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Abstract. Classical homogenization methods do not account for size effects in the effective
properties of polycrystals: they do not predict the influence of grain size nor the width of shear
bands in localization phenomena. The polycrystal can be regarded as an example of a heterogeneous
Cosserat material. A method is proposed to estimate the effective properties of aggregates of
Cosserat media. A validation of the methodology is given in the case of linear Cosserat elasticity.
Some steps towards an extension of the self-consistent scheme to Cosserat materials are then
presented.

1. Introduction

1.1. Scope of this work

The modelling of the mechanical behaviour of materials at a mesoscopic scale requires, in
some cases, the use of continua having an intrinsic length scale. When the microstructure
involves oriented stiffening elements or if directors can be attached to each material point, one
may resort to the Cosserat continuum, which, in addition to the usual translational degrees of
freedom, admits rotational degrees of freedom [1]. A dislocated single crystal can be regarded
as an example of such a continuum, for which lattice curvature is due to so-called geometrically
necessary dislocations [3]. The importance of explicitly introducing the influence of lattice
curvature on subsequent hardening clearly appears in the analysis of localization phenomena in
single crystals [3]. As a result, a polycrystal is an aggregate of Cosserat media and, therefore,
is a heterogeneous Cosserat material. The problem is then to work out the effective properties
and the resulting characteristic length of an aggregate of Cosserat constituents. The aim of this
work is to provide some methods to estimate them. The proposed method may be referred to
as an homogenization technique in a broad sense. In particular, we will not restrict ourselves
to the usual case for which the typical sized of the heterogeneities is much smaller than
the size of the considered structure or, more precisely, than a typical wavelengthLω of the
applied loading conditions (for that purpose, see [4]). Homogenization techniques are now
well developed in the case of classical media in the linear regime but also in the nonlinear
regime [5]. Some of them have been extended to replace a classical heterogeneous medium
under strong mean deformation gradients by an effective Cosserat medium [2]. In [6], we
considered discrete and continuous heterogeneous Cosserat materials and generalized some
homogenization methods. As in [6], we assume that a representative volume element (RVE),
�, can be defined, in order to replace the heterogeneous Cosserat medium by a homogeneous
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equivalent one. ‘Equivalent’ is meant for a certain limited range of loading conditions that
will be explicated in the following, and, under the conditions aforementioned (d 6 Lω), it is
not claimed that a unique homogeneous equivalent medium does exist. For that reason, we
may simply speak of a homogeneous substitute medium (HSM). The RVE is assumed to have
a finite size and its volume is denoted by|�|. The geometry of the RVE and the distribution
of mechanical properties may be exactly known (periodic case) or known only in a statistical
sense (random media). Contrary to the classical case, the absolute size of the RVE plays a
significant role and at least the order of magnitude of this characteristic size must be specified.
Clearly, it depends on the type of structural problems one wants to solve on a macroscopic
level. For simplicity, cracks, voids or rigid particles in� are excluded.

In this work, we use a Hill–Mandel-type approach of homogenization, but, in the case of
periodic microstructures, we use an asymptotic analysis as proposed in [12]. In particular,
the pertinence of different asymptotic processes depending on the ratiolc/Lω (where lc
is a characteristic length of the constituents, to be defined) is discussed in [12] and only
one of them is developed in the following. The methods are applied to the case of linear
elasticity. An expression for the effective properties as a function of the concentration tensors
is derived. It is applied to a specific microstructure for which estimated effective properties are
determined, using the finite-element method. To assess the quality of this estimation, structural
calculations are performed involving a finite number of cells. A reference calculation taking
every heterogeneity into account is compared to the response of the substitute medium. The
proposed method will turn out to be simple and efficient although improvements are possible.

The last part of this work presents some steps towards a possible extension of the
self-consistent scheme to heterogeneous Cosserat materials. In particular, finite-element
simulations of a generalized Eshelby problem and of a Cosserat elastic heterogeneity embedded
in an infinite Cosserat matrix are provided.

1.2. Notation

Throughout the paper,x, x∼ and x≈ denote a vector, a second-rank and a four-rank tensor,
respectively. The third-order permutation tensor will be denotedε∼ if applied to a second-rank
tensor andε∼ if applied to a vector.∇ is the nabla operator. The divergence ofa∼ is denoted by
a∼ · ∇. When the notation becomes ambiguous, indices are used.

The deformation of a Cosserat continuum is described by a displacement fieldu and
a microrotation fieldR∼ which accounts for the rotation of the underlying microstructure
represented by three orthogonal rigid vectors called directors [7]. The rotationR∼ will be
represented by the vectorΦ according toR∼ = 1∼+ε∼Φ, in the case of small microrotations. The
associated deformation and torsion-curvature tensors aree∼ andκ∼

e∼ = u⊗∇ + ε∼Φ κ∼ = Φ⊗∇. (1)

The dual quantities associated with the deformation and curvature tensors are the force stress
tensorσ∼ and the couple stress tensorµ∼. In general, these tensors are not symmetric. The force
and couple stress tensors must fulfil the equilibrium equations in the static case

σ∼ · ∇ = 0 µ∼ · ∇− ε∼σ∼ = 0. (2)

Volume forces and couples are excluded for simplicity. The study is restricted to small
deformations, small microrotations and small curvatures.
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2. On two boundary value problems on the RVE

The determination of the effective properties requires the resolution of an initial boundary value
problem (BVP) on�. In particular, some boundary conditions must be specified in order to
have a well-posed mechanical problem. The field equations of the considered boundary value
problem on� are given by (1) and (2). Constitutive equations are then necessary but need
not be specified yet. In [6], we considered two types of boundary conditions. For the BVPP,
Dirichlet boundary conditions have been proposed that read

∀x ∈ ∂� u = E∼x Φ = K∼x (3)

where tensorsE∼ andK∼ are given and constant.
If the material has a periodic microstructure, the geometry of the representative volume

element is then completely determined. A unit cell� can be defined like in the classical
periodic homogenization theory [5]. The BVPPper consists in searching the displacement and
microrotation fields satisfying the field equations (1) and (2) and having the following form
on one unit cell�

u(x) = E∼x + v(x) Φ(x) = K∼x +ψ(x) (4)

whereE∼ andK∼ are given and constant. The origin of the coordinate system can be taken as the
geometric gravity centre of the considered cell (see section 3.3). The vector fieldsv andψ are
assumed to take equal values on opposing sides of∂�. Furthermore, we require the traction
and moment vectors to be antiperiodic, which means that they are opposite on opposing sides
of ∂� (where the external normal vectorsn are opposite).

This problem is defined on asingleunit cell� and if a neighbouring cell is considered,
conditions (4) must be applied using the centre of the new cell as the origin of the coordinate
system. At the common boundary, deformation, curvature, force and couple stresses may
undergo some jumps, so that the solution exhibited on a single cell cannot, in general, be
extended to the whole body. The constitutive equations being left unspecified, the existence of
a solution to the considered boundary value problem will be assumed. However, we shall prove
its uniqueness up to a rigid body motion in the case of elasticity. Let(u1,Φ1) and(u2,Φ2) be
two solutions of the considered periodic boundary value problem. Then, it can be shown that∫
�

((σ∼
1− σ∼2) : (e∼

1− e∼
2) + (µ∼

1− µ∼
2) : (κ∼

1− κ∼2)) d�

=
∫
∂�

(σ 1
ij − σ 2

ij )(v
1
i − v2

i )nj d� +
∫
∂�

(µ1
ij − µ2

ij )(ψ
1
i − ψ2

i )nj d� = 0 (5)

using the facts that the fieldsσ∼
1 andσ∼

2 both fulfil the equilibrium equations, and thatσ∼
in

andµ∼
in (respectively,vi andψi) are antiperiodic (respectively, periodic). In the case of linear

elasticity, the local constitutive equations are taken to be of the form

σ∼ = D≈e∼ µ∼ = C≈κ∼ (6)

whereD≈ and C≈ are the four-rank Cosserat elasticity tensors. They are such thatDijkl =
Dklij , Cijkl = Cklij . The expression (5) is then equal to∫

�

((e∼
1− e∼

2) : D≈ : (e∼
1− e∼

2) + (κ∼
1− κ∼2) : C≈ : (κ∼

1− κ∼2)) d� (7)

where both elasticity tensors are definite positive, it follows from (5) and (7) thate∼
1 = e∼

2 and
κ∼

1 = κ∼2. This implies∃Φ0, u0 such thatΦ2 = Φ1 + Φ0 andu2 = u1 − (ε∼Φ
0)x + u0. As a

result, the solution ofPper is unique up to a rigid body motion and to a microrotation which is
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equal to the rotation of the rigid body motion. We note that in the classical case the solution is
unique up to a translation. In the finite-element analysis of this problem presented in section 4,
we will therefore fix the displacement and the microrotation of one node.

In the case of linear elasticity, bothP andPper admit a solution like in the classical case,
as a consequence of the Lax–Milgram theorem.

For the two problemsP andPper, the following average relations are derived using the
Gauss theorem

〈u⊗∇〉 = 1

|�|
∫
�

u⊗∇ d� = E∼ 〈κ∼〉 = K∼ (8)

〈σ∼ : e∼ +µ∼ : κ∼〉 = 〈σ∼〉 : E∼ + 〈µ∼ + (ε∼σ∼)⊗ x〉 : K∼ . (9)

As a result, ifE∼ andK∼ are taken as the macroscopic deformation and curvature, the right-hand
term of (9) can be interpreted as the expression of the internal work of an effective medium
considered as a Cosserat continuum. This leads to the definition of the overall force and couple
stress tensors

Σ∼ = 〈σ∼〉 M∼ = 〈µ∼ + (ε∼σ∼)⊗ x〉. (10)

At this point, a generalized version of Hill–Mandel’s condition can be formulated [6].
We let(σ∼

?,µ∼
?) be the self-equilibrated force and couple stress fields on�, which means that

they fulfil equations (2). Letting(e∼
′,κ∼
′) be two compatible deformation and curvature fields

((u′,Φ′) are the associated displacement and microrotation fields). We note that(σ∼
?,µ∼

?) and

(e∼
′,κ∼
′) are not necessarily related to each other by the constitutive relations. Then if(e∼

′,κ∼
′)

satisfy the boundary conditions (3) or (4), the following relation holds

〈σ∼? : e∼
′ +µ∼

? : κ∼
′〉 = 〈σ∼?〉 : 〈u′ ⊗∇〉 + 〈µ∼

? + (ε∼σ∼
?)⊗ x〉 : 〈κ∼′〉. (11)

A wide use of this lemma will be made in the next section.

3. Application to heterogeneous linear Cosserat elasticity

3.1. Direct definition of the overall moduli

In the case of linear elasticity and for each one of the two BVPP andPper considered earlier,
there exist four concentration tensors such that∀x ∈ �:

e∼(x) = A≈
1(x)E∼ + A≈

2(x)K∼ κ∼(x) = B≈
1(x)E∼ + B≈

2(x)K∼ . (12)

There exist also two concentration tensors such that:ε∼Φ(x) = R≈
1(x)E∼ +R≈

2(x)K∼ . Knowledge
of these six concentration tensors assumes that the considered BVP has been solved, which
may be very difficult and depends on the special geometry and elastic properties of�. As a
result we will work on only some properties of these tensors. Note that they generally have no
special symmetry. The results (8) and (10), imply

〈A≈
1− R≈

1〉 = 1≈ 〈A≈
2 − R≈

2〉 = 0 〈B≈
1〉 = 0 〈B≈

2〉 = 1≈. (13)

Taking the average of elasticity relations (6) and considering the expression of the overall
deformation, curvature, force and couple stress tensors, we get the overall elasticity relations

6∼ = 〈D≈A≈
1〉E∼ + 〈D≈A≈

2〉K∼ (14)

M∼ = 〈C≈B≈
1 + (ε∼(D≈A≈

1))⊗ x〉E∼ + 〈C≈B≈
2 + (ε∼(D≈A≈

2))⊗ x〉K∼ . (15)

This defines the overall elastic moduli, according to the general expression of Cosserat elasticity
described in [8]. The short notation in the last equation may be somewhat confusing so that
we give the associated index notation

((ε∼(D≈A≈
1)⊗ x)E∼)ij = εiklDklmnA

1
mnpqxjEpq. (16)
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3.2. Energy-based definition of the overall moduli

An energy-based definition of the overall moduli is also proposed. The average free energyw

reads

2w = 〈σ∼ : e∼ +µ∼ : κ∼〉 = 〈e∼ : D≈ : e∼ + κ∼ : C≈ : κ∼〉
= E∼ : 〈A≈

1TD≈A≈
1 + B≈

1TC≈B≈
1〉 : E∼ + K∼ : 〈A≈

2TD≈A≈
2 + B≈

2TC≈B≈
2〉 : K∼

+E∼ : 〈A≈
1TD≈A≈

2 + B≈
1TC≈B≈

2〉 : K∼ + K∼ : 〈A≈
2TD≈A≈

1 + B≈
2TC≈B≈

1〉 : E∼. (17)

This provides the definition of three overall elastic tensors. The symmetry of the first two
elasticity tensors clearly appears in these expressions, which was not the case in the last
section. A reduced form can now be obtained by application of Hill–Mandel’s lemma.

For this purpose, we look for compatible deformation and curvature fields satisfying the
Dirichlet boundary conditions (3) or the periodic ones (4). A set of such fields can be obtained
by applying the particular overall deformation and curvature

(E
(mn)
ij = δimδjn,Kij = 0) (Eij = 0,K(mn)

ij = δimδjn) (18)

successively, for each given fixed pair(m, n). According to equations (12), we obtain the
compatible deformation-curvature fields

(e
′1(mn)
ij = A1

ijmn, κ
′1(mn)
ij = B1

ijmn) (e
′2(mn)
ij = A2

ijmn, κ
′2(mn)
ij = B2

ijmn). (19)

This means that the concentration tensors of equations (12) enable us to construct admissible
deformation and curvature fields. Similarly, self-equilibrated force and couple stress fields can
be worked out using the previous fields(e∼

′1(mn)/κ∼
′1(mn)) and(e∼

′2(mn)/κ∼
′2(mn)). For each given

pair (m, n)

(σ
?1(mn)
ij = DijklA

1
klmn, µ

?1(mn)
ij = CijklB1

klmn)

(σ
?2(mn)
ij = DijklA

2
klmn, µ

?2(mn)
ij = CijklB2

klmn) (20)

are self-equilibrated force and couple stress fields. Hill–Mandel’s lemma (11) can then be
applied to any combination of admissible deformation-curvature fields and self-equilibrated
force and couple stress tensors.

The application of Hill–Mandel’s lemma (11) to(e∼
′1(mn),κ∼

′1(mn))/(σ∼
?1(pq),µ∼

?1(pq)) and
the use of relations (13) lead to

〈A≈
1TD≈A≈

1 + B≈
1TC≈B≈

1〉mnpq = 〈e∼′1(mn) : σ∼
?1(pq) + κ∼

′1(mn) : µ∼
?1(pq)〉

= 〈u′1(mn) ⊗∇〉 : 〈σ∼?1(pq)〉 + 〈κ∼′1(mn)〉 : 〈µ∼
?1(pq) + (ε∼σ∼

?1(pq))⊗ x〉
= 〈A1

ijmn − R1
ijmn〉 : 〈DijklA

1
klpq〉 + 〈B1

ijmn〉 : 〈CijklB1
klpq + εirsDrsuvA

1
uvpqxj 〉

(21)

hence〈A≈1TD≈A≈
1 + B≈

1TC≈B≈
1〉 = 〈D≈A≈

1〉.
Similarly, the application of Hill–Mandel’s lemma (11) to(e∼

′2(mn),κ∼
′2(mn))/

(σ∼
?2(pq),µ∼

?2(pq)) and the use of relations (13) lead to

〈A≈
2TD≈A≈

2 + B≈
2TC≈B≈

2〉 = 〈A≈
2 − R≈

2〉 : 〈D≈A≈
2〉 + 〈B≈

2〉 : 〈C≈B≈
2 + (ε∼(D≈A≈

2))⊗ x〉
= 〈C≈B≈

2 + (ε∼(D≈A≈
2))⊗ x〉. (22)

The successive application of Hill–Mandel’s lemma to(e∼
′1(mn),κ∼

′1(mn))/(σ∼
?2(pq),µ∼

?2(pq)) and

(e∼
′2(mn),κ∼

′2(mn))/(σ∼
?1(pq),µ∼

?1(pq)) and the use of relations (13) leads to

〈A≈
1TD≈A≈

2 + B≈
1TC≈B≈

2〉 = 〈D≈A≈
2〉 (23)
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and

〈A≈
2TD≈A≈

1 + B≈
2TC≈B≈

1〉 = 〈C≈B≈
1 + (ε∼(D≈A≈

1))⊗ x〉. (24)

Since the local elasticity tensors are symmetric, we get the non-trivial equality, which could
not be proved in the last section

〈D≈A≈
2〉 = 〈C≈B≈

1 + (ε∼(D≈A≈
1))⊗ x〉T. (25)

The previous relations prove that the direct definition of the overall elastic moduli (section 3.1)
and the energy-based definition are equivalent.

3.3. Microstructures with point symmetry

The RVE is said to have point symmetry ifD≈(−x) = D≈(x) andC≈(−x) = C≈(x), ∀x ∈ �. We
consider now the BVPsP andPper with E∼ = 0 and prescribedK∼ . The solution of the problem
then fulfils the conditions

v(−x) = v(x) ψ(−x) = −ψ(x) e∼(−x) = −e∼(x) κ∼(−x) = κ∼(x)
from which we deduceA≈

2(−x) = −A≈
2(x) and〈D≈A≈

2〉 = 0. As a result the overall constitutive
equations are

6≈ = 〈D≈A≈
1〉E∼ M∼ = 〈C≈B≈

2 + (ε∼(D≈A≈
2))⊗ x〉K∼ (26)

that define the effective elasticity tensorsD≈
h andC≈

h. These results hold only if the geometric
centre of gravityxG used to formulate the boundary conditions (4) is a centre of symmetry of
�. If not, a coupling may appear between force and couple stresses as in (14) and (15). This is
similar to the coupling terms that arise in the theory of composite beams for a general choice
of the neutral fibre. An analogous problem in the case of second gradient models has been
treated in [9].

4. Assessing the quality of the proposed estimation

We propose to determine numerically the effective properties of a heterogeneous linear elastic
Cosserat material in two dimensions (plane strain) according to (26). To quantify the pertinence
of these overall properties, we consider structural calculations. In each case an expensive
reference calculation is carried out for which every heterogeneity is taken into account. Then,
we investigate whether the homogeneous medium with the derived overall properties is able
to give a precise account of the deformation of the structure. The calculations have been
performed with the object-oriented finite-element code ZéBuLoN [10]. The Dirichlet boundary
conditions (3) and the periodic boundary conditions (4) have been implemented. The elements
used are quadratic two-dimensional plane strain Cosserat elements with full integration. A
numerical treatment of the unconstrained Cosserat medium has already been proposed in [11].

4.1. Effective properties of a two-phase periodic material

We now consider a plane cubic assemblage of cubic heterogeneities. The RVE is chosen as
a single square in its matrix (figure 1(a)). The cell is a square of size 1 mm. The volume
fraction of inclusions isf = 60%. The elastic properties of the constituents are isotropic and
the constitutive equations read

σ∼ = λ1∼Tr e∼ + 2µ {e∼
} + 2µc

}e∼
{ µ∼ = α1∼Tr κ∼ + 2β {κ∼

} + 2γ }κ∼
{ (27)
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(a) (b)

Figure 1. Unit cell (a) and structure with 25 heterogenities (b).
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(a) (b)

Figure 2. Prescribed deformationE12 (a) and curvatureK31 (b) on a unit cell.

where six elastic constants are involved. The closed braces denote the symmetric part whereas
the open braces denote the skew-symmetric part. In two dimensions,α does not intervene and
one usually takesβ = γ [11]. A characteristic length can then be defined:lc =

√
β/µ. The

chosen properties of the heterogeneous material are:

constituent 1(inclusions):E = 600 000 MPa;ν = 0.4;µc = 200 000 MPa;lc = 0.6 mm;
constituent 2(matrix): E = 40 000 MPa;ν = 0.3;µc = 10 000 MPa;lc = 1.2 mm.

The resulting properties have plane cubic symmetry. These overall constants are determined by
considering successively three individual problems: prescribedE11 = 1,E12 = 1 andK31 = 1.
The deformed states of the cell for the two last conditions are given on figures 2(a) and (b)
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(a) (b)

Figure 3. Deformed states of an actual heterogeneous structure (a) and of the corresponding
homogeneous structure (b).
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Figure 4. Displacements (a) and microrotation along a vertical line crossing the inclusions of the
fourth row starting from the bottom (b).

(see also [6]). The effective properties found are, respectively,

Dh
1111= 159 930 MPa Dh

1122= 44 640 MPa Dh
1212= 64 780 MPa

Dh
1221= 19 950 MPa Ch3131= 88 810 MPa mm2.

In a definition similar to that oflc, an effective length scale can be written as

lhc =
√
Ch3131

2µh12

µh12 = (Dh
1212 +Dh

1221)/2. (28)

This effective length is found to be 1.05 mm.
We note that in the case of prescribed curvature, the actual deformed state of the

heterogeneous material should not be reconstructed by tessellating the plane with the deformed
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Figure 5. The inhomogeneous Cosserat inclusion problem; the deformatione22 is heterogenous
inside the inclusion; for the illustration, the matrix has been separated from the inclusion; the
microrotation field83 is given in the matrix; only a part of the matrix surrounding the inclusion is
shown.

unit cell although curvature and couple stresses would be continuous at the boundary. Rather,
the deformed unit cell of figure 2(b) should be regarded as an approximate representation of
an excerpt, i.e. the corresponding cell extracted from the actual material.

4.2. Application to structural calculations

We consider a rectangular structure made of 5× 5 cells (figure 1(b)) and perform the
following test: at the bottom, displacement and microrotations are fixed to zero, at the top, a
displacement of magnitude 1 mm in direction one and a microrotation of magnitude one (rad)
are prescribed. The computation is performed using first, a fine mesh taking every inclusion
into account and with the actual properties of the constituents, and second, with a coarser mesh
endowed with the previously determined homogeneous properties. The two deformed states
are compared in figure 3. A quantitative comparison is given in figure 4. The displacements
and microrotations are plotted along a vertical line crossing the cubes (fourth row). The
response of the estimated homogeneous equivalent medium appears to be in good agreement
with the actual one. The microrotations, however, are predicted with less accuracy than the
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 3 

Figure 6. The Eshelby problem for a Cosserat material; three-dimensional case: an eigenstraine12
has been prescribed to the inclusion; for the illustration, it has been extracted from its surrounding
matrix; microrotations are given in the matrix and deformatione12 in the inclusion.

displacements. Improvements may be achieved using the asymptotic methods proposed in
[12].

Boundary effects may play a significant role in the deformation of structures made up
of a rather small number of cells as in figure 1(b). Corrections to the classical periodic
homogenization procedure exist to take boundary effects into account. This has not been
undertaken yet in the case of heterogeneous Cosserat materials.

5. Towards a self-consistent scheme

In the case of polycrystals, the proposed model must be able to account for the influence of
grain size on the overall behaviour. This is possible since each grain is made of a Cosserat
crystal and has an intrinsic length [3]. In the meantime, it should also be able to account for
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shear banding in polycrystals, and to provide a finite shear band width (usually a small number
of grains). This explains why we have dropped the hypothesis of slowly varying mean fields
d � Lω.

With a view to polycrystal modelling, the question can be raised as to whether there
exists an extension of the self-consistent scheme [13] to the case of heterogeneous Cosserat
materials. In this case, the Dirichlet boundary conditions (3) can be used. The first step consists
in solving a generalized Eshelby problem and the problem of an elastic Cosserat heterogeneity
in a Cosserat matrix.

5.1. On the problem of the Cosserat elastic heterogeneity

An explicit expression of the mean strain and curvature in a Cosserat spherical inclusion
embedded in a matrix made of the same material, and having an eigenstraine∼

? and
eigencurvatureκ∼

? can be derived [14]. The same authors propose an estimation of the mean
strain and curvature in an inclusion of Cosserat material A embedded in an infinite matrix made
of Cosserat material B and submitted to condition (3) at infinity. We have performed a finite-
element analysis of these two problems. Two major results must be mentioned here. When
the size of the inclusion becomes comparable to the Cosserat characteristic sizes of A and B
(supposed to be of the same order), the deformation within the spherical inclusion is no longer
homogeneous (figures 5 and 6), contrary to the classical case. On the other hand, we have
studied the limiting case for which the material surrounding the Cosserat elastic heterogeneity
is made of a classical material: no Cosserat effect arises within the inclusion and the solution
is the same as in the classical case for an inclusion endowed with the classical moduli of the
Cosserat material.

5.2. Pertinence of a self-consistent scheme

Two questions arise when one thinks of a straightforward extension of the self-consistent
scheme to heterogeneous Cosserat media. Each individual problem is that of a Cosserat
material embedded in a matrix regarded as an homogeneous equivalent medium. If this matrix
is taken as a Cosserat material as suggested by this work, both deformation and curvature
must be prescribed at infinity. Since the matrix is infinite, the prescribed curvature will affect
only a boundary layer of finite size and not the state of the inclusion. That is why it may
be sufficient to consider a classical HSM. However, in the latter case, the final result of the
previous section stated that no Cosserat effect will appear in the inclusion! This argues for
the use of a finite matrix made of the searched HSM. Such an analysis could be carried out
numerically. The finite size of the matrix would, of course, be related to the actual size of the
retained representative volume element.
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