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1. Introduction

Due to their different local environments, atoms at a free sur-
face and atoms in the bulk of a material have a different associated
energy and lattice spacing. This excess of energy associated with
surface atoms is called surface free energy and gives rise to surface
tension. The surface region is only a few atomic layers thin, that is
why the surface tension can be neglected when the characteristic
length of the microstructure of the considered material is in the
micrometer range or larger. But in the case of nano-sized materials,
the ratio between the surface and the volume is much higher and
the surface region behaviour cannot be neglected anymore. There
are several ways to introduce the mechanical properties of the sur-
face. If an interface separating two homogeneous bulk phases is
considered, one can define the interfacial properties by using an in-
ter-phase with a finite volume and assign thermodynamic proper-
ties in the usual way, as in Capolungo et al. [3]. Three phases are
considered in this approach and the boundaries of the inter-phase
have to be defined more or less arbitrary.

One can also consider that the two homogeneous phases are
separated by a single dividing surface; the thermodynamic proper-
ties of the interface are defined as the excess over the values ob-
ll rights reserved.
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tained for both bulk phases separated by a zero-thickness surface
[25,8]. The continuum mechanical theory of surface/interface
behaviour has been settled by Gurtin and Murdoch [18,19]. It
introduces a volume stress tensor in the bulk of the material and
a surface stress tensor in the surface or interface modelled as a
membrane. Both stress tensors fulfill balance of momentum equa-
tions. A specific elastic behaviour is attributed to the membrane
and kinematic constraints ensure that the bulk part and the surface
remain coherent. The most common manifestation of surface
behaviour is capillarity effects in elastic fluids. It is described by
the Young–Laplace equation which states that the internal pres-
sure, p, in a spherical droplet is proportional to the surface tension,
T, multiplied by the surface curvature, 1/r:
p ¼ 2T
r
: ð1Þ

When the size of the considered object is small enough, there is
no clear way to define a sharp interface or surface. Instead, a con-
tinuum model can be used to describe a transition domain be-
tween two bulk regions, or between the bulk and the outer free
surface. Such continuum theories for diffuse surface or interfaces
have been developed for a refined description of capillarity in elas-
tic fluids and solids. They are based on higher order gradient theo-
ries like the Korteweg equation which involves the gradient of
density vector, see [30]. A more general strain gradient theory
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has been proposed by Casal [4–6]. In a unsufficiently known paper,
Mindlin [22] claims that a second gradient of strain or, equiva-
lently, third gradient of displacement theory is in fact needed to
describe, in a continuous manner, capillarity and cohesion effects
in isotropic linear elastic solids and fluids. Based on a simple
one-dimensional atomic chain model, he identifies the higher or-
der elasticity modulus that is responsible for the variation of lattice
spacing from the free surface into the bulk in a semi-infinite crys-
tal. This model has not been discussed in literature, so that there
seems to be no general opinion whether a first or second strain gra-
dient theory is needed for capillarity effects in linear elastic media.
On the other hand, Mindlin’s second gradient of strain theory is
challenging from the computational point of view to compute
fields of lattice parameters in nano-objects like nano-particles or
nanocrystals. Molecular static simulation provide such non-homo-
geneous distributions of lattice spacing in crystals close to free sur-
faces or grain boundaries, that could be represented by a suitable
continuum model.

The objective of the present work is, firstly, to compare Kor-
teweg’s equation with the first and second gradient of strain theo-
ries in order to highlight the main differences, and, secondly, to
provide a framework for the numerical implementation of Mind-
lin’s second strain gradient theory. Finite element implementa-
tions of the first gradient of strain theory exist in literature. They
are based on the introduction of additional strain degrees of free-
dom in the spirit of Eringen’s micromorphic approach [28,7,12].
That is why a second order micromorphic model is formulated in
the last section of the present work. Then, an internal constraint
must be enforced by means of Lagrange multiplier or suitable
penalization, so that the general micromorphic model reduces to
Mindlin’s second gradient of strain model.

The article is organized as follows. The links between Kor-
teweg’s equation and the first strain gradient theory are presented
in Section 2. Arguments pleading for the necessity of a second
strain gradient model are provided in Section 3. A micromorphic
generalization of Mindlin’s model is finally proposed in Section 4,
as the suitable framework for a future finite element implementa-
tion of higher order gradient theories.

For the sake of conciseness, the small strain framework is
adopted. Volume forces are not considered throughout the work.
The analysis is limited to the static case. We follow Mindlin’s nota-
tion as closely as possible. However, we adopt an intrinsic notation
where zeroth, first, second and third order tensors are denoted by
a;a ; a�; a

g
, respectively. The simple, double and triple contractions

are written ., :, and ..
.
, respectively. In index form with respect to

an orthonormal Cartesian basis (e1, e2, e3), these notations corre-
spond to

a :b ¼ aibi; a� : b� ¼ aijbij; a
g

..

.
b
g
¼ aijkbijk; ð2Þ

where repeated indices are summed up. The tensor product is de-
noted by � . The nabla operator with respect to the reference con-
figuration is denoted by $. For example, the component ijk of a��$
is aij,k. In particular, $2 is the Laplace operator. Index notation is also
used at places to avoid any confusion. For instance, we give the cho-
sen intrinsic and index notations for the second gradient of a scalar
field and of a second rank tensor:

$� $q ¼ q;ij e i � e j; e��$� $ ¼ eij;kle i � e j � e k � e l ð3Þ
2. Korteweg’s equation and first strain gradient model

The Van der Waals and Korteweg equations are the first at-
tempts to introduce capillary effects in a continuum mechanical
theory. For an elastic medium, they include not only the effect of
mass density, q, on stress but also that of the density gradient
$q, in the form

T� ¼ �pðqÞ 1��að$qÞ2 1��b$q�$qþ cð$2qÞ 1�þd$� $q; ð4Þ

where T� is the stress tensor and a, b, c and d are material parame-
ters, namely higher order elasticity moduli. The divergence of T� is
assumed to vanish, in the absence of volume forces. In their account
of Korteweg’s constitutive theory, Truesdell and Noll [30] show how
it can be used to represent a spherical non-uniform field of mass
density, q(r), thus allowing for the presence of an interface between
liquid and vapor in a water droplet. The balance equation,

T 0rr þ
2
r
ðTrr � ThhÞ ¼ 0; ð5Þ

is combined with the constitutive relation,

Trr � Thh ¼ �bq02 � d
q0

r
þ dq00; ð6Þ

where the prime denotes derivation with respect to r. Integrating
Eq. (5) on the interface zone [r1,r2] yields the relation

Trrðr2Þ � Trrðr1Þ ¼ 2d
q0ðr2Þ

r2
� q0ðr1Þ

r1

� �
� 2

Z r2

r1

bq02 � dq00

r
dr: ð7Þ

In order to obtain results appropriate to a thin shell of transi-
tion, we calculate the limit of the latter relation as r1, r2 tend to
r0. The first term on the right-hand side vanishes whereas, under
suitable assumptions of smoothness, the second term is propor-
tional to the mean curvature, 1/r0. Accordingly, Eq. (7) can be inter-
preted as the diffuse counterpart of Laplace sharp interface
equation.

The compatibility of such higher grade constitutive equations,
formulated within the framework of classical continuum mechan-
ics, with continuum thermodynamics has been questioned by Gur-
tin [17] (see also [27]). Gurtin [17] argued that such higher order
constitutive statements can be acceptable only if higher order
stress tensors are introduced in addition to the usual Cauchy sim-
ple force stress tensor. To see that, let us now rephrase Korteweg’s
equation within the linear elasticity framework. For that purpose,
we define the dilatation as the trace of the small strain tensor,

D ¼ trace e� ¼ 1� q0

q
; $D ¼ q0

$q
q2 ’

$q
q0

; ð8Þ

within the small strain approximation with respect to a reference
mass density q0. The Korteweg Eq. (4) can therefore be written as

T� ¼ �pðDÞ 1��að$DÞ2 1��b$D� $Dþ cð$2DÞ 1�þd$� $D; ð9Þ

Tij ¼ �pðDÞdij � aD;kD;kdij � bD;iD;j þ cD;kkdij þ dD;ij: ð10Þ

If we neglect the quadratic terms in the previous expression, we
obtain the linearized Korteweg equation

T� ¼ �pðDÞ 1�þcð$2DÞ 1�þd$� $D: ð11Þ

It involves higher order gradients of the dilatation. This suggests
that it could be derived from a strain gradient theory as proposed
by Toupin [29], Casal [4] and Mindlin and Eshel [23] in the early
sixties. As shown by Toupin, the second gradient of displacement
theory is equivalent to the first strain gradient theory. Such theo-
ries introduce higher order stresses, as advocated by Gurtin [17].
The link between strain gradient theory and capillarity or surface
tension in fluids or solids has been recognized by Casal [5]. The
strain gradient theory can be limited to the gradient of density ef-
fects and therefore compared to Korteweg’s equation, as it was
done by Casal and Gouin [6]. The relation between the stress tensor
T� in Eq. (4) and the higher order stress measures of strain gradient
theories is discussed in the next section. More recent works have
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developed the concept of a fluid with internal wettability based on
modified Korteweg equations within the strain gradient frame-
work, also called Cahn–Hilliard fluid in [20,2].

This idea of considering higher gradients of density to describe
the material behaviour close to free surfaces or interfaces has been
implemented for phase transformations like in water droplets in
vapor [9]. This represents a diffuse interface model for liquid–gas
interfaces.

3. Second strain gradient theory

Mindlin [22] claims that a second strain gradient theory is nec-
essary to account for capillarity and cohesion effects in elastic
media, instead of the first strain gradient theory reported in the
previous section. We recall here his arguments in order to show
the fundamental difference between Mindlin’s approach and the
previous one. The second strain gradient theory is presented and
contains the first strain gradient model as a special case. It is based
on the assumption that the stress state at a material point depends
on the values of the strain, the first and the second strain gradients
at that point. Following the method of virtual power [15,1], the vir-
tual work density of internal forces is a linear form with respect to
all strain measures:

wðiÞ ¼ r� : e�þ S
g

..

.
ðe��$Þ þ S

�
:: ðe��$� $Þ; ð12Þ

where r� is the simple force stress tensor and S
g
; S
�

are the so-called
hyperstress tensors as required by the mentioned thermodynamical
consistency. Mindlin [22] shows that the stresses must fulfill the
following balance equation

T� :$ ¼ 0; with T� ¼ r��ðSg� S
�
:$Þ:$: ð13Þ

The stress tensor T� is an effective stress tensor whose diver-
gence vanishes. It is expressed in terms of the stress tensors at
all orders. This partial differential equation is accompanied by
three sets of complex boundary conditions that involve the surface
curvature and the normal and tangent derivatives of stress quanti-
ties. For the sake of conciseness, they are not recalled here and the
author is referred to Eqs. (18a–c) in Mindlin [22]. Corresponding
expressions of the boundary conditions for the first gradient of
strain theory can be found in [23,15]. The free energy density func-
tion, Wðe�; e��$; e��$� $Þ, is then a potential from which stresses
are computed:

r� ¼ q
@W
@ e�

; S
g
¼ q

@W
@ðe��$Þ ; S

�
¼ q

@W
@ðe��$� $Þ : ð14Þ

When the terms S
�

and e��$� $ are dropped, the first strain
gradient theory is recovered. Korteweg’s stress T� can then be inter-
preted as the effective stress of the first gradient of strain theory, as
done in Casal and Gouin [6].

Let us specify the constitutive equations in the case of an elastic
fluid. Mindlin considers that, in an elastic fluid, all stress tensors
are spherical so that

r� ¼ �p 1�; S
g
¼ � 1��p ; S� ¼ � 1��p�; ð15Þ

where Mindlin’s notations for the stress tensors p, p, and p� have
been kept. The notation S� ¼ � 1��p� stands for Sijkl = � dijpkl. As a
result, the effective stress is spherical and reads

T� ¼ �ðp� p :$þ p� : ð$� $ÞÞ 1�; ð16Þ

the divergence of which vanishes. It is in contrast to Korteweg’s
medium, see Eq. (11), which can transmit shear stresses. The con-
cept of an elastic fluid has been clearly defined by Noll for simple
materials [30] and leads to a spherical Cauchy stress tensor. The
question of the definition of a first strain gradient elastic fluid has
been only tackled very recently by Fried and Gurtin [14] and Po-
dio-Guidugli and Vianello [26]. Clearly, Korteweg and Mindlin’s def-
initions of an elastic first strain gradient fluid differ. Mindlin’s
formulation is less general than that given by Eq. (11). Following
Mindlin’s definition, the free energy potential of an isotropic second
strain gradient linear elastic fluid takes the form

qWðD;$D;$� $DÞ ¼ k
2

D2 þ a1ð$DÞ2 þ b0$
2Dþ b1ð$2DÞ2

þ b2ð$� $DÞ : ð$� $DÞ þ c1D$2D: ð17Þ

All terms are quadratic except the linear term that involves the
material parameter b0. The stress–strain relations follow

p ¼ �q
@W
@D
¼ �kD� c1$

2D; p ¼ �q
@W
@$D

¼ �2a1$D; ð18Þ

p� ¼ �q
@W

@ð$� $DÞ ¼ �ðb0 þ c1Dþ 2b1$
2DÞ 1��2b2$� $D: ð19Þ

It contains, in general, a self-equilibrated higher order stress
p� ¼ �b0 1�, in the absence of any external load. The effective stress
then becomes

T� ¼ �ð�kDþ 2ða1 � c1Þ$2D� 2ðb1 þ b2Þ$4DÞ 1� ð20Þ

Tij ¼ �ð�kDþ 2ða1 � c1ÞD;kk � 2ðb1 þ b2ÞD;kkllÞdij: ð21Þ

The corresponding effective stress for the first strain gradient
model is obtained by setting b1 = b2 = 0. It can be directly compared
to Korteweg’s Eq. (11). Both relations have the Laplacian term, $2D,
in common. Korteweg’s equation contains an additional non-
spherical term, as already mentioned. Mindlin’s second gradient
of strain theory introduces an additional contribution of fourth
order.

Combining the balance and constitutive equations, the follow-
ing fourth order partial differential equation is derived

ð1� l2
1$

2Þð1� l2
2$

2ÞD ¼ 0; ð22Þ

that involves two characteristic lengths such that

kl2
i ¼ a1 � c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � c1Þ2 � 2kðb1 þ b2Þ

q
; i ¼ 1;2: ð23Þ

Note that Eq. (22) follows from a first integration of the fifth or-
der balance Eq. (13). Accordingly, a constant term should be added
in the right-hand side of the equation, leading to a homogeneous
pressure field to be superimposed to the solution. The Eq. (22)
can be referred as a bi-Helmholtz equation. It can also be derived
from a non-local elasticity law as done by Lazar et al. [21].

Let us now consider capillary effects in a spherical homoge-
neous material made of a second strain gradient isotropic linear
elastic fluid. We look for a dilatation field D(r) and equations are
solved in spherical coordinates. In that specific case, Mindlin shows
that the dilatation field is then of the form

D ¼ C1l1

r1
sinh

r
l1
þ C2l2

r2
sinh

r
l2
: ð24Þ

The integration constants C1 and C2 must be determined from
the boundary conditions. A key point of the analysis is that the out-
er surface of the droplet of initial radius r0 is assumed to be free of
traction forces. Mindlin shows that these traction-free boundary
conditions lead to two equations for the unknowns C1 and C2:

X2

i¼1

Ciri 2ðb1 þ b2Þ � ð2a1 � c1Þl2
i

� �
ðri cosh ri � sinh riÞ ¼ 0; ð25Þ

X2

i¼1

Ci ri 2b2 1þ 2
ri

� �
þ 2b1 þ c1l2i

� �
sinh ri � 4b2 cosh ri

� �

¼ �b0r2
0; ð26Þ
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where ri = r0/li. When the radius of curvature is large in comparison
with the characteristic lengths li (i.e., ri� 1), Mindlin derives a rela-
tion between the mean dilatation of the droplet and its radius of
curvature

�D ¼ 3
4pr3

0

Z
V

DdV ¼ �6c1

b0k
T
r0
; ð27Þ

where T can be identified with the surface tension in the Laplace–
Young Eq. (1) and takes the value

T ¼ T0

1þ ð8b2T0=b2
0r0Þ

;

with T0 ¼
b0ðl2

1 � l2
2Þ

2kðl1ðl22 þ c2
1=k

2Þ2 � l2ðl2
1 þ c2

1=k
2Þ2Þ

:

ð28Þ

The identification between the diffuse and sharp interface mod-
els for surface tension shows that the relevant material parameters
that intervene in the relation are c1, b2 and b0 which are all related
to the contributions of the second strain gradient in the elastic po-
tential (17). One should note the key rôle of the initial higher order
stress b0. Indeed, if b0 = 0, the system of Eqs. (25) and (26) is homo-
geneous and leads to the trivial solution C1 = C2 = 0 and to a homo-
geneous mass density field. As claimed by Mindlin, the internal
hyperstresses account for material cohesion which is destroyed
at a free surface.

The corresponding balance equations and solution of the spher-
ical droplet can also be obtained for the first gradient of strain the-
ory, in the same way. For, the first strain gradient theory can be
formally obtained as a special case of the second strain gradient
model by setting that the fourth order stress tensor S

�
vanishes in

Eq. (12), or, equivalently, that the second characteristic length l2
vanishes in (22). The Eq. (22) then reduces to

ð1� l2$2ÞD ¼ 0; with l2 ¼ 2a1

k
; ð29Þ

which involves only one characteristic length l. There is still a solu-
tion of the form

D ¼ C
r

sinh
r
l1

ð30Þ

for the problem of the spherical droplet made of an linear elastic
isotropic medium. However the condition of vanishing simple and
double traction at the free outer surface leads to a homogeneous
equation so that the integration constant is identified as C = 0. This
leads to the trivial solution D = 0 and homogeneous mass density
within the droplet. Accordingly, the description of capillarity effects
in a linear elastic medium requires the introduction of the second
derivatives of the strain in the free energy density. This fact was
not mentioned in the subsequent works on the links between cap-
illarity and strain gradient theories.

4. Micromorphic approach

Higher order strain gradient theories can be viewed as special
cases of the general micromorphic medium introduced by Germain
[16]. The material point is treated as a material volume with a
small, but finite, size. Additional degrees of freedom are introduced
to describe more accurately the relative motion of this particle
with respect to its center of mass. Following the method of virtual
work, the work density of internal forces is introduced as a linear
form with respect to the degrees of freedom and their first
gradient:

wðiÞðu ; v
�
; v

g
;K

g
;K
�
Þ ¼ ðr�þ s�Þ : ðu � $Þ � ðs� : v

�
þ s

g
..
.
v
g
Þ þ S

g
..
.

K
g
þ S
�

:: K
�
;

ð31Þ
where Germain’s development has been truncated after the second
order micromorphic terms. In addition to the displacement u, the
microdeformation v

�
and the second order microdeformation v

g
are

introduced as independent degrees of freedom, together with their
first gradients,

K
g
¼ v
�
�$; K

�
¼ v

g
�$: ð32Þ

The simple force stress tensor, r�, the relative stress tensors, s�
and s

g
, the double and triple stress tensors, S

g
and S

�
, are dual quan-

tities of the strain measures in the virtual work form. They must
fulfill the balance equations,

ðr�þ s�Þ:$ ¼ 0; S
g
:$þ s� ¼ 0; S

�
:$þ s

g
¼ 0; ð33Þ

in the absence of volume forces. The corresponding three sets of
boundary conditions are

ðr�þ s�Þ:n ¼ t ; S
g
:n ¼ t�; S

�
:n ¼ t

g
; ð34Þ

where t ; t�, and t
g

are, respectively, contact simple, double and triple
tractions. When the microdeformation v

�
is forced to coincide with

the macrodeformation gradient, 1�þu � $, by an internal constraint,
and when the second order terms are neglected, the micromorphic
theory is known to reduce to the strain gradient theory [10,12].
Similarly, when v

�
and v

g
are constrained to coincide with the defor-

mation gradient, 1�þu � $, and its gradient, u � $� $, respectively,
Germain’s second order micromorphic medium degenerates into
Mindlin’s second strain gradient continuum. In contrast to strain
gradient theories, the general micromorphic models, especially
the boundary conditions (34), are quite straightforward to imple-
ment in a finite element code. Penalty factors or Lagrange multipli-
ers can then be introduced to obtain a numerical model for strain
gradient media.

We illustrate the second order micromorphic model and make
the link with Mindlin’s theory in the case of an elastic fluid at small
deformation. The degrees of freedom are limited to the displace-
ment, u, a microdilatation, vD, and second order microdilatation,
vK. The associated strains are the dilatation, D, the microdilatation,
vD, its gradient, $vD, the second order microdilatation vK and its
gradient vK � $. The work of internal forces (31) then reduces to

wðiÞ ¼ �pD� vpvDþ vp :$vD� vp :vK þ v p� : ðvK � $Þ: ð35Þ

The generalized pressure tensors satisfy the balance of general-
ized momentum in the form

$p ¼ 0; vp :$þ vp ¼ 0; v p� :$þ
vp ¼ 0: ð36Þ

The corresponding Neumann boundary conditions are

p ¼ p0;
vp :n ¼ vp0;

v p� :n ¼
vp 0 ð37Þ

where p0, vp0 and vp0 are given generalized pressures at the bound-
ary. Dirichlet conditions can also be stated and correspond to the
prescription of D,vD and vK at the boundary.

The free energy potential, WðD; vD; vK ; vK � $Þ, is used to for-
mulate the state laws

� p ¼ q
@W
@D

; �vp ¼ q
@W
@vD

; vp ¼ q
@W
@$vD

ð38Þ

� vp ¼ q
@W
@vK

; v p� ¼ q
@W

@ðvK � $Þ : ð39Þ

The free energy density is taken as an isotropic quadratic func-
tion of its arguments:
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qW ¼ k
2

D2 þ
vk
2
ðD� vDÞ2 þ a1

2
$vD:$vDþ

vb
2
ð$vD� vK Þ2

þ a
2

trace ðvK � $Þð Þ2 þ b
2
ðvK � $Þ : ðvK � $Þ

þ c
2
ðvK � $Þ : ð$� vK Þ

þ ðb0 þ c1Dþ c2
vDÞtrace ðvK � $Þ ð40Þ

In the previous expression, the parameters vk and vb can be re-
garded as penalty terms ensuring that the microdilatations vD and
vK are sufficiently close to the macrodilatations D and $vD, respec-
tively. The constitutive equations follow,

� p ¼ kDþ vkðD� vDÞ þ c1trace ðvK � $Þ;
� vp ¼ �vkðD� vDÞ þ c2trace ðvK � $Þ; ð41Þ

vp ¼ a1$vDþ vbð$vD� vK Þ; �vp ¼ �vbð$vD� vK Þ; ð42Þ
v p
�
¼ ðb0 þ c1Dþ c2

vDþ atrace ðvK � $ÞÞ1
�

þ bvK � $þ c$� vK ð43Þ

The stress tensors vp, vp, vp and v p� can be eliminated from the
previous relations by means of the balance Eqs. (36) in order to ob-
tain the expression of the effective pressure:

�p ¼ kDþ c1$
2D� ða1 � c2Þ$2vDþ ðc1 þ c2Þ trace ðvK � $Þ

þ ðaþ bþ cÞ$2 traceðvK � $Þ ð44Þ

When the following constraints are enforced:

vD � D; vK � $D; ð45Þ

the effective pressure (44) becomes

�p ¼ kD� ða1 � 2ðc1 þ c2ÞÞ$2Dþ ðaþ bþ cÞ$4D: ð46Þ

This expression can then be identified with the effective pres-
sure (20) in Mindlin’s second gradient of strain theory. Therefore,
the constrained second order micromorphic model coincides with
Mindlin’s theory.

The model can now be applied to the problem of the elastic
spherical droplet with free outer boundary at r = r0. For the sake
of conciseness, the form of the solution is given here only for the
first order microdilatation model, i.e. dropping the terms involving
vK (see [13]). The balance and constitutive equations reduce to the
following system of equations

kDþ vkðD� vDÞ ¼ 0; vkðD� vDÞ þ a1$
2vD ¼ 0: ð47Þ

Elimination of dilatation leads to the following partial differen-
tial equation for the microdilatation:

vD� a1ðkþ vkÞ
kvk

$2vD ¼ 0: ð48Þ

For the elastic droplet, a solution of the form

vD ¼ C
r

sinh
r
vl

ð49Þ

can be worked out. The characteristic length is found to be

vl2 ¼ a1

k
kþ vk

vk
: ð50Þ

The macrodilatation turns out to be proportional to the
microdilatation

D ¼
vk

kþ vk
vD: ð51Þ

When the penalty coefficient vk tends to infinity, the macro and
microdilatation coincide and the previous length becomes l2 = A/k.
Mindlin’s result (23), specified for ci = bi = 0, is retrieved in that
way. The outer boundary being free of forces, the constant C is
found to vanish so that the material density remains constant
and uniform. Only the consideration of the second order microdila-
tation vK can lead to a non trivial solution due to the initial cohe-
sion stresses associated with the material parameter b0, in the
same way as in Mindlin’s original theory.
5. Conclusion

The continuum description of capillarity effects in elastic bodies
is possible based on the introduction of higher order gradients of
the strain tensor. The Korteweg equation can be incorporated into
the framework of a first strain gradient theory. It can be used to
model capillarity effects at the interface between two phases of
different densities like droplets in vapor, particularly when it is
embedded in a phase field simulation. However we have shown,
following Mindlin’s arguments, that the linear elastic isotropic first
strain gradient theory is not sufficient to describe internal strains
and stresses that develop close to free surfaces. Their existence re-
quires initial third order stresses accounting for cohesion forces.
The cohesion material property in an isotropic elastic second gra-
dient of strain medium is fully characterized by a single parameter
b0 that can be linked to the surface tension when going to the sharp
interface limit. Although the explicit example treated in this work
was dedicated to elastic fluids, Mindlin’s second strain gradient
theory exists for solids at small strains. Also, the balance equations
of the second order micromorphic model where given for elastic
solids at small strain.

Such a situation is encountered for instance in single crystalline
nano-particles, as computed from molecular statics simulations
[11]. Indeed, in such small atomic aggregates, the lattice parameter
field is strongly inhomogeneous due to the small distance between
the particle core and its free surface. A surface tension model
would be inappropriate since, at that size, the capillary effect is
not confined to an infinitesimal surface. That is why Mindlin’s sec-
ond strain gradient theory seems to be suitable. Corresponding fi-
nite element computations of nano-particles based on the
proposed second order micromorphic model could then be per-
formed. The obtained strain distribution could be directly com-
pared to atomistic computations. In particular the higher order
elasticity moduli could be identified in that way from the discrete
computations, as Mindlin did for the one-dimensional atomic
chain. Mindlin’s theory and the general micromorphic simulations
could also be used to represent grain boundary stresses in nano-
crystals [24], or in nano-objects like wires and layers [31]. This will
require extension of the theory to anisotropic cases.

Finite element simulations based on strain gradient theories are
quite challenging, especially because of the complex boundary
conditions. In contrast, Eringen’s micromorphic theory is based
on the introduction of independent deformation degrees of free-
dom and their gradients [10]. It has been shown that the corre-
sponding boundary conditions are significantly less involved. The
numerical implementation merely relies on the introduction of
additional degrees of freedom and the computation of their first
gradient. Lagrange multipliers or penalization method can then
be used to retrieve the strain gradient formulation. Such an imple-
mentation has already been done for the first order micromorphic
model in [28,7]. It remains to be done for the second order micro-
morphic theory presented in this work.
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