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The first formulation of a phase field model accounting for size-dependent viscoplas-

ticity is developed to study materials in which microstructure evolution and viscoplas-

tic behavior are strongly coupled. Plasticity is introduced using a continuum strain

gradient formalism which captures the size effect of the viscoplastic behavior. First, the

influence of this size effect on the mechanical behavior of the material is discussed in

static microstructures. Then, the dynamic coupling between microstructure evolution

and viscoplastic activity is addressed and illustrated by the rafting of the microstructure

observed in Ni-base superalloys under creep conditions. It is found that the plastic size

effect has only a moderate impact on the shape of the rafts but is crucial to reproduce

the macroscopic mechanical behavior of that particular material.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Phase transformations play a major role for designing new materials with new properties, for improving the
performance of existing materials, or defining new processes. It is indeed possible to combine the properties of different
coexisting phases in an optimal way thanks to particular morphologies, which introduce internal scales besides the scale of
interfaces. The phase distribution and morphology may be quite complex because they often result from complex
evolutions controlled by the interaction between different phenomena: e.g. chemical diffusion, interfacial energies,
mechanics (elasticity, plasticity, etc.) or electromagnetism. In the solid state, the mechanical behavior of the phases, from
elasticity to elasto-viscoplasticity, has a major influence on the microstructure evolution. Indeed, phase transformations
most often generate internal stresses coming from eigenstrains associated with changes in crystalline structure and in
chemical composition. In the case of coherent precipitation (in the absence of plasticity) these stresses induce very
anisotropic long-range interactions between precipitates at the origin of complex patterns (Khachaturyan, 1983).
However, in many industrial materials, plasticity is likely to partially relax stresses when those reach the yield stress.
This indeed may happen in three cases: (i) First, internal stresses can reach significant magnitudes as in bainites or
martensites in steels where plasticity is responsible for the change in their morphologies (Li et al., 1998). (ii) Second, yield
stresses are generally small at high temperature where diffusive phase transformations generally proceed. Hence, even
rather small eigenstresses may be relaxed as during the late stage of g0 precipitation in superalloys (Yang et al., 2007).
(iii) Finally, in service, materials are often submitted to external loadings and temperature changes. In that case, the
microstructure evolution and the plastic activity are also obviously coupled.
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Despite some early attempts (Ganghoffer et al., 1994; Wen et al., 1996; Ganghoffer et al., 1997; Su et al., 2006) the
coupling of plastic relaxation with phase transformations has not been extensively investigated so far from a modeling
point of view, because this requires efficient methods to handle microstructure evolution.

These last two decades, the phase field method (PFM) has emerged as the most powerful method for such a task,
especially when stresses are involved in solids. Indeed, this method has been able (i) to explain the formation of complex
microstructures, such as cuboidal microstructures in Ni-base superalloys (Wang et al., 1998; Boisse et al., 2007; Boussinot
et al., 2009), twin structures in martensites (Wang et al., 2004; Finel et al., 2010), chessboard structures (Le Bouar et al.,
1998) or hydrides precipitation in zirconium (Thuinet and Legris, 2010) and (ii) to capture subtle kinetic processes such as
the slow down of coarsening in the presence of high elastic inhomogeneity (Onuki and Nishimori, 1991) or transitions
between growth modes in ternary alloys involving slow and fast diffusing species (Viardin, 2010). So, it appears natural to
include plasticity into a PFM to investigate its role in phase transformations.

Because plasticity in crystals is mainly due to the movement of dislocations, several works have explicitly introduced
mobile dislocations in a PFM (Rodney, 2001; Wang et al., 2001; Koslowski et al., 2002) using an analogy between a
dislocation loop and a thin precipitate. Dislocations are described with continuous fields for each slip system. The main
advantage of this framework is that the elastic interactions between dislocations and/or precipitates are automatically
accounted for. But it has two major flaws (i) first, the dislocations cores spread over several grid spacings: consequently
realistic short-range interactions between dislocations require either subnanometer grid spacings, or a discrete description
as in Rodney et al. (2003). (ii) Second, mechanisms other than dislocations glides (e.g. climb and cross slips at high
temperatures, or twining in materials with law stacking faults energy) are not accounted for currently.

To circumvent these drawbacks, plasticity can be introduced into PFMs through plastic strain field defined at
mesoscale, supplied by internal variables such as hardening variables. As usual in continuum mechanics, evolution
equations in the form of ordinary differential equations are postulated to describe plastic flow and hardening with
parameters identified from experimental data. This approach has the advantage to phenomenologically include all the
physical processes at the origin of plasticity. Works along this route have been only very recently proposed by several
groups using mesoscale plasticity models differing by their descriptions of hardening, viscosity and plastic anisotropy.

The first attempts to couple a diffuse interface model with an isotropic plasticity model have been proposed in 2005.
In Guo and Shi (2005), a PFM has been coupled to an isotropic plasticity model to study stress fields around defects such as
holes and cracks. In Ubachs et al. (2005), a general formalism incorporating phase field and isotropic viscoplasticity with
non-linear hardening has been proposed to investigate tin–lead solder joints undergoing thermal cycling. Since these
pioneering works, similar approaches including isotropic plasticity models have been developed to study crystal growth
(Uehara et al., 2007), martensites (Yamanaka et al., 2008), superalloys (Gaubert et al., 2008) and kinetics issues in diffusion
controlled growth (Ammar et al., 2009, 2011). Finally, in the context of rafting in Ni-base superalloys, a few works have
extended PFM with anisotropic plasticity model, either in a perfectly plastic model (Zhou et al., 2010), or in a crystal
plasticity framework including both hardening and viscosity (Gaubert et al., 2010). It is worth mentioning that in Zhou
et al. (2010), the yield stress as well as any hardening effects are not included.

Despite significant successes achieved by these models, they miss an important feature of the plastic behavior: the
so-called size effect, also known as the Hall–Petch effect in polycrystals (Hall, 1951): the smaller the domains involved by
plasticity, the harder the material. This size effect becomes significant when sizes involved are below a few microns, which
is typically the case in an evolving microstructure.

The aim of the present work is precisely to demonstrate how a phase field method can be coupled to a mesoscale
viscoplastic model accounting for the size effect of the plastic behavior within a framework similar to the one previously
proposed by Gaubert et al. (2010). This size effect can only emerge from a viscoplastic model in which an intrinsic length is
included and therefore, the viscoplastic model has to be chosen within the framework of the mechanics of generalized
continua (Anand et al., 2010; Forest and Sievert, 2003).

The paper is divided as follows: In a first part, the phase field method and the viscoplastic model are presented, as well
as their coupling within a coherent thermodynamic framework. In a second part, the predictions of the coupled model are
analyzed. We first analyze static microstructures and we explain how the size effect modifies plastic activity and the
resulting macroscopic mechanical behavior. Finally, the dynamic coupling between microstructure evolution and
viscoplastic activity is addressed and illustrated by the rafting of the microstructure observed in Ni-base superalloys
under creep conditions.

2. Model description

2.1. Phase field model

The coupling between phase field method and mesoscale viscoplastic model is presented in the context of the
microstructural evolution in Ni-base superalloys. In these alloys, the disordered g phase and the ordered g0 phase coexist at
equilibrium. Following Boussinot et al. (2010), the superalloy is modeled as an effective binary alloy. In that case, in
addition to the local concentration field cðr ,tÞ, three non-conservative structural fields Zi ¼ 1;3ðr ,tÞ are introduced to account
for the degeneracy of the low temperature g0 phase. The four translational variants of g0 are described by the following
long-range order parameters: fZ1,Z2,Z3g ¼ Z0f1;1,1g, Z0f1,1,1g, Z0f1,1,1g, Z0f1,1,1g.
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The main ingredient of phase field modeling is a mesoscopic free energy functional F relating the concentration and
order parameters to the total free energy. It is usually decomposed into several contributions: bulk free energy, interface
energies and elastic energy Fel, detailed in the next subsections. As usually done in mesoscale viscoplastic model, the free
energy functional may also contain a viscoplastic contribution Fvp. Hence,

F ¼ Fchðc,fZigÞþFelðc,fZig, e
�

elÞþFvpða
�

,pÞ ð1Þ

where e
�

el is the elastic strain tensor and Fch the chemical free energy described in Section 2.1.1. The viscoplastic
contribution Fvp, as well as the new fields necessary to describe hardening ( a

�
, p) will be introduced in Section 2.2.

2.1.1. Ginzburg–Landau free energy

The chemical free energy accounts for the volume free energy associated with phase transformation and interface
energies. This free energy is given by a standard Ginzburg–Landau functional:

Fchðc,fZigÞ ¼

Z
V

f homðc,fZigÞþ
l
2
9rc92

þ
b
2

X
i

9rZi9
2

dV ð2Þ

where V is the volume, l and b are gradient energy coefficients and f homðc,fZigÞ is the free energy density of a homogeneous
system characterized by the concentration c and order parameters Zi. As usual, f homðc,fZigÞ is approximated by a Landau
polynomial expansion with respect to the order parameters. Its form is dictated by the symmetry loss during the g-g0
phase transformation. Following Boussinot et al. (2010), the lowest possible order of the expansion has been chosen:

f homðc,fZigÞ ¼Df
1

2
ðc�cgÞ

2
þ
B
6
ðc2�cÞ

X
i ¼ 1;3

Z2
i �
C
3
Z1Z2Z3þ

D
12

X
i ¼ 1;3

Z4
i

" #
ð3Þ

where Df is an energy density scale and c2 an arbitrary concentration chosen between the equilibrium concentrations cg
and cg0 of the coexisting phases. B, C and D are constants related to c2, cg, cg0 and to the equilibrium long-range order
parameter Z0. In all the subsequent calculations, we have used the equilibrium concentrations cg ¼ 0:15 and cg0 ¼ 0:231, as
well as c2¼0.18. Following Boussinot et al. (2010), forcing Z0 to saturate at 1 gives B¼0.162, C¼0.01458 and D¼0.022842
and the non-dimensional coefficients: ~l ¼ l=ðDfd2

Þ and ~b ¼ b=ðDfd2
Þ, where d is the grid spacing, are chosen to be ~l ¼ 0:21

and ~b ¼ 9:75� 10�4.

2.1.2. Elastic energy

The potential elastic energy in the framework of linear elasticity reads:

Felð e
�

elÞ ¼ Fa
elð e
�
Þþ

1

2

Z
V

k
�
: e
�

el : e
�

el dV ð4Þ

where k
�

stands for the local elastic moduli tensor and e
�

for the average strain. Fa
elð e
�
Þ is a homogeneous term which

depends on the choice of the boundary conditions. In the case of a traction along [100] under a constant applied stress sa
11,

Fa
el ¼�Vsa

11e11. In the case of an experiment controlled by strain, Fa
el ¼ 0.

Assuming that the local concentration is the relevant field for discriminating the elastic properties, k
�

is chosen as a
linear function of c(rÞ and is thus space dependent (Boussinot et al., 2010).

Accounting for plasticity in the small strain framework, the total strain e
�
ðrÞ can be divided into three contributions:

e
�
ðrÞ ¼ e

�

elðrÞþ e
�

0ðrÞþ e
�

pðrÞ ð5Þ

where e
�

pðrÞ is the plastic strain tensor with time evolution detailed in Section 2.2. e
�

0ðrÞ is the stress-free strain tensor
associated with the lattice parameter change during the g-g0 transformation. Assuming Vegard’s law:

e
�

0ðrÞ ¼ eTDcðrÞ 1
�

ð6Þ

where 1
�

is the identity matrix and eT ¼ d=ðcg0�cgÞ. The misfit is related to the lattice parameters ag and ag0 of the stress-
free g and g0 phases d¼ 2ðag0�agÞ=ðag0 þagÞ.

In the case of diffusion controlled phase transformations, static mechanical equilibrium can be assumed since
relaxation of the elastic waves is by orders of magnitude faster than the evolution of concentration, order parameters,
and plastic strain governed by viscoplasticity. Therefore, at any time, elastic strain can be computed by solving mechanical
equilibrium assuming stress-free strain and constant plastic strain. This can be done by minimizing the potential elastic
energy with respect to displacements accounting for given boundary conditions. When the elastic constants of the
coexisting phases differ, mechanical equilibrium has to be solved iteratively as in Boussinot et al. (2010).

2.1.3. Kinetic equations for the chemical fields

The time evolution of the concentration and order parameters is governed by kinetic equations relating time derivatives
to the corresponding driving forces, defined as the functional derivatives (noted dF=d:) of F with respect to the fields.
Assuming linear constitutive relationships, the Cahn–Hilliard equation is recovered for the conserved concentration field
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and the Allen–Cahn equation for the non-conserved order parameter ones:

@c

@t
ðr ,tÞ ¼Mr2 dF

dcðr ,tÞ
ð7Þ

@Zi

@t
ðr ,tÞ ¼�L

dF

dZiðr ,tÞ
ð8Þ

The kinetic coefficients M and L, related to diffusion and structural relaxation, respectively, are assumed constant.
Following Gaubert et al. (2010), M is such as to recover the interdiffusion coefficient D¼D0 expð�DU=kBTÞ with
D0 ¼ 1:45� 10�4 m2 s�1 and DU ¼ 2:8 eV (Fujiwara et al., 1999). We have used L¼ 100Md�2, where d is the grid spacing,
to ensure that kinetics is much faster for the order parameter than for the concentration field.

2.2. Strain gradient mesoscale plasticity model

The mesoscale viscoplastic model coupled to the phase field method is presented in this section. As explained in the
introduction, the key point is that the size effect due to the plastic behavior has to be taken into account. Within the
framework of continuum mechanics, this size effect can only emerge from a plastic model in which an intrinsic length is
included.

Size-dependent constitutive models can be obtained by resorting to the mechanics of generalized continua, like second
gradient and micromorphic theories (Mindlin and Eshel, 1968; Eringen and Suhubi, 1964). Isotropic strain gradient
plasticity models have been developed since the early 1980s to account for size effect and deformation patterning
observed in metals (Aifantis, 1987). Second, size-dependent crystal plasticity models have been proposed by Fleck and
Hutchinson (1997) using second gradient and Cosserat (Forest et al., 1997) theories. More recently the microforce
approach put forward by Gurtin was applied to crystal plasticity as an alternative (Gurtin, 2002; Svendsen, 2002). The curl
of the plastic strain tensor or, equivalently, the lattice curvature tensor (gradient of the deformation induced lattice
rotation) are directly related to the notion of geometrically necessary dislocations well-known in physical metallurgy
(Ashby, 1971; Steinmann, 1996). Constitutive equations involving functions of the plastic strain gradient or, equivalently,
of the densities of geometrically necessary dislocations introduce internal length scales that are responsible for a size
effect in the resulting behavior. In the present work, we have chosen to use a strain gradient viscoplastic model similar to
the one proposed in Aifantis (1987) and Forest and Aifantis (2010) which has the advantage of simplicity and in which the
intrinsic plastic length is easily controlled through the value of a single parameter. The framework used below will be
similar to the one developed in Gaubert et al. (2010) but with the addition of a heterogeneous component in the
viscoplastic free energy density. Also, for the sake of simplicity, the present formulation is limited to isotropic
viscoplasticity even though the extension to an anisotropic viscoplastic behavior could be obtained by explicitly
introducing an appropriate set of slip systems. The derivation of the simple isotropic model within a coherent
thermodynamic framework is presented in this section.

The plastic state of the material is described classically with two internal variables a
�

and p related to kinematic and
isotropic hardening, respectively (Lemaitre and Chaboche, 1990). They enter the free energy as follow:

Fvpð a
�

,pÞ ¼

Z
V

1

3
C a
�
: a
�
þ

1

2
Hp2
þ

1

2
A9rp92

dV ð9Þ

A simple quadratic form is assumed for the contribution of a
�

. The contribution of p has also a quadratic part describing
linear isotropic hardening, which can be easily extended to the case of a non-linear isotropic hardening (Lemaitre and
Chaboche, 1990). The last term in (9), proportional to the square gradient of p introduces an intrinsic length scale in the
plastic model. A dimension analysis shows that this intrinsic length is proportional to the square root of the gradient
coefficient A.

The evolution of the material leads to an energy dissipation. The local intrinsic dissipation is given by

f¼ r
�
: _e
�

p
�X
�
: _a
�
�R _p ð10Þ

where the thermodynamic forces associated with the internal variables are given by

X
�
¼

dF

d a
�

¼
2

3
C a
�

ð11Þ

R¼
dF

dp
¼Hp�A Dp ð12Þ

These thermodynamic forces correspond to the hardening variables defining the elastic domain and the corresponding
plastic/viscoplastic potential (Lemaitre and Chaboche, 1990). More precisely, X

�
is the back-stress, i.e. the center of the

elastic domain, and R is its radius. In this formulation, we assume that all strain gradient effects are attributed to the free
energy (9), following Gurtin and Anand (2009) and Forest and Aifantis (2010). More general models could also incorporate
some dissipative contributions associated with strain gradients.
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The kinetic equations of the viscoplastic model are obtained within a thermodynamic framework by postulating
the existence of a convex dissipation potential O which depends on stress r

�
and on the thermodynamic forces in the

following way (Lemaitre and Chaboche, 1990):

Oðr
�

, X
�

,RÞ ¼

Z
V

~O J2ðr
�
�X
�
Þ�ðR0þRÞþ

D

2C
J2
2ðX
�
Þ�

2DC

9
J2
2ða
�
Þ

� �� �
dV ð13Þ

where R0, C and D are coefficients which may depend on temperature. J2 defining a distance in stress space is given by
J2ðr
�
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 ðr�

0 : r
�

0Þ
q

where r
�

0 ¼ r
�
� 1

3 Trðs
�
Þ 1
�

is the deviatoric stress.
The normal dissipative laws are then expressed as

_p ¼�
dO
dR
¼�

@ ~O
@R

ð14Þ

_e
�

p
¼

dO
dr
�

¼
3

2
_p

r
�

0�X
�

0

J2ðr
�
�X
�
Þ

ð15Þ

_a
�
¼�

dO
dX
�

¼ _e
�

p
�D a

�
_p ð16Þ

Combining these expressions, it is found that p is the cumulative plastic strain since _p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_e
�

p : _e
�

p
q

. Finally, the following
dissipation potential density has been assumed:

~Oðf Þ ¼
K

Nþ1

f

K

� �Nþ1

ð17Þ

where /aS stands for the positive part of a and N, K are positive parameters. This choice leads to a Norton type flow rule:

_p ¼
J2ðr
�
�X
�
Þ�R0�R

K

* +N

ð18Þ

where R0 appears now to be the initial yield stress and R the isotropic hardening. It is worth noting that R includes both
linear isotropic hardening and the strengthening resulting from the plastic size effect (12).

In heterogeneous materials, the viscoplastic parameters C, D, H, A, N, K and R0 depend on position r . In the particular
case of g=g0 superalloys under creep loading, only g undergoes plastic strain while g0 behaves elastically. To reproduce this
behavior all the viscoplastic parameters have been set at their value in the g phase, except the initial yield stress R0 which
is interpolated between Rg

0 and Rg0
0 as follows:

R0ðrÞ ¼ R0þR00 tanh y
1

3Z2
0

X
i ¼ 1;3

Z2
i ðrÞ�

1

2

 !" #
ð19Þ

with R0 ¼ ðR
g
0þRg0

0 Þ=2, R00 ¼ ðR
g0
0�Rg

0Þ=2 and y a parameter controlling plasticity in the interface.
In all the calculations, we have used y¼ 100 which leads to variations of the parameters over a grid spacing d, a

distance smaller than the interface width. Other values have been tested to check that the influence on the microstructural
evolution is negligible. Moreover, for purely numerical reasons, the value of Rg0

0 is chosen large enough (100 GPa) to
prevent any plastification of g0 even in presence of a characteristic plastic length.

3. Results

3.1. Plasticity in a static microstructure

3.1.1. 1D: Analytical solution

At first, we have investigated the viscoplastic model in a simple static microstructure so as to make a clear link between
its parameters and a characteristic plastic length.

For that purpose, a 1D configuration has been chosen which mimics a periodic arrangement of elastic g0 layers with
thickness ‘ and plastic g channels with thickness s along the x direction (Fig. 1). This two phases laminate is submitted to a
tensile strain along x. This configuration was also analyzed by Cordero et al. (2010) in the context of single crystal strain
Fig. 1. Configuration used to derive the analytical solution.
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gradient plasticity under shear loading conditions. We have considered cubic homogeneous elasticity, isotropic hardening
and no kinematic hardening. Moreover, the misfit between g and g0 has been neglected.

In the limit of time independent plasticity (_e11-0), an analytical solution for the cumulative plastic strain p can be
found along the following lines (see Appendix for details). First the J2 yield surface is expressed for the specific 1D
geometry considered here: J2ðr

�
Þ ¼ 9s11�s22ðxÞ9, where s11 is homogeneous to fulfill mechanical equilibrium. Using von

Mises criterion in g, we have

R0þHpðxÞ�ADpðxÞ ¼ 9s11�s22ðxÞ9 ð20Þ

Using Hooke’s law s22ðxÞ can be written in terms of s11 and p and replaced in Eq. (20) to give a second order differential
equation. Integrating this equation with the boundary conditions leads to

pðxÞp1�
coshðoxÞ

coshðos=2Þ
with o2 ¼

1

A
Hþ

1

2

E

1�n

� �
ð21Þ

where E and n are Young’s modulus and Poisson’s ratio in the x direction.
The characteristic plastic length x¼ 1=o can be identified, which varies as

ffiffiffi
A
p

as expected. x depends on the isotropic
hardening modulus H and on Young’s modulus E. In a simplified approach H and E can be linked to the slopes of plastic and
elastic parts of the s vs. e curve, respectively. Provided that H is much smaller than E, a good estimate of the plastic length
is ~x ¼

ffiffiffiffiffiffiffiffi
A=E

p
.

Typical profiles of p are shown in Fig. 2 for different values of x at the same average strain e11 ¼ 5� 10�3, using
parameters in Table 1 and H¼4.3 GPa. Analytical solutions obtained with Eq. (21) are plotted with continuous lines. Plastic
deformation is of course confined in the g channel. Its gradients are located at the g=g0 interfaces and extend over x. When
x5s, p is homogeneous in almost the whole g channel, and tends to the value given by conventional plasticity (x-0). The
homogeneous region of the plastic strain starts to disappear when x is about 15% of channel thickness. For x� s=3, p

exhibits an almost parabolic profile with a significant decrease in the maximum cumulative plastic strain at x¼0. As a
consequence, the elastic strain as well as s11 become higher as x increases for a given e11. It must be noted that for the g0
volume fraction tg0 ¼ 0:7 used in Fig. 2, the influence of x on s11 remains moderate (for x¼ 0:1 nm, s11 ¼ 292 MPa; for
x¼ 38 nm, s11 ¼ 350 MPa).

In Fig. 2, the corresponding numerical calculations are plotted with symbols. The kinetic coefficients M and L in Eqs. (7)
and (8) are set to zero to freeze the microstructure. e11 has been applied at a very small rate _e11 ¼ 10�10 s�1 in order to
match the conditions used to derive the analytical solution. A perfect match between the analytical solution and numerical
simulation is found, which validates the numerical implementation of our model.

3.1.2. Global mechanical behavior

Aiming at investigating microstructure evolutions coupled to viscoplasticity in Ni-base superalloys, the first step is
to properly assess the size effect as predicted by the viscoplastic model on the mechanical behavior of a static real
Fig. 2. Profiles of cumulative plastic strain for different values of x at e11 ¼ 5� 10�3 in a 1D configuration of two phases: g channel (plastic) of thickness

s¼102 nm and g0 precipitates (elastic) of thickness ‘¼ 235 nm. The red curves are the analytical solutions corresponding to the simulations with (� )

x¼ 0:1 nm, (m) x¼ 3:8 nm, (~) x¼ 12 nm, (�) x¼ 38 nm. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)

Table 1
Elastic moduli (Gaubert et al., 2010) and viscoplastic parameters at T¼950 1C. The parameters of g have been identified from macroscopic experiments

(Espié, 1996; Gaubert, 2009).

Phase C11 (GPa) C12 (GPa) C44 (GPa) C (GPa) D N K (MPa s1=N) R0 (MPa)

g 197 144 90 150 1900 5 150 86

g0 193 131 97 150 1900 5 150 105
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microstructure. For that purpose, we have studied an AM1-type superalloy under loading for which data concerning its
mechanical behavior are available in the literature. More specifically, we have used tensile curves s vs. e obtained with a
tensile strain rate _e11 ¼ 10�3 s�1, in conditions where the microstructure is known not to evolve significantly.

The simulations have been performed considering a 3D periodic model configuration: a cube-shaped precipitate inside
a cubic matrix. It mimics a periodic array of identical g0 precipitates aligned along the cubic orientations separated by
narrow g channels. To reproduce the features of realistic microstructures observed in AM1 (Diologent, 2002), such as the
volume fraction tg0 ¼ 0:7 and the average precipitate size � 450 nm, we have considered g0 precipitates 456 nm large and g
channels 56 nm wide. We used a discretization of 2563 nodes and a node spacing of d¼2 nm. Moreover, the fields
identifying the microstructure have been relaxed so as to obtain diffuse interfaces. All the model parameters have been
selected from experimental measurements. According to Royer et al. (1998) and Diologent et al. (2003), the lattice
mismatch is d¼�0:1%. The elastic moduli and the viscoplastic parameters have been taken from Gaubert et al. (2010)
(Table 1). For AM1, it has been shown that isotropic hardening is small (Hanriot, 1993) and therefore we neglect the
hardening modulus H in our simulations.

In Fig. 3, the curve s vs. e predicted with the parameters in Table 1 for the g bulk phase is compared to the experimental
tensile curve of Espié (1996), with _e11 ¼ 9� 10�4 s�1. As expected, an excellent agreement is achieved. Assuming a
perfectly elastic behavior for g0, and using the viscoplasticity parameters for g without plastic length ( ~x ¼ 0), the
calculations (dashed black) underestimate the mechanical behavior of the two-phase alloy as compared to experiments
(blue þ): at e¼ 0:07%, s� 480 MPa is below the experimental value s� 560 MPa. This difference can be attributed to the
confinement of plasticity in g which strengthens the material. This demonstrates the necessity of including a plastic size
effect to predict more quantitatively the flow stress curve of AM1 superalloys.

This strengthening is introduced in the viscoplastic model by tuning the additional parameter A. We have chosen
A¼ 5� 107 MPa nm2 corresponding to ~x ¼ 26 nm, which is half the g channel width. For such a value, a better agreement
is achieved with the measurements as shown in Fig. 3. It is worth noting that increasing ~x such that ~xbs makes g behave
purely elastically: the mechanical behavior of the two-phase alloy becomes closer to a linear elastic behavior with a slope
corresponding to the slope at the beginning of the tensile curves in Fig. 3. The present method could be used to identify ~x,
provided that the elastic constants of the g and g0 phases have been accurately obtained.

Finally, the softening effect, characterized by a decrease of the flow stress shortly after the beginning of yielding often
observed in single crystal Ni-base superalloys, is not accounted for in our model (Levkovitch et al., 2006). However, in the
service conditions studied in the present work (small deformation rate), this softening is hardly visible for the AM1
superalloy (Espié, 1996; Gaubert, 2009).

3.2. Microstructural evolution coupled to a viscoplastic activity

In this section, the rafting (directional coarsening) of g0 precipitates in AM1-type superalloy under creep loading is
investigated with the coupled phase field method/viscoplastic model. In particular, the question of whether the size effect
has an influence or not on the transformation kinetics and on the morphological evolution is addressed. It must be stressed
that this alloy is particularly well suited for this purpose because plastic activity is only observed within the g channels, at
temperatures around 950–1050 1C. We have proceeded in two steps: (i) first, a typical cuboidal microstructure is
generated accounting for elasticity only, with no applied stress. (ii) Second, the evolution of this microstructure during the
creep experiment is investigated. SEM images of the microstructure corresponding to these steps in AM1 superalloys can
be observed in Fig. 4.
Fig. 3. Stress–strain curves at T¼950 1C of the bulk g phase ( _e 11 ¼ 9� 10�4 s�1) and of the AM1 superalloy ( _e 11 ¼ 10�3 s�1). The tensile axis is parallel to

the [100] crystallographic direction. Experimental measurements are represented by � symbols for pure g and by blue þ symbols for AM1 (Espié, 1996;

Gaubert, 2009). PFM results with lines in red for pure g; in dashed black ( ~x ¼ 0) or blue ( ~x ¼ 26 nm) for AM1. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)



Fig. 4. SEM observations of AM1: (a) before aging (b) after a 72 h creep experiment under 150 MPa along the [0 0 1] axis at T ¼ 1050 1C (Gaubert, 2009).
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3.2.1. Initial cuboidal microstructure and elastic parameters

The cuboidal microstructure is achieved using the PFM presented in Section 2. The only required input parameters are
the interfacial energy (sexp ¼ 2 mJ=m2), the misfit (d¼�0:1%) and the elastic constants. The choice of the elastic constants
is detailed in the following paragraph.

As shown in Gaubert et al. (2010), if we use the g=g0 elastic moduli available in the literature for the AM1 at T¼950 1C
(Table 1), the PFM predicts the formation of an anisotropic microstructure where the g=g0 interfaces are aligned along the
cubic directions. However, this microstructure contains many g0 precipitates of irregular shape which are rarely observed
in AM1 (Fig. 4(a)). A systematic study in Hu and Chen (2001) has shown the importance of the inhomogeneity of the shear
elastic constant C0 ¼ ðC11�C12Þ=2 on the microstructure formed. Microstructures made of well aligned cuboidal
precipitates, as observed in AM1, can be generated only when the inhomogeneity of C 0 is large enough. This suggests
that the difference of about 10% in C0 between g and g0 obtained in Gaubert et al. (2010) is underestimated. The inaccuracy
of the measurements can be attributed to the inverse process used to infer the elastic constants of each phase from the
behavior of the two-phase alloy (Fahrmann et al., 1999; Sieborger et al., 2001). For that reason, we have increased the
inhomogeneity of C0 up to 40% while keeping the same elastic anisotropy 2C44=ðC11�C12Þ ¼ 3:3. This has been carried out
by changing Cg0

12 to 118 GPa and Cg0
44 to 124 GPa, keeping all other moduli in Table 1 unchanged.

The initial cuboidal microstructure was generated in the elastic regime from an initial disordered g phase with stress-
free boundary conditions. The total size of the 2D system is 2:3� 2:3 mm2 discretized with 5122 nodes. The last stage of the
formation process is shown in Fig. 5(0) where the gray corresponds to the g matrix and the different colors are related to
the four translational variants of the g0 phase. After 16 h at 950 1C, the microstructure consists of cuboidal precipitates,
well aligned along the cubic directions, separated by well defined g channels (Fig. 5(0)). The initial volume fraction of g0
precipitates is 0.63 and their average size is 319 nm. The g channels have an average size of 78 nm. This microstructure is
in good agreement with microstructures observed in AM1. Finally, it is worth mentioning that slight modifications of the
C 0 inhomogeneity has significant consequences on the microstructure. The necessity of a large enough C 0 inhomogeneity
could be used in the future as a new ingredient to improve the inverse process designed for the determination of the
elastic constants of the g and g0 phases.
3.2.2. Rafting under creep

In the second step, a constant stress sa ¼ 150 MPa has been applied to the microstructure in Fig. 5(0) along the
horizontal axis, while holding temperature at 950 1C. In order to test the influence of the plastic characteristic length on
the microstructure evolution, three different creep simulations have been performed. First, a purely elastic case has been
considered (Fig. 5(a)–(d)). Second, an elasto-viscoplastic one without size effect (Fig. 5(h)–(j)) was completed to make a
full comparison with the last one where the plastic size effect are accounted for (Fig. 5(e)–(g)). As in Section 3.1.2, ~x is set
to 26 nm. This value corresponds to one third of the initial average channel width.

For all evolutions in Fig. 5, the microstructure tends towards a morphology of rafts aligned along the same direction
perpendicular to the tensile axis. This is in agreement with previous studies of creep along one cubic direction showing
that the elastic and plastic driving forces lead to the same raft orientation (Boussinot et al., 2010; Zhou et al., 2008).
Comparing the elastic and plastic cases clearly shows that viscoplasticity has two major impacts on the evolution. First, it
influences the kinetics: the formation of the rafts is faster when plastic activity is accounted for. This behavior is clearly
demonstrated by the splitting of the larger precipitate observed in the first and rows in Fig. 5. The splitting happens at
t¼3.5 h with viscoplasticity (Fig. 5(h)) and at t¼5.8 h without viscoplasticity (Fig. 5(b)).

Second, at a stage where straight rafts are observed in the elastic case, the microstructure in the plastic simulation is
still wavy. This feature is in agreement with a previous study using an anisotropic viscoplastic model (Gaubert et al., 2010).
Furthermore, in the late stage of the viscoplastic simulation, the evolution becomes hardly noticeable and the
microstructure is almost frozen (last column in Fig. 5), while in the elastic case it is still evolving to give flat rafts after
t¼72.6 h (Fig. 5(d)). Finally, it can be noted that the volume fraction of g0 decreases slightly with viscoplasticity: at
t¼36.3 h, tg0 ¼ 0:59 in the elastic case whereas tg0 ¼ 0:57 and tg0 ¼ 0:55 in the viscoplastic cases with ~x ¼ 26 nm and ~x ¼ 0,
respectively.



Fig. 5. Starting from the initial microstructure generated under stress-free conditions (0), microstructure evolutions under a constant tensile stress along

the [100] axis (150 MPa) predicted by (a)–(d) the elastic PFM; (e)–(g) the elasto-viscoplastic PFM including size effect ( ~x ¼ 26 nm); (h)–(j) the elasto-

viscoplastic PFM ( ~x ¼ 0). The shade of gray are in accordance with the value of the concentration field cðr ,tÞ ; the white and black areas represent the g0
and g phase, respectively. The nomenclature of the images is indicated in the lower right corner. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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3.2.3. Influence of the plastic length scale

The comparison between the middle and right columns shows the influence of the characteristic plastic length ~x. Again,
the kinetics of rafting is estimated with the time necessary for the large precipitate to split into two smaller precipitates.
When ~x ¼ 26 nm, splitting occurs at a later time (t¼4 h) than when ~x ¼ 0 (t¼3.5 h). Therefore, the plastic length slows
down the raft formation and gives a kinetics closer to the elastic case. This behavior is expected because the plastic length
leads to an increase in flow stress and therefore to a decrease of plastic activity. Furthermore, as already noted when ~x ¼ 0,
the microstructure evolution predicted with ~x ¼ 26 nm is almost frozen after the formation of the rafts (Fig. 5(g)). The
frozen configurations obtained in the two viscoplastic cases (Fig. 5(g) and (j)) are rather similar: the plastic length has
moderate consequences on the morphological evolution at long time for the particular evolution considered. Still, a few
differences are noticable. Some small precipitates have dissolved when ~xa0 but they can still be observed when ~x ¼ 0.
Moreover, as already mentioned, tg0 is slightly larger with plastic length than without, resulting in slightly smaller g
channels.
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The difference between the two viscoplastic cases is more obvious when considering the plastic fields, e.g. the
cumulated plastic strain p at t¼36.3 h (first row in Fig. 6). As expected, plastic activity is confined in g, mainly in the
vertical channels in both cases. When ~x ¼ 0, p is almost homogeneous in all the vertical g channels (Fig. 6(b)). The plastic
length introduces several differences with conventional viscoplasticity (Fig. 6(a) and (b)). (i) Plastic activity becomes
weaker due to the increase in flow stress. (ii) The decrease of p is more pronounced in the thin channels than in the large
ones (Fig. 6(a)). (iii) p varies more smoothly. These features are also clearly observed with the profile of p perpendicular to
the rafts (Fig. 7). The variations of p along the profile are smoother and smaller when ~x ¼ 26 nm (full red line) than when
~x ¼ 0 (dashed line). Large channels are less sensitive to the plastic length than small ones: when ~x ¼ 0, p� 1:2� 10�3 in all
the channels; when ~x ¼ 26 nm, p� 9:8� 10�4 in the center of channels 190 nm wide, and decreases to p� 4:9� 10�4 in
channels 75 nm wide. Finally, it can be noticed that small regions at the center of the vertical channels (Figs. 6(b) and 7)
display plastic singular behaviors. The origin of their formation will be discussed at the end of the section.

Maps of the stress components s11 (Fig. 6(c)–(e)) and s22 (Fig. 6(f)–(h)) for the three different situations at t¼36.3 h are
presented in Fig. 6. For the elastic model, the s11 component is nearly homogeneous through all the material with a value
close to the applied stress sa

11. The homogeneity of s11 is nothing but the consequence of mechanical equilibrium in a
microstructure whose interfaces are perpendicular to the [100] direction. The only small heterogeneities of the s11 field
are in the horizontal channels where the value of s11 is much smaller. Since the horizontal channels accommodate the
misfit between the two phases (do0-ag4ag0 ) they are submitted to smaller local stresses. This point is also true in the
viscoplastic simulations because, as detailed above, plastic activity is negligible in the horizontal g channels. Their behavior
can be considered as an elastic one. Contrary to the s11 maps, the s22 maps are very different in the three simulations.
9s229 has a much higher value in the elastic simulation. For both viscoplastic simulations, after a sufficient time, we
observe a relaxation of the s22 stress component (Fig. 6(f)–(h)) resulting from the plastic deformation of the g channels.
The behavior of s33 (not shown) is qualitatively the same. These differences in s22 and s33 are the result of the previously
described differences in the plastic field p and they explain the variations in kinetics observed between the three
simulations in Fig. 5.
Fig. 6. Plastic and elastic fields obtained at t¼36.3 h in the elastic model (first column), in the elasto-viscoplastic model including size effect (middle

column) and in the elasto-viscoplastic model where ~x¼0 (last column). The first row is the cumulative plastic strain field p and the second and third rows

are the stress components s11 and s22, respectively. The nomenclature of the images is indicated in the upper left corner.



Fig. 7. Profiles of the cumulative plastic strain perpendicular to the rafts at t¼1 h: ~x ¼ 0 (dashed line); ~x ¼ 26 nm (full red line). (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 8. Average plastic strain vs. time obtained from simulated creep experiment at T ¼ 950 1C under 150 MPa: ~x ¼ 0 (dashed line); ~x ¼ 26 nm (full red

line). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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In Fig. 8, the average plastic strain ep is plotted vs. time for the two viscoplastic cases. In both cases, a primary creep
stage featuring a rapid increase of ep is observed when to5 h. At the end of this stage, a rafted microstructure can be
observed (Fig. 5(e)–(h)). For t45 h, the evolution of ep becomes slow and almost linear. During this secondary creep stage,
the microstructure remains stable in time (Fig. 5(g)–(j)). The time at which the secondary creep stage begins as well as the
value of the plastic strain plateau are consistent with experiments on AM1 superalloys obtained in similar creep conditions
(Diologent, 2002). As expected, introducing the size effect results in a strengthening of the material: ep is smaller with
~x ¼ 26 nm (full red line) than with ~x ¼ 0 (dashed line). The difference is more important during the primary creep stage
when the microstructure still features a large distribution of g channels widths. During the secondary creep stage, the
microstructure exhibits well defined rafts. Plastic activity develops inside rather large vertical g channels which are barely
affected by the size effect. This explains the rather similar plastic behavior of the two viscoplastic models in the secondary
creep stage.

During the creep experiment, a widening of the g channels is observed leading to a decrease of the plastic size effects, in
accordance with 1D calculations (Section 3.1.1). In addition, the kinematic hardening variable X evolves rapidly during the
first stages of the experiment and reaches a plateau after 5 h in both simulations. The saturation value is found very close
to the value 2C=3D expected in a 1D configuration. Note finally that after 5 h a slow evolution of both Ep

11 and X11 can still
be observed for ~xa0 but not for ~x ¼ 0.

Note that in Fig. 8, there is no tertiary creep stage since the physical mechanisms responsible of the phenomenon are
not included: the shearing of the g0 precipitates and the internal crack initiation resulting from porosity (MacLachlan et al.,
2001).
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Finally, we discuss the origin of the slight differences in plastic behavior which can be observed at the center of the g
channels. These regions are visible in Fig. 6(b) (also in Fig. 7) when ~x ¼ 0 and subsist during microstructure evolution. The
plastic strain inside these regions remains rather constant and the ulterior plasticity takes place around these areas. Note
that the presence of these areas does not seem to impact significantly microstructure evolution, probably because they are
not located close to the g=g0 interfaces. These regions are not observed in experiments. These artifacts disappear when a
plastic size effect, which regularizes the plastic rate, is operating.

4. Conclusion

An extension of a phase field model has been proposed, which captures microstructure evolutions coupled to
viscoplasticity. In particular, the model accounts for the size effect of the plastic behavior beyond the volume fraction
effect, i.e. for the hardening (resp. softening) induced by the decrease (resp. increase) of the size of the plastic regions. This
effect may be rather important in heterogeneous materials because the size and the shape of the plastic regions evolve
during thermo-mechanical treatments. To our knowledge, the plastic size effect had never been introduced in a phase field
model using a continuous approach. The viscoplastic behavior is introduced at mesoscale using a strain gradient approach
and is coupled to a phase field model within a thermodynamic consistent framework. The model has been applied to the
microstructural evolution in Ni-base superalloys in creep conditions during which plasticity only proceeds inside the g
phase. The parameters of the model have been selected to mimic the behavior of the AM1 monocrystalline superalloy. We
have assumed that plasticity in the g channels can be described by continuum strain gradient viscoplasticity, in spite of
their very small width. Several important physical phenomena, such as the ordered character of the g0 phase, the elastic
inhomogeneity and anisotropy, the misfit, the hardening and the viscosity of the plasticity are included in the model.

Static configurations have first been used to emphasize the influence of the plastic size effect on the mechanical
behavior of heterogeneous materials and to properly define the internal length scale of the plastic model. Then, 2D
simulations have been performed to investigate the influence of the plastic size effect on the microstructural evolution
during creep loading along a cubic axis. It has been found that plastic activity accelerates the formation of the rafts and
leads to an almost frozen configuration of wavy rafts. Comparing the simulation results including or ignoring the plastic
size effect, we have shown that, in these alloys, the size effect has only a moderate impact on the morphological evolution
but is crucial to reproduce the macroscopic mechanical behavior of the material.

The model proposed in this paper will be extended to include plastic anisotropy and 3D simulations will be performed.
In particular, in the context of Ni-base superalloys, this extension will open the possibility to investigate the
microstructural evolution during creep experiments along complex loading axis.
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Appendix A. Analytical solution of the model in 1D

In the case of a 1D configuration (Fig. 1 and Section 3.1.1) displacement reads

u1ðxÞ ¼ e11 xþuðxÞ

u2ðyÞ ¼ e22 y

u3ðzÞ ¼ e22 z

8><
>: ð22Þ

where u(x) is the periodic fluctuation displacement and e11 the average tensile strain field. Strain and stress tensors are
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where f ,1 denotes the derivative of f with respect to the x coordinate. For this 1D geometry, coherency of the g=g0 interface
implies that e22 is homogeneous. In addition, s11 is also homogeneous to fulfill mechanical equilibrium. Under these
conditions, the J2 yield surface can be defined in stress space as

J2ðr
�
Þ ¼ 9s11�s22ðxÞ9 ð24Þ

Hooke’s law holding in g and g0, we have

sg011 ¼ C11½e11þug0,1ðxÞ�þ2C12e22

sg11 ¼ C11½e11þug,1ðxÞ�pðxÞ�þ2C12½e22þpðxÞ=2�

8<
: ð25Þ
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sg022ðxÞ ¼ C12½e11þug0,1ðxÞ�þðC11þC12Þe22

sg22ðxÞ ¼ C12½e11þug,1ðxÞ�pðxÞ�þðC11þC12Þ½e22þpðxÞ=2�

8<
: ð26Þ

Since s11 is homogeneous, we get

sg11 ¼ s11 ¼ C11½e11þug,1ðxÞ�pðxÞ�þ2C12½e22þpðxÞ=2� ¼ Cst ð27Þ

We consider a situation where the g phase undergoes time independent plastic deformation. Using von Mises criterion,
we get

R0þHpðxÞ�ADpðxÞ ¼ 9s11�sg22ðxÞ9 ð28Þ

Using Eq. (26) into Eq. (28) gives

Hþ
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2

E

1�n

� �
pðxÞ�ADpðxÞ ¼ T�R0 ð29Þ

where E=ð1�nÞ ¼ ðC11�C12ÞðC11þ2C12Þ=C11 and T ¼ ðC11�C12Þ=C11½s11�ðC11þ2C12Þe22�.
Eq. (29) is a second order differential equation. Integrating this equation leads to

pðxÞ ¼M 1�
coshðoxÞ
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The two unknown constants s11 and e22 are determined using the following boundaries conditions /s11S¼ s11 and
/s22S¼ 0. We obtain

s11 ¼ ðC11þ2C12Þðe11þ2e22Þ

e22 ¼
B

B E
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The continuity of plastic strain p(x) and the continuity of displacement at the interface x1 ¼ s=2 can be used to
determine the heterogeneous displacement field u(x).
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