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Abstract. A computational homogenization strategy is developed to determine the number of
grains necessary to estimate the effective elastic properties of isotropic polycrystalline copper
with a given precision. Finite element simulations of polycrystalline aggregates are presen-
ted for both homogeneous and periodic boundary conditions. For different volumes, several
realizations are considered. The mean apparent shear modulus and the associated dispersion
are estimated as a function of the number of grains. Periodic conditions lead to rapid conver-
gence of the result towards the wanted effective shear modulus. The Representative Volume
Element (RVE) size is then related to the evolution of the standard deviation of the apparent
shear modulus, via an extension of the notion of integral range A3. For a precision of 1% and
10 realizations, a minimal RVE size of 445 grains is found. The found value A3 = 1.43 can
be compared to the integral range for other microstructures and physical properties. -

Key words: representative volume element, homogenization, polycrystal, copper, finite ele-
ment, integral range.

1 Introduction

Computational homogenization methods are nowadays efficient tools to estimate ef-
fective properties of heterogeneous materials. They can take realistic distribution
of phases and sophiscated constitutive equations of the constituents into account
(Cailletaud et al., 2003). A key-point in such models is the determination of the
appropriate size of volume elements of heterogeneous materials to be computed in
order to get a precise enough estimation of effective properties. This is related to the
long-standing problem of the determination of the size of the Representative Volume
Element (RVE) in homogenization theory (Drugan, 1996). It is known that RVE is
morphology and property dependent but a well-suited parameter is necessary for
‘quantitative comparisons. Such a parameter was proposed by Kanit et al. (2003).

In the present work, a method is proposed to estimate the size of such a RVE
in isotropic linear elastic copper polycrystals. It has three main steps: the choice
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of a random model for polycrystalline microstructures containing a finite number
of grains, the resolution of boundary value problems on polycrystalline aggregates
of increasing sizes and the analysis of the convergence of the calculated apparent
properties towards an asymptotic value as a function of the number of grains and of
the boundary conditions. The asymptotic value is regarded as the effective property
(Sab, 1992). In other words, the objective is to find the minimum number of grains
required in a volume element to estimate the effective elastic property with a given
accuracy. The size of the RVE for several cubic elastic polycrystals was investigated
in 2D by Ren and Zheng (2002) and by Nygéards (2003) using three-dimensional FE
simulations and periodic boundary conditions. A relationship between the RVE size
and the anisotropy coefficient of each material was identified. Most interestingly, the
last author links the notion of representativity of considered material volumes with
the decay of the dispersion of calculated apparent properties for increasing grain
numbers, as done by Kanit et al. (2003). The present contribution focuses on the
dependence of the result on the choice of boundary conditions and on the determ-
ination of a statistical parameter quantifying the decrease in scatter with increasing
grain numbers and allowing comparisons of RVE sizes for other microstructures and
properties. '

In the following, vectors are underlined and boldface quantities are second-rank
or fourth-rank tensors. The symbol := defines the quantity on the left of the symbol.

2 Computational Homogeniiation Method

2.1 Generation of Microstructures

Voronoi mosaics are used here as a random model to represent the polycrystalline
morphology, as explained in Barbe et al. (2001) and Kanit et al. (2003). For each
realization, one given cubic volume V that contains a given number N, of Voronoi
cells is simulated. In the following, n realizations of volume V are considered. The
number of cells for each realization of the microstructure obeys a Poisson distribution
with given mean value N ¢ = N. The mean volume of one Voronoi cell is equal to
1. No unit length is introduced because the models involved in this work cannot
account for absolute size effects. As a result, one has N = V. This convention is
used throughout the work.

A crystal orientation is attributed to each Voronoi cell which is then regarded as
an individual grain of the polycrystal. The crystallographic texture is assumed to be
random. It is possible to impose a geometrical periodicity constraint at the bound-
ary of the polycrystalline cube, as shown in Figure 1 (see also Kanit et al., 2003).
This condition is enforced in the subsequent FE simulations involving periodicity
conditions. ' '

2.2 FE Meshing of Microstructures

The so-called multi-phase element technique is used in order to superimpose a reg-
ular 3D FE mesh on the Voronoi tessellation point of each element of the mesh.
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Fig. 1. Regular FE mesh superimposed on a Voronoi mosaic containing 50 grains, using the
multiphase element technique.

The crystal orientation of the closest voxel is attributed to every integration point of
each element of the mesh. The elements are 20-node quadratic bricks with 27 Gauss
points. Figure 1 shows such a mesh made of 16 x 16 x 16 elements. The main draw-
back of the technique is that one element may contain integration points that belong
to several grains. The bias introduced by this meshing technique was investigated in
Schmauder (1997), Barbe et al. (2001) and Kanit el al. (2003).

The effect of mesh density, i.e. of the number of elements per grain, was investig-
ated here for elastic polycrystalline copper. FE meshes of a given aggregate made of
50 grains were considered. The convergence of the computed apparent shear modulus
PP was analyzed when the number of mesh elements increases. For each simula-
tion, the geometry of the microstructure is unchanged but the number of degrees of
freedom is increased from 5568 to 56355. From these results, a resolution of 16 ele-
ments per grain was chosen for the following calculations. The use of finer meshes
does not improve the result of more than 1%.

The largest volume computed in this work is a cube with 423 = 74083 elements,
i.e. 937443 degrees of freedom. Such computations are made possible in a reasonable
time by using parallel computing. The FE program used in this work implements the
subdomain decomposition method FETI (Zset, 1996; Feyel, 1999). The mesh is split
into 32 subdomains and the tasks are distributed on a platform of 32 processors
(768 MB RAM, 800 MHz). Compatibility and equilibrium at interfaces between
subdomains are restored by an iterative procedure. The whole resolution requires
21GB of memory.

2.3 Boundary Conditions and Definition of Apparent Moduli

Three types of boundary conditions to be prescribed on an individual volume element
V are considered (Zaoui, 1987):
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— Kinematic uniform boundary conditions (KUBC): The displacement vector u is
imposed at all points x belonging to the boundary 0V according to:

1
u=E-x VxedV (8)::——/€dV=E, (1)
Vv

where E is a given constant symmetrical second-rank tensor. The macroscopic
stress tensor X is then defined as the spatial average of the local stress tensor o.

— Static uniform boundary conditions (SUBC): The traction vector is prescribed at
the boundary 8V according to: ' ’

1
o-n=%-n VxedV (or):=—/crdV=Z, (2)
Vv

where X is a given constant symmetrical second-rank tensor. The outer normal
to 3V at x is denoted by n. The macroscopic strain tensor E is then defined as
the spatial average of the local strain &.

— Periodicity conditions (PERIODIC): The displacement field over the entire
volume V takes the form

u=E-x+v VxeadV, )]

where the fluctuation v is periodic. v (resp. o - n) takes the same value (resp.
opposite value) at two homologous points on opposite sides of V.

- The local behaviour at every integration point inside each grain in the simulation
1s described by the fourth-rank linear elasticity tensor ¢:

ox) =c(x):e®). Q)

No specific behavior is attributed to grain boundaries (Cailetaud et al., 2003).
The partial differential equations to be solved using the FE method are the classical
stress balance equations without body forces. For a given volume V, and owing
to the linearity of the considered boundary value problems, fourth-rank tensors of
apparent moduli Czp P and apparent compliance S;pp can be defined by the following
macroscopic relations:

1 . 1
2=<a>=V/‘/adV=CaEPP;E, E:(e):v/‘/edesegp:Z. (5)

The first relation is used for KUBC and PERIODIC problems, the second one for
SUBC problems. Note that in general, the tensor S;p P cannot be expected to coincide
with the inverse of Czpp. However, for sufficiently large volumes V, the apparent
moduli do not depend on the type of boundary conditions any longer and coincide
with the effective properties of the medium (Sab, 1992):

PPl _ geff—1 _ ceff _ ol | 6)

For intermediate volumes V, the following inequalities, written in the sense of quad-
ratic forms, hold (Huet, 1990):
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-1
S < coff < 7P (7)

In the next section, both C ?Epp and the periodic estimations are checked to remain
between the bounds defined by (7).
The following two shear loading conditions £, and X, are used in this work:

030 00
E,=|300]|, ¥,=|a00]| witha=1MPa (8)
000 000 |

in the particular Cartesian coordinate frame attached to the cubic volume element. In
the case of KUBC and PERIODIC conditions prescribed to a given volume V, one
defines the apparent modulus u%pp by the work of internal forces in the volume V
subjected to the loading E;: -

a 1
u?ﬂﬂ:ﬂawhzwwEW:v/ouﬂﬁ ©)
Vv

In the case of SUBC boundary conditions, an apparent shear modulus ,u?p 18
defined as the work of internal forces generated in V by the application of the loading
2y

2
a 2a
Tpp(v) =(0:6)=%,:(e) = —‘—/—/ g12dV. (10)
HEg v

These definitions remain formal insofar as the apparent elasticity properties of a
given material volume element V are not necessarily isotropic.

3 Determination of Apparent Shear Moduli for Polycrystalline
Copper

We now consider the special case of linear elastic copper polycrystals with a uniform

distribution of crystal orientations. The cubic elasticity constants of pure copper are
taken from Gairola (1981):

C1; = 168400 MPa, Cjp = 121400 MPa, Cas4 = 75390 MPa.

The corresponding value of the anisotropy coefficient @ = 2C44/(C11 — C12) 15 3.2.

Due to the uniform distribution of crystal orientations, the effective medium ex-
hibits an isotropic linear elastic behaviour, described by effective bulk and shear
moduli £°% and u®. For cubic symmetry, the apparent bulk modulus is not a random
variable (Gairola, 1981). It is uniquely determined from the single crystal elasticity
constants according to the formula k?PP = k= (C11 +2C10) /3 = 137067 MPa.
As aresult, the homogenization problem reduces to the estimation of apparent shear
properties /4?PP and in fine of the effective shear modulus p°f.
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Table 1. Mean apparent shear modulus, associated dispersion and relative error on the mean
as a function of the domain size and of the number of realizations for three different boundary
conditions. '

14 n  p*P(MPa) D u(V) (MPa) €rel

KUBC 25 100 52543 3186 1.2%
KUBC 400 50 50088 836 0.4%
KUBC 1000 - 25 49787 533 0.4%
KUBC 5000 10 49336 222 0.2%
PERIODIC 25 100 49669 - 3162 1.2%
PERIODIC 123 50 48886 1400 0.8%
PERIODIC 400 50 48784 811 0.4%
PERIODIC 500 50 48764 - T78 0.4%
SUBC 25 100 43397 3185 1.4%
SUBC 400 50 47308 823 0.4%
SUBC 1000 25 47566 538 0.4%
SUBC 5000 10 48390 178 0.2%

It is shown in Kanit et al. (2003) that the fourth-rank tensor of apparent moduli
Czp P (V) obtained for a finite domain V containing N ¢ grains is generally not iso-
tropic. However, its ensemble average ézpp (V),1.e. its mean value over a sufficiently
large number of realizations, turns out to be isotropic. This has been checked here
for polycrystalline copper aggregates. The shear modulus associated with the iso-
tropic elasticity tensor C PP (V) coincides with i U PP (), the ensemble average of the
apparent shear moduli p EP (V) defined by Equation (9) and computed for a domain
V of given size (or equlvalently containing N = V grains in average). Accord-
ingly, the estimation of [ “PP(V) only requires the determination of 5 PP (V) for each
realization. This is the computation strategy adopted in this work. Similarly, using
SUBC conditions, it is sufficient to compute ,uzp (V) for each realization according
to Equation (10).

The apparent shear moduli and compliances p*P(V) were computed usmg
volume elements V of increasing size, ranging from V = 25 to V = 5000 grains,
with n (V) realizations for every volume. Number z is chosen such that the estimation
of the mean ®P (V) is obtained with a precision better than 1%. This precision is es-
timated according to the simple sampling rule (13) involving the standard deviation
D, (V). All simulation results are shown in Table 1.

Mean values and confidence intervals for the apparent shear modulus [ 2?PP (V') —
2D, (V), p*P(V) 4+ 2D, (V)], are plotted in Figure 2, as a function of volume size
V. The mean apparent shear moduli strongly depend on the domain size and on the
boundary conditions. However, the values converge towards an asymptotic constant
as the volume size increase, as expected (Sab, 1992). A striking feature of these
results is the very fast convergence of the periodic solution and, in contrast, the very
slow convergence associated with homogeneous boundary conditions. The periodic
estimate is bounded by the KUBC and SUBC estimates: -

Liliadadl LRI ELE AW LR AN LAiliatl

Reuss app app Voigt
w < by, <Mpemdw§uE < u'E, (11)
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Fig. 2. Mean values and confidence intervals for the shear modulus u"P as a function of
domain size, for three different boundary conditions.

where pReUss and uYoigt denote the first order lower and upper bounds for the ef- |
fective shear modulus of the polycrystal (Zaoui, 1987). For decreasing values of
V, the apparent moduli ,u,%euss(V) (u%euss(‘{)) get closer to the upper (lower) limit
,u,VOi gt ( MReuSS) ] -

4 Determination of the Size of the RVE

The notion of RVE is necessarily related to the choice of a statistical precision in the
estimation of the investigated effective property. First, we set a tolerance error o on
the bias and find a corresponding volume Vp such that:

|22 (Vo) — n] < a. (12)

This condition sets a lower bound for the size of the RVE. Then, the relative precision
of the estimation of the mean j1*PP (V) of apparent shear moduli for a given volume
V > Vp and a number of realizations n, can be defined according to the sampling
theory by: -
2Dy (V)
2P (V) /n’

In turn, the number of realizations required to correctly estimate %P (V) is de-

duced from Equation (13) provided that the variance D/% (V) 1s known.

(13)

Erel =
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According to homogenization conditions (8), (9) and (10), the apparent shear
modulus is obtained by averaging an additive scalar over the volume V. As a result,
it is shown by Matheron (1997) that, for asymptotically large volumes, the variance
D2 (V) of u®™P (V) is given by:

A

2 _ n23
where A3 is the integral range, a well-established quantity for additive geometrical
properties such as volume fraction. Di is the point variance of Cj212(x), which de-
pends on crystal orientation at x. For uniform orientation distribution, it can be ex-
pressed in terms of the single crystal cubic elasticity constants as follows:

(14)

i 1
D% = ((c: 0)1212) — (c1212)”  with (c1o12) = ~5*(C11 — C12+3Cy), (15)

1
((c:)1212) = 5-5—<-6c44c12—4012611+2c%2+2c%1+6cuc44+15c§4>, (16)

where () refers to averaging over uniformly distributed orientations. For pure copper,
one gets D, = 13588 MPa. We choose to identify the integral range A3 from the
results obtained with periodicity conditions because they introduce the smallest bias
in the estimated effective shear modulus. We find A3 = 1.43, to be compared with
the mean grain size set to 1, and the integral range for the volume fraction of a given
orientation A3 = 1.17 given by Kanit et al. (2003).

Equations (12), (13) and (14) can now be used quantitatively to determine a min-
imal size of RVE for a given precision &g and a number of realizations 7:

4 , Az

V=-D——"—. (17
w2
n grelu’eﬁz
In the case of periodicity boundary conditions, the choice (&re1, n) = (1%, 10) gives
a minimal volume corresponding to V = 445. For n = 100 successive computations,
this volume reduces to 45.

5 Conclusions

A computational homogenization methodology was applied to the determination of
RVE sizes for the isotropic linear elastic behaviour of copper polycrystals. For a
given precision of 1% in the estimation of the effective property, and a number of af-
fordable computations ranging from 10 to 100, RVE sizes remain of the order of 40
to 400 grains, provided that periodicity boundary conditions are applied to the poly-
crystalline aggregates. The convergence of apparent properties obtained using homo-
geneous boundary conditions towards the effective modulus is significantly slower
than for periodicity conditions. The asymptotic shear modulus can be accurately es-
timated by a small number of huge computations or by a large number of small-scale
computations, looking at the ensemble average of the apparent properties.
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The integral range A3z defined and identified in this work is a well-suited para-
meter to compare RVE sizes for different properties and morphologies. It charac-
terizes the rate of decrease in the dispersion of apparent properties for increasing
volume sizes, according to Equation (14). It depends on the investigated property
(volume fraction, elasticity moduli, thermal conductivity, etc.). The value calculated
in this work can be compared to the integral range found for a two-phase elastic
material with a contrast in Young’s moduli of 100 and 50% volume fraction of hard
phase, namely A3 = 1.64 (Kanit et al., 2003). The relatively high value found in
the present work in spite of the relatively small contrast in properties between differ-
ent orientations can be attributed to the multi-phase character of polycrystals, each
crystal orientation being regarded as an individual phase. The volume must be large
enough to contain enough individual orientations.
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