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a b s t r a c t 

A micromorphic single crystal plasticity model is formulated at finite deformations as an extension of 

Mandel’s classical theory based on a multiplicative decomposition of the deformation gradient. It involves 

a single microslip degree of freedom in addition to the usual displacement components. Two main vari- 

ants of the constitutive equations are proposed. The first one relies on a Lagrangian microslip gradient 

and leads to a Laplace term in the isotropic hardening law. In contrast, the second formulation, based on 

a generalized strain measure defined with respect to the intermediate configuration, is shown to induce 

both isotropic and kinematic enhanced hardening. The first formulation is implemented in a 3D finite 

element code. The model is applied first to strain localization phenomena in a single crystal in tension 

undergoing single slip. The regularization power of the model is illustrated by mesh-independent simula- 

tions of the competition between kink and slip bands. The model is then used to investigate void growth 

and coalescence in FCC single crystals. Cylindrical and spherical voids are considered successively. The 

simulations show, for the first time in the case of spherical voids embedded in a single crystal matrix, 

that smaller voids grow slower than bigger ones, and that the onset of void coalescence is delayed for 

smaller voids. These results are related to the fact that the field of plastic slip is found to be more diffuse 

around smaller voids. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The intrinsically heterogeneous nature of plastic slip in met-

ls results in a non-homogeneous deformation of single crystals.

ith increasing straining, the deformation of single crystals is usu-

lly accompanied with diffused necking or/and localized shearing

 Peirce et al., 1982a ), which has been observed in experimental

tudies such as in ( Simoto et al., 1965; Chang and Asaro, 1981 ).

ocalized shear banding in single crystals has been analyzed by

eans of bifurcation analysis of the classical crystal plasticity con-

titutive equations (see, e.g., Asaro and Rice, 1977; Forest and Cail-

etaud, 1995; Forest, 1998 ) and finite element simulations (see, e.g.,

eirce et al., 1982a; Forest, 1998 ). However, the post-localization

ehavior and the size–dependence of localization modes require

nhanced crystal plasticity models accounting for a more accurate
∗ Corresponding author. 

E-mail addresses: samuel.forest@ensmp.fr , samuel.forest@mat.ensmp.fr (S. For- 
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escription of dislocation distribution and motion. A complete de-

cription relies on an infinite set of correlation functions accord-

ng to Kröner (1969) . A first enhancement is the introduction of

röner’s dislocation density tensor into the constitutive framework

n addition to the usual scalar dislocation density variables. There

xists a direct connection between the dislocation density tensor

nd the concept of geometrically necessary dislocations introduced

y Ashby (1971) . In addition, the finite element simulation of shear

ands with classical single crystal plasticity theory leads to a spu-

ious mesh-dependence ( Forest and Cailletaud, 1995 ). Hence, en-

anced theories are needed for better simulating strain localization

henomena in single crystals. For example, Forest (1998) showed

hat Cosserat single crystal plasticity models accounting for lat-

ice curvature effects can separate slip and kink banding modes

hich are identically predicted by the classical theory, see ( Forest

t al., 1997; 20 0 0; Mayeur et al., 2011; Mayeur and McDowell,

011; 2015 ) for the presentation of Cosserat, or equivalently, mi-

ropolar crystal plasticity theory. Slip bands correspond to slip lo-

alization along a crystallographic slip plane whereas kink bands

re othogonal to the slip direction. Moreover, the kink bands pre-

https://doi.org/10.1016/j.ijsolstr.2017.10.013
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dicted by the Cosserat theory are of finite width but the slip band

is not affected compared with the classical theory. 

On the other hand, the presence of geometrically necessary dis-

locations induced by strong strain gradients gives rise to size ef-

fects in the form of higher yield stress and hardening in bending,

torsion or confined plasticity experiments as discussed and mod-

eled by Fleck and Hutchinson (1997) . This is the realm of strain

gradient crystal plasticity initiated by Aifantis (1987) , revisited

and further developed by Gurtin (20 0 0; 20 02) ; Bardella (20 07) ;

Mesarovic et al. (2010) ; Wulfinghoff et al. (2015) . Some theo-

ries directly involve the dislocation density tensor which char-

acterizes the incompatibility of plastic deformation (e.g., Gurtin,

2002; Cordero et al., 2010 ). More refined theories introduce in-

dividual densities of geometrically necessary dislocations ( Evers

et al., 2004; Bayley et al., 2006; Ertürk et al., 2009; Bardella et al.,

2013 ). Micromorphic crystal plasticity in the form of the microcurl

model proposed by Cordero et al. (2010) represents an extension of

Cosserat crystal plasticity and contains strain gradient crystal plas-

ticity as a limit case. It can be seen as a relaxed strain gradient

crystal plasticity model or as a more general constitutive model,

as demonstrated for precipitate and grain size effects in ( Cordero

et al., 2010; 2012 ). 

Finite deformation formulations of gradient and micromorphic

crystal plasticity are available in ( Borg et al., 20 08; Gurtin, 20 08;

2010; Aslan et al., 2011 ). They are necessary for the study of size

effects in the fracture of crystalline solids. Size effects on the void

growth of single crystals were predicted in a pionneering work

by Shu (1998) and more recently in a series of papers ( Niordson,

20 08; Borg and Kysar, 20 07; Borg et al., 20 08; Hussein et al., 20 08;

Niordson and Kysar, 2014 ). As a result, voids of varying size can

play distinct roles during ductile fracture process and affect the fi-

nal fracture toughness. 

The numerical implementation of such generalized crystal plas-

ticity in finite element codes is not an easy task for several reasons.

The available finite element formulations are generally restricted

to small strain formulation or finite strain formulation with pla-

nar double slip, such as the works of ( Wulfinghoff and Böhlke,

2012; Gurtin et al., 2007; Evers et al., 2004; Ekh et al., 2007 ). In

addition, Miehe (2014) recently showed an efficient implementa-

tion of gradient single crystal plasticity at finite strains based on

variational principles. The computational cost of the model highly

depends on the complexity of the model. Models based on indi-

vidual GND densities require at least as many additional nodal de-

grees of freedom as slip systems, which becomes untractable for

crystallographic systems involving 24 to 48 such slip systems. In

contrast, the complexity of theories based on the total dislocation

density tensor is associated to a fixed number of additional de-

grees of freedom, up to 9 in Eringen’s micromorphic original the-

ory. The micromorphic approach is often used to implement strain

gradient plasticity models after introducing proper penalty terms

or Lagrange multipliers ( Forest, 2009 ). 

What is currently missing is a generalized crystal plasticity

model, sufficiently simple and computationnally efficient to be ap-

plicable to 3D fracture mechanics problems in single crystals. Sim-

plified generalized plasticity models were recently proposed, based

on the micromorphic approach presented in ( Forest, 2009 ) at small

strains and ( Forest, 2016 ) at finite deformations, that rely on the

introduction of one single additional degree of freedom. Aslan and

Forest (2009) ; Aslan et al. (2011) introduced a microdamage vari-

able cumulating the damage on all the slip planes. Wulfinghoff and

Böhlke (2012; 2013) ; Wulfinghoff et al. (2013) proposed a simpli-

fied micromorphic crystal plasticity model involving a single mi-

croslip variable and its gradient into the constitutive equations, in-

stead of the full dislocation density tensor. They showed that sev-

eral main features of size–dependent plasticity were accounted for

in spite of the reduced description of higher order kinematics. The
icroslip variable is constitutively related to the accumulated slip

n all slip systems. Its gradient is introduced in the free energy

ensity function. 

The objectives of the present work are therefore to formulate,

mplement and apply a reduced finite strain size–dependent crys-

al plasticity model in order to simulate localization and damage

rocesses in single crystals. In contrast to most existing formula-

ions it must be amenable to 3D computations required for the

imulations of spherical pores in single crystal matrix, single crys-

al fracture specimens (CT, SENT samples etc.) but also cracks in

olycrystalline aggregates. The model presented in this work es-

entially is the extension to finite deformations of Wulfinghof and

öhlke’s micromorphic single crystal plasticity ( Wulfinghoff and

öhlke, 2012 ). It includes several variants of the constitutive equa-

ions depending on whether the constitutive microslip gradient

ariables are introduced in the Lagrangian, Eulerian or intermedi-

te configurations as defined in Mandel’s multiplicative theory of

nite deformation crystal plasticity. 

Two applications are presented in this work dealing with

ink/slip banding and cavity growth leading to ductile damage in

ingle crystals. Mesh–independent finite element simulations of

he competition between slip and kink banding in a tensile speci-

en are provided for the first time. The predictions of the model

egarding void growth and coalescence are compared, in the 2D

ase, to recent results from the literature based on more complex

train gradient plasticity theories. Novel results are finally provided

n the 3D case for the growth of a spherical cavity in a periodic

nit cell. 

The outline of the paper is as follows. The thermodynamically

onsistent constitutive equations of the proposed reduced micro-

orphic crystal plasticity model, and their variants, are derived

n sections 2 and 3 . Section 4 is dedicated to a brief description

f the numerical implementation in the finite element code Zset
 Besson and Foerch, 1997; Z-set package, 2013 ). The approach is

hen successively applied to strain localization phenomena in a

ingle crystal ( Section 5 ) and to growth and coalescence of cylin-

rical and spherical voids in a single crystal matrix ( Section 6 ). 

According to the notations used throughout this work, first, sec-

nd and fourth rank tensors are written a , a 
˜ 

and a ≈, respectively.

radient and divergence operators w.r.t. Lagrangian (resp. Eulerian)

oordinates are called Grad (resp. grad ) and Div (resp. div ). Note

hat the components of the gradient of a second order tensor A
˜ 

re taken as A ij , k in a Cartesian orthonormal coordinate system. Its

ivergence is the trace of the gradient with respect to the last two

ndices. The scalar product of two vectors is a · b = a i b i . The dou-

le contraction of two generally non symmetric second order ten-

ors is A 

˜ 
: B 

˜ 
= A i j B i j . The inverse of the transpose of A 

˜ 
is A 

˜ 
−T . 

. Reduced micromorphic single crystal plasticity model at 

nite deformation 

Compared to Eringen’s original finite deformation micro-

orphic theory based on the introduction of a generally

on–symmetric second order tensor of microdeformation

 Eringen, 1999 ), the reduced micromorphic model presented

elow relies on a single additional degree of freedom of the

aterial point. 

.1. Kinematics of a micromorphic single crystal 

The crystalline body occupies the region B 0 in a fixed reference

onfiguration. Each point X belonging to B 0 is referred to as a ma-

erial point. Following the micromorphic approach ( Forest, 2009;

slan et al., 2011 ), two types of degrees of freedom (DOF) are at-

ributed to each material point, namely the displacement vector,
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 ( X , t ), and an additional strain–like DOF, γ χ ( X , t ). The set of

OFs is: 

OF = { u , γχ } . (1)

n the present work, the additional DOF, γ χ , is a scalar variable

alled microslip . 

At time t , the deformed body occupies the region B in space,

alled the current configuration. The Lagrangian gradients of the

egrees of freedom are 

 

˜ 
( x , t) = 

∂ u 

∂ X 

= Grad u , K ( x , t) = 

∂γχ

∂ X 

= Grad γχ , (2)

here H 

˜ 
is the displacement gradient which is related to the de-

ormation gradient F 
˜ 

by F 
˜ 

= 1 
˜ 

+ H 

˜ 
, and K is referred to as the La-

rangian microslip gradient vector. Besides, the Eulerian gradient

f γ χ will also be used in the following: 

 = 

∂γχ

∂ x 
= grad γχ = K · F 

˜ 

−1 = F 
˜ 

−T · K (3) 

here x is the current position of material point X at time t . 

Taking the time derivative of the field of DOFs provides the gen-

ralized velocities { ̇ u , ˙ γχ } : 
˙ 
 = 

∂ u ( X , t) 

∂t 
, ˙ γχ = 

∂γχ ( X , t) 

∂t 
(4) 

he Eulerian gradients of the generalized velocities are computed

s 

rad 

˙ u = ( Grad 

˙ u ) · F 
˜ 

−1 = 

˙ Grad u · F 
˜ 

−1 = 

˙ F 
˜ 

· F 
˜ 

−1 
, (5) 

rad ˙ γχ = 

(
Grad ˙ γχ

)
· F 

˜ 

−1 = 

˙ Grad γχ · F 
˜ 

−1 = 

˙ K · F 
˜ 

−1 
, (6) 

ote that Eq. (5) represents the classical velocity gradient L 
˜ 

= 

˙ F 
˜ 

·
 

˜ 

−1 . 

.2. Principle of virtual power and generalized balance of momentum 

The method of virtual power is used to formulate the bal-

nce equations in the static case, following the approach of

ermain (1973) for general micromorphic media. The virtual mo-

ion of a subdomain D of the body B is specified by a given gen-

ralized virtual velocity V = { ̇ u , ˙ γχ } . The principle of virtual power

sserts that, given any subdomain D , the virtual power of internal

orces P i is equal to the virtual power of external forces P e for any

irtual motion V . 

The volume density, p i , of virtual power of internal forces is a

inear form with respect to the generalized velocity and its gradi-

nt. For objectivity reasons, it does not depend on the velocity ˙ u .

s a result, it comprises three parts, which are associated respec-

ively to the velocity gradient, the microslip rate and its gradient:

 

i = 

∫ 
D 

p i dV = 

∫ 
D 

(
σ
˜ 

: grad 

˙ u + s ˙ γχ + m · grad ˙ γχ

)
dV, ∀ D ⊂ B ,

(7) 

here σ
˜ 

is the Cauchy stress and s , m are generalized stresses. 

In the absence of body forces for the sake of brevity, the virtual

ower of external forces is assumed to arise from a surface trac-

ion t related to the macroscopic motion and a generalized surface

raction m related to the microslip: 

 

e = 

∫ 
∂D 

p c dS = 

∫ 
∂D 

(
t · ˙ u + m ̇ γχ

)
dS, ∀ D ⊂ B . (8)

he principle of virtual power with Eq. (7) and Eq. (8) can be

ephrased as 
 (

σ
˜ 

: grad 

˙ u + s ˙ γχ + m · grad ˙ γχ

)
dV 
D 
= 

∫ 
∂D 

(
t · ˙ u + m ̇ γχ

)
dS, ∀ ̇

 u , ∀ ̇ γχ , ∀ D. (9) 

he exploitation of this principle provides two field balance equa-

ions and the Neumann boundary conditions: 

iv σ
˜ 

= 0 and div m − s = 0 , ∀ x ∈ D, (10) 

 = σ
˜ 

· n , and m = m · n , ∀ x ∈ ∂D, (11) 

here n is the normal to the surface element dS of the boundary

D in the current configuration. 

The balance laws can then be expressed with respect to the ref-

rence configuration in the form 

iv S 
˜ 

= 0 and Div M − S = 0 , ∀ X ∈ B 0 , (12)

here S 
˜ 

is the usual Boussinesq stress tensor, and M and S are

efined by 

 

˜ 
= J σ

˜ 
· F 

˜ 

−T 
, S = Js, M = J F 

˜ 

−1 · m , (13)

nd J = det ( F 
˜ 
) . The Neumann boundary conditions then become 

 = S 
˜ 
. n 0 , and M = M · n 0 , ∀ X ∈ ∂D 0 (14)

here T is the surface traction measured with respect to ∂D 0 , M

s the generalized surface traction and n 0 is the normal to the sur-

ace element of the subdomain D 0 ⊂ B 0 . 

.3. Exploitation of the entropy imbalance and proposed constitutive 

quations 

The elastic–plastic kinematics is described by the multiplicative

ecomposition of the deformation gradient F 
˜ 
: 

 

˜ 
= E 

˜ 
· P 

˜ 
, (15) 

here E 

˜ 
denotes the elastic part and P 

˜ 
the plastic part of the de-

ormation gradient F 
˜ 
. The reference and current local configura-

ions in the tangent spaces at X and x respectively, are called C 0 
nd C . A local intermediate configuration C � is then defined at each

aterial point and at each time t , according to ( Mandel, 1973 ). The

olume mass density with respect to all three local configurations

re called ρ0 , ρ� and ρ with the relations: 

 = det ( F 
˜ 
) = 

ρ0 

ρ
, J e = det ( E 

˜ 
) = 

ρ� 

ρ
, J � = det ( P 

˜ 
) = 

ρ0 

ρ� 

. (16)

t is assumed that plastic deformation takes place through the slip

f dislocations on prescribed lattice slip planes with normal n 

r 

long prescribed lattice slip direction � r , and that the evolution

f P 

˜ 
is governed by the plastic slip γ r on slip systems r via the

elation 

˙ 
 

˜ 
· P 

˜ 

−1 = 

N ∑ 

r=1 

˙ γ r N 

˜ 
r (17) 

ith the Schmid tensor N 

˜ 
r = � r � n 

r and the total number of slip

ystems, N . The uniqueness of the decomposition (15) is obtained

y choosing the isoclinic local configuration C � where the crystal

attice has the same orientation as in C 0 ( Mandel, 1973 ). 

Plastic incompressibility is assumed in the following: det ( P 

˜ 
) =

 � = 1 , trace N 

˜ 
r = 0 as usual in standard crystal plasticity. A cumu-

ative total slip variable γ cum 

is introduced as 

cum 

= 

∫ t 

0 

N ∑ 

r=1 

| ̇ γ r | dt. (18) 

cum 

is related to the microslip variable γ χ via a variable e ( X , t )

alled relative plastic slip and given by 

 ( X , t) = γcum 

( X , t) − γχ ( X , t) . (19)
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The relative plastic slip variable e measures the deviation of γ χ

from γ cum 

and will be associated with an energy cost in the free

energy potential in the following. 

Considering Eq. (15) , the velocity gradient L 
˜ 

can be expressed

as 

L 
˜ 

= 

˙ F 
˜ 
F 
˜ 

−1 = L 
˜ 

e + E 

˜ 
· L 

˜ 
p · E 

˜ 

−1 with L 
˜ 

e = 

˙ E 

˜ 
· E 

˜ 

−1 and 

L 
˜ 

p = 

˙ P 

˜ 
· P 

˜ 

−1 
. (20)

Using Eqs. (20) and (19) , the internal power density p i in

Eq. (7) can be further developed as 

p i = J −1 
e �

˜ 
e : ˙ E 

˜ 

e 

GL + J −1 
e �

˜ 
M : ( ̇ P 

˜ 
· P 

˜ 

−1 ) + s ( ˙ γcum 

− ˙ e ) + m . grad ˙ γχ

(21)

with 

�
˜ 

e = J e E 

˜ 

−1 · σ
˜ 
. E 

˜ 

−T 
, �

˜ 
M = J e E 

˜ 

T · σ
˜ 
. E 

˜ 

−T = E 

˜ 

T · E 

˜ 
. �

˜ 
e , 

E 

˜ 
e 
GL = 

1 

2 

(
E 

˜ 

T · E 

˜ 
− 1 

˜ 

)
(22)

where E 

˜ 
e 
GL 

denotes the Green-Lagrange elastic strain tensor, �
˜ 

e is

the Piola stress tensor w.r.t. C � and �
˜ 

M the Mandel stress tensor.

The last term in Eq. (21) can also be expressed in terms of La-

grangian variables, after considering Eqs. (6) and (13) : 

m · grad ˙ γχ = J −1 M · Grad ˙ γχ = J −1 M · ˙ K (23)

where the generalized stress tensors m and M are still related by

Eq. (13) . As a result, Eqs. (21) and (23) yield 

p i = J −1 
e �

˜ 
e : ˙ E 

˜ 

e 

GL + J −1 
e �

˜ 
M : ( ̇ P 

˜ 
· P 

˜ 

−1 ) + s ( ˙ γcum 

− ˙ e ) + J −1 M · ˙ K . 

(24)

In the present model, the vector microslip gradient variable K and

the relative plastic slip e are assumed to be state variables in ad-

dition to the usual elastic strain E 

˜ 
GL . The free energy density ψ is

hence a function of the Lagrangian variables E 

˜ 
GL , K and e : 

ψ = ψ 

(
E 

˜ 
e 
GL , e, K 

)
. (25)

Additional internal variables accounting for size–independent

hardening will be added later on but they are omitted here for the

sake of brevity. It follows that 

ρ ˙ ψ = ρ
∂ψ 

∂ E 

˜ 
e 
GL 

: ˙ E 

˜ 

e 

GL + ρ
∂ψ 

∂e 
˙ e + ρ

ψ 

K 

· ˙ K . (26)

The second principle of thermodynamics is now invoked in the fol-

lowing isothermal local form 

p i − ρ ˙ ψ � 0 . (27)

The combination of Eqs. (26) , (24) and (27) leads to the Clausius–

Duhem inequality: 

ρ

(
�
˜ 

e 

ρ� 

− ∂ψ 

∂ E 

˜ 
e 
GL 

)
: ˙ E 

˜ 

e 

GL + J −1 
e �

˜ 
M : 
(

˙ P 

˜ 
P 

˜ 

−1 
)

−
(

s + ρ
∂ψ 

∂e 

)
˙ e + ρ

(
M 

ρ0 

− ∂ψ 

∂ K 

)
· ˙ K + s ̇ γcum 

� 0 . (28)

The left–hand side is considered as a linear form with respect to

the variables ˙ E 

˜ 

e 

GL , ˙ e and 

˙ K . The conjugate forces must then vanish

to fulfill the positivity of dissipation. This provides the following

state laws: 

�
˜ 

e = ρ� 

∂ψ 

∂ E 

˜ 
e 
GL 

, s = −ρ
∂ψ 

∂e 
, M = ρ0 

∂ψ 

∂ K 

. (29)

The two last state laws assume that the relations between the

generalized stresses and the microslip and microslip gradient are

purely energetic and that no dissipative part is considered for

them. This assumption is part of the objective of the work, namely
o propose the most simple constitutive choices for the higher or-

er contributions. From Eq. (28) , the residual dissipation is ob-

ained as 

 

res = J −1 
e �

˜ 
M : 
(

˙ P 

˜ 
P 

˜ 

−1 
)

+ s ̇ γcum 

� 0 . (30)

iven Eq. (17) , the plastic power can be decomposed into the con-

ributions of individual slip systems: 

˜ 
M : 
(

˙ P 

˜ 
P 

˜ 

−1 
)

= �
˜ 

M : 

( 

N ∑ 

r=1 

˙ γ r N 

˜ 
r 

) 

= 

N ∑ 

r=1 

(
�
˜ 

M : N 

˜ 
r 
)

˙ γ r = 

N ∑ 

r=1 

τ r ˙ γ r , 

(31)

ith the resolved shear stress τ r = �
˜ 

M : N 

˜ 
r in C � . Thus, the resid-

al dissipation inequality writes 

 

res = J −1 
e 

N ∑ 

r=1 

τ r ˙ γ r + s ̇ γcum 

= J −1 
e 

N ∑ 

r=1 

τ r ˙ γ r + s 

N ∑ 

r=1 

| ̇ γ r | � 0 (32)

here the definition of γ cum 

given by Eq. (18) has been taken into

ccount. Noticing that sign ( τ r ) = sign ( γ r ) and τ r ˙ γ r = | τ r || ̇ γ r | ,
q. (32) can be further written as 

 

res = J −1 
e 

N ∑ 

r=1 

| τ r | | ̇ γ r | + s 

r ∑ 

r=1 

| ̇ γ r | = J −1 
e 

N ∑ 

r=1 

( | τ r | + J e s ) | ̇ γ r | � 0 . 

(33)

he previous form of the dissipation rate gives an incentive to in-

roduce the following yield function: 

f r = | τ r | + J e s − τ r 
c = | τ r | − ( τ r 

c − J e s ) , ∀ r = 1 , 2 , . . . , N, (34)

here τ r 
c is the critical resolved shear stress (CRSS) for the slip

ystem r . This corresponds to the usual Schmid law complemented

y the enhancement of hardening based on the generalized stress

 . The generalized stress s is therefore regarded as a source of

sotropic hardening for each slip system. Finally, a rate-dependent

ow rule is chosen for the plastic slip γ r , expressed as 

˙ r = ˙ γ0 

〈 | τ r | − 〈 τ r 
c − J e s 〉 

σ0 

〉n 

sign ( τ r ) (35)

here 〈•〉 = Max (•, 0) and σ0 , ˙ γ0 , n are viscosity parameters. It

ay happen that τ r 
c − J e s < 0 . That is why the definition of the

hreshold is 〈 τ r 
c − J e s 〉 . 

.4. Alternative formulation of constitutive equations 

In the previous sections, the constitutive equations were pro-

osed using the state variable K , i.e. the Lagrangian microslip gra-

ient, as an argument of the free energy density function. It would

e equivalent to consider the Eulerian variable k , provided that the

roper transport rules by F 
˜ 

are used in the derivation. The draw-

ack of the previous formulation is that the arguments of the free

nergy functions mix Lagrangian (or Eulerian) with variables de-

ned on the intermediate configuration C � like E 

˜ 
e 
GL 

. It is therefore

roposed here to push forward K into C � , or equivalently pull back

 into C � , and define K 

� as: 

 

� = P 

˜ 

−T · K = E 

˜ 

T · k . (36)

he generalized stress M 

� , work-conjugate to K 

� in the interme-

iate configuration C � can be found according to the requirement

hat the work generated by M over the vector microslip variable K

n a volume element dV 0 in C 0 is equal to that by M 

� over K 

� on

he volume element dV � in C � . Thus, M . K follows 

 . K dV 0 = J −1 
� M . K d V � = J −1 

� M . P 

˜ 

T · P 

˜ 

−T · K d V � 

= J −1 
� M . P 

T · K 

� d V � = M 

� . K 

� d V � , (37)

˜ 
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� = J −1 
� M . P 

˜ 

T = J −1 
� P 

˜ 
. M = J e E 

˜ 

−1 · m (38)

hich is obtained after substitution of Eq. (13) . Accordingly, an al-

ernative constitutive formulation can be proposed for which the

ree energy potential depends on strain measures defined on the

ame intermediate configuration, i.e., ψ = ψ 

(
E 

˜ 
e 
GL 

, e, K 

� 
)
. Substitu-

ion of Eqs. (36) and (38) into the power density of internal forces,

q. (24) , leads to 

p i = J −1 
e �

˜ 
e : ˙ E 

˜ 

e 

GL + J −1 
e �

˜ 
M : ( ̇ P 

˜ 
· P 

˜ 

−1 ) 

+ s ( ˙ γcum 

− ˙ e ) + J −1 
e P 

˜ 

−1 · M 

� . ( ̇ P 

˜ 

T · K 

� + P 

˜ 

T · ˙ K 

� ) 

= J −1 
e �

˜ 
e : ˙ E 

˜ 

e 

GL + J −1 
e �

˜ 
M : ( ̇ P 

˜ 
· P 

˜ 

−1 ) 

+ s ( ˙ γcum 

− ˙ e ) + J −1 
e ( K 

� 
� M 

� ) : ( ̇ P 

˜ 
· P 

˜ 

−1 ) + J −1 
e M 

� · ˙ K 

� . (39) 

his expression can be substituted into the entropy inequality,

q. (27) , taking into account the new argument of the Helmholtz

ree energy function: 

p i − ρ ˙ ψ = ρ

(
�
˜ 

e 

ρ� 

− ∂ψ 

∂ E 

˜ 
e 
GL 

)
: ˙ E 

˜ 

e 

GL −
(

s + ρ
∂ψ 

∂e 

)
˙ e 

+ ρ

(
M 

� 

ρ� 

− ∂ψ 

∂ K 

� 

)
. ˙ K 

� 

+ J −1 
e ( �

˜ 
M + K 

� 
� M 

� ) : ( ̇ P 

˜ 
· P 

˜ 

−1 ) + s ̇ γcum 

� 0 . (40) 

 hyperelastic relationship is chosen between the generalized

tress and microslip gradient w.r.t. the intermediate configuration:

 

� = ρ� 

∂ψ 

∂ K 

� 
(41) 

o that the residual dissipation inequality becomes 

 

res = J −1 
e 

(
�
˜ 

M + K 

� 
� M 

� 
)

: 
(

˙ P 

˜ 
P 

˜ 

−1 
)

+ s ̇ γcum 

= J −1 
e 

(
�
˜ 

M + K 

� 
� M 

� 
)

: 

( 

N ∑ 

r=1 

˙ γ r N 

˜ 
r 

) 

+ s 

N ∑ 

r=1 

| ̇ γ r | � 0 . (42) 

his expression of the dissipation rate can be rewritten in the

orm: 

 

res = J −1 
e 

N ∑ 

r=1 

{[
τ r + ( K 

� · � r )( M 

� · n 

r ) 
]

˙ γ r + J e s | ̇ γ r | }
= J −1 

e 

N ∑ 

r=1 

(| τ �r | + J e s 
)| ˙ γ r | � 0 , (43) 

here a generalized resolved shear stress arises that can be de-

ned as 

�r = τ r − x r with x r = −( K 

� · � r )( M 

� · n 

r ) . (44)

he residual dissipation Eq. (43) therefore takes the same form as

q. (33) , except that τ r is replaced by τ � r . Moreover, the variable

 

r plays the role of a back-stress for each slip system, induced by

he higher order stress and microslip gradient. The following alter-

ative yield function is thus proposed in the form: 

f r = | τ �r | − ( τ r 
c − J e s ) = | τ r + ( K 

� . � r )( M 

� . n 

r ) | − ( τ r 
c − J e s ) , 

 r = 1 , 2 , . . . , N. (45) 

ompared with the previous formulation of the theory, gradient

erms come into play not only through isotropic hardening but also

n the form of kinematic hardening, as a result of the introduction

f the microslip gradient measure w.r.t. the intermediate config-

ration. Finally, the rate-dependent flow rule for each system be-

omes: 

˙ r = ˙ γ0 

〈 
| τ �r | − 〈τ r 

c − J e s 
〉

σ0 

〉 n 
sign 

(
τ �r 
)
. (46) 
S

.5. Hardening laws 

The hardening laws describe the evolution of the critical re-

olved shear stress τ r 
c depending on appropriate internal variables.

n the present work, the hardening laws are based on the evolution

f usual scalar dislocation densities. Following Kubin et al. (2008) ,
r 
c of the slip system r can be expressed as: 

r 
c = τ0 + μ

√ 

N ∑ 

u =1 

a ru 
 

u , (47) 

here τ 0 is the thermal component of the CRSS due to lattice fric-

ion, ϱr denotes adimensional dislocation density ( ϱr / b 2 is the usual

calar dislocation density, i.e. the length of dislocation lines per

nit volume, and b is the norm of Burgers vector of the disloca-

ion b ), μ is the shear modulus, and a ru is the interaction matrix

escribing long-range interactions between dislocations. 

The evolution equation for the adimensional dislocation density
r 

˙  r = | ̇ γ r | 
( √ ∑ N 

u =1 b 
ru 
 

u 

κ
− G c 
 

r 

) 

(48) 

ccounts for multiplication and annihilation of dislocations. The

arameter κ is proportional to the number of obstacles crossed by

 dislocation before being immobilized, G c is the critical distance

ontrolling the annihilation of dislocations with opposite signs, and

he matrix b ru describes the interactions between dislocations. The

tructure of the matrices a ru and b ru is given in Appendix A for FCC

rystals. 

. Constitutive choices for the free energy potential and 

ssociated regularization operators 

Among many possible constitutive choices for the form of the

ree energy density, quadratic functions are selected in the present

ork, quadratic with respect to the three available microslip gra-

ient measures: K , K 

� and k . The Lagrangian and Eulerian vari-

bles are first discussed followed by the alternative choice K 

� . In

ll cases, the partial differential equation governing the microslip

ariable is then derived. 

.1. Formulation with a free energy potential depending on K or k 

The choice of quadratic potentials leads to linear relationships

etween suitable higher order stress and strain variables. The rea-

on for such a simple choice is to provide linear regularization op-

rators, at least w.r.t. to some variable. Full linearity is lost at large

eformations in any case and the properties of corresponding reg-

larization operators must be studied, see ( Forest, 2016 ). Such re-

ations are first derived for Lagrangian and Eulerian higher order

tress variables. 

odel based on the state law M = A 

˜ 
· K . A first quadratic potential

s considered in the form: 

0 ψ( E 

˜ 
e 
GL , e, K ) = 

1 

2 

J � E 

˜ 
e 
GL : �≈ : E 

˜ 
e 
GL + 

1 

2 

H χ e 2 + 

1 

2 

K · A 

˜ 
· K , (49)

here �≈ is the fourth rank tensor of elastic moduli, H χ a penalty

odulus and A 

˜ 
a second rank tensor of high order moduli. With

his potential, the constitutive relations Eq. (29) yield 

˜ 
e = �

≈
: E 

˜ 
e 
GL , s = −J −1 H χ e, M = A 

˜ 
· K . (50) 

oticing that S = Js, one can rewrite the second constitutive law as

 = −H χ e. (51) 
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A consequence of the choice Eq. (50) is that the relation between

Eulerian higher order stress and microslip gradient is nonlinear, af-

ter substitution of Eqs. (3) and (13) : 

m = J −1 F 
˜ 

· A 

˜ 
· F 

˜ 

T · k . (52)

Noticing that ρ� = ρ0 , i.e. J � = 1 , S = Js, and the balance law

Eq. (12) , the yield function Eq. (34) can be written as 

f r = | τ r | − ( τ r 
c − J e s ) = | τ r | − ( τ r 

c − Js ) = | τ r | − ( τ r 
c − S ) 

= | τ r | − ( τ r 
c − Div M ) . (53)

In the present work, the model will be applied to crystals with

cubic symmetry. It follows that the second order tensor A 

˜ 
must

be spherical, i.e., A 

˜ 
= A 1 

˜ 
. The constitutive relations Eqs. (50) and

(52) thus become 

M = A K , i . e . m = J −1 A B 

˜ 
· k (54)

where B 

˜ 
= F 

˜ 
. F 
˜ 

T is the left Cauchy–Green tensor. This constitutive

law can be substituted into the yield function to get 

f r = | τ r | − (τ r 
c − A Div 

(
Grad γχ

))
= | τ r | − (τ r 

c − A 	 X γχ

)
, (55)

where 	 X is the Laplace operator w.r.t. to Lagrangian coordinates.

As can be seen in this expression, the term Grad γ χ comes into

play as a source of isotropic hardening proportional to the Lapla-

cian of microslip in the spirit of the Aifantis model ( Aifantis, 1987 ).

Moreover, the regularization equation connecting γ χ and γ cum 

is

obtained by combining Eqs. (19) , (12), (54) and (51) 

γχ − A 

H χ
	 X γχ = γcum 

, (56)

where γ cum 

acts as a source term, see ( Peerlings et al., 1996 ). Here,

the regularization equation with a Lagrangian Laplace operator 	 X 

is thus obtained in the reference configuration. 

Model based on the state law m = A 

˜ 
. k . In order to obtain a Eule-

rian Laplace operator in the regularization equation, a second po-

tential ψ( E 

˜ 
GL , e, k ) is considered in the form: 

ρψ = 

1 

2 

J −1 
e E 

˜ 
e 
GL : �≈ : E 

˜ 
e 
GL + 

1 

2 

H χ e 2 + 

1 

2 

k · A 

˜ 
· k = 

1 

2 

J −1 
e E 

˜ 
e 
GL : �≈ : E 

˜ 
e
G

+ 

1 

2 

H χ e 2 + 

1 

2 

K · F 
˜ 

−1 · A 

˜ 
· F 

˜ 

−T · K . (57

The higher order state laws Eq. (29) now become 

s = −H χ e, M = J F 
˜ 

−1 A 

˜ 
· F 

˜ 

−T · K , i . e . m = A 

˜ 
· k (58)

For crystals with cubic symmetry, i.e., A 

˜ 
= A 1 

˜ 
, the constitutive re-

lations Eq. (58) reduces to 

M = JA C 

˜ 

−1 · K , i . e . m = A k , (59)

where C 

˜ 
= F 

˜ 

T · F 
˜ 

is the right Cauchy–Green tensor. Following the

same derivation procedure as in the previous section, the yield

function Eq. (34) and the regularization equation write 

f r = | τ r | − (τ r 
c − J e A div ( grad γχ ) 

)
= | τ r | − (τ r 

c − J e A 	 x γχ

)
, 

(60)

γχ − A 

H χ
	 x γχ = γcum 

, (61)

where the Eulerian Laplace operator 	 x appears. 

3.2. Formulation with a free energy potential depending on K 

� 

In the following, the formulation presented in Section 2.4 is de-

veloped further. The choice of a free energy potential giving a lin-

ear relation between K 

� and M 

� is discussed, i.e. a 
odel based on the state law K 

� = A 

˜ 
· M 

� . An alternative quadratic

ree energy potential is proposed in the form: 

� ψ = 

1 

2 

E 

˜ 
e 
GL : �≈ : E 

˜ 
e 
GL + 

1 

2 

H χ e 2 + 

1 

2 

K 

� . A 

˜ 
· K 

� . (62)

his represents the most consistent formulation in the sense that

ll the arguments are defined in the same local configuration. Sub-

tituting this potential into Eq. (29) 2 and Eq. (41) , and assuming

lastic incompressibility (i.e. ρ� = ρ0 ), gives: 

 = −J −1 
e H χ e, M 

� = A 

˜ 
· K 

� , (63)

he Lagrangian form of the latter relation is nonlinear: 

 = J � P 

˜ 

−1 · A 

˜ 
P 

˜ 

−T · K (64)

n the case of A 

˜ 
= A 1 

˜ 
, the constitutive equations Eqs. (63) and

64) become 

 

� = A K 

� , M = J � A C 

˜ 
p −1 · K , (65)

ith C 

˜ 
p = P 

˜ 

T · P 

˜ 
. Considering Eqs. (12) and (65) , one can further

rite the yield function as 

f r = | τ �r | − (τ r 
c − J −1 

� A Div (J � C 

˜ 
p −1 · K ) 

)
, (66)

ith 

�r = τ r − x r and x r = −( K 

� · � r )( M 

� · n 

r ) 

= −( P 

˜ 

−T · K · � r )(A P 

˜ 

−T · K · n 

r ) . (67)

he regularization operator is obtained after combining

qs. (12) and (65) : 

χ − A 

H χ
J −1 
� Div (J � C 

˜ 
p −1 · Grad γχ ) = γcum 

. (68)

t can be seen that the equation does not involve explicitly a

aplace operator in contrast to the previous formulations. 

The regularisation operator can be rewritten with respect

o Eulerian coordinates. For that purpose, the constitutive law

qs. (13) and (38) must be transformed into a relation between

ulerian variables. With Eqs. (13) and (38) , the expression of m

ollows: 

 = J −1 F 
˜ 

· M = J −1 
e E 

˜ 
· M 

� . (69)

ombining Eqs. (3) and (36) gives K 

� = E 

˜ 

T · k and, finally, the state

aw Eq. (63) yields 

 = J −1 
e E 

˜ 
· A 

˜ 
· E 

˜ 

T · k . (70)

or crystals with the cubic symmetry, the previous equation be-

omes 

 = J −1 
e A B 

˜ 
e · k , (71)

ith B 

˜ 
e = E 

˜ 
. E 

˜ 

T . The yield function Eq. (45) and the regularization

quation then write: 

f r = | τ �r | − (τ r 
c − J e div 

(
J −1 
e A B 

˜ 
e . grad γχ

))
� 0 , (72)

χ − A 

H χ
div (J −1 

e B 

˜ 
e . grad γχ ) = γcum 

. (73)

his differential operator cannot be reduced to a Eulerian Laplace

perator. It thus demonstrates that the second formulation based

n K 

� with the potential Eq. (62) does not lead to Lagrangian nor

ulerian Laplace operators in the regularization equation. 

It is however possible to work with Lagrange or Euler Laplace

perators in the regularization, still keeping the consitutive vari-

ble K 

� and the associated kinematic hardening variables x r . For

hat purpose, nonlinear relations linking M 

� and K 

� must be

dopted. For example, the choice 

 

� = J −1 
� P · A · P 

T · K 

� (74)

˜ ˜ ˜ 
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Table 1 

Choices of the free energy for the two formulations. A 
˜ 

= A 1 
˜ 

is considered and ρψ 

e = 

1 
2 

J −1 
e E 

˜ 
e 
GL : �≈ : E 

˜ 
e 
GL . 

Formulation 1 Formulation 2 

Yield function f r = | τ r | − ( τ r 
c − J e s ) f r = | τ s − x r | − ( τ r 

c − J e s ) 

Free energy potential ρψ 

e + 

1 

2 
J −1 H χ e 2 + 

1 

2 
J −1 A K · K ρψ 

e + 

1 

2 
H χ e 2 + 

1 

2 
A k · k ρψ 

e + 

1 

2 
J −1 
e H χ e 2 + 

1 

2 
J −1 
e A K � · K � 

Generalized stress s J −1 A 	 X γχ A 	 x γ χ J −1 A Div (J � C 
˜ 

p −1 · K ) 

or div 
(
J −1 
e A B 

˜ 
e . grad γχ

)
Regularisation equation γχ − A 

H χ
	 X γχ = γcum γχ − A 

H χ
	 x γχ = γcum γχ − A 

H χ
J −1 
� Div (J � C 

˜ 
p −1 · Grad γχ ) = γcum 

or γχ − A 

H χ
div (J −1 

e B 
˜ 

e . grad γχ ) = γcum 
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s equivalent to the linear relation M = A 

˜ 
· K . For crystals with cu-

ic symmetry, this choice leads to the following expressions of

he yield function, kinematic hardening and regularization equa-

ions: 

f r = | τ �r | − (τ r 
c − A 	 X γχ

)
= | τ r − x r | − (τ r 

c − A 	 X γχ

)
� 0 , 

(75) 

 

r = −( K 

� · � r )( M 

� · n 

r ) = −( P 

˜ 

−T · K · � r )(A B 

˜ 
p · P 

˜ 

−T · K · n 

r ) , 
(76) 

χ − A 

H χ
	 X γχ = γcum 

, (77) 

hich involves the Lagrangian Laplace operator as expected. Note

hat this regularization function is the same as Eq. (56) , except that

t is defined with the generalized resolved shear stress τ � r instead

f τ r . 

In order to obtain the Eulerian Laplace operator in the reg-

larisation equation, the following nonlinear constitutive law is

dopted: 

 

� = E 

˜ 

−1 · A 

˜ 
· E 

˜ 

−T · K 

� (78) 

hich is equivalent to the linear relation m = A 

˜ 
· k . For crystals

ith the cubic symmetry, this choice leads to the following expres-

ions of the yield function, kinematic hardening and regularization

quations: 

f r = | τ �r | − (τ r 
c − J e A 	 x γχ

)
= | τ r − x r | − (τ r 

c − J e A 	 x γχ

)
� 0 , 

(79) 

 

r = −( K 

� . � r )( M 

� . n 

r ) = −( P 

˜ 

−T · K . � r )(A C 

˜ 
e −1 · P 

˜ 

−T · K . n 

r ) , (80) 

χ − A 

H χ
	 x γχ = γcum 

. (81) 

.3. Summary 

The choices for the free energy potential in the two proposed

ormulations are summarized in Table 1 . The impact of these

hoices on the generalized stresses and regularisation equation is

hown. For the sake of brevity, only the quadratic free energy de-

ending on the variables defined w.r.t. the intermediate configura-

ion is presented for the second formulation. 

. Numerical implementation 

The implementation of the constitutive and balance laws of the

icroslip model is briefly described in this section. More detailed

nformation can be found in Appendix A to Appendix D . The for-

ulation of the model presented in Section 2.3 is chosen for the

umerical implementation, with the free energy potential given by

q. (49) . 
.1. Integration of constitutive equations 

The problem of the numerical integration of constitutive equa-

ions can be stated as follows: for given initial values of the stress

ariables S 
˜ 
, S and M and associated internal variables v int to be

ntegrated, for given increments of the strain variables from F 
˜ 
, γ χ ,

 to F 
˜ 

+ �F 
˜ 
, γχ + �γχ , K + �K , what are the final values of

he stress variables and internal variables v int ? The strain variables

re referred to as the input variables ( v IN ) and the stress variables

s the output variables ( v OUT ), the problem is briefly depicted in

ig. 1 . For the sake of brevity, the increments of the variables are

ritten in the rate form. 

The increments ˙ S and 

˙ M are directly derived from Eqs. (51) and

50) , while the calculation of ˙ S 
˜ 

requires some further calculation.

ombining Eqs. (22) , (50) and (13) leads to 

 

˜ 
= J σ

˜ 
. F 
˜ 

−T = 

1 

2 

J 

J e 
E 

˜ 
·
(
�
≈

: ( E 

˜ 

T · E 

˜ 
− 1 

˜ 
) 
)

· E 

˜ 

T · F 
˜ 

−T 
, (82)

hich shows that S 
˜ 

depends on E 

˜ 
and F 

˜ 
. The evolution equation

overning E 

˜ 
is deduced from Eq. (20) . According to the constitu-

ive Eqs. (17) , (35) and (18) , the differential equations that must be

ntegrated are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ E 

˜ 
= 

˙ F 
˜ 

· F 
˜ 

−1 · E 

˜ 
− E 

˜ 
. 

(
N ∑ 

r=1 

˙ γ r N 

˜ 
r 

)
(83) 

˙ γ r = ˙ γ0 

〈
| τ r |−
〈
τ r 

c −S 

〉
σ0 

〉n 

sign ( τ r ) (84) 

˙ 
 

r = | ̇ γ r | 
(√ ∑ N 

u =1 b 
ru 
 u 

κ − G c 
 

r 

)
(85) 

˙ γcum 

= 

N ∑ 

r=1 

| ̇ γ r | , (86) 

ote that it may happen that τ r 
c − S < 0 . In that case this value is

eplaced by 0 in the computation. Thus, the internal variables are

 int = { E 

˜ 
, γ r , 
 

r , γcum 

} . The numerical integration of the differential

quations is performed with the Newton-Raphson method which

onsists in solving the residual equations 

 R } = { �v int } − �t{ ̇ v int } (t + θ�t) = { 0 } . (87)

or the considered differential equations, the residual equations

ollow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R E ∼ = �E 

˜ 
− �F 

˜ 
. F 
˜ 

−1 · E 

˜ 
+ E 

˜ 
. 

(
N ∑ 

r=1 

�γ r N 

˜ 
r 

)
(88) 

R γ r = �γ r − ˙ γ0 

〈
| τ r |−
〈
τ r 

c −S 

〉
σ0 

〉n 

sign ( τ r ) �t, (89) 

R 
 r = �
 

r − | �γ r | 
⎛ ⎝ 

√ 

N ∑ 

u =1 

b ru 
 u 

κ − G c 
 

r 

⎞ ⎠ (90) 

R γcum 
= �γcum 

−
N ∑ 

r=1 

| �γ r | (91) 
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Fig. 1. Problem setup of the numerical integration of the constitutive equations. 
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Within the Newton-Raphson algorithm, the Jacobian matrix [ J ]

needs to be evaluated and writes 

[ J ] = 

∂{ R } 
∂{ �v int } . (92)

The Jacobian matrix for the previous residual equation system can

be expressed as a partitioned matrix ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂R E ∼

∂�E ∼

∂R E ∼

∂�γ p 

∂R E ∼

∂�r q 

∂R E ∼

∂�γcum 

∂R γ r 

∂�E ∼

∂R γ r 

∂�γ p 

∂R γ r 

∂�r q 
∂R γ r 

∂�γcum 

∂R 
 r 

∂�E ∼

∂R 
 r 

∂�γ p 

∂R 
 r 

∂�r q 
∂R 
 r 

∂�γcum 

∂R γcum 

∂�E ∼

∂R γcum 

∂�γ p 

∂R γcum 

∂�r q 
∂R γcum 

∂�γcum 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (93)

Analytical expressions for each block are given in Appendix B . 

In addition, the integration of Eq. (35) displays specific difficul-

ties, because of the penalty parameter H χ in Eq. (51) which should

take a large enough value. To improve the convergence, the algo-

rithm proposed by Wulfinghoff and Böhlke (2013) within Newton’s

method is used in this work. 

4.2. Finite element formulation 

The model is implemented in the finite element (FE) code Zset
using a total Lagrangian finite element formulation in 3D following

( Besson and Foerch, 1997; package, 2013 ). To this end, the princi-

ple of virtual power, given by Eq. (9) is expressed w.r.t. the initial

configuration C 0 : ∫ 
D 0 

S 
˜ 

: ˙ F 
˜ 

+ S ˙ γχ + M . ˙ K dV 0 = 

∫ 
∂D 0 

(
T · ˙ u + M ˙ γχ

)
dS 0 . (94)

The FE problem will be solved by a monolithic iterative method. 

Tensors and vectors are written in index notation, except other-

wise stated. Besides the displacements u i , the microslip γ χ is re-

garded as an additional nodal degree of freedom. Assuming that

the considered crystalline body occupying the domain D 0 in C 0 
is discretized by n finite elements, the principle of virtual power

( Eq. (94) ) is discretized as 

n ∑ 

e =1 

∫ 
D e 

0 

(
S i j 

˙ F i j + S ˙ γχ + M i 
˙ K i 

)
d V 0 = 

n sur f ∑ 

e =1 

∫ 
∂D e 

0 

(
T i ˙ u i + M ˙ γχ

)
d S 0 . (95)

Here, the subdomain D 

e 
0 

corresponds to the space occupied by the

individual element e . The summation is done for the repeated sub-

scripts. The boundary ∂D 0 is discretized into n surf surface elements

∂D 

e 
0 

for the application of surface tractions. In general, it is as-

sumed that, within each individual element, u is interpolated from
i 
 

he displacement values of p nodes and γ χ from the values of q

odes: 

 i = 

p ∑ 

a =1 

u N 

a ˜ u 

a 
i , γχ = 

q ∑ 

b=1 

χN 

b ˜ γ b 
χ , (96)

n each element, where u N 

a and 

χ N 

b are shape functions respec-

ively for u i and γ χ , and 

˜ u a 
i 

and 

˜ γ b 
χ respectively denote the nodal

alues of u i at node a and those of γ χ at node b . Unlike the sub-

cripts, the summation operators are written explicitly for the su-

erscripts denoting the node numbers. The deformation gradient

 ij and the Lagrangian gradient of microslip K i are given by 

 i j = 

p ∑ 

a =1 

u B 

a 
j ̃

 u 

a 
i , K i = 

q ∑ 

b=1 

χB 

b 
i ̃

 γ b 
χ (97)

ith 

u B a j = 

∂ u N 

a 

∂X j 
and 

χB b i = 

∂ χN 

b 

∂X i 
. Using these relations in

q. (95) leads to 

n 
 

e =1 

∫ 
D e 

0 

[ 

S i j 

p ∑ 

a =1 

(
u B 

a 
j 

˙ ˜ u 

a 

i 

)
+ 

q ∑ 

b=1 

(
S χN 

b ˙ ˜ γ
b 

χ + M i 
χB 

b 
i 

˙ ˜ γ
b 

χ

)] 

dV 0 

= 

n sur f ∑ 

e =1 

∫ 
∂D e 

0 

( 

T i 

p ∑ 

a =1 

u N 

a ˙ ˜ u 

a 

i + M 

q ∑ 

b=1 

χN 

b ˙ ˜ γ
b 

χ

) 

dS 0 (98)

⇒ 

n ∑ 

e =1 

p ∑ 

a =1 

[∫ 
D e 

0 

(
S i j 

u B a j 
)

dV 0 

]
˙ ˜ u 

a 

i + 

n ∑ 

e =1 

q ∑ 

b=1 

[∫ 
D e 

0 

(
S χN 

b + M i 
χB b i 

)
dV 0 

]
˙ ˜ γ

b 

χ

= 

n sur f ∑ 

e =1 

p ∑ 

a =1 

[∫ 
∂D e 

0 

(
T i 

u N 

a 
)

dS 0 

]
˙ ˜ u 

a 

i + 

n sur f ∑ 

e =1 

q ∑ 

b=1 

[∫ 
∂D e 

0 

(
M 

χN 

b 
)

dS 0 

]
˙ ˜ γ

b 

χ . (99)

According to Eq. (99) , an internal reaction is associated with each

egree of freedom: R a 
int (u i ,e ) 

is the internal reaction related to u i at

ode a of element e and R b 
int (γχ ,e ) 

is the internal reaction related

o γ χ at node b of element e 

 

a 
int (u i ,e ) 

= 

∫ 
D e 

0 

(
S i j 

u B 

a 
j 

)
d V 0 , R 

b 
int (γχ ,e ) = 

∫ 
D e 

0 

(
S χN 

b + M i 
χB 

b 
i 

)
d V 0 . 

(100)

nalogously, an external reaction is associated with each degree of

reedom: 

 

a 
int (u i ,e ) 

= 

∫ 
∂D e 

0 

( T i 
u N 

a ) d S 0 , R 

b 
ext (γχ ,e ) = 

∫ 
∂D e 

0 

(
M 

χN 

b 
)

d S 0 . (101)

ith these expressions, (99) writes 

n 
 

e =1 

p ∑ 

a =1 

R 

a 
int (u i ,e ) 

˙ ˜ u 

a 

i + 

n ∑ 

e =1 

q ∑ 

b=1 

R 

b 
int (γχ ,e ) 

˙ ˜ γ
b 

χ = 

n sur f ∑ 

e =1 

p ∑ 

a =1 

R 

a 
int (u i ,e ) 

˙ ˜ u 

a 

i 

+ 

n sur f ∑ 

e =1 

q ∑ 

b=1 

R 

b 
ext (γχ ,e ) 

˙ ˜ γ
b 

χ . (102)
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Fig. 2. 2D single crystal with a single slip system: (a) Geometry and associated 2D 

coordinate system, (b) FE mesh of a strip with a central defect. 
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his equation is solved using Newton’s method. The details of the

umerical implementation model are given in Appendix C and

ppendix D . 

In the following simulations, quadratic (resp. linear) interpola-

ion functions are used for the displacement (resp. microslip) de-

rees of freedom. 

. Application to strain localization in single crystals 

Strong strain gradients arise in particular in the presence of

ocalization phenomena. Such a situation involving strain soften-

ng is investigated in this section using the proposed micromor-

hic model. First, an analytical solution for slip band formation

nder simple shear loading is worked out in order to validate the

E implementation. Then, the finite element method is applied to

lip/kink banding in a single crystal plate subjected to simple ten-

ion. 

.1. Simple glide test with slip band localization 

nalytical solution 

Slip band formation is investigated within the framework of

nite strains in 2D. The analysis is inspired by the work of

urtin (20 0 0) ; Forest et al. (20 05) . The single crystal is endowed

ith one single slip system as shown in Fig. 2 (a). The slip direc-

ion � and the normal to the slip plane n are 

 = (1 , 0) , n = (0 , 1) . (103)

he single crystal is subjected to the kinematics of simple glide in

he form: 

 = X + u (Y ) � (104)

here the displacement u ( Y ) of the material point in the direction

f slip is taken as a function of coordinate Y , see Fig. 2 (a). Thus,

he deformation gradient F 
˜ 

takes the form 

 

˜ 
= 1 

˜ 
+ κ� � n , (105) 

here κ = 

∂u 

∂Y 
. The plastic deformation rate is 

˙ 
 

˜ 
· P 

˜ 

−1 = 1 

˜ 
+ ˙ γ � � n , (106) 

ith γ = γ (Y ) . In the absence of lattice rotation with respect

o the coordinate frame, this equation can be integrated into:

 

˜ 
= 1 

˜ 
+ γ � � n . Since F 

˜ 
= E 

˜ 
. P 

˜ 
, one obtains 

 

˜ 
= 1 

˜ 
+ κe � � n (107) 

ith κe (Y ) = κ(Y ) − γ (Y ) . Assuming small elastic strains, i.e.,
e � 1, leads to 

 

e = E 

T · E ≈ 1 + κe ( � � n + n � � ) . (108)

˜ ˜ ˜ ˜ 
ith the following consequences for the Green-Lagrange elastic

ensor, E 

˜ 
e 
GL 

, the Mandel stress, �
˜ 

M , and the resolved shear stress

: 

 

˜ 
e 
GL ≈

1 

2 

κe ( � � n + n � � ) , �
˜ 

M = C 

˜ 
e . �

˜ 
e ≈ �

˜ 
e , 

τ ≈ �
˜ 

e : ( � � n ) . (109) 

he Piola stress expressed in the intermediate configuration and

he Boussinesq stress are then computed as 

˜ 
e = τ ( � � n + n � � ) , S 

˜ 
= J σ

˜ 
. F 
˜ 

−T = E 

˜ 
. �

˜ 
e . P 

˜ 

−T ≈ �
˜ 

e . P 

˜ 

−T 

= �
˜ 

e − τγ � � � , (110) 

ith τ = μκe , and μ is the shear modulus in the case of isotropic

lasticity. The equilibrium condition, Div S 
˜ 

= 0 (see Eq. (12) ) in the

bsence of body forces, implies that 

∂τ

∂Y 
= 0 , (111) 

o that the resolved shear stress is uniform: τ = τ . The following

inear softening law is considered: 

c = τ0 + Hγ , with H < 0 . (112)

he derivation is carried out first for the formulation presented in

ection 2.3 . The free energy potential given by Eq. (49) is chosen

o that the following constitutive equations hold: 

 = A M , S = −H χ e. (113)

he yield condition ( Eq. 34 ) writes 

f = | τ | − (τc − S) = | τ | − [τ0 + Hγ − H χ (γχ − γ ) 
]

= 0 , (114)

rom which the amount of slip γ can be derived as 

= 

| τ | − τ0 + H χγχ

H + H χ
. (115) 

he divergence of the generalized stress vector is then computed

fter taking Eq. (113) into account: 

iv M = A Div K = A Div ( 
∂γχ

∂X 

� + 

∂γχ

∂Y 
n ) = A 

∂ 2 γχ

∂Y 2 
. (116)

ombining the balance equation Eq. (12) with the previous equa-

ion and Eq. (113) leads to 

 

∂ 2 γχ

∂Y 2 
= H χ (γχ − γ ) . (117)

ubstituting Eq. (115) into the previous equation, the differential

quation governing the microslip is obtained: 

 

∂ 2 γχ

∂Y 2 
− HH χ

H + H χ
γχ + 

H χ

H + H χ
(| ̄τ | − τ0 ) = 0 . (118)

 trivial uniform solution of Eq. (118) is: γχ = (| τ | − τ0 ) /H,

hich results in a spatially uniform shear strain. As H is negative,

 general sinusoidal solution Eq. (118) exists in the form: 

χ = C 1 sin 

(
2 π

λc 
Y 

)
+ C 2 cos 

(
2 π

λc 
Y 

)
+ 

| τ | − τ0 

H 

, (119)

ith the integration constants C 1 and C 2 , and the wave length 

c = 2 π

(
A (H χ + H) 

H χ | H| 
)1 / 2 

. (120) 

his formula requires that H + H χ > 0 . Note that λc comes into

lay as a material length scale. Within one period, γ χ increases to

ts maximum value and then decreases, which represents slip band

ocalisation. Since a large value is usually taken for the penalty

arameter H χ so that H χ � | H |, λc ∼
√ 

A/ | H| . Thus, increasing the

alue of A results in a wider shear band. Other solutions can be

roposed with isolated or periodically distributed slip bands sepa-

ated by zones of elastic unloading. 
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Analysis with the alternative formulation 

The analytical solution is now derived for the second formu-

lation of the theory presented in Section 2.4 , including microslip

gradient induced kinematic hardening. The free energy potential

given by Eq. (49) is considered leading to the constitutive equa-

tions Eq. (113) . The yield function ( Eq. 45 ) writes 

f = | τ + ( K 

� · � )( M 

� · n ) | − [τ0 + Hγ − H χ (γχ − γ ) 
]
. (121)

with 

K 

� = 

∂γχ

∂X 

� + 

(
∂γχ

∂Y 
− γ

∂γχ

∂X 

)
n , 

M 

� = A 

[(
∂γχ

∂X 

+ γ
∂γχ

∂Y 

)
� + 

∂γχ

∂Y 
n 

]
. (122)

The kinematic hardening variable is computed as 

x r = −( K 

� · � )( M 

� · n ) = −A 

∂γχ

∂X 

∂γχ

∂Y 
. (123)

It can exist only in the presence of a gradient of slip in both direc-

tions X and Y . Since γχ = γχ (Y ) is assumed in the present exam-

ple, 
∂γχ

∂X 
= 0 so that kinematic hardening, x r , vanishes. Thus, the

yield function takes the same form as Eq. (114) . 

As the balance laws Eq. (12) hold for the two formulations, the

same differential equation governing γ χ as Eq. (118) is obtained. It

means that the two formulations lead to the same solution for the

special case considered in this section. However, it is important to

notice that the term A 

∂γχ

∂X 

∂γχ

∂Y 
in Eq. (121) will come into play

for the case with 

∂γχ

∂X 
� = 0 in shear bands, e.g. when pile-ups are

considered. 

FE solution 

For the finite element (FE) analysis, a single row of elements

with side length L = 1 mm is considered and shown in Fig. 2 (b).

Periodic boundary conditions are applied for the displacement field

u such that 

u = F 
˜ 

· X + v (124)

where F 
˜ 

denotes the overall deformation gradient and v a periodic

fluctuation vector. The periodicity conditions are also prescribed to

the γ χ field, i.e., γ χ takes the same value at homologous points on

the opposite sides of the strip, and generalized tractions are oppo-

site. Simple glide is imposed by prescribing the overall deformation

gradient component F 12 and vanishing remaining components. 

As for the material parameters, the softening parameter is fixed

to be H = −10 3 MPa , the shear modulus μ = 105 GPa , and τ0 =
10 MPa . The viscosity parameters are chosen as K = 0 . 1 MPa and

n = 15 so that the rate–sensitivity is negligible for the considered

strain rates. Note that, in order to trigger the localization, the value

of τ 0 in Eq. (112) is set to τ0 = 9 . 9 MPa in a central element, as in-

dicated in Fig. 2 (b). 

The effect of the penalty parameter H χ is first studied. To this

end, the higher order modulus is fixed to be A = 5 N , and the

value of H χ is changed from 10 3 to 10 6 MPa . The overall stress-

strain response and the distribution of γ χ along axis Y at the shear

strain F 12 = 0 . 0 0 05 are shown in Fig. 3 . As can be seen, the over-

all stress–strain curves and the distribution of γ χ converge to the

same results with increasing H χ . However, when H χ is too small,

i.e., H χ = 10 3 MPa , a completely different solution of γ χ is found.

These results confirm the penalty role of the parameter H χ and

shows the necessity of choosing a large value for H χ if the ob-

jective is to obtain the strain gradient limit model. However, a

too large value of H χ will cause numerical problems due to ill–

conditioned matrices. 
The effect of A is then investigated by fixing H χ = 10 5 MPa and

arying A from 0.1 to 5 N . The stress-strain curves and γ χ as a

unction of Y at the overall shear strain F 12 = 0 . 0 0 05 are presented

n Fig. 4 . The results show the regularization of the shear band, i.e.,

ts finite width. The width of the band increases with increasing

alue of A , which is in good agreement with the analytical solu-

ion (cf. the material length scale λc of Eq. (120) ). It can also be

bserved in Fig. 4 a that the hardening due to slip gradient is larger

ith a large value of A , which counteracts the softening due to the

erm H γ with H < 0 in Eq. (114) . 

In order to obtain the analytical solution for this problem, the

ntegration constants in Eq. (119) must be identified from suitable

oundary conditions. The solution corresponds to a slip band sur-

ounded by elastic zones within which γχ = 0 . At the interface be-

ween the elastic and the plastic region, continuity requirements

re imposed for the microslip variable and the generalized traction.

hese conditions amount to γχ = 0 and 

∂γχ

∂Y 
= 0 at the boundaries

f the sinus branch. The analytical solution obtained for A = 5 N

nd H χ = 10 5 MPa is compared with the numerical result in Fig. 5

t the shear strain F 12 = 0 . 002 . It shows a perfect agreement be-

ween the FE and the analytical solutions. 

.2. Strain localization under uniaxial tension 

Strain localization in single crystals has been observed in many

tudies (see, e.g., Chang and Asaro, 1981 ). It was analyzed in

he seminal work of Asaro and Rice (1977) by considering crys-

als undergoing single slip. The problem was then investigated by

eirce et al. (1982b ) using FE simulations for double slip. In this

ection, strain localization in tension is simulated for single crystals

ndowed with a single slip system, using FE simulations with the

icromorphic model. The formation of slip and kink bands is ex-

ected in the simulations according to Asaro and Rice’s bifurcation

nalysis. Their formation has been investigated in different works

see Forest (1998) for analysis and simulations, and Kysar and Bri-

nt (2002) ; Flouriot et al. (2003) ; Sabnis et al. (2012) for exper-

mental observations of slip and kink bands at the crack tip or

t notches). Mesh dependence of the simulations of slip and kink

ands is studied in the following. 

roblem setup 

Simulations are performed with the single crystal plate shown

n Fig. 6 . The plate is meshed by brick elements with reduced in-

egration (20 nodes for the displacement DOFs and 8 nodes for the

icroslip DOF) and one element is used in the thickness direction.

he width of the plate is the same for all meshes and equal to

 mm. An in-plane single slip system is defined, which means that

he slip direction and the normal to the slip plane are both con-

ained in the plane of the plate. This results in plane plastic strain

onditions. The slip direction makes an angle of 56.3 ° with respect

o the vertical direction. The following clamping boundary condi-

ions are enforced: 

 X (Y = 0) = 0 , U Y (Y = 0) = 0 , U X (Y = L 0 ) = 0 , 

U Y (Y = L 0 ) = U(t) . (125)

he four lateral faces of the plate are traction free leading to plane

tress conditions. Additional conditions are enforced to fix the rigid

ody motion. 

The simulations are performed with both the conventional and

icromorphic models. Isotropic elasticity is considered. A linear

ardening law is introduced with τ c given by: 

c = τ0 + Hγ (126)

ith H > 0, in contrast to the previous section. For the simulations,

 weak hardening is considered with H = 1 MPa . For the micromor-
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Fig. 3. Influence of H χ on (a) overall stress-strain curve and (b) distribution of γ χ along Y direction at F 12 = 0 . 0 0 05 . A = 5 N . 

Fig. 4. Influence of A on (a) overall stress-strain curve and (b) distribution of γ χ along Y direction at F 12 = 0 . 0 0 05 . 

Fig. 5. Comparison analytical and numerical results: Distribution of γ χ along Y di- 

rection at F 12 = 0 . 002 . 

p  

c  

s

R

 

t  

w  

m

Fig. 6. A typical FE mesh for simulations of strain localization in uniaxial tension. 

The total number of cubic elements used is n × 6 n with n for the width and 6 n for 

the height ( n = 8 in the figure). An in-plane single slip system is also shown, whose 

slip direction makes an angle of 56.3 ° with respect to the vertical direction. 
hic model, H χ = 5 × 10 4 MPa and A = 0 . 1 N are adopted. Strain lo-

alization will occur in the plate under tension due to geometrical

oftening induced by cross–section reduction and lattice rotation. 

esults 

Different FE discretizations are considered with n elements for

he width and 6 n for the height, i.e., 6 n 2 elements. Four meshes

ith respectively n = 8 , 16 , 24 , 32 , are considered (see Fig. 6 for a

esh with n = 8 ). 
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Fig. 7. Stress–strain curves obtained by the conventional and micromorphic crystal 

plasticity with various FE meshes. The four upper (resp. lower) curves correspond 

to the micromorphic (resp. conventional) model responses. 
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The evolution of the loading force F normalized by initial sec-

tion area S 0 is plotted in Fig. 7 as a function of the elongation

�L = U(t) (in the direction Y axis) normalized by the initial height

L 0 of the mesh. For the simulations with the conventional model,

it is found that the loading curves display oscillations. A mesh de-

pendence of the curves is also observed. As the FE mesh is refined

to n = 32 , the simulation diverges at �L/L 0 = 0 . 1 as a result of

strong strain localization. 

For the simulations with the micromorphic model, a soften-

ing regime is also observed. However, the stress level is higher

than that obtained by the conventional model. This results from

the strain gradient hardening included in the micromorphic model.

Mesh convergence is observed for the micromorphic model as soon

as a sufficiently high number of elements is used. Moreover, the

curves obtained by the micromorphic model with n = 24 and n =
32 are smoother than those obtained by the conventional model.

They do not display spurious oscillations. 

The evolution of the plastic slip γ field with �L / L 0 is shown

in Fig. 8 for the conventional model and in Fig. 9 for the micro-

morphic model. Complex localization modes are observed in the

simulations. Both models predict the formation of two kink bands

at the beginning of the loading, that are indeed perpendicular to

the slip direction shown by Fig. 6 . As straining increases, strain

localizes in the kink band located in the lower part of the crys-

tal. Finally, intense slip bands form crossing the initial kink bands,

leading to final necking of the plate. 

Some differences can be noted between both simulations. Com-

pared with the conventional model results, the distance between

the two kink bands predicted by the micromorphic model is

smaller. Besides, the band width (band size along Y direction) pre-

dicted by the micromorphic model is larger than for the conven-

tional model, i.e., the plastic slip field is more diffuse in the sim-

ulation with the micromorphic model. The band width predicted

by the micromorphic model can be compared to the characteristic

length of the model appearing in Eq. (118) . In the case of a pos-

itive hardening parameter H , solutions are exponential functions

with the characteristic length: 

λc = 

√ 

A (H χ + H) 

H χ H 

, and λ∞ 

c = 

√ 

A 

H 

, (127)

where λ∞ 

c is the limit of λc for large values of H χ . However, this

is only an estimate since the analytical solution of slip banding

in tension and necking at large deformations is not available. In
he present case, λ∞ 

c = 0 . 32 mm, i.e. one third of the plate width.

his represents indeed a good estimate of the kink band width

n Fig. 9 for �L/L 0 = 0 . 017 , and an underestimate of the compet-

ng slip banding/necking zone at �L/L 0 = 0 . 25 . The element size

about 0.04 mm for n = 24 and about 0.03 mm for n = 32 ) is al-

ost 10 times smaller than the characteristic length, as it should

e to ensure mesh convergence. 

An essential difference between slip and kink bands is that the

atter involve a lot of lattice rotation and lattice curvature in con-

rast to the former. The polar decomposition of the elastic part of

eformation gradient E 

˜ 
is E 

˜ 
= R 

˜ 
e · U 

˜ 
e , with the rotation tensor R 

˜ 
e 

nd the right stretch tensor U 

˜ 
e . Neglecting the small elastic distor-

ion U 

˜ 
e , R 

˜ 
e can be interpreted as the lattice rotation. The corre-

ponding rotation angle θ is given by 

= arccos 
1 

2 

( trace R 

˜ 
e − 1 ) . (128)

he field of θ is shown in Fig. 10 for the simulation with the con-

entional model. The formation of the kink bands is accompanied

ith relatively high level of θ within the bands. In contrast, the

ormation of a slip band crossing the kink band at �L/L 0 = 0 . 025

nduces a lot of plastic slip but no further lattice rotation. The

ame observations can be made for the micromorphic simulations

s shown in Fig. 11 . 

.3. Discussion 

The previous simulations show that the micromorphic model

nables mesh–independent simulation of slip and kink banding in

ontrast to conventional crystal plasticity. The use of a Cosserat

rystal plasticity model, or, equivalently, of a strain gradient plas-

icity model based on the dislocation density tensor, only regular-

ze the formation of kink bands, see ( Forest, 1998 ), because only

attice curvature triggers size effects in such models. The question

rises of the physical meaning of such a regularization. It is well-

nown that the multiplication of so–called geometrically necessary

islocations (GND) corresponding to a gradient of slip γ along the

lip direction, as it occurs during pile–up formation, is the origin of

 size–dependent crystal plasticity behaviour, see, e.g., ( Geers et al.,

013 ). In contrast, the gradient of slip in the direction normal to

he slip plane does not correspond to GNDs. In strain gradient crys-

al plasticity based on the dislocation density tensor, no size effect

s predicted for the development of such normal slip gradients. In

he physical reality, intense slip bands are not one atomic plane

hick. Dislocation entanglement and cross–slip lead to finite width

lip lines that are not predicted by GND–based crystal plasticity

odels. The thicknesses of kink and slip bands are different, slip

ands being expected to be thinner than kink bands although no

etailed analysis of such characteristics is available in the litera-

ure. 

The microslip gradient model predicts a size–dependent be-

aviour of both slip and kink bands. A limitation of this model is

hat the same characteristic length is responsible for both effects.

ore elaborate models are necessary to account for the actual

nisotropic size–dependent behaviour. We retain from this analysis

hat a computational advantage of the proposed approach is that it

egularizes all plastic strain localization modes in contrast to avail-

ble GND–based models. 

. Application to ductile fracture of single crystals 

Void growth and coalescence are known as the mechanisms

ontrolling ductile fracture in metallic materials. In single crys-

als, lattice orientation has been shown to have an impact on

oid growth and coalescence (cf. Ling et al. (2016) and references
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Fig. 8. Evolution of the plastic slip γ field with �L / L 0 predicted by the conventional model with the FE mesh n = 24 . 
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herein). As void size decreases to micro-scale, size effects are ex-

ected in single crystals, which have been predicted by differ-

nt approaches (e.g., see Shu, 1998; Borg and Kysar, 2007 and

org et al. (2008) for FE unit cell simulations with strain gradi-

nt plasticity, see Hussein et al. (2008) and Chang et al. (2015) for

islocation dynamics simulations, and see Zhao et al. (2009) for

olecular dynamics simulations). In this section, unit cell simu-

ations are carried out with the micromorphic model in order to

redict size effects on void growth and coalescence in single crys-

s  
als. Two cases are considered: a cylindrical void in a plate and a

pherical void in a cube. 

.1. Unit cell simulations 

A cylindrical void of radius R 0 in a square plate of side length

 0 is first considered. A typical FE mesh with one element in thick-

ess w 0 is shown in Fig. 12 a for an initial void volume fraction

f 0 = πR 2 0 /L 2 0 = 0 . 1 . A biaxial tensile loading is imposed under plane

train conditions. The boundary conditions applied to the faces of
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Fig. 9. Evolution of plastic slip γ field with �L / L 0 predicted by the micromorphic model with the FE mesh n = 24 . 
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e  
the unit cell are 

U X (X = 0) = 0 , U X (X = L 0 ) = U 1 (t) , (129)

U Y (Y = 0) = 0 , U Y (Y = L 0 ) = U 2 (t) , (130)
U Z (Z = 0) = 0 , U Z (Z = w 0 ) = 0 . (131)

wo external forces F 1 and F 2 are associated with U 1 ( t ) and U 2 ( t ).

he prescribed U 2 is adjusted using a special additional finite el-

ment for keeping a constant biaxiality ratio a = σ / σ = 0 . 625
22 11 
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Fig. 10. The lattice rotation angle θ (rad.) field predicted by the conventional model for increading values �L / L 0 with the FE mesh n = 24 . 

d  

σ

σ

i

e
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s

p

A  

F  

a  
uring the loading 1 , where the overall (average) Cauchy stresses

11 and σ 22 are defined by 

11 = 

F 1 
w 0 (L 0 + U 2 ) 

, σ 22 = 

F 2 
w 0 (L 0 + U 1 ) 

. (132) 
1 Note that only one value of biaxiality (and of triaxiality in the next section) 

s considered. For the sake of brevity, the discussion of biaxiality (resp. triaxiality) 

ffects on the growth and coalescence of cylindrical (resp. spherical) pores is post- 

oned to another study. Such a discussion of triaxiality effects for spherical holes in 

ingle crystals can be found in ( Ling et al., 2016 ) in the case of conventional crystal 

lasticity. 

t

 spherical void in the center of a cube is then considered (see

ig. 12 b), whose initial void volume fraction is f 0 = 

4 

3 
π

R 3 
0 

L 3 
0 

. A tri-

xial axisymmetric loading is subscribed with the boundary condi-

ions: 

U X (X = 0) = 0 , U X (X = L 0 ) = U 1 (t) , (133) 

U Y (Y = 0) = 0 , U Y (Y = L 0 ) = U 2 (t) , (134) 
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Fig. 11. The lattice rotation angle θ (rad.) field predicted by the micromorphic model for increasing values of �L / L 0 with the FE mesh n = 24 . 

 

 

 

d

σ  
U Z (Z = 0) = 0 , U Z (Z = L 0 ) = U 3 (t) = U 2 (t) . (135)

Three external forces F 1 , F 2 and F 3 are respectively associated with

U ( t ), U ( t ) and U ( t ). The overall stresses σ , σ and σ are
1 2 3 11 22 33 
efined by 

σ 11 = 

F 1 
(L 0 + U 2 )(L 0 + U 3 ) 

, σ 22 = 

F 2 
(L 0 + U 1 )(L 0 + U 3 ) 

, 

33 = 

F 3 
(L 0 + U 1 )(L 0 + U 2 ) 

. (136)
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Fig. 12. Typical FE meshes for the unit cell simulations: (a) A cylindrical void in a plate ( f 0 = 0 . 1 ) (b) a spherical void in a cube (half of the mesh is shown and f 0 = 0 . 01 ). 

Table 2 

Slip systems in FCC single crystals. 

s 1 2 3 4 5 6 7 8 9 10 11 12 

n r (111) (1 ̄1 1) ( ̄1 11) ( ̄1 ̄1 1) 

� r [ ̄1 01] [0 ̄1 1] [ ̄1 10] [ ̄1 01] [011] [110] [0 ̄1 1] [110] [101] [ ̄1 10] [101] [011] 

Table 3 

Material parameters for the unit cell simulations (see Han et al. (2013) ). 

C 11 C 12 C 44 τ 0 n σ0 , ˙ γ0 μ G c κ

199 GPa 136 GPa 105 GPa 88 MPa 15 1 MPa , 1 s −1 65.6 GPa 10.4 42.8 

a 1 a 2 a 3 a 4 a 5 a 6 b 1 b i ( i � = i ) 
 r 
ini 

0.124 0.124 0.07 0.625 0.137 0.122 0 1 5 . 38 × 10 −11 

T  

f

T
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m  
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6

he prescribed U 2 and U 3 are adjusted by one additional element

or maintaining a constant stress triaxiality T = 2 defined as 

 = 

σ m 

σ eq 
= 

1 + η2 + η3 

3 

√ 

1 − η2 − η3 − η2 η3 + η2 
2 

+ η2 
3 

, (137) 

here η2 = σ 22 / σ 11 and η3 = σ 33 / σ 11 . For the applied axisym-

etric loading considered in this section, the values η2 = η3 = η =
 . 625 were chosen, corresponding to a triaxiality of 2. 

A FCC single crystal with 12 slip systems is considered. The slip

ystems are specified by the slip direction � r and the normal to

he slip plane n 

r which are listed in Table 2 , following Schmid and

oas convention. The crystal orientation is chosen with the lat-

ice directions along the coordinate axes X − Y − Z. In the case

f cylindrical voids, two crystal orientations are considered: [100]–

010]–[001] and [100]–[01 ̄1 ] –[011]; in the case of spherical void,

nly the [100]–[010]–[001] orientation is considered. A cubic elas-

icity tensor �≈ is considered and determined by three independent

oduli C 11 , C 12 and C 44 . The critical resolved shear stress τ r 
c of slip

ystems is given by Eqs. (47) and (48) . 

The material parameters used in the simulations are summa-

ized in Table 3 . They correspond to a solution annealed 304

ustenitic stainless steel at 340 °C studied by Han et al. (2013) ;

ing et al. (2016) . Note that a ru and b ru are 12 × 12 matrices and

hey can be specified by 6 independent parameters a 1 , a 2 , ���,

 6 and b 1 , b 2 , ���, b 6 (the structure of the matrices is presented

n Appendix A ). The values of a ru are obtained by discrete dis-

ocation dynamics ( Kubin et al., 2008; Monnet, 2009 ), while no

tudy is found in the literature for estimating the values of b i 
 i = 1 , 2 , · · · , 6 ). It is assumed that b = 0 and that b = 1 for i � = 1
1 i 
 Han et al., 2013 ). The initial values of adimensional dislocation

ensities 
 

r 
ini 

( s = 1 , 2 , · · · , 12 ) are the same. Recall that ϱr / b 2 is the

islocation density and b is the norm of Burgers’ vector of the dis-

ocations; b = 2 . 54 Å . 

To study size effects, the side length L 0 of the unit cell is

hanged, while the moduli H χ = 5 × 10 4 MPa and A = 5 N are fixed.

t is the same value of H χ as used in the study of localization

henomena in the previous section. Nevertheless, this value does

ot need to be the same. If the model is intended to represent

 strain gradient plasticity model, the penalty term H χ must be

igh enough for the microslip variable to be close enough to the

umulated slip. However, it should not be too large to avoid ill–

onditioned matrices. The value is then a compromise and depends

n the values of the critical resolved shear stress and hardening

odulus of the material. The formula (127) provides an estimate

f the material length scale. A value of H can be estimated from

he curve giving the evolution of τ r with respect to γ r of one slip

ystem at the beginning of its activation in tension. This is only

 crude estimate since getting an analytical solution of the mi-

roslip field around the hole is almost out of reach for the com-

lex considered hardening law. In this way, λc is calculated to be

c = 0 . 06 mm with the used parameters. In fact the following com-

utation results only depend on the adimensional ratio L 0 / λc , and

ot on the absolute values of L 0 and λc . 

.2. Void growth in 2D and 3D 

Evolution of the void volume fraction, computed as 

f = 1 − V mesh 

V tot 
, (138) 
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Fig. 13. Cylindrical void with f 0 = 0 . 01 : (a) The variation of the normalized void volume fraction and (b) the overall stress–strain curves for different sizes of the unit cell. 

[100]–[010]–[001] orientation. 
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is first investigated. V mesh is the current volume of the FE mesh

which can be evaluated by post-processing the calculation and V tot 

is the current total volume of the unit cell which obeys to V tot =
(L 0 + U 1 )(L 0 + U 2 ) w 0 in the case of cylindrical void and V tot = (L 0 +
 1 )(L 0 + U 2 )(L 0 + U 3 ) for the cube. The increase in the void volume

fraction is equal to � f = f − f 0 . 

The variation of �f / f 0 with respect to the overall strain E 11 =
 1 /L 0 is shown in Fig. 13 a for the cylindrical void with the [100]–

[010]–[001] orientation and f 0 = 0 . 01 . Note that the same compu-

tation has been performed with conventional single crystal plastic-

ity. The void evolution predicted by the conventional theory does

not depend on the size of unit cell. In general, two stages of void

evolution are observed: in the first stage, the void grows relatively

slowly; in the second stage, void growth rate is accelerated. The

two stages are respectively called void growth and void coales-

cence in the literature. According to Koplik and Needleman (1988) ,

the onset of void coalescence is characterized by the transition

from biaxial to uniaxial straining associated with the localization

of the plastic flow in the intervoid ligament. In contrast to the re-

sults of conventional crystal plasticity, the simulations with the mi-

cromorphic theory predict size–dependent void evolution. The void

growth rate is found to decrease with decreasing normalized unit

cell size L 0 / λc . It is significantly reduced for very small unit cells

and an absence of void growth is predicted for L 0 /λc = 3 . 0 . In ad-

dition, the void evolution tends to converge to the results obtained

by the conventional theory when L 0 / λc is large enough. 

The overall stress σ 11 is plotted in Fig. 13 b as a function of the

overall strain E 11 . For the simulation with the conventional theory,

a hardening regime followed by softening is observed, which re-

sults from the competition between strain hardening of the matrix,

softening due to void growth/coalescence. The micromorphic the-

ory predicts a higher stress level as a result of the strain gradient

hardening and the reduced void growth. The hardening regime is

enhanced with the decreasing unit cell size L 0 / λc . In particular, no

softening regime is found for the unit cell with L 0 /λc = 3 . 0 , which

is due to extremely low void growth rate. In this case, the voided

unit cell behaves almost like a void-free unit cell. 

Results for the [100]–[010]–[001] and [100]–[01 ̄1 ] –[011] orien-

tations with f 0 = 0 . 1 are shown in Fig. 14 . For a given value of

L 0 / λc , the two orientations show similar void growth rates, but dif-

ferent stress–strain responses. This difference is related to different

number of activated slip systems in the matrix. For a given value

of L 0 / λc , the [100]–[010]–[001] orientation shows higher stress

level than [100]–[01 ̄1 ] –[011]. Compared with the simulations for

f 0 = 0 . 01 , the evolution of �f / f 0 does not display a clear transition

to the accelerated void growth stage. However, the transition from
f  
he uniaxial to biaxial straining can be detected, i.e., the two stages

void growth and coalescence) can be determined also for this ini-

ial void volume fraction. The observed size effect on void growth

s similar to that for f 0 = 0 . 01 : void growth rate is decreased for

mall L 0 / λc . However, the void growth for L 0 /λc = 3 . 0 cannot be

eglected here, unlike the case f 0 = 0 . 01 . 

In addition, similar size dependent overall stress–strain re-

ponses are observed for the two orientations as that observed

or f 0 = 0 . 01 . It is worth noting that the unit cell with L 0 /λc = 3 . 0

oes not show softening regime even after significant void growth.

Similar size dependent void growth and stress–strain responses

re observed in the case of spherical void with the [100]–[010]–

001] orientation and f 0 = 0 . 01 , as shown in Fig. 15 . However, it

s found that the softening part of the stress/strain curves starts

t significantly higher strain values for spherical pores than for cy-

lindical ones. 

.3. Void coalescence 

The onset of void coalescence in the 2D case corresponds to a

ransition from biaxial to uniaxial straining, as noted by Koplik and

eedleman (1988) . The onset is determined in the following way.

he ratio a (t) = | U 2 (t) | / | U 1 (t) | is computed during straining. Dur-

ng void growth, this ratio is found to be almost constant, with the

alue a 0 . It then suddenly decreases and tends toward zero corre-

ponding to the transition to uniaxial straining along 1. A critical

alue a c = a 0 / 10 is then chosen to detect the onset of coalescence.

he corresponding critical value of the overall strain E 11 is thus

etermined and denoted by E 
c 

11 . 

The onset of coalescence is indicated by a hollow square in

igs. 13, 14 and 15 . Compared with the result predicted by the con-

entional theory, the onset of coalescence is delayed for small unit

ell sizes according to the micromorphic theory. E 
c 

11 is plotted as a

unction of L 0 / λc in Fig. 16 for cylindrical voids with the two ori-

ntations and f 0 = 0 . 01 and 0.1. The red symbols indicate E 
c 

11 as

redicted by the conventional theory. Since the coalescence is not

redicted for L 0 /λc = 3 . 0 , E 
c 

11 does not exist and is not plotted in

he figure. Qualitatively similar results are shown for the two ori-

ntations and the two levels of f 0 . A rapid decrease in E 
c 

11 with

 0 / λc is observed for L 0 / λc < 10. It tends to stabilize with increas-

ng L 0 / λc and converge to the value predicted by the conventional

heory. 

After determining E 
c 

11 , the corresponding critical void volume

raction f c for the coalescence can be readily found. f c is plotted

s a function of L 0 / λc for the cylindrical void in Fig. 17 . With the

onsidered values of L 0 / λc , the size effect on f c can be neglected

or f = 0 . 01 , while an increase in f c with decreasing L / λc for
0 0 
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Fig. 14. Cylindrical void with f 0 = 0 . 1 : (a) The variation of void volume fraction and (b) the overall stress–strain curves for various sizes of unit cell. Solid lines are for the 

[100] − [010] − [001] orientation and dashed lines for the [100] − [01 ̄1 ] − [011] orientation. 

Fig. 15. Spherical void with f 0 = 0 . 01 : (a) Variation of the normalized void volume and (b) overall stress–strain curves for different sizes of the unit cell. [100]–[010]–[001] 

orientation. 

Fig. 16. Cylindrical void: Critical strain E 
c 

11 for the onset of coalescence as a func- 

tion of normalized size of unit cell. 

L  

t  

s  

a

 

s  

Fig. 17. Cylindrical void: Critical void volume fraction f c for the onset of coalescence 

as a function of normalized size of unit cell. 

e  

c

6

 

p  
 0 / λc < 60 is observed for the two orientations with f 0 = 0 . 1 . Since

he [100]–[010]–[001] and [100]–[01 ̄1 ] –[011] orientations shows

imilar void growth rate, f c is alike for the two orientations with

 given value of L 0 / λc < 60. 

Size effects on the growth of spherical voids are qualitatively

imilar to that on cylindrical voids. They are quantitatively differ-
nt since the critical strains at coalescence are found to be signifi-

antly larger for spherical than for cylindrical pores. 

.4. Discussion 

Size–dependent overall behavior and void growth have been

redicted by the micromorphic theory for voided single crystals.
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Fig. 18. Void shape for the [100] − [010] − [001] orientation at E 11 = 0 . 1 ((a)–(d)) and E 11 = 0 . 4 ((e)–(h)) for different unit cell sizes: (a,e) L/λc = 3 . 0 , (b,f) L/λc = 30 , (c,g) 

L/λc = 150 and (d,h) conventional model. f 0 = 0 . 1 . The field of γ cum is shown. 
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Qualitatively similar results have been obtained for the unit cell

with various initial void volume fractions and crystal orientations:

Unit cells of smaller size exhibit a lower void growth rate com-

pared with larger ones. This results in a higher hardening rate at

the beginning of plastic regime and delays the onset of void coa-

lescence. 

The impeded void growth in unit cells of small size is associ-

ated with the fact that the plastic deformation field becomes more

diffuse in the micromorphic theory at these scales. For the cylin-

drical void with the [100]–[010]–[001] orientation and f 0 = 0 . 1 ,

the cumulative slip γ cum 

is shown in Fig. 18 ((a)–(d)) for the unit

cells with different values of L 0 / λc at the overall strain E 11 = 0 . 1 .

The conventional theory predicts significant localization of γ cum 

at

four zones around the void, called A, B, C, D in Fig. 18 . It is worth

noting that the maximum local γ cum 

reaches the very large strain

value 2.18 for the overall strain E 11 = 0 . 1 . According to the micro-

morphic theory, the γ cum 

field is more diffuse, especially at the

four zones and becomes more and more diffuse as L 0 / λc decreases

from 150 to 3. As a result, void growth is slowed down and void

coalescence is delayed. The diffuse field of γ cum 

also influences the

evolution of void shape, as shown in Fig. 18 ((e)–(h)) for the unit

cells of different sizes at the overall strain E 11 = 0 . 4 . The void is

shown to become an ellipsoid for the small unit cell size L 0 /λc = 3 .

In this case, since the void coalescence does not occur, the void is

elongated along the X –axis but the deformation of the void along

the Y –axis is limited. The void is also ellipsoidal for L 0 /λc = 30 at

E = 0 . 4 (before the onset of void coalescence in this case). Com-
11 
ared with L 0 /λc = 3 , the void is more deformed along the Y –axis

ecause of a less diffuse field of γ cum 

in the region around the

oid. For the large unit cell with L 0 /λc = 150 , the lateral deforma-

ion of the void is large at E 11 = 0 . 4 as a result of void coalescence.

he conventional theory predicts a similar void shape as the mi-

romorphic theory with L 0 /λc = 150 , except at the sharp corners. 

The field of the cumulative slip γ cum 

is shown in Fig. 19 for the

100]–[01 ̄1 ] –[011] orientation with f 0 = 0 . 1 . A different mode of

lastic deformation is predicted compared with the [10 0]–[0 01]–

001] orientation, which results in slightly different void shapes as

hown in Fig. 19 ((e)–(h)). Moreover, it is again found that the γ cum 

eld is more diffuse when decreasing value of L 0 / λc . 

The γ cum 

field is shown in Fig. 20 for the unit cells with the

10 0]–[0 01]–[0 01] orientation, a spherical void and f 0 = 0 . 01 . The

ocation of the plastic slip localization zones is very different from

he cylindrical case, with eight zones around the equator. These

ones are predicted by the micromorphic model for large enough

ell sizes. For smaller cell sizes, the plastic slip is more largely dis-

ributed around the equator and only four main localization zones

emain. 

In addition, the γ cum 

values along a meridian line is plotted for

he spherical void with f 0 = 0 . 1 in Fig. 21 as a function of the an-

le θ (cf. the definition of θ in Fig. 12 a) at E 11 = 0 . 05 (before sig-

ificant void shape change) for the [10 0]–[0 01]–[0 01] orientation.

he angular sectors of plastic activity are similar to those observed

y Borg and Kysar (2007) ; Niordson and Kysar (2014) and some

imilarities can be observed for different unit cell sizes. The dis-
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Fig. 19. Void shape for the [100] − [01 ̄1 ] − [011] orientation at E 11 = 0 . 1 ((a)–(d)) and E 11 = 0 . 4 ((e)–(h)) for different unit cell sizes: (a,e) L/λc = 3 , (b,f) L/λc = 30 , (c,g) 

L/λc = 150 and (d,h) conventional model. f 0 = 0 . 1 . The field of γ cum is shown. 

Fig. 20. Spherical void: Void shape for the [100] − [01 ̄1 ] − [011] orientation at E 11 = 0 . 3 for different unit cell size: (a) L/λc = 30 , (b) L/λc = 90 , (c) L/λc = 300 and (d) 

conventional model. f 0 = 0 . 01 . The field of γ cum is shown. 
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u  

l  

t  
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l

ribution of γ cum 

is shown to be smoother at the void surface for

nit cells of smaller size than for larger ones. This is directly re-

ated to the reduced void growth for unit cells of small size. Also

he number of points with maximum slip is reduced from 8 to 4

hen decreasing the cell size. 
. Conclusions 

The main original contributions of the present work are the fol-

owing: 
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Fig. 21. Cumulative slip γ cum profiles at the equator of spherical voids for f 0 = 0 . 1 . 

E 11 = 0 . 05 . 
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1. A micromorphic single crystal plasticity model has been pro-

posed and implemented, accounting for both size–dependent

hardening behaviour and strain localization phenomena at

finite deformation. It represents an anisotropic and finite

strain extension of existing regularisation models like in

( Peerlings et al., 2012 ). 

2. It is a reduced model compared to existing micromorphic and

gradient crystal plasticity theories involving the full disloca-

tion density tensor or GND densities, following Wulfinghoff and

Böhlke (2012) . Two advantages of this reduced model have

been highlighted. First the computational cost is decreased

since a single additional degree of freedom is introduced. Sec-

ond, it was shown for the first time in the present work that

both slip and kink bands are regularized leading to mesh–

independent simulation of localization phenomena in crystals.

This is in contrast to purely GND–based models. A drawback of

the reduced model, however, is that the thickness of slip and

kink bands are related to the same characteristic length, which

is probably not the case in the physical reality. 

3. The model is based essentially on enhanced isotropic harden-

ing in the hardening law of each slip system. However, a vari-

ant of the constitutive formulation was shown to deliver a size–

dependent kinematic hardening variable directly related to the

microslip gradient and associated generalized stress vector de-

fined on the intermediate isoclinic configuration. An analyti-

cal expression, derived in a simple case of single slip, shows

that this back–stress component is a second order contribution

which vanishes in the small deformation limit. 

4. The competition between slip and kink banding in a single

crystal plate leads to mesh–dependent spurious oscillations on

the overall curves in the case of conventional crystal plastic-

ity. The oscillations are smoothed out in the regularized simu-

lations which were checked to be mesh–independent. This reg-

ularization effect is similar to that obtained by isotropic gradi-

ent plasticity models like ( Aifantis, 1987; de Borst et al., 1993 )

including the Laplace of the cumulative plastic slip. The differ-

ence for the present theory is that the isotropic gradient effects

rest on an anisotropic crystal plasticity framework. 

5. The reduced model is able to reproduce the main qualitative

features of void growth and coalescence of cylindrical voids

embedded in a FCC single crystal matrix, predicted in the lit-

erature for more elaborate gradient crystal plasticity models

( Borg et al., 2008 ). For the first time, finite element simulations
of growth and coalescence of spherical voids were presented

using a micromorphic crystal plasticity model. They show that

the strain localization zones are different from the cylindri-

cal case and coalescence is postponed compared to cylindrical

voids. Small holes lead to delayed growth and coalescence and

smoother plastic slip field around the hole, with a reduction of

the number of localization zones. Results were provided for two

initial void volume fractions and two crystal orientations. 

6. A strong size effect is observed for the critical applied strain

at coalescence, whereas the corresponding critical pore volume

fraction is almost size–independent. 

7. The numerical implementation within an implicit scheme in-

volving consistent tangent matrices was shown to be efficient

enough to allow for large local deformations larger than 2 with-

out remeshing. 

The limit of the proposed theory when the penalty parameter

 χ is sufficiently high is a gradient of cumulative slip model. A

agrange multiplier could be used instead. In contrast to other ap-

roaches based on slip gradients on individual slip systems, the

umber of degrees of freedom in the present theory does not de-

end on the number of slip systems which makes it computation-

lly more effective. The drawback is that the description of gradi-

nt effects is greatly simplified in that way and may not be suffi-

ient to account for some specific anisotropic effects. 

The proposed approach opens new prospects in the simulation

f ductile fracture of crystalline solids. The model will be cou-

led with the porous single crystal model of Ling et al. (2016) in

 future work, in order to simulate crack initiation and propa-

ation in porous single crystals and polycrystals. This will corre-

pond to anisotropic extensions of micromorphic homogenization

chemes for porous materials, see Enakoutsa and Leblond (2009) ;

oh (2013) ; Biswas and Poh (2017) ; Hütter (2017b; 2017a) . 

A potential application of such enhanced theories is the simu-

ation of strain localization and ductile fracture of irradiated sin-

le and polycrystals. In irradiated materials, deformation can lo-

alize in defect-free channels called “clear bands” ( Robach et al.,

003 ) where defects are swept out by mobile dislocations. Duc-

ile fracture due to void growth and coalescence remains one of

he dominant fracture mechanisms in austenitic stainless steels

 Margolin et al., 2016 ) especially at limited irradiation level (ir-

adiation damage < 10–20 displacements per atom). Two kinds

f voids leading to ductile fracture exist in irradiated steels:

oids directly induced by irradiation and voids nucleated on

rradiation-induced precipitates. These voids are smaller than the

ize of a grain and embedded in grains, while they are usu-

lly of different sizes: smaller than 20–30 nm for the former

 Margolin et al. (2016) ) and smaller than 10μm for the latter

 Little (1986) ). Void growth and coalescence in triaxial stress fields

n irradiated FCC single crystals were simulated recently using cou-

led evolution laws for dislocation densities and irradiation de-

ects, and compared to experimental results, see ( Hure et al., 2016;

ing et al., 2017 ). The next step will be to account for size effects

ased on the proposed micromorphic approach. 

ppendix A. Form of the a 

ru and b ru matrices 

In FCC single crystals, the matrices a ru and b ru ( s, u =
 , 2 , · · · , 12 ) have respectively 12 × 12 = 144 coefficients. a ru is
onstructed as follows: 
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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 a ru ] 

= 

A 2 A 3 A 6 B 2 B 4 B 5 C1 C3 C5 D 1 D 4 D 6 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 1 a 2 a 2 a 4 a 5 a 5 a 3 a 5 a 6 a 3 a 6 a 5 
a 1 a 2 a 5 a 3 a 6 a 5 a 4 a 5 a 6 a 3 a 5 

a 1 a 5 a 6 a 3 a 6 a 5 a 3 a 5 a 5 a 4 
a 1 a 2 a 2 a 3 a 6 a 5 a 3 a 5 a 6 

a 1 a 2 a 6 a 3 a 5 a 5 a 4 a 5 
a 1 a 5 a 5 a 4 a 6 a 5 a 3 

a 1 a 2 a 2 a 4 a 5 a 5 
a 1 a 2 a 5 a 3 a 6 

Symmetric a 1 a 5 a 6 a 3 
a 1 a 2 a 2 

a 1 a 2 
a 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

A 2

A 3

A 6

B 2

B 4

B 5

C1

C3

C5

D 1

D 4

D 6

(A.1)

For symmetry reasons, the number of coefficients is reduced to

ix, i.e., a i and b i with i = 1 , 2 , · · · , 6 ( Franciosi (1985) ). In the ma-

rix, a 1 corresponds to self hardening, a 2 to coplanar interaction,

 3 to Hirth locks, a 4 to colinear interaction, a 5 to glissile junctions

nd a 6 to Lomer locks. The matrix b ru has the same structure as

 

ru . 

ppendix B. Jacobian matrix for the integration of the 

onstitutive equations 

The Jacobian matrix is organized as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂R E ∼

∂�E ∼

∂R E ∼

∂�γ p 

∂R E ∼

∂�
 

q 

∂R E ∼

∂�γcum 

∂R γ r 

∂�E ∼

∂R γ r 

∂�γ p 

∂R γ r 

∂�
 

q 

∂R γ r 

∂�γcum 

∂R 
 r 

∂�E ∼

∂R 
 r 

∂�γ p 

∂R 
 r 

∂�
 

q 

∂R 
 r 

∂�γcum 

∂R γcum 

∂�E ∼

∂R γcum 

∂�γ p 

∂R γcum 

∂�
 

q 

∂R γcum 

∂�γcum 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (B.1) 

ach term of the matrix is calculated as follows. 

• Derivatives of R E ∼

R E ∼
= �E 

˜ 
− �F 

˜ 
. F 
˜ 

−1 · E 

˜ 
+ E 

˜ 
. 

( 

12 ∑ 

r=1 

�γ r N 

˜ 
r 

) 

(B.2) 

∂R E ∼

∂�E 

˜ 

= 1 

≈
− (�F 

˜ 
. F 
˜ 

−1 ) �1 

≈
+ 1 

≈
�( 

12 ∑ 

r=1 

�γ r N 

˜ 
r ) T (B.3) 

∂R E ∼

∂�γ p 
= E 

˜ 
. N 

˜ 
p , 

∂R E ∼

∂�
 

q 
= 0 , 

∂R E ∼

∂�γcum 

= 0 (B.4)

• Derivatives of R γ r 

R γ r = �γ r − �( | τ r | − ( τ r 
c − S ) ) sign ( τ r ) �t (B.5) 

∂R γ r 

∂�E 

˜ 

= − ∂�

∂τ r 

∂τ r 

∂ M 

˜ 

: 
∂ M 

˜ 
∂ C 

˜ 
e 

: 
∂ C 

˜ 
e 

∂ E 

˜ 

: 
∂ E 

˜ 
∂�E 

˜ 

sign ( τ r ) �t (B.6) 

with 

∂�

∂τ r 
= 

∂�

∂| τ r | 
∂| τ r | 
∂τ r 

= 

n ̇ γ0 

σ0 

〈 
| τ r | − (τ r 

c − S 
)

σ0 

〉 n −1 

sign ( τ r ) = �′ sign ( τ r ) (B.7) 

∂τ r 

= N 

r (B.8) 

∂ M 

˜ 
˜ 
∂ M 

˜ 
∂ C 

˜ 
e 

= 

∂ 
[ 

C 

˜ 
e . 

(
�
≈

: 1 
2 
( C 

˜ 
e − 1) 

)] 
∂ C 

˜ 
e 

= ( 1 

˜ 
��

˜ 
e T ) + 

1 

2 

( C 

˜ 
e 
�1 

˜ 
) : �

≈

(B.9) 

∂ C 

˜ 
e 

∂ E 

˜ 

= 1 

˜ 
�E 

˜ 

T + E 

˜ 

T 
�1 

˜ 
, 

∂ E 

˜ 
∂�E 

˜ 

= 1 

≈
(B.10) 

Finally, 

∂R γ r 

∂�E 

˜ 

= −�t�′ N 

˜ 
r : 

[ 
( 1 

˜ 
��

˜ 
e ) + 

1 

2 

( C 

˜ 
e 
�1 

˜ 
) : �

≈

] 
: ( 1 

˜ 
�E 

˜ 

T + E 

˜ 

T 
�1 

˜ 
)

(B.11) 

with 

�′ = 

n ̇ γ0 

σ0 

〈 
| τ r | − (τ r 

c − S 
)

σ0 

〉 n −1 

(B.12) 

∂R γ r 

∂�γ p 
= δsp , 

∂R γ r 

∂�
 

q 
= − ∂�

∂τ r 
c 

∂τ r 
c 

∂
 

q 

∂
 

q 

∂�
 

q 
sign ( τ r ) �t (B.13) 

with 

∂�

∂τ r 
c 

= = −�′ = −n ̇ γ0 

σ0 

〈 
| τ r | − (τ r 

c − S 
)

σ0 

〉 n −1 

(B.14) 

∂τ r 
c 

∂
 

q 
= 

1 

2 

μ

( 

12 ∑ 

u =1 

a ru 
 

u 

) − 1 
2 

a sq , 
∂
 

q 

∂�
 

q 
= 1 (B.15) 

Finally 

∂R γ r 

∂�
 

q 
= 

1 

2 

sign ( τ r ) �t�′ μa sq 

( 

12 ∑ 

u =1 

a ru 
 

u 

) − 1 
2 

(B.16) 

∂R γ r 

∂�γcum 

= −∂�

∂S 

∂S 

∂γcum 

∂γcum 

∂�γcum 

sign ( τ r ) �t (B.17) 

with 

∂�

∂S 
= �′ = 

n ̇ γ0 

σ0 

〈 
| τ r | − (τ r 

c − S 
)

σ0 

〉 n −1 

(B.18) 

∂S 

∂γcum 

= −H χ , 
∂γcum 

∂�γcum 

= 1 (B.19) 

Finally 

∂R γ r 

∂�γcum 

= sign ( τ r ) �tH χ�′ (B.20) 

• Derivatives of R 
 r 

R 
 r = �
 

r − | �γ r | 
( √ ∑ N 

u =1 b 
ru 
 

u 

κ
− G c 
 

r 

) 

(B.21) 

∂R 
 r 

∂�E 

˜ 

= 0 , 
∂R 
 r 

∂�γ p 
= −sign ( �γ r ) δsp 

( √ ∑ N 
u =1 b 

ru 
 

u 

κ
− G c 
 

r 

)
(B.22) 

∂R 
 r 

∂�
 

q 
= δsq − | �γ r | 

⎛ ⎜ ⎝ 

1 

2 

(√ ∑ N 
u =1 b 

ru 
 

u 

)− 1 
2 

b sq 

κ
− G c δsq 

⎞ ⎟ ⎠ 

, 
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∂�γcum 

= 0 (B.23)

• Derivatives of R γcum 

R γcum 
= �γcum 

−
12 ∑ 

r=1 

| �γ r | (B.24)

∂R γcum 

∂�E 

˜ 

= 0 , 
∂R γcum 

∂�γ p 
= −sign ( �γ p ) (B.25)

∂R γcum 

∂�
 

q 
= 0 , 

∂R γcum 

∂�γcum 

= 1 (B.26)

Appendix C. Details of the numerical implementation in the FE 

code 

In order to facilitate the numerical implementation in FE code,

the equations are written in vector and matrix form. The rates of

nodal degrees of freedom 

˙ ˜ u 
a 

and 

˙ ˜ γ
b 

χ are arranged in vector form

as 

{ ̇ ˜ u 

a 

i } = { ̇ ˜ u 

e } = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ˜ u 

1 

1 

˙ ˜ u 

1 

2 

˙ ˜ u 

1 

3 

. . . 

˙ ˜ u 

p 

1 

˙ ˜ u 

p 

2 

˙ ˜ u 

p 

3 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

and { ̇ ˜ γ
b 

χ } = { ̇ ˜ γ
e 

χ} = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

˙ ˜ γ
1 

χ

˙ ˜ γ
2 

χ

. . . 

˙ ˜ γ
q 

χ

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

. (C.1)

The superscripts a and b used for summation over the nodes of

one element are dropped. A superscript label e is added in order

to indicate that the vector is for one individual element and to dis-

tinguish it from vectors for the entire FE mesh. Recall that p is the

number of nodes possessing displacement degrees of freedom and

q is that for microslip γ χ . Voigt’s notation is used for writing ten-

sors in the form of vectors and matrices. Especially, the second-

order non-symmetric tensor F 
˜ 

and the vector K are arranged in

the form: 

{ F 
˜ 
} = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

F 11 

F 22 

F 33 

F 12 

F 23 

F 31 

F 21 

F 32 

F 13 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

and { K } = 

{ 

K 1 

K 2 

K 3 

} 

. (C.2)

Thus, shape functions u N 

a 
i 

and 

χ N 

b can thus be written as 

[ u N ] = 

[ 

u N 

1 0 0 · · · u N 

p 0 0 

0 

u N 

1 0 · · · 0 

u N 

p 0 

0 0 

u N 

1 · · · 0 0 

u N 

p 

] 

(C.3)

and 

[ χN ] = 

[
χN 

1 χN 

2 χN 

3 · · · χN 

q 
]
. (C.4)
ccordingly, u B a 
i j 

and 

χB a 
i 

can also be written in matrix form de-

oted by [ u B ] and [ χB ]: 

 

u B ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ u N 

1 

∂X 1 

0 0 · · · ∂ u N 

p 

∂X 1 

0 0 

0 

∂ u N 

1 

∂X 2 

0 · · · 0 

∂ u N 

p 

∂X 2 

0 

0 0 

∂ u N 

1 

∂X 3 

· · · 0 0 

∂ u N 

p 

∂X 3 

∂ u N 

1 

∂X 2 

0 0 · · · ∂ u N 

p 

∂X 2 

0 0 

0 

∂ u N 

1 

∂X 3 

0 · · · 0 

∂ u N 

p 

∂X 3 

0 

0 0 

∂ u N 

1 

∂X 1 

· · · 0 0 

∂ u N 

p 

∂X 1 

0 

∂ u N 

1 

∂X 1 

0 · · · 0 

∂ u N 

p 

∂X 1 

0 

0 0 

∂ u N 

1 

∂X 2 

· · · 0 0 

∂ u N 

p 

∂X 2 

∂ u N 

1 

∂X 3 

0 0 · · · ∂ u N 

p 

∂X 3 

0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(C.5)

nd 

 

χB ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ χN 

1 

∂X 1 

∂ χN 

2 

∂X 1 

∂ χN 

3 

∂X 1 

· · · ∂ χN 

q 

∂X 1 

∂ χN 

1 

∂X 2 

∂ χN 

2 

∂X 2 

∂ χN 

3 

∂X 2 

· · · ∂ χN 

q 

∂X 2 

∂ χN 

1 

∂X 3 

∂ χN 

2 

∂X 3 

∂ χN 

3 

∂X 3 

· · · ∂ χN 

q 

∂X 3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(C.6)

he interpolation of the increment of displacement ˙ u i and that of

he microslip ˙ γχ in one element thus write 

 ̇

 u } = [ u N ] . { ̇ ˜ u 

e } , { ̇ γχ} = [ χN ] . { ̇ ˜ γ
e 

χ} (C.7)

nd their Lagrangian gradients follow 

 ̇

 F 
˜ 
} = [ u B ] . { ̇ ˜ u 

e } , { ˙ K } = [ χB ] . { ̇ ˜ γ
e 

χ} . (C.8)

ith stress and strain variables expressed with Voigt’s notation,

qs. (100) and (101) follow 

 R 

e 
int (u ) } = 

∫ 
D e 

0 

[ u B ] T . { S 
˜ 
} dV 0 , { R 

e 
int (γχ ) } 

= 

∫ 
D e 

0 

[ χN ] T . { S} + [ χB ] T . { M } dV 0 , (C.9)

 R 

e 
ext (u ) } = 

∫ 
∂D e 

0 

[ u N ] T . { T } dS 0 , { R 

e 
ext (γχ ) } 

= 

∫ 
∂D e 

0 

[ χN ] T . { M} dS 0 , (C.10)

here [ u B ] T is the transpose of the matrix [ u B ] and the same nota-

ion is used for other matrices. The global FE equation is obtained

y applying assembly operator A on internal reactions and exter-

al reactions: 

 R int (u ) } = A ({ R 

e 
int (u ) } ) , { R int (γχ ) } = A ({ R 

e 
int (γχ ) } ) , (C.11)

 R ext (u ) } = A ({ R 

e 
ext (u ) } ) , { R ext (γχ ) } = A ({ R 

e 
ext (γχ ) } ) . (C.12)

he reader is referred to Besson et al. (2009) for the description of

he assembly procedure. Thus, the global FE equation ( Eq. 102 ) to

e solved can be written as 

{ R int (u ) } { R int (γχ ) } 
}

. 

{ { ̇ ˜ u } 
{ ̇ ˜ γχ} 

}
= 

{ { R ext (u ) } { R ext (γχ ) } 
}

. 

{ { ̇ ˜ u } 
{ ̇ ˜ γχ} 

}
. (C.13)
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B  
he system is solved using Newton’s method which requires the

alculation of the Jacobian matrix with respect to the internal re-

ctions ( Besson et al., 2009 ). The Jacobian matrix of an individual

lement, split into four blocks, writes 

[ K 

e 
(uu) 

] [ K 

e 
(ug) 

] 

[ K 

e 
(gu) 

] [ K 

e 
(gg) 

] 

]
= 

⎡ ⎢ ⎢ ⎣ 

[
∂{ R 

e 
int (u ) 

} 
∂{ ̃  u 

e } 
] [

∂{ R 

e 
int (u ) 

} 
∂{ ̃  γe 

χ} 
]

[
∂{ R 

e 
int (γχ ) 

} 
∂{ ̃  u 

e } 
] [

∂{ R 

e 
int (γχ ) 

} 
∂{ ̃  γe 

χ} 
]
⎤ ⎥ ⎥ ⎦ 

. (C.14) 

sing the assembly operation A , one can calculate the global Jaco-

ian matrix [ K ] 

 

K ] = A 

[
[ K 

e 
(uu) 

] [ K 

e 
(ug) 

] 

[ K 

e 
(gu) 

] [ K 

e 
(gg) 

] 

]
(C.15) 

ne calculates the blocks for an individual element and obtains the

o-called element stiffness matrix: 

[ K 

e 
(uu) 

] = 

∂{ R 

e 
int (u ) 

} 
∂{ ̃  u 

e } = 

∫ 
D 0 

[ u B ] T . 
∂{ S 

˜ 
} 

∂{ F 
˜ 
} ·

∂{ F 
˜ 
} 

∂{ ̃  u 

e } dV 0 

= 

∫ 
D 0 

[ u B ] T . 
∂{ S 

˜ 
} 

∂{ F 
˜ 
} · [ u B ] dV 0 (C.16) 

 K 

e 
(ug) ] = 

∂{ R e 
int (u ) 

} 
∂{ ̃  γe 

χ} = 

∫ 
D 0 

(
[ u B ] T . 

∂{ S 
˜ 
} 

∂{ γχ} ·
∂{ γχ} 
∂{ ̃  γe 

χ} + [ u B ] T . 
∂{ S 

˜ 
} 

∂{ K } ·
∂{ K } 
∂{ ̃  γe 

χ} 
)

dV 0 

= 

∫ 
D 0 

(
[ u B ] T . 

∂{ S 
˜ 
} 

∂{ γχ} · [ χN ] + [ u B ] T . 
∂{ S 

˜ 
} 

∂{ K } · [ χB ] 

)
dV 0 (C.17) 

 K 

e 
(gu) ] = 

∂{ R e 
int (γχ ) 

} 
∂{ ̃  u e } = 

∫ 
D 0 

(
[ χN ] T . 

∂{ S} 
∂{ F 

˜ 
} ·

∂{ F 
˜ 
} 

∂{ ̃  u e } + [ χB ] T . 
∂{ M } 
∂{ F 

˜ 
} · ∂{ F 

˜ 
} 

∂{ ̃  u e } 
)

dV 0 

= 

∫ 
D 0 

(
[ χN ] T . 

∂{ S} 
∂{ F 

˜ 
} · [ u B ] + [ χB ] T . 

∂{ M } 
∂{ F 

˜ 
} · [ u B ] 

)
dV 0 (C.18) 

[ K 

e 
(gg) 

] = 

∂{ R e 
int (γχ ) 

} 
∂{ ̃  γe 

χ} = 

∫ 
D 0 

(
[ χN ] T . 

∂{ S} 
∂{ γχ} ·

∂{ γχ} 
∂{ ̃  γe 

χ} + [ χB ] T . 
∂{ M } 
∂{ γχ} ·

∂{ γχ} 
∂{ ̃  γe 

χ} 

+ [ χN ] T . 
∂{ S} 
∂{ K } ·

∂{ K } 
∂{ ̃  γe 

χ} + [ χB ] T . 
∂{ M } 
∂{ K } ·

∂{ K } 
∂{ ̃  γe 

χ} 
)

dV 0 

= 

∫ 
D 0 

(
[ χN ] T . 

∂{ S} 
∂{ γχ} · [ χN ] + [ χB ] T . 

∂{ M } 
∂{ γχ} · [ χN ] 

+[ χN ] T . 
∂{ S} 
∂{ K } · [ χB ] + [ χB ] T . 

∂{ M } 
∂{ K } · [ χB ] 

)
dV 0 . (C.19) 

In the element stiffness matrix, one can find nine derivatives

hich will be evaluated using the consistent tangent matrix { J ∗}

n the next section. The consistent tangent matrix { J ∗} is defined

s: 
 

 

 

 

 

 

∂{ �S 
˜ 
} 

∂{ �F 
˜ 
} 

∂{ �S 
˜ 
} 

∂{ �γχ} 
∂{ �S 

˜ 
} 

∂{ �K } 
∂{ �S} 
∂{ �F 

˜ 
} 

∂{ �S} 
∂{ �γχ} 

∂{ �S} 
∂{ �K } 

∂{ �M } 
∂{ �F 

˜ 
} 

∂{ �M } 
∂{ �γχ} 

∂{ �M } 
∂{ �K } 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (C.20) 

n addition, it can be shown that ∂{ �S} 
∂{ �K } and 

∂{ �M } 
∂{ �γχ} vanish for the

onstitutive model implemented in this work. 

ppendix D. Consistent tangent matrix 

As presented in Section 4.2 and Appendix C , the tangent oper-

tors are necessary for evaluating the element stiffness matrix. In

he present work, they are estimated from the incremental form of

onstitutive equations ( Besson et al., 2009 ). In fig. 4.1 , it has been

hown that the integration of the constitutive equations concerns
olving the residual equations (eqs. (88) to (91)). For that purpose,

nput and output variables were defined in Fig. 1 . The residual

quations are expressed in terms of increments of the integration

ariables �v int and increments of the input variables �v IN . The

alculation of the consistent tangent matrix is performed after the

ntegration of the constitutive equations, and one has to solve the

esidual equations 

 R (�v int , �v IN ) } = { 0 } (D.1)

ith imposed �v IN and obtained �v int . By applying an infinitesi-

al variation to the increments �v IN , one can obtain a new �v int 

ccording to the requirement of vanishing residual equations. The

ariation of �v int resulting from the variation of �v IN should make

he variation of { R } vanish, which implies 

 δR } = 

{ ∂R } 
{ ∂�v int } { δ�v int } + 

{ ∂R } 
{ ∂�v IN } { δ�v IN } = { 0 } . (D.2)

t follows that 

 δ�v int } = 

[ 

−
( { ∂R } 

{ ∂�v int } 
)−1 { ∂R } 

{ ∂�v IN } 

] 

{ δ�v IN } , (D.3)

oreover, noticing the constitutive equations Eqs. (51) , (50) and

82) , one can find that v OUT depends on not only v int , but also v IN ,
.e., 

 OUT = v OUT (v int , v IN ) , and �v OUT = �v OUT (�v int , �v IN ) . 
(D.4) 

he variation of �v OUT should follow 

�v OUT = 

∂�v OUT 

∂�v int 

δ�v int + 

∂�v OUT 

∂�v IN 
δ�v IN . (D.5)

ubstituting Eq. (D.3) into the previous equation leads to 

�v OUT = 

{ 

∂�v OUT 

∂�v int 

[ 

−
(

∂R 

∂�v int 

)−1 
∂R 

∂�v IN 

] 

+ 

∂�v OUT 

∂�v IN 

} 

δ�v I , 

(D.6) 

here 

{ 

∂�v OUT 

∂�v int 

[ 
−
(

∂R 

∂�v int 

)−1 
∂R 

∂�v IN 

] 
+ 

∂�v OUT 

∂�v IN 

} 

is the con- 

istent tangent matrix. As can be seen, the calculation of the con-

istent tangent matrix requires the calculation of the following four

atrices: 
∂�v OUT 

∂�v int 

, 
∂R 

∂�v int 

, 
∂R 

∂�v IN 
and 

∂�v OUT 

∂�v IN 
. The reader is re-

erred to ( Ling, 2017 ) for the detailed expressions of these matrices.
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