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a b s t r a c t

A strain gradient crystal plasticity model is used to explore the grain size effect on the fields of plastic
strain and of the dislocation density tensors in two-dimensional polycrystals. Finite element simulations
are performed for several aggregates of 24 and 52 grains with a detailed description of the intragranular
fields. It is found that the increasing energy cost associated with the development of geometrically nec-
essary dislocations (GNDs) leads to the formation of a network of intense slip bands accommodating the
imposed deformation in ultra-fine grain polycrystals.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The behaviour of a polycrystalline material is notably depen-
dent on grain size. Finite element simulations of polycrystals based
on classical continuum crystal plasticity do not account for this
dependence so that the predicted macroscopic response as well
as the predicted fields inside the aggregates are size independent
[22,3,27]. As it would be irrelevant to enter the grain size into
the constitutive model explicitly, its effects should arise from the
gradient fields. The dislocation density tensor [23] characterising
the plastic deformation incompatibility is directly related to the
plastic strain gradient and therefore is a possible way to induce
strain gradient effects in continuum crystal plasticity simulations.

Finite element simulations based on strain gradient plasticity
models are quite seldom in the literature. They can be classified
in two main groups. The first group of models computes the dislo-
cation density tensor or geometrically necessary dislocation (GND)
densities from the gradients of the plastic strain field at each time
increment and do not introduce higher order stresses nor addi-
tional boundary conditions [1,7,9]. In the second group of models
[19,5,12], higher order stress tensors are introduced to compute
the power expenditure associated with the rate of the dislocation
density tensor. Such generalised continuum theories also include
additional interface conditions at grain boundaries like continuity
of plastic strain or of some dislocation densities in addition to
the continuity of displacement. Some finite element simulations
on a limited number of grains are provided in [16,5,4]. However,

due to the high non-linearity of the models and the number of
additional degrees of freedom, only coarse meshes were used so
that only a poor description of the gradient fields is given.

Most contributions were dedicated to the prediction of the
grain size-dependent overall response of polycrystals and to the
derivation of Hall–Petch-type relationships. In the present work,
we want to show how the grain size also affects the intragranular
fields of plastic strains and of the dislocation density tensor. For
that purpose, a generalised continuum model closely related to
strain gradient plasticity theories is implemented. The microcurl
model is a micromorphic crystal plasticity model belonging to
the class of generalised continuum models with additional degrees
of freedom as presented in [13,15]. It was proposed in [12] to reg-
ularise the response of a strain gradient plasticity theory including
the full curl of the plastic deformation tensor H

�
p [19] in the pres-

ence of interfaces. In the present work, finer finite element meshes
than in previous contributions are used so that the fields can be de-
scribed properly. However, the analysis is limited to the 2D case.

In Section 2, the microcurl model is introduced for crystal plas-
ticity. The role of continuity requirements at grain boundaries is
discussed in Section 3. Finite element simulations of the simple
shear response of several random idealised aluminium aggregates
are performed for various grain sizes in Section 4. The dependence
of the overall response and of the plastic strain and dislocation
density tensor fields on the grain size are then shown.

The following notation is used: vectors and second-rank tensors
are respectively denoted by a and a

�
; the curl operator in a

Cartesian frame for a tensor a
�

of rank two is

ðcurl a
�
Þij ¼ �jklaik;l; ð1Þ

where �ijk is the permutation tensor.
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2. The microcurl model for crystal plasticity

In the crystal plasticity theory for small deformations, the gra-
dient of the velocity field, _u, can be decomposed into the elastic
and plastic deformation rates:

_H
�
¼ _u� $ ¼ _H

�

e þ _H
�

p
; where _H

�

p ¼
XN

a

_cala � na; ð2Þ

with N the number of slip systems, _ca the slip rate for the slip sys-
tem a, la the slip direction and na the normal to the slip plane. The
elastic deformation, H

�
e, accommodates the incompatibilities in-

duced by the plastic deformation field, H
�

p. Applying the curl
operator to a compatible field gives zero, so we have:

curl _H
�
¼ curl _H

�

e þ curl _H
�

p ¼ 0: ð3Þ

The incompatibility of plastic deformation is characterised by the
dislocation density tensor [23,8], defined as:

C
�
¼ �curl H

�
p ¼ curl H

�
e: ð4Þ

The microcurl model, like similar strain gradient plasticity models,
includes the dislocation density tensor into the continuum crystal
plasticity framework. It produces a size-dependent linear kinematic
hardening coming from a back-stress contribution from the disloca-
tion density tensor, i.e., from GNDs. Two generalised moduli, intro-
duced as material parameters, control the main characteristics of
the generated size effects: the maximum extra-hardening, the
characteristic size for which size effects occur and the scaling law
exponent.

2.1. Balance equations

The independent degrees of freedom of the theory are the dis-
placement vector, u, and the generally non-symmetric second-rank
plastic micro-deformation tensor, v

�

p. The components of v
�

p are
introduced as independent degrees of freedom and are in general
distinct from the components of H

�
p, still treated as internal vari-

able. The definition of Eq. (4) motivates the use of a first gradient
theory with respect to the degrees of freedom in which only the
curl of the plastic micro-deformation gradient is assumed to have
an effect in the power of internal forces.

The microcurl continuum is therefore characterised by an en-
hanced power density of internal forces of the form:

pðiÞ ¼ r
�

: _H
�
þ s
�

: _v
�

p þM
�

: curl _v
�

p
: ð5Þ

The stress tensor, r
�

, is symmetric while the micro-stress tensor, s
�

,
and the double-stress tensor, M

�
, are generally not symmetric. The

method of virtual power is used to derive the generalised balance
of momentum equations. In the absence of body forces, we have:

div r
�
¼ 0; curl M

�
þ s
�
¼ 0: ð6Þ

The corresponding boundary conditions are,

t ¼ r
�
�n; m

�
¼M
�
��

g
�n; ð7Þ

where t and m
�

are the simple and double tractions at the boundary,
n is the unit normal vector to the boundary and �

g
is the permuta-

tion tensor.

2.2. Constitutive equations

The free energy function is assumed to have the following
arguments:

w e
�

e; e
�

p :¼ H
�

p � v
�

p; C
�v :¼ curl v

�

p

� �
; ð8Þ

where e
�

p is the relative plastic strain measuring the difference be-
tween the plastic deformation and the plastic micro-deformation.
C
�v is the curl of v

�

p in the same way as the dislocation density tensor
given in Eq. (4) is the curl of H

�
p. The following state laws are

adopted:

r
�
¼ q

@w
@e
�

e
; s

�
¼ �q

@w
@e
�

p
; M

�
¼ q

@w
@C
�v
; ð9Þ

so that the residual intrinsic dissipation rate remains as

D ¼ ðr
�
þ s
�
Þ : _H

�

p ¼
XN

a¼1

ðsa þ s
�

: ðla � naÞÞ _c P 0: ð10Þ

A viscoplastic potential expressed in terms of the effective stress,
Xðr
�
þ s
�
Þ, is introduced such that the flow rule reads:

_H
�

p ¼ @X
@ðr
�
þ s
�
Þ : ð11Þ

Assuming a quadratic potential in Eq. (9), the following linear rela-
tionships are obtained:

r
�
¼ K
�

: e
�

e; s
�
¼ �Hve

�
p; M

�
¼ AC

�v; ð12Þ

where K
�

is the four-rank tensor of the elastic moduli assumed iso-
tropic in this work, Hv and A are the generalised moduli. A general-
ised Schmid criterion is adopted

f aðr
�
; s
�
Þ ¼ jsa þ s

�
: ðla � naÞj � sa

c ;

Xðr
�
; s
�
Þ ¼ K

nþ 1

XN

a¼1

f aðr
�
; s
�
Þ

K

* +nþ1

; ð13Þ

where sa
c is the critical resolved shear stress. K and n are viscosity

parameters that are chosen here in such a way that no strain-rate
effect is noticeable for the investigated rates. A back-stress
component naturally arises in the yield function by combining
Eqs. (6) and (12):

xa ¼ � s
�

: la � nað Þ ¼ Aðcurl curl v
�

pÞ : ðla � naÞ: ð14Þ

The modulus Hv in Eq. (12) sets a coupling between v
�

p and H
�

p. It
can be interpreted as a penalty factor enforcing the relative plastic
deformation, e

�
p, to remain sufficiently small. Then, high values of

the coupling modulus, Hv, enforce the plastic micro-deformation
to be as close as possible to the macroscopic plastic deformation,
H
�

p. Due to Eq. (8), this internal constraint also links C
�v and the

dislocation density tensor C
�

. In what follows, as Hv will remain high
enough, C

�v is computed and referred to as the dislocation density
tensor. Moreover, as shown in [12], Hv has a major effect on the
scaling law exponent. In the limit of very high values of Hv, we have
v
�

p � H
�

p so that the microcurl model is equivalent to more
conventional strain gradient plasticity according to [19].

3. Size effects induced by grain boundaries

The microcurl model is now applied to simulate the response of
polycrystalline aggregates and the effects of their microstructure’s
size. Size effects in polycrystals are strongly dependent on the con-
ditions at grain boundaries. Physically motivated interface condi-
tions exist in the literature (see, for instance, [20]). However, in
the present work no special interface law is set and we only con-
sider the interface conditions that arise from the formulation of
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the balance equations of the continuum model. These conditions
are the continuity of displacement, u, and of the plastic micro-
deformation, v

�

p, on the one hand, and the continuity of the simple
and double tractions t and m

�
given in Eq. (7), on the other hand,

across a grain boundary. In contrast, the plastic deformation H
�

p

is generally not continuous at an interface. However, for high val-
ues of parameter Hv;H�

p almost coincides with v
�

p so that it is prac-
tically continuous at a grain boundary. This corresponds to the
internal constraint introduced at the end of Section 2.2. The conti-
nuity of the associated tractions expresses the transmission of clas-
sical and generalised internal forces from one grain to another
through grain boundaries. In that way, such continuum models
are then able to mimic the development of dislocation pileups at
grain boundaries [18].

The size effects exhibited by the solution of the boundary value
problem are linked to an intrinsic length scale, ls, introduced
through the generalised moduli Hv and A of Eq. (12) as:

ls ¼
ffiffiffiffiffiffi
A

Hv

s
: ð15Þ

This intrinsic length scale has to be consistent with the fact that
plasticity effects occur at scales ranging from hundreds of nanome-
tres to a few microns. In addition, as presented in Section 2.2, the
coupling modulus, Hv, has to be chosen high enough to ensure that
v
�

p and H
�

p are close. These requirements are guidelines for the
choice of relevant generalised moduli Hv and A. The set of material
parameters used in this paper (see Table 1) has been chosen in that
way. It corresponds to an idealised aluminium alloy for large grains
but no quantitative agreement with experimental results was
sought for, due to the crystallographic simplifications in the
simulations.

The finite element simulations are performed on periodic two-
dimensional (2D) meshes of periodic polycrystalline aggregates
randomly generated by a method based on Voronoï tessellations.
Quadratic elements are used with two displacements and four mi-
cro-deformation degrees of freedom per node. The largest mesh
considered contains 77,778 degrees of freedom. Note that the finite
element discretisation was chosen fine enough to ensure accurate
and mesh size independent results. By extension, the relative mesh
size compared to the intrinsic length scale, ls, has no impact on the
results. An example of a microstructure is shown in Fig. 1. The
grains are represented by Voronoï polyhedra, the distribution of
their centres is controlled in such a way that the microstructure
is characterised by a mean grain size, d. Various mean grain sizes,
d, ranging from tens of nanometres to hundreds of microns, are
investigated. Random orientations are assigned to the grains and
two slip systems are taken into account. In 2D, the plastic behav-
iour of f.c.c. crystals can be simulated with 2D planar double slip
by considering two effective slip systems separated by an angle
of 2/ with / = 35.1� [2,6]. The overall response of the polycrystal
is predicted using periodic homogenisation for generalised con-
tinua [17]. The displacement field is assumed to be of the form

uðxÞ ¼ E
�
�xþ vðxÞ; ð16Þ

with v a periodic fluctuation, which means that it takes identical
values at homologous points of the unit cell. The imposed average
strain tensor is E

�
. Periodicity is also assumed for the plastic

micro-deformation field, v
�

p, which implies that no curl of the

macroscopic plastic deformation is imposed on the unit cell. According
to periodic homogenisation, the simple and double tractions t and
m
�

are anti-periodic at homologous points of the unit cell.
As polycrystals are random materials, the periodicity constraint

may induce a bias in the estimation of the effective properties for
rather small numbers of grains. In order to minimise this boundary
effect, we have to consider several realisations of the microstruc-
ture and to perform ensemble averaging [29]. For that purpose,
three aggregates of 24 grains and a larger one of 52 grains are stud-
ied. A better statistics would require a larger number of realisa-
tions but it will be seen that reasonable estimates are obtained
in the present case. Morphology and individual grain orientations
are different for each sample.

4. Grain size effects in polycrystalline aggregates

4.1. Overall response

Finite element simulations of the boundary value problem pre-
sented previously have been conducted under generalised plane
strain conditions on the considered aggregates of idealised alumin-
ium. Isotropic hardening is introduced as in [21] to obtain a realis-
tic response of large aluminium grains. A simple size independent
hardening law is chosen:

sa
c ¼ sc þ Q

XN

b¼1

hab 1� exp �bcb
cum

� �� �
; ð17Þ

where Q and b are material parameters defining non-linear isotropic
hardening, hab is the interaction matrix and cb

cum is the accumulated
plastic slip on the slip system b. The accumulated plastic slip results
from the integration of the differential equation _cb

cum ¼ j _cbj. Table 1
gives the material parameters used in the simulations. They have
been chosen to obtain an acceptable description of aluminium
aggregates with large microstructures and to set a consistent intrin-
sic length scale ls = 0.1 lm. In this paper we do not calibrate the
amplitude of the extra-hardening and the scaling law exponent
from experimental results, only one set of material parameters

Table 1
Set of material parameters used in the finite element simulations.

l (MPa) sc (MPa) Q (MPa) b haa hab,a–b Hv (MPa) A (MPa mm2) ls (lm)

27,000 0.75 7.9 10.2 1 4.4 1.0 � 106 1.0 � 10�2 1.0 � 10�1

d

l

n n1
2

2

1l

Fig. 1. Example of periodic mesh of the 2D periodic aggregates used in the finite
element simulations.
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was investigated. The macroscopic stress–strain curves presented in
Fig. 2 give the averaged stress–strain response of the four aggre-
gates introduced in the previous section. They are obtained by
applying a simple shear loading controlled by the mean strain com-
ponent E12 = he12i, where hi denotes volume averaging over the
polycrystal unit cell, on the aggregates with various grain sizes d ta-
ken in the size-dependent domain. The mean stress component
R12 = hr12i is then computed from the finite element results. The
curves show that the kinematic hardening produced by the model
is strongly size-dependent and increases for smaller grains. This lin-
ear kinematic hardening is quite ideal and leads to values of R12

that may be surprisingly high. In future work, the constitutive
framework has to be extended to include non-linear kinematic
hardening. However, some experimental data available in the liter-
ature show that very high values of the mean stress can be reached
with fine grain sizes [26,28]. Fig. 3 shows the effect of the mean
grain size, d, on the macroscopic flow stress at 1% plastic strain in
a log–log diagram. The solid curve is the mean curve obtained with
the 24-grain aggregates, the error bars represent the standard devi-
ation. The dashed curve is obtained with the larger aggregate of 52
grains. Both curves have a tanh-shape with two saturation plateaus
when the grain size, d, is larger than 20 lm and smaller than 0.1 lm
and a transition domain for intermediate sizes. When d is large
compared to the intrinsic length scale, ls, strain gradient effects
are small and the kinematic hardening arising from the microcurl
model vanishes. The model saturates when d is of the order of ls
or smaller. A strong size dependence is observed in the transition
domain, the polycrystals becoming harder for smaller microstruc-
tures. The position of the transition zone, the maximum extra-stress
(the distance between the two plateaus) and the scaling law expo-
nent, m, in the size dependent domain are controlled by the mate-
rial parameters used in the model. The scaling law exponent is
defined as the slope in the log–log diagram in the size-dependent
domain, reflecting the scaling law:

R12 / dm
: ð18Þ

A detailed parameter study is done in [12] in the case of two-phase
microstructures. It is shown in particular that m is controlled by the
coupling modulus, Hv, and that values ranging from m = 0 to m = �2
can be simulated with the microcurl model. In the present work, we
obtain m = �0.76 and m = �0.78 for polycrystals, which are a bit
higher compared to the ideal Hall–Petch scaling law exponent
m = �0.5. This means that the chosen value for the generalised
modulus Hv has to be re-calibrated. Such a calibration has been
done in [11] to obtain m = �0.5 but it is not presented here. The

curves of Fig. 3 show that the various realisations of the polycrystal
lead to rather close stress responses, especially in the size-depen-
dent domain.

The saturation that occurs for small microstructures is not ob-
served with conventional strain gradient plasticity models. Instead,
the stress increases infinitely for vanishingly small grain sizes [12].
However, such continuum crystal plasticity models are not ex-
pected to be relevant for nano-grains since they assume the exis-
tence of a sufficiently high density of dislocation sources. In
particular the present model does not account for the inverse
Hall–Petch behaviour, i.e, the yield stress decreases for grain sizes
below a critical size, that such materials exhibit [10].

4.2. Fields of accumulated plastic slip

Grain size effects are not limited to the overall response of poly-
crystals. It also affects the intragranular mechanical fields. Fig. 4
shows the contour plots of the accumulated plastic slip field, com-
puted as

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_e
�

p
: _e
�

p

r
; ð19Þ

where the plastic strain e
�

p is the symmetric part of the plastic defor-
mation, H

�
p. In order to catch the details of this field and to under-

stand how it evolves with the grain size, its distribution is given
in Fig. 6a in the form of histograms. These histograms are obtained
for each grain size by including the simulated distributions of p for
all the considered realisations. The plotted frequency represents the
fraction of the integration points, where the accumulated plastic
slip takes a value inside the interval p ± Dp with 2Dp = 0.001. Be-
tween 11,000 and 19,000 integration points are contained in each
mesh, allowing a fairly fine description of the field. One can see that
the obtained curves are not bell-shaped and therefore the distribu-
tions are not Gaussian. Instead, the curves present an early peak
centered at ppeak � 0.005, at half the imposed overall value of p.
When the grains are smaller, the value of ppeak is smaller and the
peak is higher. The peak is followed by a long tail which becomes
longer with smaller d.

The contour plots and distributions are presented for the same
overall value, hpi, fixed at 1% so that we can compare the different
cases and visualise directly the fields and their corresponding

Fig. 2. Averaged macroscopic stress–strain response of the considered aggregates
of 24 and 52 grains under simple shear for various mean grain sizes, d.

Fig. 3. Effect of the mean grain size, d, on the macroscopic flow stress R12j1% at 1%
accumulated plastic slip. The results are obtained with three 24-grain aggregates
and with one 52-grain aggregate under simple shear for the material parameters
given in Table 1. The solid curve is the average curve obtained with the 24-grain
aggregates, the error bars give the standard deviation. The corresponding scaling
law exponent, m, is identified for each case.

10 N.M. Cordero et al. / Computational Materials Science 52 (2012) 7–13
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distributions. A clear dependence of the field of accumulated plas-
tic slip, p, on the grain size can be seen in Fig. 4. For d = 20 lm	 ls,
at the very beginning of the size dependent domain according to
Fig. 3, the following observations can be made. Deformation bands
appear in some grains, e.g., grains 1, 2, 3 and 4. In these grains, p
reaches values more than twice the mean value (0.0208, 0.0232,
0.0243 and 0.0238 in grains 1, 2, 3 and 4 respectively). In the grains
without such highly deformed zones, p is approximately ranging
from 0.0005 to 0.0168 for a mean value of 0.0091 close to hpi.
When d is smaller, 20 lm P d P 0.4 lm � ls, significant evolutions
happen:


 The deformation bands initiated in some large grains, e.g., 1 and
2, intensify and propagate in neighbouring grains. A network of
strain localisation bands is progressively built across the micro-
structure. These bands are slip bands since they are parallel to
the slip directions represented on the 0.4 lm contour plots of
Fig. 4.

 In parallel, the low deformed zones of the grains exhibiting slip

bands grow and get less deformed as the slip bands intensify.
For d = 20 lm, the accumulated plastic slip in the grains 1
and 2 was 0.0010 6 p 6 0.0208 and 0.0004 6 p 6 0.0232
respectively, it becomes 0.0004 6 p 6 0.0502 and 0.0002 6
p 6 0.0492 with d = 0.4 lm. In the grains with no slip band,
p is approximately ranging from 0.0002 to 0.0209 for a mean
value of 0.0051

 In other grains, a slip band observed along a slip direction in a

large grain can vanish in favor of a new slip band along the
other slip direction when d is smaller. This is observed, for
example, in grain 3.


 A last situation is noticed, e.g. in grain 4, where the slip band
formed for d = 20 lm vanishes in smaller microstructures.
Here, the accumulated plastic slip goes from 0.0025 6
p 6 0.0238 to 0.0005 6 p 6 0.0170 when d decreases from
20 lm to 0.4 lm.

To sum up, when the grain size gets smaller, a network of slip
bands is progressively built. These bands compensate the larger
low deformed zones, where probably, the plastic strain cannot de-
velop any more due to the higher energy cost associated with its
gradient. In smaller grains, the plastic strain becomes larger inside
the bands. This is a result of the fact that the contour plots are ob-
tained with a fixed mean accumulated plastic slip implying a high-
er applied overall strain and stress for small grain sizes.

These observations are consistent with the histograms of
Fig. 6a. Indeed, the distributions exhibit a slightly higher peak cen-
tered at smaller values of p when the grains are smaller. That is to
say, the distribution of p becomes more homogeneous in most
grains and the weakly deformed zones increase. At the same time,
smaller grains lead to a longer tail of the distribution denoting that
p is locally higher, as observed in the localisation bands.

4.3. Grain size effect on the dislocation density tensor field

The evolution of the dislocation density field is studied in the
same way as in the previous section. The dislocation density tensor
can be related to the lattice curvature by means of Nye’s formula.
Lattice curvature can be measured experimentally with EBSD 2D
misorientation mapping [24]. The components of the dislocation
density tensors can also be decomposed in terms of the so-called

(a)

(b)

Fig. 4. Effect of the mean grain size, d, on the accumulated plastic slip, p. These contour plots are obtained with (a) the 24-grain aggregate of Fig. 1 and (b) the 52-grain
aggregate under simple shear for the same overall value hpi = 0.01. The pairs of slip plane directions are represented on the 0.4 lm contour plots.

N.M. Cordero et al. / Computational Materials Science 52 (2012) 7–13 11
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geometrically necessary dislocation densities associated to the two
slip systems considered in this work. However, for the sake of brev-
ity, we will consider only the field of the norm of the dislocation
density tensor which is defined as

C ¼
ffiffiffiffiffiffiffiffiffiffiffi
C
�

: C
�

q
ð20Þ

and combines all present GNDs. Fig. 5 shows the contour plots of
the norm C of the dislocation density tensor. The physical dimen-
sion of C in the contour plots is mm�1. Fig. 6b describes its distri-
butions for various grain sizes. C is stored at all integration
points, the plotted frequency represents the fraction of these points,
where C takes a value inside the interval C ± DC with
2DC = 0.25 mm�1. Again, the obtained distributions are not Gauss-
ian, they also present a strong dependence on the grain size and
their evolution is very different from what was obtained for the
plastic strain (Fig. 6a). Decreasing peaks and longer tails are ob-
served for smaller grains. The contour plots and distributions are
still obtained with the overall value of p fixed at 1%. For
d = 20 lm	 ls, one can observe that:


 C is localised at the grain boundaries and almost vanishes in the
grain cores. See for example Grains 5 and 6 or 7 and 8 in Fig. 5.
For the first pair, C = 6.75 mm�1 at the grain boundary and
C = 0.10 and 0.64 mm�1 at the centres of Grains 5 and 6 respec-
tively. C = 5.98 mm�1 at the boundary between 7 and 8,
C = 1.34 and 0.10 mm�1 at their centres.

 The GND pileups appear at most grain boundaries; their exis-

tence, shape and intensity depend notably on the relative orien-
tations of the considered grains.

When d is smaller, 20 lm P d P 0.4 lm � ls, the following
changes happen:


 The highest values of C are still reached close to the grain
boundaries.

 The GND pileups spreads over the grain cores (see the pair of

grains 7/8 with d = 0.4 lm, C = 15.42 mm�1 at the grain bound-
ary and 2.80 6 C 6 8.82 mm�1 in the cores of 7 and 8).

 Some pileups formed in large grains vanish in smaller micro-

structures. This is the case at the grain boundary between 9
and 10, where C = 4.51, 4.47 and 3.61 mm�1 for d = 20, 4 and
0.4 lm respectively.

The field of C is generally localised at the grain boundaries.
When the grain size is smaller, this field spreads over the grain
cores and affect entire grains. In fact, the strain gradient effects
are controlled by the intrinsic length scale, ls, so that the simulated
GND affected zones is directly related to ls. Then, decreasing the
grain size amounts to increasing the relative size of these zones.

The histograms of Fig. 6b confirm the previous observations.
The curve obtained for d = 20 lm with a high peak for small values
of C describes a homogeneous distribution where most of the inte-
gration points exhibit a low norm of the dislocation density tensor.
When d gets smaller, the peak is decreasing and is centered at
higher values of C. This describes the spreading over the micro-
structure, leading to an heterogeneous field of C. The same distri-
butions are obtained for d = 1 lm and d = 0.4 lm. As we get closer
to ls, the model starts to saturate as it was shown in Fig. 3. The
strain gradients become energetically too expensive and cannot
develop so that the field does not evolve anymore.

(a)

(b)

Fig. 5. Effect of the mean grain size, d, on the norm of the dislocation density tensor, C. These contour plots are obtained with (a) the 24-grain aggregate of Fig. 1 and (b) the
52-grain aggregate under simple shear for the same overall value hpi = 0.01. The pairs of slip plane directions are represented on the 0.4 lm contour plots.
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It is remarkable that the C field does not correlate with the
plastic strain field. In particular, the network of slip bands ob-
served in Fig. 4 is not systematically associated with high GND
densities. This means that the slip bands form without inducing
higher lattice curvature in contrast to kink bands sometimes ob-
served in simulations [14]. The following interpretation is pro-
posed. The slip band network that develops in fine grained
polycrystals is such that plastic strain is maximised without a sig-
nificant increase of GND densities. This is possible only for spe-
cific relative orientations of grains and leads to a selection of
the formed slip bands.

5. Conclusions

Finite element simulations have been performed to investigate
the grain size effects in polycrystalline aggregates in generalised
continuum crystal plasticity. The microcurl model has been chosen
for its ability to produce a size-dependent linear kinematic harden-
ing coming from the dislocation density tensor, or equivalently
from the GNDs. The overall response of these polycrystals is
strongly linked to the size of the microstructure, especially in a

size-dependent zone where grain sizes range from 0.4 lm to
20 lm. A strong dependence on the size is also observed on plastic
strain and dislocation density tensor fields. A network of strain
localisation bands is progressively built and lattice curvature
spreads over the grains when the microstructure size is smaller.
This slip band network in ultra-fine grains is a new feature of gen-
eralised crystal plasticity. The question remains open whether such
phenomenon will still occur in the case of 3D simulations with
more than 2 slip systems.

On the other hand, the size of the intragranular domains af-
fected by lattice curvature found in the simulations can be used
as input to calibrate mean field models with internal length scales
as in [25].
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[18] S. Forest, R. Sedláček, Philosophical Magazine A 83 (2003) 245–276.
[19] M.E. Gurtin, Journal of the Mechanics and Physics of Solids 50 (2002) 5–32.
[20] M.E. Gurtin, L. Anand, Journal of the Mechanics and Physics of Solids 56 (2008)

184–199.
[21] L. Méric, G. Cailletaud, M. Gaspérini, Acta Metallurgica Et Materialia 42 (1994)

921–935.
[22] D.P. Mika, P.R. Dawson, Materials Science and Engineering A 257 (1998) 62–

76.
[23] J.F. Nye, Acta Metallurgica 1 (1953) 153–162.
[24] C. Perrin, S. Berbenni, H. Vehoff, M. Berveiller, Acta Materialia 58 (14) (2010)

4639–4649.
[25] J.M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, M. Berveiller, Computational

Materials Science 45 (3) (2009) 604–610.
[26] P.G. Sanders, J.A. Eastman, J.R. Weertman, Acta Materialia 45 (10) (1997)

4019–4025.
[27] L. St-Pierre, E. Héripré, M. Dexet, J. Crépin, G. Bertolino, N. Bilger, International

Journal of Plasticity 24 (2008) 1516–1532.
[28] Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker, E. Ma, Scripta Materialia 48

(12) (2003) 1581–1586.
[29] A. Zeghadi, S. Forest, A.F. Gourgues, O. Bouaziz, Philosophical Magazine 87

(2007) 1425–1446.

(a)

(b)

Fig. 6. Distributions of (a) p and (b) C in the considered aggregates under simple
shear for the same overall value hpi = 0.001 and for various grain sizes. The
frequency represents the fraction of integration points where (a) p takes the value
of p ± Dp or (b) C takes the value of C ± DC. These histograms are obtained by
including all the values from the three realisations of the 24-grain aggregate and
from the 52-grain aggregate and with interval sizes of 2Dp = 0.001 and
2DC = 0.25 mm�1.
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