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a b s t r a c t

Anelastoviscoplasticmodel is formulated atfinite strains for porous single crystals. Themodel
extends the yield function developed by Han et al. (2013) for porous single crystals at infini-
tesimal strains to finite strains, incorporating the evolution of void volume fraction and strain
hardening of single crystal matrix. The model is assessed through three-dimensional unit cell
finite element simulations based on periodic homogenisation and loading paths with pre-
scribed constant stress triaxiality. The unit cell simulations are performed for face-centered
cubic crystals with various crystallographic orientations, stress triaxialities and initial void
volume fractions, showing the competitive influence of the stress triaxiality and the crystal-
lographic orientation on the effective behaviour and the void volume evolution. The proposed
model captures the hierarchy of porous single crystal responses with respect to crystal
orientation and void volume fraction. It represents a remarkable compromise between
descriptionofunit cell behaviourand tractability in the computationof structural components.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Void nucleation, growth and coalescence are known as the main mechanisms of ductile fracture in crystalline metals and
alloys. Numerous studies have been carried out in the last decades to understand, simulate and model these phenomena in
polycrystals. Readers are referred to the reviews of Besson (2010) and of Benzerga and Leblond (2010) for more details. In
comparison, less effort has been devoted to investigating the process of void growth and coalescence in single crystals.
Experiments by Cr�epin et al. (1996) showed that the anisotropy of single crystal behaviour can induce polygonal void shape
and high void growth rates in zirconium single crystals. Srivastava et al. (2012) have shown that void evolution have a sig-
nificant influence on the creep fracture in Ni-based single-crystal superalloys. Development of model for porous single
crystals is of interest for engineering applications, e.g., to study the ductility of stainless steels (304/316 series) used for core
internals of Pressurised Water Reactor nuclear power plants or the lifetime prediction of Ni-based single crystal superalloys
used in turbo-engine components.

Various methods are used to study void growth and coalescence in single crystals as well as the effective behaviour of
porous single crystals. At small scale, discrete dislocation dynamics (DDD) and molecular dynamics (MD) are adequate. It has
been shown by Segurado and LLorca (2010) through DDD and by Farrissey et al. (2000) and Zhao et al. (2009) throughMD that
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the crystallographic orientation has a significant effect on overall mechanical behaviour (yield strength, strain hardening, etc.)
and void growth rate of porous single crystals under uniaxial tension.

Unit cell (UC) methodology based on finite element (FE) simulations is another tool well suited to the mechanical calcu-
lation of porous single crystals. O'Regan et al. (1997) investigated plane strain cases and showed that initial void volume
fraction has a significant effect on the peak of overall stress and that more compact void arrangement leads to softer material.
Orsini and Zikry (2001); Shanthraj and Zikry (2012) studied the influence of void distribution and spacing between voids under
uniaxial tension loading. They reported that material fails either by void growth and coalescence or by shear localisation and
that failuremechanism is directly related to void arrangement. Gan et al. (2006) simulated the stress, strain and lattice rotation
fields around a cylindrical void in Face-Centered Cubic (FCC) crystals. They reported good agreement between the results of
simulations, experimental results and analytical results obtained by anisotropic slip line theory in the work of Kysar et al.
(2005). Yerra et al. (2010) studied the effect of crystallographic orientation, stress triaxiality and strain hardening of the
matrix on void growth and coalescence in Body Centered Cubic (BCC) single crystals using three-dimensional (3D) unit cell.
They showed that stress triaxiality and crystallographic orientation have a coupled effect on the void evolution. For low stress
triaxiality, void shape evolution, void growth rate and strain at the onset of coalescence are mainly determined by crystal-
lographic orientations. At high stress triaxialities, only void growth rate depends on crystallographic orientation. Ha and Kim
(2010) performed a similar study in FCC single crystals and obtained results consistentwith Yerra et al. (2010) about the effects
of crystallographic orientation and stress triaxiality on void evolution. They also highlighted that the void growth rate in-
creases and the effect of orientation becomes more significant when the initial void volume fraction decreases. They do not
resort to periodic boundary conditions in their simulations and consider instead planar lateral surfaces. The validity of their
results is therefore limited to highly symmetric orientations. Han et al. (2013) carried out limit analysis for FCC single crystals
with an initially spherical void and different crystallographic orientations by taking into account various stress triaxialities and
initial void fractions, allowing to assess a yield function. Srivastava andNeedleman (2013) studied the effect of Lode parameter
on the evolution of a initially spherical void in FCC single crystals under creep loading. They demonstrated that in the region of
low stress triaxiality, the evolution of void fraction and void shape depend on Lode parameter for symmetric crystallographic
orientation 〈001〉. In addition, a more recent paper of Srivastava and Needleman (2015) also shows that for asymmetric
crystallographic orientations, the effect of Lode parameter can be significant even at relatively high stress triaxiality. Mbiakop
et al. (2015b) dealt with cylindrical voids with elliptical cross-section in single crystals with arbitrary number of slip systems.
They showed that the effective response of single crystals with elliptical voids is softer than those with circular voids.
Furthermore, they found that porous single crystals exhibit quasi-incompressible responsewhen only one or two slip systems
are activated in the matrix. The mentioned works resort to the finite element method at finite deformation but FFT-based
method was also recently applied to void growth in polycrystalline aggregates (Lebensohn et al., 2013).

In the past few years, an increasing number of studies have been devoted to the development of models describing the
overall behaviour of porous single crystals. A first yield function was derived by Han et al. (2013) based on a variational
homogenisationmethod (see DeBotton and Castaneda (1995)). The explicit yield potential proposed for porous single crystals
accurately represents the limit analysis results. Based on the unit cell calculations of Han et al. (2013), another model was
developed by Paux et al. (2015) using a regularised form of the Schmid law and limit-analysis calculation. More recently, a
two-dimensional model accounting for elliptical void shape was developed by Mbiakop et al. (2015b) following the varia-
tional method of Danas and Aravas (2012) and it was then extended to three-dimension for single crystals with ellipsoidal
voids in the work of Mbiakop et al. (2015a). Based on a variational homogenisation method, a quasi-explicit yield potential
suitable for small strain applications was derived. However, to the authors' knowledge, there is currently nomodel for porous
single crystals at finite strains, which is able to describe the void evolution up to coalescence and which is simple enough for
finite element implementation in order to carry out structural computations.

The aim of this work is to propose a finite deformation elastoviscoplastic constitutive model for porous single crystals that
can be used in structural computations. It should incorporate the strain hardening of thematrix and be able to predict, at least
qualitatively, the influence of crystallographic orientation on the stress strain response and the void growth. The proposed
model is assessed using 3D FE unit cell simulations based on computational periodic homogenisation under prescribed stress
triaxiality. The present work also brings new information for highly non-symmetric orientations like [120] and ½125�
including void growth rate and void shape evolution. These non-symmetric orientations are essential to assess the validity
and see the limitations of any suchmodel, since theywill be frequently encountered in practice. The applicability of themodel
to structural computations is finally assessed by the simulation of the tearing of a single crystal notched specimen.

The paper is organised as follows. The formulation of the porous single crystal model is presented in Section 2. Section 3
describes the FE formulation for the unit cell simulations with prescribed stress triaxiality and periodic boundary conditions.
The main results of unit cell simulations concerning the influence of crystallographic orientation are given in Section 4. The
assessment of the porous single crystal model is presented in Section 5. Examples of simulations using the porous single
crystal model are given in Section 6 followed by conclusions in Section 7.

2. Proposed model for single crystals

A unified formulation at finite strains is proposed for void-free and porous single crystals in this part. The formulation is
first presented for void-free single crystals, and then for porous single crystals by emphasizing the difference compared to the
former one.
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2.1. Void-free single crystals

2.1.1. Kinematics
For void-free single crystals, a lattice orientation is attributed to each material point. The existence of directors associated

with lattice orientation allows for the definition of a unique isoclinic intermediate local configuration Ci, as recommended by
Mandel (1973). This ensures the uniqueness of the multiplicative decomposition of the deformation gradient F� adopted
within the finite strain framework:

F� ¼ E� $P� ; (1)

with the elastic part E� and the plastic part P� of the deformation gradient F�. The crystal orientation is the same in the initial
local configuration C0 and the intermediate local configuration Ci. The determinants of F�, E� and P� describe the change of
volume and of density of a material point:

J ¼ det F� ¼ V
V0

¼ r0
r
; (2)

Je ¼ detE� ¼ V
Vi

¼ ri
r
; (3)

Jp ¼ detP� ¼ Vi

V0
¼ r0

ri
; (4)

where V0, Vi and V denote the volume at the reference configuration C0, the intermediate configuration Ci and the current
configuration C; r0, ri and r represent the density at the reference configuration C0, the intermediate configuration Ci and the
current configuration C. Note that Jp¼ 1 due to the incompressible plasticity of void-free single crystals undergoing plastic
slip.

The velocity gradient L� can be expressed as

L� ¼ F�
,
$F�

�1 ¼ L�
e þ E� $L�

p$E�
�1; (5)

with the elastic part of the velocity gradient Le in the current configuration C
�

L�
e ¼ E�

,
$E�

�1; (6)

and the plastic part of the velocity gradient L�
p in the intermediate configuration Ci
L�
p ¼ P�

,
$P�

�1: (7)

2.1.2. Definition of stresses

According to the approach of Mandel (1973) (see also (Sabnis et al., 2012, 2013)), stress tensors are defined as follows.
The second Piola-Kirchhoff stress tensor P�

e, defined with respect to the intermediate configuration Ci, is given by

P�
e ¼ JeE�

�1$s� $E�
�T ; (8)

where s� is the Cauchy stress defined in the current configuration C.
The elastic Green-Lagrange strain tensor E�

e
GL

is defined as

E�
e
GL ¼

1
2

 
E�
T$E��1�

!
: (9)
P�
e is related to E�

e
GL by the elasticity law:

P�
e ¼ C

z
: E�

e
GL; (10)

where C
z
is the fourth-order anisotropic elasticity tensor, which can be expressed in terms of three parameters C11, C12 and C44

for cubic elasticity.
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In addition, the driving force for single crystal plasticity is known as the Mandel stress M� , which is defined in the

intermediate configuration and is work-conjugate to L�
p:

M� ¼ JeE�
T$s� $E�

�T ¼ E�
T$E� $P�

e: (11)

2.1.3. Flow rule
For each slip system, s, a yield function can be defined as:

fs ¼ t�s � tsc; with t�s⩾0 (12)

where t�s is a scalar stress and tsc is the critical resolved shear stress (CRSS). For void-free single crystals, the scalar stress t�s for
system s is given by

t�s ¼
ffiffiffiffiffiffiffiffiffi
tsts

p
¼
���ts���; (13)

where ts is the resolved shear stress defined as:

ts ¼ M� : N�
s; (14)

with the Schmid tensor N�
s ¼ ms5ns (ms is the slip direction vector and ns is the normal vector to the slip plane of slip system

s). For each slip system, yielding occurs for fs⩾0.
The plastic strain rate L�

p can be defined as

L�
p ¼ P�

,
$P�

�1 ¼
XN
s¼1

_gs vf
s

vM�
¼
XN
s¼1

_gsN�
�s; (15)

with N�
�s

N�
�s ¼ vfs

vM�
¼ vjtsj

vts
vts

vM�
¼ signðtsÞN� s (16)

and the plastic slip rate _gs given by

_gs ¼ _g0〈t
�
s � tsc
t0 〉

n

; (17)

where _g0 is the reference slip rate and t0 the thermal component of the CRSS due to the lattice friction. Note that 〈 � 〉 ¼ � if
�>0, else 〈 � 〉 ¼ 0.

2.1.4. Hardening rule
For the hardening rule, an evolution law involving dislocation densities as the only source of hardening is chosen.

Following Kubin et al. (2008), the CRSS tsc of the slip system s can be expressed as a function of dislocation densities rs

tsc ¼ t0 þ mb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
u¼1

asuru

vuut ; (18)

with t0 the thermal component of the CRSS due to the lattice friction, m the shear modulus, b the norm of Burgers vector of
dislocations and asu the dislocation interactionmatrix. Considering themultiplication and the annihilation of dislocations due
to the interactions among them, the evolution of dislocation densities rs is governed by

_rs ¼ 1
b

�
1
Ls

� gcrs
�
_gs; (19)

with the proportionality factor gc and the mean free path of dislocations Ls determined by

Ls ¼ k

 XN
u¼1

bsuru
!�1

2

; (20)

where k is a proportionality factor and bsu is a second dislocation interaction matrix.
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2.2. Porous single crystals

For porous single crystals, it is assumed that, in spite of the presence of pores inside the single crystal volume element and
associated inhomogeneous deformation, a unique single crystal lattice orientation can be attributed to each material point.
The definition of a unique isoclinic intermediate local configuration Ci is allowed by the existence of directors associated with
lattice orientation. The uniqueness of themultiplicative decomposition of the deformation gradient F� ¼ E� $P� thus remains. As
a result, the kinematics of porous single crystals follows what is described in Section 2.1, except that detðP�Þs1 as a result of
compressibility of porous single crystals. The initial porous single crystal orientation is taken as that of the undeformed single
crystal matrix.

The same number of slip systems N is attributed to each material point of the porous single crystal as the single crystal
matrix. They have the same crystallographic definition as that of the undeformed single crystal matrix. For the flow rule, the
yield criterion developed in the work of Han et al. (2013) for porous single crystals is used. The definition of effective resolved
shear stress t�s , derived by Han et al. (2013) in the infinitesimal strain framework, is extended to finite strain framework:

Js ¼ ts2

t�2s
þ a

2
45

fi
M2

eq

t�2s
þ 2q1ficosh

(
q2

ffiffiffiffiffiffi
3
20

r
Mm

t�s

)
� 1� q21f

2
i ¼def 0; t�s⩾0; (21)

where Mm is the mean Mandel stress defined as Mm ¼ 1
3 trace M� ; Meq is the equivalent Mandel stress defined as

Meq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2M�

0 : M�
0

r
with the deviatoric part of Mandel stress M�

0 ¼ M� �Mm 1�; fi is the void volume fraction in the intermediate

configuration and can be calculated as

fi ¼ 1� 1� f0
det P�

; (22)

with the initial void volume fraction f0. Note that a, q1 and q2 are parameters to be identified. The yield function for each slip
system, taking the same form of Eq. (13), follows

fs ¼ t�s � tsc (23)

with the effective resolved shear stress t�s defined above.
The plastic strain rate L�

p is defined by

L�
p ¼ _P� $P�

�1 ¼ ð1� fiÞ
XN
s¼1

_gs vf
s

vM�
¼ ð1� fiÞ

XN
s¼1

_gsN
�s
� ; (24)

with M� still defined by Eq. (11) and
N�
�s ¼ vt�s

vM�
¼ �

�
vJs

vt�s

��1
vJs

vM�
; (25)

where
vJs

vt�s
¼ �2

ts2

t�3s
� 4
45

afi
M2

eq

t�3s
� 2

ffiffiffiffiffiffi
3
20

r
q1q2fi

Mm

t�2s
sinh

 
q2

ffiffiffiffiffiffi
3
20

r
Mm

t�s

!
(26)

and
vJs

vM�
¼ 2

ts

t�2s
N�

s þ 2
15

afi
1
t�2s

M�
0 þ 2

3

ffiffiffiffiffiffi
3
20

r
q1q2fi

sinh
�
q2

ffiffiffiffiffiffiffiffiffiffiffi
3=20

p
Mm

�
t�s
�

t�s
1� : (27)

p �
Note that L� is corrected by the factor 1�fi resulting from the definition of ts in Eq. (21) which is obtained by the ho-
mogenisation in the matrix of porous single crystal excluding the pores. It corresponds to the vanishing plastic work in the
pores (see Besson (2009, 2010)). When fi¼ 0, the model of porous single crystals is reduced to that of void-free single crystals.

The hardening rule described in Section 2.1 holds for porous single crystals.

3. 3D FE unit cell simulations

Three-dimensional finite element unit cell simulations are carried out with the void-free single crystal model in order to
assess the macroscopic porous single crystal model. The Zset FE software (Besson and Foerch (1998)) is used.
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The unit cell Utot
0 considered is taken as a cubic matrix Umat

0 of side lengths L¼ L0 with an initially spherical void Utot
0 yUmat

0
at the centre with radius R1¼ R2¼ R3¼ R0 (see Fig. 1a). Thus, the initial void volume fraction f0 is

f0 ¼ 4
3
p
R30
L30

: (28)
The edges of the unit cell are initially parallel to the coordinate xi-axes and the main loading direction is parallel to the x1
axis. Different initial void volume fractions are taken into account for the simulations: f0¼ 0.005, 0.01, 0.02, 0.05 and 0.1.

FCC single crystal lattice is considered with 12 slip systems. According to Schmid and Boas (1935), the slip systems of FCC
single crystal are specified by the slip direction vectorms and the normal vector ns to the slip plane, which are summarised in
Table 1. Each unit cell has a different crystal orientation characterised by the crystallographic orientations aligned with the
three coordinate axes x1ex2ex3. Five crystal orientations are considered: [100]e[010]e[001], [110]e½110�e[001],
[111]e½211�e½011�, [210]e½120�e[001] and ½125�e½121�e[210]. They have different symmetry about the coordinate planes and
correspond to different number of primary slip systems activated in uniaxial tension (see Table 2). The crystal orientations are
named in the following by the crystallographic orientation parallel to the main loading direction, i.e., [100], [110], [111], [210]
and ½125�.

The material parameters used for the following simulations are closely related to those of a solution annealed 304
austenitic stainless steel at 340�C (see Han (2012)). To be more precise, asu is assumed to be identical for all s,u¼ 1,…,12, bsu is
Fig. 1. Unit cell with an initially spherical void at the centre for initial void volume fraction f0¼ 0.01. (a) the geometry of the unit cell with R1¼ R2¼ R3¼ R0 (b) a
3D mesh of half of the unit cell showing the initially spherical void (c) the coarse mesh (n¼ 5) for 1/8 of the full geometry (d) the fine mesh (n¼ 10) for 1/8 of the
full geometry.

Table 1
Slip systems in FCC single crystals.

s 1 2 3 4 5 6 7 8 9 10 11 12
ns (111) ð111Þ ð111Þ ð111Þ
ms ½101� ½011� ½110� ½101� [011] [110] ½011� [110] [101] ½110� [101] [011]



Table 2
Crystal orientations and number of primary slip systems activated in uniaxial tension.

Orientation name Crystallographic orientation along x1ex2ex3 Number of primary slip systems

½100� ½100� � ½010� � ½001� 8
½110� ½110� � ½110� � ½001� 4
½111� ½111� � ½211� � ½011� 6
½210� ½210� � ½120� � ½001� 2
½125� ½125� � ½121� � ½210� 1
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set equal to 0 if s¼ u and equal to 1 if ssu, the initial value of dislocation density rs0 is assumed to be identical for all slip
systems and equal to 8.33�108 m�2. All the material parameters used for the simulations are given in Table 3.

3.1. FE formulation with prescribed triaxiality and periodic boundary conditions

Numerical periodic homogenisation is used for the simulations with periodic finite elements, which are enhanced by
average strains as element degrees of freedom. In the following, variables at microscopic and macroscopic scale are distin-
guished. The variables with an overline symbol (‾) are used for macroscopic scale at which an effective behaviour of the unit
cell is observed, while the variables without the overline symbol describe the behaviour at microscopic scale, i.e., at each
material point of the unit cell.

The unit cell is subjected to periodic boundary conditions, which is expressed by

u ¼ F�$X þ v; (29)

where F� denotes the macroscopic deformation gradient field, u the displacement vector and v a periodic fluctuation vector,
which follows

v
�
xþ
�
¼ v

�
x�
�

(30)

with the coordinates of homologous nodes ðxþ; x�Þ on opposite faces of the unit cell. The microscopic and macroscopic stress
and deformation tensors are related by

S� ¼ 1
Vtot
0

Z
Utot

0

S�dV ¼ ð1� f0Þ
1

Vmat
0

Z
Umat

0

S� dV (31)

and

F� ¼ 1
Vtot
0

Z
Utot

0

F� dV ; (32)

where Vtot
0 and Vmat

0 denote respectively the total volume of the unit cell and the volume of the matrix in the reference
configuration, S� and S� denote respectively microscopic and macroscopic first Piola-Kirchhoff stress tensor.

The macroscopic Cauchy stress tensor s� is related to the macroscopic first Piola-Kirchhoff stress tensor by

s� ¼ 1
J
S�$F�

T
; (33)

with J ¼ detðF�Þ.
Constant macroscopic Cauchy stress triaxiality T (the ratio of hydrostatic stress sm and equivalent stress seq of macroscopic

Cauchy stress s�) is imposed via a special truss element (see Section Appendix A), with
Table 3
Material parameters for the unit cell simulations (see Han (2012)).

C11 C12 C44 t0 n _g0 m

199 GPa 136 GPa 105 GPa 88 MPa 15 1.47� 1014s�1 65.6 GPa
gc k asu bsu ðssuÞ bsu (s¼ u) b rs0
2.6� 10�9m 42.8 0.124 1 0 2.54 �A 8.33� 108m�2
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s ¼
24 s11 0 0

0 s 0

35 ¼ s

241 0 0
0 h 0

35 ¼ s s ; (34)
� 22
0 0 s33

11 2
0 0 h3

11�0

such that
T ¼ sm
seq

¼ 1þ h2 þ h3

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2 � h3 � h2h3 þ h22 þ h23

q : (35)
Axisymmetric loadings are mainly concerned, which implies that h2 ¼ h3 ¼ h, 0⩽h⩽1 and that the imposed macroscopic
Cauchy stress triaxiality is

T ¼ 1þ 2h
3ð1� hÞ : (36)
Four levels of the stress triaxiality varying from 1 to 3 are chosen for axisymmetric loading. The details of the stress
triaxiality T and corresponding values of h are summarised in Table 4. These relatively high stress triaxialities correspond to
that involved in ductile failure zones, such as the vicinity of a crack tip.

Non-axisymmetric loading will not be presented in this part, but used for the assessment of the porous single crystal
model in Section 5.3.

Prescribing periodic conditions for the considered unit cell means that a periodic distribution of voids is assumed, the
voids occupying a simple cubic lattice in the present case. Periodic boundary conditions are applicable even if the crystal
symmetry axes do not coincide with that of the geometric distribution of voids. However, it is not obvious that such a specific
void distribution in the case of non-symmetric crystal orientations is realistic with respect to real physical situations of void
growth in crystals. Random distributions of pores may provide different results. They should be studied in the future, as done
for isotropic porous plasticity in Fritzen et al. (2012).

3.2. FE discretisation effect

The unit cell is meshed with reduced-integration quadratic hexahedral elements. A study of the effect of finite element
discretisation was first conducted to optimise computation time while keeping sufficient accuracy. Due to the anisotropy of
the matrix, complete unit cells are used for the simulations (see Fig. 1b for half of a complete mesh with the initial void
volume fraction f0¼ 0.01). Two different finite element discretisations are considered as shown in Fig. 1c and d for one eighth
of the FE mesh. The total number of elements used for the meshes can by calculated by 24� n3, where n¼ 5 (3000 elements)
for the coarse mesh (Fig. 1c) and n¼ 10 (24,000 elements) for the finemesh (Fig. 1d). The variable n is used to characterise the
number of elements of the unit cell as shown in Fig. 1d. The crystallographic orientation [100] is chosen for this study with
initial void volume fraction f0¼ 0.01 and two levels of stress triaxiality are considered: T2f1;3g.

The influence of the FE discretisation on the overall stress strain behaviour and the void volume fraction evolution is
evaluated. The overall Cauchy stress s� is

s� ¼ 1
Vtot

Z
Utot

s� dV ¼ ð1� f Þ 1
Vmat

Z
Umat

s� dV ; (37)

where Vtot and Vmat denote respectively the total volume of the unit cell Utot and the volume of the matrix Umat in the current
configuration, and the void volume fraction f is calculated by

f ¼ Vtot � Vmat

Vtot ; (38)

where the volume of the matrix Vmat in the actual configuration is calculated by a post-processing of Zset software and the
total volume of the unit cell Vtot in the current configuration can be obtained as

Vtot ¼ det
�
F�

�
Vtot
0 ; (39)

with Vtot
0 the initial volume of the unit cell.
Table 4
Values of the stress triaxiality T and h for axisymmetric loading.

h 0.4 0.538 0.625 0.727
T 1.0 1.5 2.0 3.0
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The evolution of normalised macroscopic Cauchy stress component s11=t0 and the void volume fraction f with respect to
the deformation in the main loading direction F11 � 1 are shown in Fig. 2. It can be seen that the influence of FE discretisation
on the overall stress strain behaviour and the evolution of void volume fraction is negligible for both low stress triaxiality
(T¼ 1) and high stress triaxiality (T¼ 3). Even in the softening regime at T¼ 3, its influence is weak.

The coarse mesh (n¼ 5) is used for the simulations, except otherwise stated, to obtain the curves of the macroscopic
Cauchy stress s11 and the void volume fraction f.

4. Results of unit cell simulations

In this part, the results of the unit cell simulations with axisymmetric loading are presented. The most relevant results
could be discussed after choosing the three following orientations: [100], [111] and ½125� (see Table 2). [100] represents
multiple slip orientation with mirror symmetry about three coordinate planes, [111] multiple slip orientation with mirror
symmetry about the x1ex2 coordinate plane, and ½125� represents single slip orientation with no mirror symmetry about the
coordinate planes.

4.1. Overall stress strain response

Fig. 3a shows the overall stress strain response of the unit cell for the [100] orientation with f0¼ 0.01 and the stress
triaxiality T varying from 1 to 3. The macroscopic stress s11 is normalised with respect to t0. It can be seen that the behaviour
consists of a hardening regime followed by a softening regime, resulting from the competition between the strain hardening
of matrix, the softening due to void growth and the softening due to void coalescence. The softening occurs earlier at high
Fig. 2. FE discretisation effect on (a) the overall stress strain behaviour (b) the void volume fraction for the [100] orientation and f0¼ 0.01.

Fig. 3. Effect of stress triaxiality on the overall behaviour of the unit cell for the crystallographic orientation [100], f0¼ 0.01 and triaxiality T from 1 to 3: (a) overall
stressestrain curves and (b) evolution of the transverse strain vs. longitudinal strain.
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stress triaxiality compared to that at low stress triaxiality. This can be explained by faster void growth at higher stress
triaxiality. According to Koplik and Needleman (1988), the onset of void coalescence is characterised by the transition to a
uniaxial straining associated to the localisation of the plastic flow in the intervoid ligament. In this work, it is determined by
comparing the transverse macroscopic strain F33 � 1 with the longitudinal macroscopic strain F11 � 1 through Fig. 3b. A
stabilized regime of the transverse strain F33 � 1 can be observed in Fig. 3b and it corresponds to the regime of void coa-
lescence. The time step, when the transverse strain F33 � 1 reaches 99% of its stabilized value, is regarded as the onset of
coalescence, and the corresponding longitudinal strain F11c � 1 is defined as the critical strain for the onset of coalescence.
The onset of void coalescence is indicated by a hollow square on each curve. It can be observed that the critical strain F11c � 1
decreases when the stress triaxiality T increases. Void coalescence will be discussed in more details in Section 4.6 in Section
4.6.

The effect of crystallographic orientation on the overall behaviour is presented in Fig. 4, where the five crystallographic
orientations are considered with the initial void volume fraction f0¼ 0.01 and the stress triaxiality T¼ 2. The [111] orientation
shows the hardest response and the orientations [210] and ½125� exhibit the softest response (see Fig. 4a). The peak stress
depends on the orientation and this agrees with the results obtained by Ha and Kim (2010) for FCC single crystals and by Yerra
et al. (2010) for BCC single crystals. In particular, the [110] orientation exhibits the highest peak stress and this is also observed
by Ha and Kim (2010). As a general result, the softening regime starts earlier for the orientation [111] comparedwith the other
orientations, which implies the fastest void growth for the [111] orientation, as confirmed in Section 4.2. In addition, as shown
in Fig. 4b, the [111] orientation leads to the earliest onset of coalescence.
4.2. Void growth

Fig. 5a shows the effect of stress triaxiality on the evolution of void volume fraction f for the [100] orientation with the
initial void volume fraction f0¼ 0.01 and the stress triaxiality T varying from 1 to 3. The results confirm the analysis of Section
4.1: higher stress triaxiality leads to faster void growth, which induces earlier softening of the unit cell. These results are
consistent with the observation of Ha and Kim (2010) for FCC single crystals.

The evolution of void volume fraction for different orientations with f0¼ 0.01 is presented in Fig. 5b for the stress
triaxiality T¼ 1 and in Fig. 5c for the stress triaxiality T¼ 3. Generally, the void growth rate depends on the crystallographic
orientation. The effect of crystallographic orientation is significant when the stress triaxiality is small (T¼ 1 as in Fig. 5b),
which is in agreement with the results of Yerra et al. (2010) for BCC single crystals and those of Ha and Kim (2010) for FCC
single crystals. However, the influence of the orientation becomes much weaker at high stress triaxiality (T¼ 3 as in Fig. 5c).
Moreover, in both cases of T¼ 1 and T¼ 3, the void growth rate is significantly higher in the [111] orientation than the other
orientations, which is in good agreement with the analysis in Section 4.1. A significant result from this calculation is the very
limited void growth and the quasi-incompressible response for the [210] and ½125� orientations at low stress triaxiality T¼ 1.

Void aspect ratios are also investigated, allowing to characterise the evolution of the void shape. The evolution of two
aspect ratios W2 ¼ R1=R2 and W3 ¼ R3=R1 are presented in Fig. 6a for the [100] orientation and in Fig. 6b for the ½125�
orientation with the initial void volume fraction f0¼ 0.01. Ri, i¼ 1,2,3 is the length from the centre of void to the node at the
initial pole of the void surface in the xi direction. Two levels of stress triaxiality T¼ 1 and T¼ 3 are considered here. For both
orientations, the aspect ratios become larger than 1 before void coalescence at T¼ 1, which implies a void elongation in the
main loading direction at low stress triaxiality. For the [100] orientation at T¼ 3, the void aspect ratios decrease without
exceeding the value of 1 before the onset of coalescence, which is a consequence of the oblate shape of the void induced by
Fig. 4. Effect of crystallographic orientation on the overall behaviour of the unit cell for f0¼ 0.01, triaxiality T¼ 2 and different crystallographic orientations: (a)
overall stressestrain curves and (b) evolution of the transverse strain vs. longitudinal strain.



Fig. 5. Evolution of void volume fraction: (a) effect of stress triaxiality for crystallographic orientation [100], f0¼ 0.01 and triaxiality T from 1 to 3, (b) effect of
crystallographic orientation for f0¼ 0.01 and stress triaxiality T¼ 1 and (c) effect of crystallographic orientation for f0¼ 0.01 and stress triaxiality T¼ 3.

Fig. 6. Evolution of void aspect ratios W2 and W3 for (a) the crystallographic orientation [100] and (b) ½125� with triaxiality T¼ 1 and T¼ 3.
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deformation. For the ½125� orientation at T¼ 3, the void aspect ratioW2 remains close to 1 andW3 becomes somewhat larger
than 1 before the onset of coalescence. For symmetry reasons,W2 is equal toW3 for the [100] orientation at both high and low
stress triaxiality. However, W3 becomes much larger than W2 for the ½125� especially at low stress triaxiality, which can be
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explained by the anisotropy in the transverse plane x2ex3 of the unit cell. It can also be observed that the difference in the
evolution of the void aspect ratios between the [100] orientation and the ½125� orientation is much more significant at low
stress triaxiality than that at high stress triaxiality.

4.3. Field of total cumulative slip

The total cumulative slip gcum, defined as

gcum ¼
X12
s¼1

gs; (40)

is used to display the field of plastic slip around the void, and to explain some results obtained about void growth. The total
cumulative slip fields in the middle x1ex2 and x1ex3 cross sections of the unit cell are shown for the stress triaxiality T¼ 1 in
Fig. 7 and T¼ 3 in Fig. 8 with the [100], [111] and ½125� orientations and the initial void volume fraction f0¼ 0.01 at
F11 � 1 ¼ 0:1. The fine mesh (n¼ 10, see Fig. 1d) is used to obtain the plastic slip field with more accurate local results. Recall
that the macroscopic responses obtained with the fine mesh are identical to those with the coarse mesh, as shown in Section
3.2. For symmetry reasons, the surfaces of the unit cell remain planes and the unit cell keeps its cubic shape during loading for
the [100] orientation. For the other orientations, the unit cell does not remain cubic during loading, as a result of lattice re-
orientation and shearing of the mesh.

It canbeobserved that for eachconfiguration (crystallographic orientationand stress triaxiality) adifferentpatternofplastic
slip localisation will develop. For example, for the [100] orientation at T¼ 1 and T¼ 3, the unit cell shows a symmetric cross
shaped localisation zone and the field in the x1ex2 cross section is the same as that in the x1ex3 cross section, as expected from
matrix material symmetries. However, such symmetry is not observed for the two other orientations. For almost all six cases,
the plastic slip is highly localised around the void, i.e., the red zone, except for the ½125� orientation at T¼ 1, where the local-
isation around the void is much weaker. A zone where no slip system is activated, i.e., the blue zone, is observed in all cases,
except for the ½125� orientation at T¼ 1. In the case of the ½125� orientation at T¼ 1, the activation of the slip systems is nearly
homogeneous in thematrix and it is found that only one slip system is activated almost everywhere in thematrix except in the
vicinityof the void. One can conclude that the plastic slip heterogeneity introducedby the void in thematrix is negligible for the
½125� orientation at low stress triaxiality, but that the plastic slip heterogeneity will increase with stress triaxiality.

Figs. 7 and 8 also show the void shape at F11 � 1 ¼ 0:1. The elongation of the void in the x1 axes can be observed at T¼ 1 for
the three orientations. For the [100] orientation at T¼ 3, the void evolves into a polygon-like shape. For [111] at T¼ 3, the void
is of lemon-like shape in the x1ex2 cross section and polygon-like in the x1ex2 cross section. For ½125� at T¼ 3, one can see that
the cut of the void in the x1ex2 cross section is almost a circle, i.e. R1¼ R2 remains, however the void is elongated in the x1ex3
cross section. These results are in good agreement with the results shown in Fig. 6.

4.4. Field of lattice rotation

The polar decomposition of the elastic part of deformation gradient E� follows

E� ¼ R� $U� ; (41)

with the rotation tensor R� and the right stretch tensorU�. Neglecting the elastic distortionU� , R� can be interpreted as the lattice

rotation. The corresponding rotation angle q is given by

q ¼ arccos
1
2

 
traceR��1

!
: (42)
The fields of q (in radian) in themiddle x1ex2 and x1ex3 cross sections are shown for the [100], [111] and ½125� orientations
with the initial void volume fraction f0¼ 0.01 and the stress triaxiality T¼ 1 in Fig. 10 and T¼ 3 in Fig. 11 at F11 � 1 ¼ 0:1. At
T¼ 1, lattice rotation occursmainly around the void for [100] and [111], while it is almost homogeneous in thematrix for ½125�.
This is consistent with the fields of total cumulative slip observed in Section 4.3. For ½125�, the quasi-homogeneous lattice
rotation in the matrix leads to void-free-like macroscopic behaviour of the unit cell, i.e., the unit cell exhibits nearly pure
shear, for a single slip orientation, in terms ofmacroscopic deformation pattern. At T¼ 3, the lattice rotation around the void is
more significant compared with that at T¼ 1. In particular, the field of q is no longer quasi-homogeneous for the ½125�
orientation and the macroscopic deformation deviates from homogeneous shear.

4.5. Slip sectors

The number of activated slip systems around the hole during void growth is investigated. In the simulations, plastic
deformation generally begins in single slip in some specific locations near the void. The plastic regions then expand and single



Fig. 7. Fields of accumulated plastic slip gcum in the x1ex2 (left column) and x1ex3 (right column) cross sections of the fine unit cell mesh (n¼ 10) for three
crystallographic orientations and stress triaxiality T¼ 1 with the overall deformation F11 � 1 ¼ 0:1. The initial void fraction is f0¼ 0.01.
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Fig. 8. Fields of accumulated plastic slip gcum in the x1ex2 (left column) and x1ex3 (right column) cross sections of the fine unit cell mesh (n¼ 10) for three
crystallographic orientations and stress triaxiality T¼ 3 with the overall deformation F11 � 1 ¼ 0:1. The initial void fraction is f0¼ 0.01.
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Fig. 9. Fields of accumulated plastic slip gcum in the x1ex2 (left column) and x1ex3 (right column) cross sections of the fine unit cell mesh (n¼ 10) for three
crystallographic orientations and stress triaxiality T¼ 3. The overall deformation F11 � 1 ¼ 0:29 for [100], F11 � 1 ¼ 0:16 for [111] and F11 � 1 ¼ 0:29 for ½125�. The
current void fraction is fz0:1 and the initial void fraction f¼ 0.01.
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Fig. 10. Lattice rotation q (in radian) in the x1ex2 (left column) and x1ex3 (right column) cross sections of the fine unit cell mesh (n¼ 10) for three crystallographic
orientations and stress triaxiality T¼ 1 with the overall deformation F11 � 1 ¼ 0:1. The initial void fraction is f0¼ 0.01.
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Fig. 11. Lattice rotation q (in radian) in the x1ex2 (left column) and x1ex3 (right column) cross sections of the fine unit cell mesh (n¼ 10) for three crystallographic
orientations and stress triaxiality T¼ 3 with the overall deformation F11 � 1 ¼ 0:1. The initial void fraction is f0¼ 0.01.
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slip quickly evolves into multiple slip. The transition of slip sectors from single slip to multiple slip is closely related to strain
hardening in the matrix. These results can be compared to the computations by Kysar et al. (2005) performed in the case of a
cylindrical hole and mostly in the absence of hardening. For that purpose, the number of activated slip systems is shown in
Fig. 12 in the first layer of elements bounding the void at F11 � 1 ¼ 0:005 for T¼ 1 and at F11 � 1 ¼ 0:003 for T¼ 3, before a
strong change in the void shape occurs. The [100], [111] and ½125� orientations are considered. Sectors of slip activity display
Fig. 12. Slip sectors for the different orientations in the elements bounding the void for T¼ 1 at F11 � 1 ¼ 0:005 and for T¼ 3 at F11 � 1 ¼ 0:003. Half of the void is
shown.
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regular geometrical structures determined by the crystallographic orientation and the stress triaxiality. For the three ori-
entations with the stress triaxiality T¼ 1, plastic slip occurs in some parts near the void but the rest remains elastic. The
structures of slip sectors, including their geometry and the number of activated systems, vary from one orientation to another.
For higher stress triaxiality T¼ 3, the slip sectors cover the whole void for the three orientations. It can be seen that the slip
sectors of the different orientations then display very similar structure (both the geometry and the number of activated
systems) with only an orientation deviation between them.

For the different orientations, the multiple slip sectors are shown to be different at T¼ 1 but similar at T¼ 3. This
observation is consistent with that on the total cumulative slip given in the Section 4.3, which shows the different slip
localisation modes at T¼ 1 but the plastic slip taking place all around the void for all the orientations considered at T¼ 3.
These results can be related to the significant orientation effects on void growth at T¼ 1 and the limited effects at T¼ 3.
4.6. Void coalescence

As explained in Section 4.1, the onset of void coalescence is determined by comparing the transverse strain with the
longitudinal strain. However, for the asymmetric orientations, especially [210] and ½125�, the straining of the unit cell along
the loading axis is accompanied by shearing, and the transverse straining of the unit cell may stop only along one transverse
axis (x2 or x3 axis), which is interpreted as the preferred direction of coalescence. In that case, the onset of coalescence is
determined by the preferred coalescence direction.

Fig. 13a presents the evolution of the critical strain F11c � 1 for the onset of void coalescence with respect to the stress
triaxiality T for different orientations with the initial void volume fraction f0¼ 0.01. For the [210] and ½125� orientations, the
simulations are not able to provide coalescence at low stress triaxiality, even though the longitudinal macroscopic strain
F11c � 1 reaches 130%. This is related to extremely low void growth rate for these two orientations at low stress triaxiality. For
all the orientations, the critical strain F11c � 1 decreases with increasing stress triaxiality T. This result agrees with the
observation of Yerra et al. (2010) for BCC single crystals. The difference of the critical strain F11c � 1 between different ori-
entations is significant at low stress triaxiality, but less noticed at high stress triaxiality.

Once the critical strain F11c � 1 for the onset of void coalescence has been determined, the corresponding critical void
volume fraction fc for the void coalescence can readily be obtained. In Fig.13b, the critical void volume fraction fc is plotted as a
function of stress triaxiality T for different orientations with f0¼ 0.01. With the stress triaxiality T varying from 1 to 3, the
critical void volume fraction fc appears sensitive to the orientation but almost not sensitive to triaxiality. As fc is nearly
constant and void growth is more rapid at high stress triaxiality, the onset of coalescence occurs at smaller values
of macroscopic deformation for high stress triaxiality. These results motivate the introduction of a criterion for the
onset of void coalescence in single crystals which can incorporate the strong dependence of the critical void volume
fraction on the crystallographic orientation. This feature is not accounted for by any of the existing models for porous single
crystals.

A remarkable feature of the coalescence modes observed in the case of nonesymmetric crystal orientations is that the
usual extension mode is accompanied by a strong overall shear component. These anisotropic coalescence modes are visible
on Fig. 8 at the onset of coalescence and on Fig. 9 at a later deformation stage, especially for the [111] orientation.

The above results are presented only for one initial void volume fraction f0¼ 0.01. Unit cell simulations with larger or
smaller initial void volume fractions show similar influences of stress triaxiality and crystallographic orientation on the
Fig. 13. Effect of stress triaxiality and crystallographic orientation on (a) the critical deformation F11c � 1 and (b) the critical void volume fraction fc at the onset of
coalescence for various crystallographic orientations and fixed initial void volume fraction f0¼ 0.01.
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overall stress strain response and void evolution. For the sake of clarity, these results have not been reported in this section,
but they will be used for the assessment of the macroscopic porous single crystal model presented in the next section.
5. Assessment of the porous single crystal model to void growth

5.1. Calibration of model parameters

The overall stress strain curves and the evolution of the void volume fraction obtained by the unit cell simulations with
axisymmetric loading are used for calibrating the parameters a, q1 and q2 in Eq. (21) of the macroscopic porous single crystal
model. The calibration has been conducted for a solution annealed 304 austenitic stainless steels with the material param-
eters given in Table 3. The crystallographic orientations, the initial void volume fractions f0 and the stress triaxialities T
considered for the calibration are summarised in Table 5.

The parameters a, q1 and q2 have been identified using LevenbergeMarquardt algorithm and taking into account at the
same time the stressestrain response and the evolution of void volume fraction by minimizing the cost function:

F ¼ 1
Ft11

ZFt
11

0

w1ðs11 � s11Þ2 þw2ðfi � f Þ2dF11; (43)

where s11 denotes the component of Cauchy stress tensor of the porous single crystal model, s11 the component of the
macroscopic Cauchy stress tensor of the unit cell, fi the void volume fraction of the porous single crystal model defined by Eq.
(22) and f the void volume fraction predicted by the unit cell simulations (see Eq. (38)). Ft11 is chosen to be 1.1, i.e., the
calibration is done from the beginning of the loading to the strain value F11�1¼0.1 (for the porous single crystal model) and
F11 � 1 ¼ 0:1 (for the unit cell). This level of macroscopic deformation corresponds to the regime before void coalescence for
all the cases considered. In addition, the weightw1 andw2 are chosen in such away that stress and void volume fraction have
the same order of contribution to the cost function.

Optimised values of the parameters are given in Table 6. Note that the obtained calibrated parameters, accounting for the
hardening of the matrix and the evolution of the void volume fraction, are slightly different from those determined by Han
et al. (2013), where only the yield surface was taken into account. Comparison between the porous single crystal with the
calibrated values of the parameters and the unit cell will be presented in the next sections.
5.2. Assessment for axisymmetric loading cases

In this part, the porous single crystal model is assessed for axisymmetric loading cases, which were used to calibrate the
model parameters.

5.2.1. Comparison for stress strain responses
Fig. 14 shows the evolution of the normalised Cauchy stress s11/t0 with respect to the strain F11�1 for the porous single

crystal model and that of the normalised macroscopic Cauchy stress s11=t0 with respect to the macroscopic strain F11 � 1 for
the unit cell for [100], [111] and ½125� orientations with f0¼ 0.01 at (a) T¼ 1 and (b) T¼ 3. To simplify the notation, the overline
for the macroscopic variables of the unit cell will be dropped in the following (e.g., F11 instead of F11). As void coalescence is
not incorporated in the porous single crystal model, the curves are plotted before void coalescence predicted by the unit cell
simulations. At low stress triaxiality T¼ 1, the porous single crystal model successfully predicts the tendency of the
Table 5
Crystallographic orientations, initial void volume fractions and stress triaxialities used for the calibration of material parameters a, q1 and q2, see Eq. (21).

Test number Crystallographic orientation Initial void volume fractions Stress triaxialities

1 [100]�[010]�[001] 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0
2 ½110� � ½110� � ½001� 0.005, 0.01, 0.02 1.0, 1.5, 2.0, 3.0
3 ½111� � ½211� � ½011� 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0
4 ½210� � ½120� � ½001� 0.005, 0.01, 0.02 1.0, 1.5, 2.0, 3.0
5 ½125� � ½121� � ½210� 0.005, 0.01, 0.02, 0.05, 0.1 1.0, 1.5, 2.0, 3.0

Table 6
Identified values of the porous single crystal model parameters, see Eq.
(21).

a q1 q2

5.69 1.60 1.19



Fig. 14. Comparison between the unit cell (UC) simulations and the porous single crystal model predictions: evolution of normalised macroscopic stress s11/t0
with respect to axial strain F11�1 for different crystallographic orientations with fixed triaxiality, (a) T¼ 1 and (b) T¼ 3, and initial void volume fraction f0¼ 0.01.
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orientation effect on the stress strain response. However the model slightly overestimates the strain hardening for the [100]
and [111] orientations and underestimates the strain hardening for the ½125� orientation. This can imply that the model will
underestimate the void growth for the [100] and [111] orientations and overestimate the void growth for the ½125� orien-
tation, which will be confirmed in the next section. At high stress triaxiality T¼ 3, the prediction of the model for the [111]
orientation is generally in good agreement with the unit cell simulations, while the difference between the model and the
unit cell simulation for the ½125� orientation is more significant.

The comparison of the stress strain response is also shown in Fig. 15 for larger initial void volume fraction f0¼ 0.05. Similar
trends can be observed, except for an increased difference between the unit cell and themodel for the ½125� orientation at low
triaxiality T¼ 1 for this higher initial void volume fraction.

5.2.2. Comparison for void growth
Fig. 16 shows the comparison of the evolution of the void volume fraction f for three orientations with f0¼ 0.01 at stress

triaxiality (a) T¼ 1 and (b) T¼ 3. It can be observed that the porous single crystal model satisfactorily describes the tendency
of the orientation effect on the evolution of the void volume fraction at both low and high stress triaxiality. However, the
model underestimates the void growth for the [100] and [111] orientations, and overestimates the void growth for the ½125�
orientation at low stress triaxiality T¼ 1. These discrepancies are consistent with those presented in the previous section. At
high stress triaxiality T¼ 3, the model well predicts the void growth for the [100] and ½125� orientations, but overestimates
the void growth for the [111] orientation, which is probably related to the strong void distortion observed in Figs. 7e9.
Fig. 15. Comparison between the unit cell simulations and the porous single crystal model predictions: evolution of normalised macroscopic stress s11/t0 with
respect to axial strain F11�1 for various crystallographic orientations with fixed triaxiality, (a) T¼ 1 and (b) T¼ 3, and initial void volume fraction f0¼ 0.05.



Fig. 16. Comparison between the unit cell simulations and the porous single crystal model predictions: evolution of void volume fraction f with respect to axial
strain F11�1 for various crystallographic orientations with fixed triaxiality, (a) T¼ 1 and (b) T¼ 3, and initial void volume fraction f0¼ 0.01.
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The same comparison for larger initial void volume fraction f0¼ 0.05 is shown in Fig. 17. Similar results are found, i.e., the
model well predicts the orientation effect on the evolution of void volume fraction. However, the model underestimates the
void growth in the case of the ½125� orientation at low stress triaxiality T¼ 1.
5.3. Assessment for non-axisymmetric loading cases

The porous single crystal model calibrated from the axisymmetric loading cases is used to predict macroscopic stress-
strain behaviour and void volume fraction evolution under non-axisymmetric loadings in this part. The loadings with
h2¼ 0.727 and h32{0.4,0.538,0.625} are considered for the [100], [111] and ½125� orientations with f0¼ 0.01.

The stress-strain responses predicted by the porous single crystal are compared to those of unit cell simulations in Fig. 18.
In spite of insufficient strain hardening for the [111] and the ½125� orientations, the model satisfactorily describes, for the non-
axisymmetric loadings considered, the hierarchy of stress-strain response with respect to crystallographic orientation. For
example, the [111] orientation shows the hardest response while the ½125� orientation has the softest response.

The assessment of the porous single crystal model in terms of void volume fraction evolution is presented in Fig. 19. The
hierarchy of void volume fraction evolution with respect to crystallographic orientation is well predicted by the model. In
addition, for the [111] orientation with h2¼ 0.727 and h3¼ 0.4, the unit cell simulation displays low void growth. This sit-
uation is poorly captured by the model that predicts significant void growth and in turn insufficient hardening. This
discrepancy has not been observed for the axisymmetric loading cases with this orientation at h2¼h3¼ 0.4 (T¼ 1) in Figs. 14a
Fig. 17. Comparison between the unit cell simulations and the porous single crystal model predictions: evolution of void volume fraction f with respect to axial
strain F11�1 for various crystallographic orientations with fixed triaxiality, (a) T¼ 1 and (b) T¼ 3, and initial void volume fraction f0¼ 0.05.



Fig. 18. Assessment of porous single crystal model for non-axisymmetric cases: evolution of normalised macroscopic stress s11/t0 with respect to axial strain
F11�1 for different crystallographic orientations with initial void volume fraction f0¼ 0.01, h2¼ 0.727 and (a) h3¼ 0.625, (b) h3¼ 0.538 and (c) h3¼ 0.4.
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and 16a and at h2¼h3¼ 0.4 (T¼ 3) in Figs. 14b and 16b. This can probably be explained by the potential influence of the third
invariant of the macroscopic stress tensor, which is not yet taken into account in the porous single crystal model.
5.4. Discussion

The comparisons between the porous single crystal model and the unit cell simulations have been presented. The model
successfully predicts the hierarchy of the macroscopic stress strain behaviour and the evolution of void volume fraction with



Fig. 19. Assessment of porous single crystal model for non-axisymmetric cases: evolution of void volume fraction f with respect to axial strain F11�1 for different
crystallographic orientations with initial void volume fraction f0¼ 0.01, h2¼ 0.727 and (a) h3¼ 0.625, (b) h3¼ 0.538 and (c) h3¼ 0.4.
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respect to (i) crystallographic orientation, (ii) stress triaxiality, and (iii) initial void volume fraction. An exhaustive list of initial
conditions for the simulations was considered. While the model has been verified for most conditions, specific modelling
issues have been highlighted.

It has been observed that the porous single crystal model underestimates the strain hardening of the unit cell for the ½125�
with f0¼ 0.01 and f0¼ 0.05 at high stress triaxiality T¼ 3. The overall stress strain response of the unit cell simulation and that
predicted by the porous model are replotted in Fig. 20 for f0¼ 0.01. They are also compared with the stress strain response of
the void-free single crystal at the same stress triaxiality. For the void-free (dense) single crystal, plastic deformation begins



Fig. 20. Stressestrain curves of the void-free and the voided single crystals for the ½125� orientation. T¼ 3 and f0¼ 0.01.
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with a small hardening rate due to the fact that only one slip system is activated. A change of hardening rate occurs when a
secondary slip system is activated due to hardening. For the voided single crystal (the unit cell simulation), on the contrary,
the plastic part begins with a significant hardening rate, which is related to latent hardening as a result of the multiple slip in
the regions near the void as shown in Figs. 8 and 12. To be more precise, an indicator of slip activity is proposed as

I ¼ 1
V

Z
V

X12
s¼1

H

 
j _gsj
_F11

!
dV ; (44)

where the Heaviside function H(x)¼ 1 if x> 0, else H(x)¼ 0. This quantity indicates the effective number of activated slip
systems depending on crystallographic orientation and stress triaxiality in both the model and the unit cell. In Fig. 21, the
evolution of the indicator with respect to the strain F11�1 is presented for the ½125� orientation with f0¼ 0.01. It reveals that
the macroscopic porous model predicts single slip pattern for the ½125� orientation at T¼ 3. However the factor reaches 4
before void coalescence in the unit cell simulation, which significantly deviates from the single slip pattern. This is confirmed
by Figs. 8 and 11. Since fewer activated slip systems are predicted by the porous model, strain hardening is underestimated by
the model. The enhancement of latent hardening by the high stress triaxiality observed in the unit cell simulation for the
single-slip orientations is difficult to capture in a homogenisation model.

For the ½125� orientation with small initial void volume fraction f0¼ 0.01 at the low stress triaxiality T¼ 1, the porous
model overestimates the void growth rate as compared to the unit cell simulation (see Fig. 16a). The unit cell shows nearly no
void growth in terms of void volume fraction. Notice that the ½125� orientation corresponds to single slip orientation for a
void-free FCC single crystal. For this type of orientationwith small initial void volume fraction at low stress triaxiality, the void
does not induce significant plastic slip heterogeneity in the single crystal matrix, as shown in Section 4.3. As a result, the
Fig. 21. Comparison between the unit cell simulation and the porous single crystal model: evolution of plastic slip indicator Iwith respect to axial strain F11�1 for
the ½125� orientation.
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voided single crystal behaves like a void-free single crystal and exhibits a nearly single slip patternwith quasi-incompressible
overall behaviour. No void growth is predicted by the unit cell simulation in this case. In contrast, the macroscopic model

predicts a weak void growth for this case, due to the term 2q1ficosh

(
q2

ffiffiffiffiffi
3
20

q
Mm
t�s

)
in Eq. (21), which is strictly positive even in

the case of single slip and, by virtue of normality rule, induces void growth. As the initial void volume fraction increases to
f0¼ 0.05, the plastic slip heterogeneity introduced by the void becomes significant even at low stress triaxiality. The porous
single crystal deviates significantly from single slip and much more slip systems are activated around the void. As a result, in
the unit cell simulation, the strain hardening rate is increased and the void growth is accelerated. As the model only considers
a single slip situation, it underestimates the strain hardening and the void growth for the ½125� orientationwith f0¼ 0.05 even
at low stress triaxiality T¼ 1.

Significant deviations of the model from the reference unit cell computations were also found for the [111] orientation.
They are attributed to the strong distortion of the void in that case, see Figs. 8 and 9. This is associated with a significantly
larger growth rate than for other orientations. The model qualitatively predicts this higher growth rate.
6. Application to notched single crystal specimens

In this section, the proposed porous single crystal model is used to simulate a small structure so as to show its numerical
efficiency. Actual experiments on similar structures will be carried out and compared to simulations. The model is used to
simulate the uniaxial tension tests of notched single crystal specimens of Fig. 22. The gcum and fi fields near the notch tip are
displayed in Fig. 23 for three orientations at the elongation of DL0/L0¼ 0.1. Localisation modes of gcum and that of fi are similar
for the same orientation. As a result of the symmetry of slip systems, the fields are symmetric for [100]�[010]�[100] and
[111]e½211�e½011�, but not for ½125�e½121�e[210]. The notch is opened in a symmetric manner for [100]�[010]�[100] and
[111]e½211�e½011�. In contrast, for ½125�e½121�e[210], the notch is opened in one direction more than in the other, due to the
inclined localisation band.

Due to plane strain conditions, out-of-plane deformations are restricted in the simulations. They may play an important
role in 3D cases, especially for some orientations such as ½125�e½121�e[210]. In 3D simulations, the notch front may become
curved as a result of out-of-plane plastic slip. Despite this, the simulations under plane strain conditions illustrate the ca-
pabilities of the model to captures characteristics of notch opening for the three orientations.
Fig. 22. Finite element mesh of a notched tensile specimen.



Fig. 23. gcum fields (a, b and c) and variable fi fields (d, e and f) around the notch for different orientations.
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7. Conclusions

An elastoviscoplastic model has been proposed for porous single crystals undergoing finite deformations for the first time.
The proposed model represents a remarkable compromise between description of unit cell behaviour and tractability in the
computation of structural components. The effective resolved shear stress defined in the work of Han et al. (2013) at infin-
itesimal strains is extended to finite strains and the work hardening of the matrix of porous single crystals is incorporated. To
the best knowledge of the authors, the proposed macroscopic model is the first model for porous single crystals at finite
strains. Themodel is suitable for FE implementation to carry out structural computations, as shown for uniaxial tension test of
notched single crystal specimens.

The model is calibrated from unit cell simulations based on FE periodic homogenisation. Constant stress triaxiality is
prescribed with various initial void volume fractions and crystallographic orientations, including the [210] and ½125� orien-
tations which exhibit strong anisotropic behaviour. The unit cell simulations show the dependence of overall stress strain
response on the crystallographic orientation. The [111] orientation exhibits harder response compared to the other orien-
tations. The void volume fraction evolution also displays an orientation dependence which is more significant at low stress
triaxiality. In particular, a quasi absence of void growth is observed for the ½125� orientation with small initial void volume
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fraction at low stress triaxiality, which leads to quasi-incompressible overall behaviour. In addition, the critical void volume
fraction fc for the onset of coalescence highly depends on crystallographic orientation, while it is almost not influenced by
stress triaxiality varying from 1 to 3 for a given crystallographic orientation.

Compared with the unit cell simulations, the porous single crystal model captures the hierarchy of porous single crystal
responses with respect to crystal orientation, stress triaxiality and void volume fraction. However, the model does not predict
the quasi-incompressible behaviour observed for strongly non-symmetric orientations, e.g., ½125�, with small initial void
volume fraction at low stress triaxiality. The model underestimates the strain hardening for strongly asymmetric orientations
with small initial void volume fraction at high stress triaxiality and with large f0 at all levels of stress triaxiality considered.
Improvement of the porous single crystal model may be considered by using the yield criterion of porous single crystals
derived from a more appropriate homogenisation approach, such as that of Mbiakop et al. (2015b, 2015a), to define the
effective resolved shear stress. Alternative approaches based on admissible stress fields could also be extended to Gurson-like
models of void growth in crystals (Chen et al., 2013; Shen et al., 2015). In addition, a new effect was evidenced by our unit cell
simulations which is related to enhanced hardening for highly nonesymmetric orientations. The effect is due to activation of
multislip around the hole and associated latent hardening, whereas the outer matrix remains under single slip conditions.
The porous model predicts single slip and does not account for the latent hardening effect, see Fig. 20. It does not seem that
other existing porous single crystal models can capture it.

Some other features of porous single crystal behaviour are not included in the model, especially the void size effect, which
has been investigated through different approaches (e.g., see Shu (1998), Borg (2007); Borg and Kysar (2007); Fischer and
Antretter (2009) for FE unit cell simulations with strain gradient plasticity, see Hussein et al. (2008) and Chang et al.
(2015) for DDD simulations, see (Zhao et al., 2009; Krasnikov and Mayer, 2015) for MD and (Carroll et al., 2012;
Kadkhodapour et al., 2011) for experimental observations). Future work will focus on this aspect.

In addition, the validation of the porous single crystal model at the polycrystalline scale will also be considered. Based on a
second homogenisation procedure, the behaviour of polycrystalline metals containing intragranular voids predicted by the
model can be compared with results of experiments and those of simulations with ductile fracture models in the literature
(Kabirian and Khan, 2015) and models combining damage and crystal plasticity Kim and Yoon (2015).

Appendix A. Method for imposing constant stress triaxiality and formulation of the boundary value problem of the
unit cell simulation

A special truss element has been developed for imposing constant macroscopic Cauchy stress triaxiality under periodic
boundary conditions at finite strains.

This element is aligned with the main loading direction, i.e., x1-axis. It has only one degree of freedom fbF11 � 1g for the
node at the far end of the element and nine degrees of freedom fFij; i; j ¼ 1;2;3g for the node at the near end of the element. It
is connected to the unit cell in such a way that the nine degrees of freedom fFij; i; j ¼ 1;2;3g of the node at the near end
correspond to the nine components of the macroscopic deformation gradient of the unit cell, i.e., Fij ¼ Fij; i; j ¼ 1;2;3.
Consequently, Fij will be used instead of Fij in the following development for the nine degrees of freedom of the node at the
near end of the element.

The element acts as a spring in the main loading direction as follows

bS11 ¼ K
�bF11 � F11

�
; (A.1)

with bS11 the first component of the first Piola-Kirchhoff stress tensor and K the element stiffness.
With the macroscopic Cauchy stress s� taking the form of Eq. (34), the stress triaxiality T imposed over the unit cell follows

Eq. (35).
Using Eq. (33), the corresponding macroscopic first Piola-Kirchhoff stress tensor S� can be written as

S� ¼ Js�$F�
�T ¼ Js11s�0F�

�T
; (A.2)
If s�
0
and F� are re-written in the matrix form, one has

h
Sij
i
¼ s11

24 F22F33 � F23F32 F23F31 � F21F33 F21F32 � F22F31
h2
	
F13F32 � F12F33



h2
	
F11F33 � F13F31



h2
	
F31F12 � F11F32



h3
	
F12F23 � F13F22



h3
	
F13F21 � F11F23



h3
	
F11F22 � F12F21



35: (A.3)
Because of the connection between the unit cell and the truss element at the near end of the element, one can use the Eqs.
(A.1) and (A.3) and obtain

bS11 ¼ S11: (A.4)
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Thus, one can get

s11 ¼
K
�bF11 � F11

�
F22F33 � F23F32

: (A.5)
As a result, the macroscopic first Piola-Kirchhoff stress applied over the unit cell via the truss element is equal to

h
Sij
i
¼

K
�bF11 � F11

�
F22F33 � F23F32

24 F22F33 � F23F32 F23F31 � F21F33 F21F32 � F22F31
h2
	
F13F32 � F12F33



h2
	
F11F33 � F13F31



h2
	
F31F12 � F11F32



h3
	
F12F23 � F13F22



h3
	
F13F21 � F11F23



h3
	
F11F22 � F12F21



35; (A.6)

such that constant macroscopic Cauchy stress triaxiality T is imposed as Eq. (35).
Finally, the boundary value problem, considered in unit cell simulations with prescribed stress triaxiality and periodic

boundary conditions, is to search the periodic fluctuation vector v when imposing bF11 such that

� the balance of momentum:

divs� ¼ 0 ;cx2Utot (A.7)

� and the boundary conditions:

e Periodicity:

tot
u ¼ F�$xþ v;cx2U (A.8)
e Rotation restriction:
F12 ¼ F21; F23 ¼ F32; F31 ¼ F13 (A.9)
e Rigid translation restriction
uðXnÞ ¼ 0 ;Xn is the coordinates of a chosen node of the unit cell (A.10)
e Loading via the truss element� �

S11 ¼ K bF11 � F11 (A.11)
e Constant macroscopic Cauchy stress triaxiality
s12 ¼ s23 ¼ s31 ¼ 0 and s22 ¼ h2s11; s33 ¼ h3s11 (A.12)

fulfilled.
are
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