average properties
under complex loading conditions, but also of the corresponding scatter usually associated with
these properties. The experimental determination and the modelling of mean material response and
its dispersion under uni- and multi-axial loading are the main objectives of the present work.

The compressive behaviour of aluminium foams has been the subject of thorough investigations
because of their encouraging energy dissipation capability [5]. Foam crushing proceeds through the
formation, multiplication and propagation of strain localisation bands throughout the specimen [6,7].
In tension, aluminium foams usually exhibit a brittle behaviour. Tensile loading is also important in
practice because structures may be submitted to bending and the resulting brittle tensile behaviour
is a severe limitation for further energy absorption. However, studies of the tensile behaviour of
metal foams remain scarce (see e.g. Refs. [5,8]). They are usually limited to a small number of
samples, which does not allow a precise statistical analysis of the brittle behaviour. Note also that
the compressive deformation of aluminium foam is not a purely ductile process but, instead, fracture
takes place very early inside localised bands [6]. In the present work, it is con7rmed that the
deformation and fracture behaviour of metallic foams is a combination of local brittle behaviour and
plastic yielding e%ects. In the paper the distinction between yielding and fracture will not be made
except otherwise stated.

Experimental data for the multi-axial yielding of metallic foams are also very limited. The main
contributions can be found in Refs. [9–11]. Typically, axisymmetric tests are performed on open- and
closed-cell aluminium foams under combined axial and radial compression, on the one hand, and for
a variety of biaxial, shear and axisymmetric loadings, on the other hand. Because of experimental
scatter, these studies show that it remains diJcult to establish the shape of the yield surfaces, at
least concerning the initial yield surface. These data were obtained mainly with a compressive regime
(except in Refs. [12] for polymeric foam) and results for multi-axial situations with superimposed
tensile axial stress are still scarce. In the present work, the case of combined tension/compression–
torsion loading is addressed, which makes it possible to study the symmetry properties of the initial
yield/fracture surface. In the tensile mode, linear fracture mechanical concepts have been applied to
notched specimens or other foams structures [13].

The scatter in most of the measured properties can be associated with the inevitable presence of
defects in aluminium foams due to the material processing itself, e.g. the strongly non-homogeneous
distribution of cell sizes. The e%ect of geometrical defects on the elastic and plastic properties of
foams has been described by several authors [8,14]. These authors report that the localised yielding is
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believed to result from local inhomogeneities such as variations in density, cell shape, cell orientation
and cell wall curvature. However, these authors did not relate the statistical distribution of defect
size to the dispersion of the measured properties nor to a possible size e%ect which can be evidenced
using specimens of di%erent sizes. The size e%ects reported in literature are rather related to edge
e%ects [15], to the notch sensitivity or to the inKuence of hole size in foam structures [16,17]. In
Ref. [18], Huang and Gibson related the fracture toughness of brittle open-cell foam with the cell
size and the Weibull modulus of cell wall material. In Ref. [5], McCullough et al. performed a
Weibull analysis of their tensile and compression tests but did not investigate the corresponding
expected size e%ects. In the present work, the problem of the yield strength in compression and
failure strength in tension of foam specimens as a function of specimen volume is investigated.

Widespread applications for aluminium foams require a precise modelling of the scatter for both
uni- and multi-axial loading conditions in order to design components with a given level of con7-
dence. Constitutive models for aluminium foams valid for multi-axial loading are now available for
the initial yield surface but also in some cases for the post-yield behaviour [3,7,11,19–22]. They are
based on the mechanics of porous materials developed for instance for powder metallurgy applica-
tions [23]. However, these models are purely deterministic and cannot account for the systematic
scatter observed for aluminium foams in spite of continuing process and metallurgy improvement.
The statistical aspect must also be incorporated in the multi-axial model to allow reliability assess-
ments for structural applications.

The paper is organised as follows. After this 7rst introductory section, Section 2 describes the
microstructure of the investigated foams and the experimental mechanical testing procedures. The
results of tensile tests on more than 80 specimens of four di%erent specimen sizes are reported in
the third section. Compression, shear, torsion and combined tension/compression–torsion tests have
been performed and are described also in Section 3. Section 4 provides a statistical model of the
tensile and compression tests accounting for the observed size e%ects. The model is then extended to
shear/torsion loading conditions, and 7nally used to predict the mean response and dispersion under
multi-axial loading. The predictions are then compared with experimental results for two types of
loading conditions. The non-proportional loading path corresponds to an initial tension or compression
loading followed by a torsion loading, keeping the axial load constant. For the proportional loading
path, torque and axial force are applied simultaneously and follow a straight line in the torque/force
space. Finally a simple micromechanical model providing the fracture statistics of brittle foams from
the knowledge of the cell size distribution is presented.

Regarding notation, the statistical mean value of a physical property Z is denoted by LZ and its
variance by D2

Z . The standard deviation is then DZ . In all 7gures, the chosen convention is that the
plotted intervals of con7dence are the interval [ LZ −D; LZ +D] for the investigated property Z . For a
background on Weibull statistics, the reader is referred to a number of studies [24–26].

2. Experimental procedures

2.1. Material: composition and microstructure

Flat plates of stabilised aluminium foam of nominal density 0:26 g=cm3 were supplied by Hydro
Aluminium. The plates were of dimension 2500 mm×700 mm×90 mm. They consisted of two skins
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Fig. 1. (a) Cell wall microstructure (SEM micrograph), (b) Zoom on SiC particle (labelled 1) and the three main phases
using microprobe analysis: matrix (labelled 2), Al–Si phase (labelled 3), intermetallic phase (labelled 4).

Table 1
Chemical composition of the three main phases of the aluminium alloy (wt%)

Matrix Al–Si phase Intermetallic phase

Al 95.49 28.74 35.77
Si 0.66 61.99 19.98
Cu 2.09 5.89 10.89
Mg 0.41 0.64 3.28
Fe 0.43 0.25 18.29
Ni 0.03 0.02 0.81
C 0 0.96 0
O 0.92 1.49 1.06

with a foam core. As a result of the manufacturing process, the upper skin was thinner (0:5 mm
approximately) than the lower one (1 mm). The global composition was: Si = 14:88, Fe = 2:82,
Cu = 2:16, Ni = 0:6, Al = balance (in wt%).

In order to limit cell wall damage, each sample for microstructural observations was cut using
electro-discharge machining. The specimens were in7ltrated in vacuum by a low viscosity resin, as
described in Ref. [27]. After being polished and nickel coated, the specimens were observed using a
scanning electron microscope (SEM). The local composition was determined using energy dispersive
X-ray spectroscopy (EDS). The SiC particules used in the process are retrieved and are labelled 1
in Fig. 1. The size of these particules is between 10 and 30 �m. They are preferentially found in the
cell walls and are more seldom at the triple junctions. In addition to this network of SiC inclusions,
three main phases were identi7ed as shown in Fig. 1. The cell wall is made of an Al–Cu–Si–Mg
phase (labelled 2 in Fig. 1), and an intermetallic phase Al–Ni–Fe–Si (labelled 3 in Fig. 1) and an
Al–Si phase (labelled 4 in Fig. 1). The intermetallic phase is present in a secondary dendritic form,
mainly at the triple junctions. The compositions of the three main phases are given in Table 1.

Three-dimensional X-ray tomography has been used to measure the distribution of cell size of
aluminium foams (see e.g. Refs. [28,29]). This technique was applied by Benouali and Froyen
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Fig. 2. Density variation of all tested specimens as a function of specimen diameter.

(KU Leuven) to our foam. The mean cell size was found to be 1:5 mm. The size of the biggest
cells is about 9 mm. The size of the cell is de7ned as the diameter of a disk of the same area.

2.2. Mechanical testing

All foam specimens were characterised in terms of their density and visible cell morphology. Cube
and cylinder specimens of di%erent sizes were used. The density was measured using an electronic
balance and measurement of dimensions using electronic calipers. The density varies from 245 to
260 kg=m3 (Fig. 2). The density of the samples extracted from the same foam plate exhibits a slight
scatter. The dispersion depends on the location in the foam plate from which each specimen was
extracted. Thus, for cylindrical specimens, the samples with the largest diameter (65 mm) display
the highest density. This e%ect can be related to the density gradient from the skin to the core of
the foam plate, as described in Ref. [30]. The largest cylindrical specimens called T1 and T2 in
Table 2 (?65 mm) are extracted closer to the skin region. This explains the slightly higher mean
density of the larger specimens.

2.2.1. Compression tests
Cube specimens of dimensions 80 mm × 80 mm × 80 mm were sawn from the core of the foam

plate in order to reduce the skin e%ect. The specimen were manufactured with special care in
order to obtain the two opposite face as parallel as possible. The specimens were inserted between
two parallel steel platens of a servo-hydraulic testing machine. The platens were lubricated with
boron nitride-based spray. The tensile machine was equipped with a 100 kN load cell and the tests
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Table 2
List of the di%erent types of cylindrical tensile specimens investigated in this work

Sample Number of samples Length (mm) Diameter (mm) Volume (cm3)

T1 27 180 65 V1 = 597
T2 24 150 65 V2 = 497 � V1=1:2
T3 21 150 50 V3 = 294 � V1=2
T4 16 150 36 V4 = 152 � V1=4

were carried out using displacement control with a cross-head speed of 0:5 mm s−1. Three di%erent
directions with respect to the foam plate were tested in order to characterise the anisotropy.

2.2.2. Tensile tests
Tensile specimens were extracted from the Kat plates along the longitudinal direction using a

drilling machine. This machining device avoids geometrical Kuctuations and gives a reference rev-
olution surface. Then, each specimen is turned to machine both opposite faces. The result is a
cylindrical specimen without major geometrical defect. Afterwards the specimen was glued to a
7xing part which was then connected to the testing machine. The tensile apparatus consists of one
ball-and-socket joint attached to a universal joint on each side of the 7xing part (see Fig. 3a).
Four specimen sizes, labelled T1–T4, were tested (cf. Table 2). The di%erent volume sizes were
determined in order to maximise the range between the biggest one T1 and the smallest one T4.
For the biggest specimen the diameter of the cylinder is limited by the thickness of the foam plate
and the length is limited by the ratio length on diameter to prevent instabilities during testing.
For the smallest specimen, the volume was chosen in order to keep statistical representativity (see
Ref. [31]). Uniaxial tension tests were carried out using an electro-mechanical tensile machine
equipped with a load-cell of 50 kN. The tests were performed under displacement control with
a cross-head speed of 0:1 mm s−1.

2.2.3. Shear and torsion tests
Specimens of dimensions 250 mm × 25 mm × 50 mm for the shear tests were cut from the foam

plate in the longitudinal direction. The test is based on the European standard number ISO 1922–1981
(F) for organic materials. This test is comparable to the ASTM C-273 test method recommended in
Ref. [4]. The sample was glued to two 7xing devices attached to a tensile machine (see Fig. 3c).
The shear load is applied by the longitudinal displacement of two stainless-steel plates. Because of
the low force level, we assume that the two plates remain parallel during the test. This hypothesis
is supported by FE computations.

In addition to these shear tests, torsion tests were carried out on cylindrical T2 specimens identical
to those used for tensile tests. The 7xing device is di%erent since it must provide alignment between
the sample and the tension–torsion machine axis and allow torque and axial force transmission
(see Fig. 3b). The alignment between the sample and the machine’s axis is checked using two dial
gauges with a tolerance of 0:1 mm. The torsion tests were performed using a tension–torsion machine
equipped with a 50 kN load-cell and a 1:2 kN m torque-cell. The tests were conducted using angle
control with an angular speed of 0:1◦ s−1.
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Fig. 3. Experimental apparatus: (a) specimen assembly and tensile setup, (b) modi7cation of the tensile setup to perform
tension–compression/torsion tests, (c) simple shear test setup.

2.2.4. Combined tension/compression–torsion tests
For these biaxial tests, the same T2-type specimens as those used for the tensile and torsion tests

were tested. The 7xing device and the tension–torsion machine were the same as those used for the
torsion test. According to the type of loading path, the test can be performed using axial force control,
torque control or both. Two types of loading paths were investigated (see Fig. 4): a non-proportional
loading path (labelled 1 in Fig. 4) with axial force control and a proportional loading path (labelled
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Fig. 4. Investigated loading paths for tension/torsion tests: non-proportional loading (number 1, tension followed by
torsion), proportional loading (number 2).

2 in Fig. 4) with axial force control and torque control. For the non-proportional loading tests, axial
force is prescribed 7rst up to a given force and then an increasing torsion angle is applied, keeping
the axial force constant. For the proportional tests, tension or compression and torsion are applied
simultaneously and follow a straight line with a given slope in the torque/force space.

3. Experimental results

The detailed results for all tests are reported in Table 3. The main features for each type of test
are described below.

3.1. Uni-axial tests

3.1.1. Compression
Typical compressive stress–strain curves using cube specimen geometry are shown for three load-

ing directions (see Fig. 5). The curves display an initial peak stress followed by a plateau with slight
apparent hardening. The 7nal stage of the curve corresponds to material densi7cation. The observed
anisotropy e%ect of the compressive behaviour is rather small. This is consistent with other results
published in the literature (see e.g. Refs. [8,30]). The plateau region shows minor oscillations which
are typically associated with local failure of cell rows. The plateau region corresponds to the forma-
tion of localisation bands that multiply or propagate over the entire sample [6,7,32]. The fact that
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Table 3
Experimental values for the initial (fracture/yield) stress measured in tension, compression, torsion and combined tension
–compression/torsion tests

Tensile tests Compression tests, Torsion Tension–compression/torsion tests, T2
cuboid specimens tests, T2

T1 T2 T3 T4 Non-proportional, axial stress (MPa) Proportional, slope (deg)

−2 1 2 45 135

1.93 1.91 1.70 2.22 −2.16 1.48 0.55 1.2 0.55 1.15 1.29
1.96 1.93 1.86 2.93 −2.41 1.68 0.94 1.42 0.82 1.35 1.45
2.01 1.94 1.87 2.75 −2.53 1.73 0.98 1.53 1.17 1.49 1.68
2.14 2.16 2.12 3.72 −2.59 1.87 1.28 1.82 1.35 1.6 1.78
2.32 2.19 2.18 2.89 −2.68 1.92 1.66 1.92 1.65 1.7
2.33 2.19 2.37 2.42 −2.89 2.08 1.68 2 1.9
2.34 2.23 2.37 1.89 −2.92 2.2
2.34 2.25 2.49 2.79
2.35 2.26 2.50 2.22
2.43 2.35 2.51 4.33
2.48 2.38 2.5 2.77
2.54 2.47 2.56 2.80
2.54 2.48 2.58 2.84
2.62 2.55 2.60 2.98
2.63 2.56 2.64 2.99
2.63 2.59 2.78 2.93
2.68 2.69 2.80
2.68 2.80 2.81
2.76 3.03 2.82
2.78 3.06 2.82
2.80 3.06 2.94
2.85 2.98
2.87 3.22
2.91 3.28
3.01
3.07
3.12

All values are given in MPa.

the deformation bands are associated with local brittle failure has been checked with an interrupted
compressive test. After a compressive strain of 6%, the specimen is unloaded and loaded again in
tension. It is found that the material does not oppose measurable resistance in tension any more.
This is the reason why in this paper no distinction is made between “yielding” e%ects observed un-
der predominantly compressive conditions and brittle fracture e%ects observed under predominantly
tensile loading condition.

On the curves shown in Fig. 5, the stress is the force divided by the initial section, and the
strain is the thickness variation of the specimen divided by the initial thickness. The denominations
stress and strain do not take into account the heterogeneity of deformation of the specimen. The
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Fig. 5. Compression stress–strain curves (cube specimen geometry).

yield/fracture stress in compression is de7ned at the 7rst peak observed on the stress–strain curves
for the cube specimens compressed between two Kat plates. The results of yield strength measured
in compression are given in Table 3. These results give a mean yield strength of 2:6 MPa.

3.1.2. Tension
A typical tensile stress–strain curve is presented in Fig. 6. The initial horizontal tangent is as-

sociated with the alignment and the gap of the tensile apparatus. It is followed by a linear elastic
regime. The 7nal stage of the curve corresponds to brittle fracture. Fracture occurs generally far
from the grips and the orientation of the fracture surface is perpendicular to the tensile axis. The
fracture strength in tension was taken as the maximum stress sustained by the specimen. Fracture
strengths in tension show a signi7cant scatter which is reported in Table 4. The results are also
plotted in Fig. 7. The average and dispersion are found to depend on the volume of the tested spec-
imens: they decrease with increasing specimen size. The size e%ect is less signi7cant on the mean
fracture strength than on the standard deviation but does exist. The precision c of the estimation of
mean fracture strength is given by c=D�=

√
n where n is the number of samples tested for a given

volume. It can be checked from Table 4 that this precision is suJcient to ensure that the mean
fracture strength actually decreases from T4 to T1. For an increase of volume size by a factor of
4 the mean fracture strength is reduced by about 15% whereas the dispersion is almost divided by
2. It should also be noted that the mean tensile strength is close to the yield strength measured in
compression.

Observations of the fracture surface show that brittle fracture initiates mainly around big cells.
SiC particles are present along the crack path of the cell walls (Fig. 8, see also Ref. [27]).
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Table 4
Experimental and predicted mean tensile strength and corresponding dispersion for all tensile tests

Specimen Tensile tests

Mean stress (MPa) Standard deviation (MPa)

Experimental Weibull’s prediction Experimental Weibull’s prediction

T1 2.56 2.41 0.33 0.35
T2 2.43 2.47 0.35 0.36
T3 2.56 2.63 0.40 0.38
T4 2.84 2.85 0.57 0.41

3.1.3. Shear and torsion
A typical shear stress–strain curve is presented in Fig. 9 where a mainly brittle behaviour is

observed. In these tests, a crack initiates in the core of the sample and propagates parallel to the
load axis along one-third of the sample length and then deviates to the joint between the foam and
the shear grips. Only four tests were carried out leading to the following values for the maximum
shear stress: 1.7, 1.75, 1.9 and 2:0 MPa.
Typical torsion torque/angle curves are given in Fig. 10. The plotted shear stress is 2M=�R3 where

M is the prescribed torque and R the radius of the specimen. The plotted shear strain is 
 = R�=L
where L is the length of the specimen and � is the measured angle. The plot shows a short elastic
domain and then two regions of apparent hardening. The shear strength is de7ned as the limit of the
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Fig. 8. SEM fracture surface observations: (a) fractography of a cell wall; (b) longitudinal section of a nickel-coated and
polished cell wall showing preferential crack propagation along SiC particules.

linear elastic regime and is indicated by an arrow in Figs. 9 and 10. Because of the full cylindrical
shape of the specimens, torsion loading results in non-homogeneous deformation from the centre to
the outer surface. A crack initiates at the outer surface within the gauge length. Once a cell wall
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fails, a stress redistribution causes the stress to reach the failure level for neighbouring cell walls.
This process is repeated until 7nal fracture takes place. Cracks initiate at several sites but only one of
them propagates to cause 7nal failure. The two hardening stages are diJcult to explain but may be
associated with di%erent cell size populations. The obtained mean value for the shear stress and the
corresponding standard deviation are 1.85 and 0:24 MPa, respectively. Note that the shear strengths
obtained for these torsion tests are consistent with those obtained for shear tests. The fracture surface
is generally a spiral at an angle of about 45◦ with respect to the specimen axis (Fig. 10b).

3.2. Multi-axial tests

The results for the multi-axial tests are given in Tables 3 and 5. Typical tension/compression–
torsion tests are presented in Figs. 11 and 12 in the case of non-proportional loading. In this case,
the axial load is applied and maintained constant during subsequent torsion. Both cases of positive
and negative axial forces have been tested. In these tests, the critical shear strength �0 is de7ned as
in the torsion case. In Figs. 11 and 12, the position on the shear stress–strain curve where the critical
shear stress was determined is also indicated by an arrow. The fracture surfaces of the samples are
also shown in Figs. 11 and 12. For low positive values of the axial stress, the shape of the shear
stress vs. torsion angle curve is similar to the torsion curve with the elastic phase followed by two
hardening zones (Fig. 10). However, as the axial stress increases, the two hardening zones become
less pronounced and the fracture surface becomes more and more horizontal as in the pure tension
case.

For the proportional loading path, the axial force and torque are applied simultaneously and fol-
low a straight line with a given slope in the torque/force space. The results show also a signi7cant
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Fig. 10. (a) Stress–Strain curve for a specimen in torsion. (b) Corresponding fracture surface of the specimen (specimen
diameter: 65 mm).

scatter but, for a given slope � = 45◦ (tension–torsion) or � = 135◦ (compression–torsion, see the
de7nition of the angle � in Fig. 4), the mean fracture/yield stresses are comparable. At this stage,
the comparison between the two di%erent paths cannot be done without introducing an equivalent
stress.
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Table 5
Experimental and predicted mean yield e%ective stress and corresponding dispersion for non-proportional and proportional
multi-axial loading conditions

Non-proportional loading

Axial stress Mean shear stress �0|�0 (MPa) Shear stress standard deviation D�|�0 (MPa)

�0 (MPa) Experimental Weibull’s prediction Experimental Weibull’s prediction

−2 1.18 1.19 0.44 0.51
0 1.85 1.85 0.24 0.27
1 1.65 1.71 0.31 0.30
2 1.11 1.19 0.43 0.51

Proportional loading

� (deg) Mean yield stress Lk (MPa) Yield stress standard deviation Dk (MPa)

Experimental Weibull’s prediction Experimental Weibull’s prediction

45 1.53 1.51 0.26 0.22
135 −1.55 −1.51 0.22 0.22

4. Discussion and modelling

The discussion of the previous results is focused on the interpretation and modelling of the response
of the aluminium foam under uni- and multi-axial loading. A model is introduced to account for
the size e%ect and the scatter observed in test results. This model must be able to predict the mean
response and the dispersion for each loading condition. Accordingly, a statistical model is developed
in the 7rst subsection to account for the size e%ect observed in tension tests. Then it is shown that
the model can be extended to shear/torsion and multiaxial loading, thus providing an interpretation
of the scatter observed for all loading conditions. Finally, a tentative micromechanical model taking
into account brittle fracture of larger cells in foams is proposed.

4.1. Statistical analysis and size e>ect for uni-axial loading conditions

The fracture stress of the 88 tested tensile specimens are ranked in increasing stress order (see
Table 3). The cumulative probability of failure for a given applied stress corresponding to the rank
i can then be estimated as

PRi =
i

N + 1
; (1)

where N is the total number of samples tested. Two laws of probability have been tested to de-
scribe the experimental results: normal and Weibull distributions. The best agreement concerning
mean values and scatter was obtained with the Weibull distribution as shown in Fig. 13 for all
volumes. The cumulative probability of failure at a tensile stress � for a Weibull distribution is
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Fig. 11. (a) Stress–strain curve for a non-proportional compression–torsion test. (b) Corresponding fracture surface of the
specimen (specimen diameter: 65 mm) after separation.

given by

PR = 1 −F(�) = 1 − exp
[
− V
V0

(
�
�u

)m]
; (2)

where V is the volume of the sample, V0 is a reference volume, �u is the scale factor and m is
Weibull’s modulus [24,26]. F is the probability distribution function. The parameters �u and m were
identi7ed taking all tensile data into account, i.e. the results obtained for the four considered volumes.
The reference volume V0, regarded as the typical size of a statistically representative volume element
of material, was taken equal to 100 cm3. The values obtained for the Weibull parameters from the
tensile tests are then

m= 8 and �u = 3:21 MPa: (3)
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Fig. 12. (a) Stress–strain curve for a non-proportional tension–torsion test. (b) Corresponding fracture surface of the
specimen (specimen diameter: 65 mm).

In Fig. 7, the experimental mean fracture stress seems to saturate at about 2:5 MPa. A threshold
parameter could be introduced in Eq. (2) to represent this saturation e%ect. However, in the absence
of tests on specimens with larger sizes no threshold parameter was introduced.

The value of the Weibull modulus is in the range of those found for engineering ceramics and
far from that corresponding to dense metallic materials which are usually found to be of the order
of 15–20 (see e.g. Ref. [26]). A value of m=10 has been found by McCullough et al. in [5] for a
powder-route aluminium foam. With these parameters, the predicted cumulative failure probabilities
are plotted in Fig. 13 and compared to experimental results for the four specimen volumes. This
comparison can also be made from the results reported in Table 4. In Fig. 13, it is observed that
the experimental distributions are well described. It is worth noting that the same set of Weibull
parameters is used to account for all tested volumes. Very often the parameters are identi7ed for
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Fig. 13. Fracture probability distributions in tension for the specimen sizes T1–T4 (7gures (a) to (d), respectively):
experimental results and prediction according to Weibull’s model.

a single volume, which is not suJcient to prove that Weibull’s law is a well-suited model. Using
Weibull analysis, the expected mean tensile stress L� and standard deviation D2

� depend on the
specimen size as follows:

L� =
�u

(V=V0)1=m
�
(
m+ 1
m

)
; (4)

D2
� =

�2u
(V=V0)2=m

[
�
(
m+ 2
m

)
− �2

(
m+ 1
m

)]
; (5)

where � is the Gamma function. Table 4 displays for each specimen type the experimental and
predicted mean stress and standard deviation. The size e%ect appears clearly since the dispersion and
mean stress to fracture decrease when the specimen volume increases. This predicted behaviour is
in good agreement with the results shown in Fig. 7. However, a weakness of the Weibull statistics
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in the present case is that the ratio L�=D� according to Eqs. (4) and (5) does not depend on the
volume, which is not really observed in the experiments. An improvement of the model concerning
this point is not attempted in the present work since the agreement between experiment and model
remains satisfactory.

In compression, the peak stress also displays a signi7cant scatter and an attempt was made to
apply the Weibull analysis to these compression results. For that purpose, the tensile stress in
Eq. (2) is replaced by the absolute value of the peak stress. For the cube specimens, the mean
7rst peak stress of the tested samples is equal to 2:6 MPa which is slightly higher than the mean
tensile strength for equivalent volume sizes (597 cm3). The identi7cation of a Weibull distribution
for the compressive peak stress leads to the following values:

m= 8:9 and �u = 3:27 MPa: (6)

These values are close to those found for tensile loading. It shows that the failure statistics in tension
and compression are not signi7cantly di%erent. In Ref. [5], McCullough et al. found m = 12 for a
powder–route aluminium foam in compression. This strongly suggests that it is possible to use a
uni7ed statistical model valid for both tension and compression and also for other loading conditions.

4.2. Extension of the Weibull’s analysis to torsion tests

The torsion tests also show a signi7cant scatter (standard deviation 0:24 MPa). For 7xed Weibull
parameters identi7ed from tensile loading, the aim is to check whether the model can be used
to predict the dispersion for other types of loading. In this section, the case of torsion tests is
investigated. The 7rst step is to decide which stress should be used in Eq. (2) in the case of torsion
test. An invariant e%ective stress function �̂ has to be de7ned. This e%ective stress should coincide
with the absolute value of axial stress component in tension and compression. Rankine’s criterion
(maximum normal stress criterion) is a good candidate. However, this criterion is not suitable since
it predicts that the yield stress for torsion test must be equal to the tensile yield stress, which is
not the situation observed here. The mean yield strength in torsion and shear is 1:85 MPa instead of
2:43 MPa in tension. A von Mises equivalent stress can also be considered. This criterion sets the
yield shear stress �0 to �0=

√
3 = 1:42 MPa, which is too low compared to the mean experimental

value. Several authors have shown that an elliptical yield function involving both the stress deviator
and the trace of the stress tensor, can be used to describe the mechanical behaviour of metal and
polymer foams for several types of load ranging from axial compression to hydrostatic compression
[3,7,11,12,21]. The e%ective stress �̂ is then de7ned as

�̂ =
√

3
2 C s∼ : s∼ + F(Trace �∼)

2; (7)

where s∼ is the deviatoric part of the stress tensor �∼. C and F are material parameters that may depend

on the current porosity. In tension and compression, this e%ective stress is equal to
√
C + F |�| where

� is the uni-axial stress component. Accordingly, the e%ective stress coincides with � in tension if

C + F = 1: (8)

This relation is assumed to hold in the sequel. This allows Eq. (2) to be re-written as

PR = 1 −F(�̂) = 1 − exp
[
− V
V0

(
�̂
�u

)m]
: (9)



236 J.-S. Blazy et al. / International Journal of Mechanical Sciences 46 (2004) 217–244

Another diJculty arises in the case of torsion tests performed on solid bars, since the stress 7eld is
not uniform over the sample section. The stress 7eld �(r) is linear in the elastic regime, maximal
at the circumference and zero at the center of the section:

�(r) =
�0
R
r; (10)

where R is the radius of the specimen and �0 is the maximum value of shear stress at the cir-
cumference. As the stress is not uniform through the sample volume, an integral form of Weibull’s
repartition function has to be used in the fracture probability distribution [25,33]

F(�̂) = exp
[
−
∫
V

(
�̂
�u

)m dV
V0

]
= exp

[
−
∫
V

(√
3C�(r)
�u

)m
dV
V0

]
: (11)

The mean shear stress is then computed as

L�=
�u√

3C((2=(m+ 2))(V=V0))1=m
�
(
m+ 1
m

)
: (12)

In Eq. (12), the coeJcient C can be identi7ed from the experimental value of the mean shear strength
keeping the Weibull parameters identi7ed in the tension case. The shear strength of a torsion test
is taken as the maximum stress �0 at the outer surface in the elastic regime. The obtained mean
value is 1:85 MPa. This experimental mean shear strength is directly used to identify the parameter
C. Then Eq. (8) gives the parameter F . Parameter identi7cation gives C = 0:89 and F = 0:11. In
Ref. [11], Deshpande and Fleck found C = 0:7 and F = 0:3 for their elliptical yield surface but in
the case of axisymmetric compression. After the identi7cation, as for the tension case, the prediction
capability of the model can be tested by computing the expected variance of the results

D2
� =

�2u
3C((2=(m+ 2))(V=V0))2=m

[
�
(
m+ 2
m

)
− �2

(
m+ 1
m

)]
: (13)

The prediction is 0:27 MPa. It is in good agreement with the experimental scatter of 0:24 MPa. This
con7rms the ability of the model to account simultaneously for tension, compression and torsion
tests.

4.3. Extension of the statistical analysis to multi-axial loading conditions

The applicability of the above statistical model characterised by a Weibull probability distribution
and the introduction of the e%ective stress �̂ is now assessed in the more complex case of multi-axial
loading. The Weibull parameters are still unchanged (see Eq. (3)) and the coeJcients C and F keep
the values found in the previous section. Both types of multi-axial stress paths 1 and 2 shown in
Fig. 4 are analysed.

4.3.1. Non-proportional loading conditions
In the experimental procedure, the tension/torsion test is carried out by applying the axial stress

7rst, under axial load control, followed by the shear stress using the rotation angle control mode.
Thus, for a given axial stress �0 applied during the 7rst part of the test, the aim is to predict the
mean shear stress and standard deviation using the statistical model. Note that the specimen can break
during the loading along the tension path. In this case, these weakest specimens cannot be used in
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the analysis. This means that a conditional probability must be considered: it is the probability that
the specimen breaks for a shear component �0 provided that it was able to sustain the pre-load �0.
The probability distribution takes now the form

F|�0(�0) = exp
[
−
∫
V

(
�̂
�u

)m dV
V0

]
= exp

[
−
∫
V

(√
3C(�0r=R)2 + F�20

�u

)m
dV
V0

]
: (14)

The density of conditional probability for a 7xed prescribed axial component �0 is then given by
the partial derivative with respect to �0:

f|�0 (�0) =
@
@�0

[F|�0(�0)]: (15)

Thus, for a 7xed amount of axial stress �0, the mean shear stress L� is given by

�0|�0 =
∫ ∞

0
�0f|�0(�0) d�0: (16)

The corresponding shear stress standard deviation is given by

D2
�|�0 =

∫ ∞

0
�20f|�0(�0) d�0 −

[∫ ∞

0
�0f|�0(�0) d�0

]2
: (17)

The values of �0|�0 and D2
�|�0 are computed numerically since no closed-form expression could be

worked out. Table 5 gives the mean shear stress and the shear stress standard deviation for several
values of prescribed axial stress. The predicted curve of mean shear strength and the corresponding
intervals of con7dence are shown in Fig. 14. It is interesting to note that this curve is not elliptical
but is rather bell-shaped. This is due to the fact that it represents a conditional probability distribution
for the speci7c considered non-proportional loading path. For the given example of a tensile loading
of 2 MPa, which is around the mean yield strength in tension, several specimens broke during the
7rst phase of loading. Thus, the 7rst part of the loading path acts as a 7lter on the quality of the
specimen. After this 7rst loading phase, two extreme cases can be encountered. The 7rst one is the
case of specimens which were about to fail during the tensile loading and then will not oppose a
great resistance to torsion. The second one is the case of specimens that were also able to pass
through the 7rst tensile loading phase but are among those with low defect density and then will
be able to oppose a great resistance to torsion. This 7ltering e%ect on the quality of the specimens
explains the evolution of the mean standard deviation vs. the axial stress and in particular the
existence of the largest dispersion when the applied axial stress is close to the mean axial strength.
It can be noticed that a very good agreement is reached between experiment and modelling in the
tension/torsion domain as well as in the compression/torsion one.

4.3.2. Proportional loading conditions
It is also possible to calculate the mean stress and the standard dispersion along a proportional

loading path. This path is described by

� = k cos �;

�= k sin �;

�̂ = k
√

3C sin2 �+ cos2 �; (18)
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Fig. 14. Statistical yield criterion for non-proportional loading path 1: axial tension followed by torsion. Mean yield shear
stress for prescribed axial stress and corresponding interval of con7dence.

where � is an angle characterising the linear loading path in the (�; �) plane, and k varies from 0
to the fracture stress. The probability distribution takes then the form

F(k) = exp

[
−
∫
V

(√
3C�2 + �2

�u

)m
dV
V0

]

=exp
[
− V
V0�mu 3C(m=2 + 1) sin2 �

km((3C sin2 �+ cos2 �)m=2+1 − (sin �)m+2)
]
: (19)

Note that F does not appear in Eqs. (18) and (19) because Eq. (8) has been taken into account.
The probability density becomes

f(k) =
d
dk

[F(k)]: (20)

For a proportional loading test, the mean e%ective stress is given by the mean value of k:

Lk =
∫ ∞

0
kf(k) dk (21)

Lk =
�u

(V=V0)1=m

(
3C(m=2 + 1) sin2 �

(3C sin2 �+ cos2 �)m=2+1 − (cos �)m+2

)1=m
�
(
m+ 1
m

)
: (22)

The corresponding standard deviation is calculated as

D2
k =

∫ ∞

0
�20f(k) dk −

[∫ ∞

0
kf(k) dk

]2
; (23)
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Fig. 15. Statistical yield criterion for proportional loading path. Experimental data vs. model prediction.

D2
k =

�2u
(V=V0)2=m

(
3C(m=2 + 1) sin2 �

(3C sin2 �+ cos2 �)m=2+1 − (cos �)m+2

)2=m

×
[
�
(
m+ 2
m

)
− �2

(
m+ 1
m

)]
: (24)

It can be checked that for �=90◦ or 0◦ the mean stress and standard deviation for a torsion test or
tensile test, respectively, are retrieved. Here, there is no conditional probability since the shear and
axial stresses are applied simultaneously. Fig. 15 gives the curve corresponding to the mean yield
e%ective stress in (�; �) space. This curve shows a quasi-elliptical shape. The experimental results
in two directions (� = −45◦; 45◦) are compared with the obtained predictions in Fig. 15 and in
Table 5. A good agreement is obtained for both mean value and variance. It is worth emphasising
that these results are pure predictions of the model since the parameters have been identi7ed in
tension and torsion only.

4.4. A tentative micromechanical model

The Weibull statistics used in this work corresponds to a weakest link model in which the frac-
ture/yield of one defect leads to the fracture/yield of the whole stressed volume. In Ref. [26], a
similar assumption was made to interpret brittle fracture in a ferritic steel. In this material, it was
assumed that fracture was initiated from preexisting cleavage cracks. The Weibull distribution was
derived analytically from the statistics of distribution of cleavage crack lengths combined with linear
fracture mechanics concepts. What are the corresponding defects in aluminium foams and can the
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Weibull statistics be derived? In Refs. [18,34] Huang and Gibson consider for an open-cell foam
that the failure in bending of a cell strut made of brittle material is the weakest link. They applied
the Weibull’s theory to this strut in bending and found a dependence of the fracture toughness of the
foam on the cell size and the Weibull modulus of the cell wall material. Here, a di%erent point of
view is adopted. It is postulated that the defects are the largest cells in the heterogeneous distribution
of cell sizes. A simple model is then proposed based on Gibson and Ashby’s cell model for foam
[3] and the knowledge of the statistical distribution of cell size.

For an open-cell brittle foam, Gibson and Ashby [3] have shown that a cell edge will fail when
the moment acting on it exceeds

Mf = 1
6 �wt

3; (25)

where �w is the fracture stress of the cell edge material and t is the thickness of the edge, assumed
to be identical for all cell sizes. The corresponding fracture stress of the foam can then be evaluated
as in Ref. [3]:

�˙
Mf

l3
; (26)

where l is the edge length. This equation combined with Eq. (25) can also be used to compute the
smallest critical cell size lc responsible for fracture of the foam at stress �

lc ˙ t
(�w
�

)1=3
: (27)

The probability of 7nding a cell of a given size is a function of the volume of material involved.
It is assumed that the stressed volume can be divided in smaller volumes V0. V0 must be large
enough for the probability of 7nding a cell of suJcient size not to be vanishingly small. Statistical
independence of neighbouring volumes V0 is also assumed. Thus, V0 must include a suJcient number
of cells. In each volume V0, the probability of 7nding a cell of edge length between l and l+dl is
taken as

p(l) dl=
�
l&

dl; (28)

where a simple power law is assumed for the probability distribution. � and & are material parameters
once V0 is known. Thus, in a given volume V0, where the stress level is �, the probability of failure
is

p(�) =
∫ ∞

lc

p(l) dl; (29)

where the critical length lc is given by Eq. (27). It follows that

p(�)˙
�

1 − &

(�wt
6

)(1−&)=3
�(&−1)=3
c =

(
�c
�u

)m
(30)

with m= (& − 1)=3 and �u depends on t; �; & and �w.
In the case of closed-cell foams, membrane stresses can be predominant and as in Ref. [3],

Eq. (27) should be replaced by

lc ˙ t
(�w
�

)1=2
: (31)
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This leads to a di%erent value of the Weibull modulus

m=
& − 1
2

: (32)

Each volume Vi = V0 among the N ones paving the entire specimen volume V is subjected to the
stress state �i. The cumulative probability of failure for the entire specimen is then

PR = 1 −
N∏
i=1

(1 − p(�i)): (33)

For small enough probabilities p(�i), one obtains

ln(1 − PR) = −
N∑
i=1

p(�i) � −V
V0

(
�
�u

)m
(34)

if � is almost constant in the sample. For a varying stress 7eld, the last term can be replaced by∫
V p(�) dV=V0. As a result, the material is shown to follow the Weibull’s statistics [26] and the
distributions used in this work are retrieved (Eqs. (2) and (11)).

Image analysis of several sections of an aluminium foam sample from optical microscopy and
X-ray tomography provides the distribution of cell sizes [28]. The power law model in Eq. (28) for
cell size distribution is calibrated on the last part of the distribution concerning large sizes only. The
found parameter & is close to 5. This leads to a Weibull modulus of m=1:7 for open-cell foams and
m = 2 for closed-cell foams. This values are much smaller than the parameter m close to 8 found
in this work. This indicates that a micromechanical model taking only brittle failure into account
underestimates the actual Weibull modulus for metallic foams. A more realistic model should include
the plastic yielding of the cell walls in addition to the subsequent brittle response as described in
Ref. [8]. The model proposed in this subsection is clearly better-suited for purely brittle foams (see
Ref. [3]). For instance, overall values of Weibull modulus for ceramic foams range from 1.5 to 6
[18,35,36].

5. Conclusions

Five main conclusions are drawn from this work:

(1) A size e%ect has been evidenced in tension for four di%erent cylindrical specimen sizes: the
mean failure stress and the dispersion decrease with increasing volume. A classical Weibull
model is able to account for both e%ects with a Weibull modulus close to m=8. This statistics
is found to hold also for the 7rst peak stress in compression. This brittle behaviour is related to
the presence of several brittle phases in the aluminium alloy.

(2) A model of statistical yield/failure surface is proposed based on the use of an e%ective stress.
The e%ective stress is an elliptical combination of 7rst and second invariants of the stress
tensor. The model can predict the mean initial yield/failure stress and its expected dispersion
for multi-axial loading conditions. The existence of such a uni7ed model for various loading
conditions is mainly due to the fact that the fracture mechanisms dominate with respect to plastic
deformation processes.
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(3) The additional parameter entering the de7nition of the e%ective stress measure has been identi7ed
from the measured mean shear strength. The model predicts accurately the scatter in the observed
shear strength. Good accordance between homogeneous shear tests and torsion tests is found
regarding the initial yield/failure strength. Note however, that the shear test is associated with
pure brittle behaviour of the foam. In torsion, two hardening regimes are observed. In the case
of torsion, the stress 7eld is not homogeneous and elementary volumes of size V0 inside the
tested sample are not subjected to a homogeneous stress but rather to a stress gradient. The
yield shear stress was taken as the maximum stress evaluated at the outer surface. Again, the
Weibull analysis is found to work well.

(4) The statistical yield/fracture surface is validated along complex proportional and non-proportional
multi-axial tests. A bell-shaped mean yield/fracture strength curve is found in the case of torsion
with constant applied axial stress. A quasi-elliptical surface is found in the case of proportional
tension/compression–torsion loading. Good agreement is observed between the mean and disper-
sion obtained experimentally and the predicted values. Note that the experimental results con7rm
the symmetry of the yield/fracture surfaces vs. tension/compression. This has been noticed pre-
viously for other loading conditions by Deshpande and Fleck [11,12].

(5) The Weibull statistics has been derived from a statistical power-law distribution of cell sizes
assuming deterministic brittle failure of cell struts or walls in closed or open-cell foams, as an
extension of Beremin’s model [26]. The model, mainly applicable to ceramic foams, underesti-
mates the Weibull modulus of the investigated aluminium foam, which con7rms that local brittle
failure as well as plastic yielding are two competing deformation mechanisms.

The combined tension–compression/torsion tests have shown how the response of the material
evolves from the well-known compression curve with a plateau, through the torsion curves with
two hardening regimes, up to the brittle failure tensile curves. In compression, deformation takes
place mainly in horizontal bands. The fracture surface of tensile specimens is also perpendicular to
the sample axis. In torsion, typical spiral fracture surfaces are observed. Photographs provided in this
work show the transitions between these extreme cases. It can be noted that the orientation of the
fracture surfaces is compatible with a maximum normal stress criterion. However, such a criterion
does not work to predict the fracture stress level. This suggests that a non-associated failure criterion
may be necessary to predict both strength level and fracture surface orientation. The present work
only provides an answer to the 7rst point.

Currently, deterministic compressible plasticity models involving the e%ective stress used in this
work are the main ingredient of 7nite element simulations of structural components [37]. The com-
putation of structures containing aluminium foams using such a statistical multi-axial model is the
next step for a reliable assessment of component behaviour.
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