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a b s t r a c t

Investigations of precipitation hardening are performed in term of analysis of distributions of geometri-
cally necessary dislocations (GND) surrounding particles. The dislocation microstructures are computed
from three dimensional discrete dislocation dynamics (DDD) and strain gradient plasticity (SGP) models.
DDD simulations of spherical particle embedded in a single crystal matrix undergoing single slip provide
the GND structures and the associated work-hardening. A 3D periodic arrangement of particles with
cubic symmetry is considered. It is found that a network of slip and kink deformation bands develops,
which is strongly dependent on the crystal lattice orientation of the matrix with respect to the particle
array. For some relative orientations, the strain hardening is increased by the distributions of GND which
act as additional barrier against slip. Some of these features are also captured with the SGP model in con-
trast to conventional continuum crystal plasticity.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In crystal plasticity, precipitation hardening is commonly asso-
ciated to a yield strength increase. The hardening can be explained
by the formation of typical dislocation structures around particles,
made of geometrically necessary dislocations (GND). Such disloca-
tion microstructures have also been evidenced experimentally
[1,2]. The aim of this work is to describe the relationship between
the GND structure and the matrix crystal lattice orientation using
computational analysis.

During the last few years, many numerical models have been
developed with the aim to investigate GND structures around par-
ticles [3]. Some of them are based on generalized continuum
mechanics. As an example, the strain gradient plasticity (SGP)
models are based on the dislocation density tensor directly related
to GND densities [4]. Some relationships have then been estab-
lished between the SGP constitutive equations and specific disloca-
tion structures like pile-up formation at interfaces [5]. Most of
these studies are however restricted to two-dimensional computa-
tions so that no relationship have been derived yet within a full 3D
framework.

Other models, such as discrete dislocation dynamics (DDD) are
explicitly dealing with dislocation lines. Obviously, DDD give ac-
cess to the dislocation microstructure and consequently the evolu-
tion of the GND quantities as a result of collective interactions. 2D
and 3D DDD simulations are expected to provide a physics-based
description of crystal plasticity. Therefore, it is widely believed that
DDD simulations can bridge the gap from the physical origin of
plasticity to continuum models. This technique has already been
applied in 3D to the question of precipitation hardening but with-
out any detailed description of the dislocation structures around
particles [6].

In this paper, GND distributions are investigated in 3D using
DDD [7] and SGP [8] simulations of periodic sets of spherical
particles embedded in a single crystal matrix loaded in pure shear.
Only single slip is considered as a first step for the understanding of
3D particle hardening. DDD simulations show that the dislocation
microstructure develops as wall-like structures which strongly
depends on the slip system orientation with respect to the array
of particles. The physical meaning and origin of the dislocation
spreading are analyzed and discussed. They are interpreted as a
network of slip and kink bands. A simple three-dimensional SGP
model based on the micromorphic approach is then used to predict
the plastic strain distribution around the particle under the same
conditions but within a continuum framework. SGP results are
compared to the DDD predictions.
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2. Simulation procedure

2.1. Geometry of the composite and DDD model

Fig. 1 depicts the unit cell of the simulation volume used in
DDD. Because all of six faces of the simulation volume are consid-
ered as periodic boundaries, the unit cell corresponds to a 3D cubic
arrangement of particles embedded in a single crystal matrix. The
axes X1, X2 and X3 in the figure represent the geometrical (global)
coordinate system attached to the spatial distribution of particles.
A second crystal frame is attached to the crystal lattice of the ma-
trix material. Accordingly, the axes X1, X2, X3 are located along the
edges of the periodic cell. The volume fraction and radius of parti-
cle are fixed to 15% and 0.5 lm, respectively. Only one volume frac-
tion and one particle size have been tested up to now. The chosen
values are purely illustrative. The elastic properties of both the ma-
trix and the particle are that of pure aluminium. It is assumed that
the dislocation lines do not penetrate the particle. Several Frank-
Read sources of 0.1 lm length, are randomly spread in the simula-
tion volume. The initial dislocation density corresponding to the
initial Frank-Read sources is set to 8 � 1012/m2. For simplicity, only
a single slip system (b ¼ 1=2½�101�;n ¼ ð111Þ in the crystal frame)
is considered, corresponding to system B4 according to Schmid–
Boas notation. Cross-slip is forbidden during the calculation. The
elastic properties of the matrix and of the particle are assumed
to be isotropic and identical (l = 27,000 MPa, m = 0.347) so that
no image forces need to be accounted for. Thus standard DDD sim-
ulation with periodic boundary conditions are used.

As shown in Fig. 2, two slip orientations have been selected for
the DDD calculations. The first slip orientation is referred to as
‘‘simple’’. According to this relative orientation, the slip direction
b and the slip plane normal direction n are parallel to the global
directions X1 and X2, respectively. It can be described by the fol-
lowing orientation matrix.
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This slip orientation promotes the formation of dislocation pile-
ups around particles separated from 0.5 lm as shown in Fig. 3. The
simple configuration leads to edge and screw dislocation pile-ups
located between two rows of aligned particles. The configuration
also contains horizontal channels without any obstacle to disloca-
tion glide. The width of this channel is also about 0.5 lm.

The second considered relative orientation between the crystal
matrix lattice and the array of particles is labeled ‘‘X3rotate’’ as

shown in Fig. 2. This orientation is obtained from configuration
simple by a 45� rotation with respect to X3 axis:
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Compared to simple configuration, this orientation promotes
edge and screw dislocation pile-ups around more distant precipi-
tates as shown in Fig. 3. This rotation also reduces the thickness

Fig. 1. DDD simulation volume (left) and three-dimensional particle arrangement (right).

Fig. 2. Two kinds of orientation relationships between particle pattern and slip
system in the matrix.

Fig. 3. 3D configuration of expected pile-up structure depending on the relative
orientation of crystal matrix lattice and particle array.
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of obstacle-free channels down to 0.2 lm. Each composite is sub-
jected to homogeneous pure shear loading in slip system
½�101�ð111Þ.

Note that the presence of obstacle-free channels will reduce the
particle induced hardening since the dislocations in the channel
can propagate without any particle interaction. In this situation,
the two-dimensional DDD simulations of Bassani et al. [9] have
shown that the mechanical response is ideally plastic (slightly soft-
ening) with no significant channel size dependency. According to
these authors, both selected orientations should lead to weak or
no precipitate hardening.

However, it is worthwhile to analyze the effect of the particle in-
duced dislocation patterns (see Fig. 3) on the mechanical response.
Indeed, the full 3D interactions between mobile dislocations can
lead to the formation of more complex GND distributions than ex-
pected from the simplified 2D analysis. In addition, 2D simulations
only focus on pure edge infinite dislocation segments whereas 3D
simulations account for curved dislocation lines (including the
screw parts) and also for line tension effects.

For each DDD simulation, the dislocation distribution is ana-
lyzed by plotting the dislocation microstructure in two particular
slices. A plane of normal ð1 �21Þ is selected in order to visualize
the edge parts of the dislocation microstructure and a complemen-
tary plane of normal ð�101Þ will point out the screw parts of the
structure. Both slice planes contain the particle center.

2.2. Presentation of SGP model and FE simulation

The strain gradient plasticity model considered in this work has
been presented in details in [8]. It is an extension of micropolar
single crystal plasticity, see [10], which represents a computation-
ally efficient approach to strain gradient plasticity. As in classical
continuum plasticity, the gradient of velocity field is decomposed
into elastic and plastic part:

Hij ¼ _ui;j ¼ He
ij þ Hp

ij; with _Hp
ij ¼ _cnibj ð1Þ

The stress tensor is computed from the symmetric part of He by
means of Hooke’s law. The slip c follows from the flow rule:

_c ¼Max 0;
f
K

� �m� �
sign s with f ¼ jsj � sc ð2Þ

where f is Schmid’s criterion function and s, sc are the resolved
shear stress and the critical resolved shear stress. The proposed
microcurl model introduces a plastic microdeformation tensor vp

ij

as nine additional degrees of freedom. The curl of the plastic mic-
rodeformation field is computed:

Cij ¼ ðcurlvpÞij ¼ �jklvp
ik;l ð3Þ

where �ijk is the permutation tensor. The power of internal forces is
extended to include higher order stress tensors, sij and Mij that work
with the plastic microdeformation and its gradient, following [11]:

pðiÞ ¼ rij _ui;j þ sij _vp
ij þMij

_Cij ð4Þ

The reader is referred to [8] for the derivation of the balance
equations that must be fulfilled by these stress tensors. Simple lin-
ear relationships are adopted for the higher order stresses:

sij ¼ Hvðvp
ij � Hp

ijÞ; Mij ¼ ACij ð5Þ

where Hv and A are the two additional parameters compared to clas-
sical plasticity. It has been shown in [8] that high values of Hv param-
eters ensure that the plastic microdeformation and the plastic
deformation are almost equal. As a result, Cij is nothing but the dislo-
cation density tensor, as defined in [4]. The physical dimension of
parameter A is MPa mm2. It is shown in [8] that these simple consti-

tutive equations lead to the existence of a size dependent linear kine-
matic hardening component, which corresponds to the main extra-
hardening effect predicted by the model for small size crystals.

The model was implemented in the finite element program Zset1

by endowing each node of the mesh with 12 degrees of freedom cor-
responding to displacement vector and plastic microdeformation
tensor. Implicit solver was used to solve the equilibrium equations
and a fourth-order Runge–Kutta method with adaptative time-step-
ping was used to integrate the constitutive equations at integration
points. The three-dimensional finite element mesh of the inclusion
embedded in the cube matrix involves 27,568 linear tetrahedral ele-
ments corresponding to 64,188 degrees of freedom. The unit cell is
subjected to the same mean simple shear loading as in the DDD sim-
ulations. Periodicity conditions of displacement and plastic microde-
formations are enforced at the boundaries of the box. The values of
the parameters in the microcurl simulations are: Hv = 400,000 MPa
and A = 0.3 MPa mm2. These values induce an intrinsic length
ls ¼

ffiffiffiffiffiffiffiffiffi
A=H

p
¼ 0:9 lm. The intrinsic length settles the range of micro-

structure sizes for which size effects are expected. This value is only
a test value and no identification from the DDD results was at-
tempted for this short communication. The remaining parameters are

sc ¼ 60 MPa; K ¼ 1 MPa s1=m; m ¼ 10 ð6Þ

The viscosity parameters are such that no significant strain rate
effect arises in the range of tested rates. The inclusion displays a
linear elastic behavior.

The model ensures that displacement and plastic microdefor-
mation are continuous at the interface between matrix and inclu-
sion. The corresponding stress vector and couple stress vector are
also continuous. These interface conditions have been shown in

Fig. 4. Edge (top) and screw (bottom) dislocation structures around particle for the
simple configuration, array obtained from discrete dislocation dynamics. The
pictures are slices of the box but the particle is still represented in 3D.

1 See http://www.nwnumerics.com, http://www.mat.ensmp.fr.
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[8] to be essential for a realistic prediction of the development of
GND close to interfaces. In particular, this simple constitutive
framework is able to mimic the building of dislocation pile-ups.

3. Results and discussion

3.1. Dislocation structures from DDD

DDD results obtained in the case of the simple configuration are
given in Fig. 4. The red and pink points represent positive and neg-
ative edge dislocation segments whereas yellow2 and green points
represent positive and negative screw dislocations, respectively. All
results are given after 0.5% average applied shear strain e12. For this
special slip orientation, only a few pile-ups are observed around the
particles. The precipitate free horizontal channel concentrate the

dislocation activity, i.e. the plastic slip. Only a few highly mobile dis-
locations are observed in this channel. These results are similar to
the two-dimensional calculations of [9].

Fig. 5. Edge (top) and screw (bottom) dislocation structures around particle for the
X3rotate particle arrays obtained from discrete dislocation dynamics.

Fig. 6. Schematic stress distribution due to edge (left) and screw (right) disloca-
tions and stable positions of incoming dislocations.

Fig. 7. Schematic diagram of edge (left) and screw (right) bands. On the left side,
the horizontal bands are slip bands whereas the vertical band limited by edge walls
is a kink band.

Fig. 8. Edge (top) and screw (bottom) distributions and related slip and kink bands
for the X3rotate configuration.

2 For interpretation of color in Figs. 1–10, the reader is referred to the web version
of this article.
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The situation is quite different for the X3rotate configuration for
which remarkable edge and screw distributions are observed (see
Fig. 5). One can still distinguish the precipitate free channels (nar-
rower than in the previous case) but also dislocation walls highly
visible in the edge view. The two zones bounded by the opposite
edge dislocations (red and pink walls) can be interpreted as kink
bands, i.e. shear bands perpendicular to the slip direction. This
combination of slip and kink bands leads to a strain localization
microstructure accommodating the prescribed shear stress
[12,13]. The dislocation microstructures associated to the edge
and screw parts are strongly different (see Fig. 5). The edge dislo-
cations build vertical corridors and no remarkable distribution is
observed in the precipitate free channel whereas the screw seg-

ments accumulate along the horizontal direction both above and
below the particle. Edge and screw dislocations produce two kinds
of shear bands as shown in Fig. 7 schematically.

The formation of such dislocation microstructures is related to
the dislocation interactions. Fig. 6 qualitatively depicts the local
stress field induced by infinite edge and screw dislocations. The
objective is to check the stress equilibrium positions for incoming
mobile dislocations. For instance, an edge dislocation with the
same sign as the original dislocation (red one) is stable when lo-
cated above and below (yellow symbols). Conversely, an opposite
sign edge dislocation will stop on the diagonal (pink symbol). This
stress interaction promotes the formation of vertical edge corridors
as shown in Fig. 5. Meanwhile two screw dislocation segments can
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0 0.006 0.012 0.018 0.024 0.03
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Fig. 9. Slip distribution in a slice cutting the middle of the inclusion and
perpendicular to X3: (a) classical crystal plasticity, (b) microcurl model. The
orientation of X1, X2, X3 axes correspond to the simple orientation. The inclusion is
removed from the field so that the slip distribution around the particle can also be
seen.
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Fig. 10. Slip distribution in a slice cutting the middle of the inclusion and
perpendicular to X3: (a) classical crystal plasticity, (b) microcurl model. The
orientation of X1, X2, X3 axes correspond to the X3rotate orientation.
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arrange as indicated in the right part of Fig. 6. Only an opposite
sign dislocation (yellow symbol) can stabilize just above or below
the original screw segment (green symbol). Note that the long
range stress induced by such dislocation pairs quickly vanishes
leading to no hindrance to the glide of further incoming disloca-
tions, thus promoting the formation of such horizontal
microstructures.

The slip and kink bands observed in the case of the X3rotate
configuration are depicted in Fig. 8. It was found that the edge dis-
locations align into horizontal slip bands and vertical kink bands
around the particles. Meanwhile, the screws organize themselves
into kink bands bounding the precipitate free channel. This implies
that the shear deformation in the horizontal channel is accommo-
dated both by the mobile edge dislocations and by gliding screw
dislocations that eventually get immobilized.

Kink bands generally arise in two very different situations. They
occur in grains or in single crystals at large deformation as strain
localization modes which are predicted in the bifurcation analysis
by [14]. Such kink bands have characteristic sizes (spacing or thick-
ness) of 1 micron to tens of microns, as shown in [13]. But kink
bands can also form at the early stage of deformation in the pres-
ence of obstacles like precipitates. Their width is then dictated by
the spacing of the particles. In our work, due to the limitation of
DDD simulations, the spacing between particles was taken to be

0.5 lm, which leads to the typical kink band width of 0.2 lm found
in the simulations.

For both configurations, the mechanical response reveals a lin-
ear hardening. Configuration simple leads to a hardening modulus
of 170 MPa and configuration X3rotate a hardening modulus of
210 MPa. The difference comes from the dislocation mobility in
the precipitate free channels which is affected by the complex dis-
location microstructure in the case of the X3rotate configuration.
The same trend was found in [9].

3.2. Comparison with continuum crystal plasticity

As a reference, we consider first the results of FE simulations
with classical continuum crystal plasticity, thus setting A = 0,
Hv = 0 in the microcurl. No hardening is introduced. As a result of
the elastic-perfectly plastic behavior with single slip, intense
deformation bands develop around the inclusion as shown in the
c-maps of Figs. 9a and 10a for both considered orientations simple
and X3rotate. In both cases, an array of horizontal slip bands and
vertical kink bands is predicted. Slip is even more intense at the
intersection of slip and kink bands. The slip bands predicted by
the classical continuum crystal plasticity analysis are in agreement
with the DDD results, see Figs. 4 and 5. However, according to
these finite element analyses, the intensity of slip and kink bands
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Fig. 11. Plastic slip field in the matrix according to the microcurl model for an overall mean shear loading H12 = 0.005 of the composite unit cell for different values of A
parameter in the matrix A = 3 � 10�2 MPa mm2 and A = 3 � 10�3 MPa mm2 (top), A = 3 � 10�4 MPa mm2 and A = 3 � 10�6 MPa mm2 (bottom).
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are identical. This is not the case in DDD simulations for which the
kink bands for the orientation simple are of very limited intensity,
see Fig. 4. In DDD simulations, slip and kink bands behave differ-
ently because kink bands are associated with dislocation wall for-
mations. This is not correctly described by the classical plasticity
analysis.

In contrast, simulations based on the microcurl model with
A = 0.3 MPa mm2 show a different behavior of slip and kink bands,
as shown in Figs. 9b and 10b. This is due to the fact that slip in ver-
tical kink bands induces non-homogeneous lattice rotation and
therefore non-vanishing dislocation density tensor. According to
Eq. (5), the higher order stress increases in kink bands, which
was shown in [8] to induce linear hardening. As a result of locally
increasing stress levels inside kink bands close to the inclusion, slip
remains limited whereas unlimited slip can take place in the hor-
izontal slip bands. That is why the vertical bands almost disap-
peared in Fig. 9b to the benefit of horizontal slip bands, in
agreement with DDD results. For the X3rotate orientation, slip in-
side the vertical channels is also smaller than the amount of slip
in the horizontal channels. The fact that kink bands remain active
for this orientation is in agreement with the DDD results.

The maps of plastic slip c for classical and microcurl simulations
are given for H12 = 0.01 applied average glide. It can be noted that
the slip distribution is much more localized for classical plasticity
than for microcurl simulations. This is due to the hardening in-
duced by strain gradients in the latter case. If parameter A is de-
creased, keeping the same inclusion size, the intensity of the kink
band increases continuously. When A is vanishingly small, the pat-
tern found is the same as for classical crystal plasticity, as
expected. The Fig. 11 shows the progressive development of
the kink bands for A in the matrix ranging from 0.03 MPa mm2

to A = 3 � 10�6 MPa mm2, keeping the value of A = 0.3 � 10�7

MPa mm2 in the inclusion, as recommended in [8].
Good qualitative agreement is found for the prediction of

deformation structures in the composite for DDD and SGP models.
However a quantitative comparison on dislocation density tensor
values close to interfaces between matrix and inclusion is post-
poned to future work, because finer finite element meshes will
be required for this local analysis.

4. Conclusion

The dislocation microstructures formed around particles have
been investigated in the case of a periodic arrangements of parti-
cles for two slip system orientations using two numerical tools:
three-dimensional DDD and SGP model. In DDD simulations,
remarkable slip and kink band structures around the particles have
been found. It is shown that kink bands, associated with high GND
densities enhance the hardening rate. The GND content close to

particles is essentially linked to the formation of kink bands in
addition to slip bands in a characteristic finite zone which depends
on slip system orientation with respect to particle spatial
distribution.

Description of such detailed kink-slip band structures does not
seem to exist in literature for metal matrix composites. In [15], dis-
location structures are shown but not examined in detail. Observa-
tion of kink bands would require systematic EBSD measurements
around particles which are still not available with the necessary
resolution. Also, the structures predicted by our simulations are
simplistic in the sense that we did not account for multislip and
cross-slip. That is why the comparison with experimental evidence
remains very limited.

Future work will be successively devoted to the consideration of
cross-slip effects, introduction of multi-slip and, finally, determina-
tion of particle size effect on plastic flow and cyclic hardening. A
proper identification of the value of parameter A will require com-
parison of the hardening curves of the composite for various inclu-
sion sizes.
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