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Abstract. The present work demonstrates that the pencil glide mechanism is a physically reliable and a
computationally efficient model to simulate the nonlinear behaviour of b.c.c. single and polycrystals. For
that purpose, the pencil glide extension of Schmid’s criterion used by Gilormini [1] is incorporated in a single
crystal model and in a homogenized polycrystal model accounting for large elastoviscoplastic deformations.
The response of the pencil glide model in terms of stress-strain curves and lattice rotation is compared to
the prediction based on the consideration of all ({110}〈111〉+ {112}〈111〉) slip systems. In the case of α-iron
single crystals both approaches are shown to accurately reproduce recent experimental results [2, 3]. The
comparison is extended to α-iron polycrystals behaviour under tension, compression, rolling and simple
shear loading conditions. The evolution of crystallographic textures obtained either based on pencil glide
or using the 24 slip systems is analyzed and compared to classical experimental results from the literature.
Limitations of the approach, especially in the case of simple shear textures, are also pointed out. The pencil
glide approach can be viewed as a reduced order model enhancing computational efficiency of crystal
plasticity simulations involving many slip mechanisms.

Keywords. Crystal plasticity, Pencil glide, Single crystal, Polycrystal, Constitutive equations, Viscoplasticity,
b.c.c. crystal, Homogenization, Texture, Rolling.
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1. Introduction

Many crystals with b.c.c. (body centered cubic) structure exhibit a specific plastic behaviour at
low temperature characterized by the difficulty of identifying the slip planes along which dis-
locations are gliding, whereas the slip direction (given by the Burgers vector) is clearly defined.
The reason is that screw dislocations can easily cross-slip on several planes containing each slip
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direction which is a zone axis of the crystal. Slip lines are observed to be sinuous and this phe-
nomenon was called pencil glide and non-crystallographic slip by Taylor and Elam [4]. Modifica-
tions of the well-known Schmid law for crystal plasticity were proposed to accommodate pencil
glide and used to predict yield surfaces of polycrystals [5]. Gilormini [1] and Becker [6] applied
such a theory to predict rolling textures based on a homogenization polycrystal approach. Ac-
cording to the pencil glide model used in [1], the Schmid law is applied to slip systems with fixed
crystallographic slip directions and optimized slip plane to maximize the resolved shear stress at
each strain increment. Rolling textures were predicted in [1] using the Taylor model [7] and the
relaxed constraint model [8]. It was shown that the results of the latter model were in better agree-
ment with experimental findings [1]. However, these two homogenization techniques are known
to provide bounds of the actual behaviour. From a computational perspective, an advantage of
the pencil glide model is to reduce the number of slip systems and associated internal variables
and corresponding material parameters. This is the main incentive of the present contribution.

Hill [9], Mecking [10, 11], Kocks [12], van Houtte [13] and Arminjon [14, 15] have proposed
several classes of polycrystal models allowing for non homogeneous stress and strain values
between the various orientation classes of grains. These models essentially lead to deformation
textures in good agreement with measured ones. Depending on specific weighting parameters
present in these models, they can account for the whole span of the solution domain between
the lower and upper bounds. Another class of non-homogeneous models which make use of the
Eshelby theory to estimate the local tress and strain is the viscoplastic self-consistent scheme
(VPSC) [16, 17]. All grains having the same orientation within a given precision are gathered in a
single monocrystalline inclusion embedded in the effective medium. This reflects explicitly some
nonlinear interaction of each grain with its homogenized surroundings [18]. For the quasi-rate-
independent case, there also exists a self-consistent polycrystal plasticity model relying on the
multiplicative decomposition of the deformation gradient, see [19].

In the present work, a fast computational homogenization polycrystal model is introduced,
the so-called β-model which is a tunable extension of the Standard Self-Consistent (SSC) scheme
to investigate the elasto-plasticity of polycrystals [20–25]. The grain/aggregate interaction is still
taken into account via the use of the Eshelby tensor. The β-model incorporates interphase
accommodation variables β(g ) to replace the local plastic strain ε

(g )
p in usual SSC localization

formula. The evolution law for the β-variables contains tunable transition parameters to be
calibrated from full-field simulations of polycrystalline aggregates [26]. Theβ-model formulation
from [23] is extended in the present work to allow for finite deformations using the concept of
local objective frames [21]. The evolution texture in b.c.c. metals is simulated using the β-model.
In the simulations presented in this work, we consider either the restricted glide ({110}〈111〉 +
{112}〈111〉) or the pencil glide 〈111〉 as the plastic slip modes. The responses of these mechanisms
will be compared for single and poly-crystals for various loading conditions in order to assess the
ability of the pencil glide model to mimick the response of the full slip model.

The article is organized as follows. First, the finite deformation framework and the pencil glide
model are depicted. The polycrystal homogenization β-model is then presented in the case of
large deformations. The third section is dedicated to the comparison of the responses of the
pencil glide model and the consideration of all ({110}〈111〉+ {112}〈111〉) slip systems in the case
of single crystals in tension and compression. In the case of polycrystals treated in Section 4,
it is first necessary to calibrate the free parameters of the β-model from a full field simulation
of polycrystalline aggregates. Polycrystal simulations are then performed in the case of tension,
compression, torsion and simple shear loading conditions, considering either pencil glide or the
24 slip systems. Results are compared in terms of overall stress-strain curves, lattice rotation and
evolution of texture components. Computation time of simulations for 1000 grains is also an
important information provided in this work.

C. R. Mécanique, 0000, 1, n 0, 000-000
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In the following paper, an orientation is given by the three Euler angles ϕ1,Φ,ϕ2 where
the Bunge notation is used. The distribution of orientations, the pole figures and the ODF
(Orientation Distribution Functions) maps are obtained by means of the ATEX software
(http://www.atex-software.eu/).

2. Model description

2.1. Single crystal plasticity at large deformations

The formulation of the present single crystal plasticity model makes use of local objective frames
to develop constitutive models at finite strains [27]. It was proposed in [21] for single and
polycrystals and used recently in [28]. It departs from Mandel’s classical formulation relying on
the multiplicative decomposition of the deformation gradient F [29]. The velocity gradient L is
decomposed into its symmetric part {L} defining the strain rate tensor, and its skew-symmetric
part }L{, called spin tensor. The time-dependent rotation cQ linking the corotational space frame
to the current one is defined as

cQ̇cQT = }L{ and cQ(t = 0) = 1. (1)

The strain rate tensor is pulled back to the corotational frame and split into elastic and viscoplas-
tic parts:

cD = cQT {L}cQ = ėe + ėp. (2)

The Cauchy stress tensorσ and the corotational stress S are computed from the following elastic
law:

S =C : ee, with S = det(F)cQTσcQ (3)

where C denotes the fourth order tensor of elastic moduli.
Plastic deformation is the result of the contribution of all gliding slip systems of the crystal:

ėp = ∑
s∈S

γ̇s {cms ⊗ cns } (4)

where cms and cns respectively are the slip direction and the normal to the slip plane for slip
system s in the corotational space frame, γs being the associated slip amount.

The link between the lattice space frame and the corotational space frame is the rotation #Q
defined as

#Q̇#QT = ∑
s∈S

γ̇s }cms ⊗ cns { and #Q(t = 0) = Q0 (5)

whose initial value depends on the initial crystal orientation. Crystallographic directions are
known in the lattice frame: cms = #Qms and cns = #Qns . The rotation is calculed by using the
exponential map described in Appendix A.

2.2. Pencil glide

The directions along which slip can occur in b.c.c crystals are 〈111〉 with associated unit vectors
mk ,k = 1,2,3,4. Slip under pencil glide conditions can occur on any plane with normal nk which
is parallel to one given mk vector. The driving force for plastic slip along the slip system is the
resolved shear stress τk computed as

τk = (Snk ) ·mk = (Smk ) ·nk . (6)

C. R. Mécanique, 0000, 1, n 0, 000-000
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According to the pencil glide theory [5, 30, 31], the most probable active slip plane is the one(s)
maximizing the value of the resolved shear stress. This optimization procedure provides the
following formula, valid for non-vanishing shear stress:

nk = mk × (Smk )×mk

τk
(7)

which implies that
τk = ‖mk × (Smk )‖. (8)

2.3. Hardening mechanisms

The plastic slip rate γ̇ for a pencil glide slip system s is expressed by a rate-dependent phe-
nomenological flow rule. The following classical form, taken for example from [32], is adopted:

γ̇s =
〈 |τs |− r s

K

〉n

sign(τs ). (9)

The material parameters K and n characterize the viscosity, and r s is the critical resolved shear
stress including the following form of isotropic hardening, according to [33]:

r s = r0 +Q
∑

l
hsl (1−exp(−bv l )), with v̇ l = |γ̇l |. (10)

Here, r0 denotes the initial critical resolved shear stress, Q, b are material hardening parameters,
hsl is the interaction matrix which represents self-hardening and latent hardening. It must be
noted that, due to the fact that slip plane is likely to change at each load increment, the slip
variable integrated from (9) has no real crystallographic meaning and rather is a nonholonomic
cumulative slip variable depending on the path.

2.4. Polycrystal homogenization: the β-model

Gilormini [1] has used the pencil glide mechanism to predict the rolling textures in b.c.c. poly-
crystals with the Taylor model. The Taylor model provides qualitative agreement with some ex-
perimental results. However other polycrystal homogenization schemes are eligible for the use
of the pencil glide model. In the present work, a generic homogenization model for polycrys-
tals is applied, namely the β-model which can be regarded as a class of reduced order mod-
els [20, 23–25, 32, 34, 35]. The approach is based on the introduction of an interphase accom-
modation variable β(g ) related to the mean plastic strain e(g )

p in each grain orientation number
g . Still using (1) to (3), the stress tensor in the corotational frame is computed by means of the
effective (homogenized) tensor of elastic moduli:

S =CHomo : ee. (11)

The self-consistent homogenization model is used to compute the effective moduli CHomo as the
limit of the series:

CHomo(n) =∑
g

f(g )C
(g ) : [I−SEsh(n −1) : (I−C−1

Homo(n −1) :C(g ))] (12)

with CHomo(0) =∑
g f(g )C

(g ), f(g ) being the volume fraction of grain orientation g . The equations
to compute SEsh are detailed in Appendix B.

The following scale transition rule is adopted to compute the mean stress for each grain
orientation g :

S(g ) =B(g ) : (S+L∗C : (β−β(g ) )) (13)

where B(g ) is the localization tensor defined as

B(g ) =C(g ) : [I+SEsh :C−1
Homo : (C(g ) −CHomo)]−1 :C−1

Homo. (14)

C. R. Mécanique, 0000, 1, n 0, 000-000
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In the latter expression, I is the fourth order identity tensor w.r.t. to symmetric second rank
tensors, SEsh is the Eshelby tensor, C(g ) is the elastic stiffness tensor for grain number g and

L∗C =CHomo : (I−SEsh). (15)

The β(g ) variables are obtained by integrating time-independent nonlinear evolution equations
reminiscent of the nonlinear kinematic hardening rule:

β̇
(g ) = ė(g )

p −D :β(g )‖ė(g )
p ‖. (16)

These variables are initialized at 0 in the present work. The plastic strain rate for each grain
orientation g is computed as

ė(g)
p = ∑

s∈S
γ̇

(g )
s {cm(g )

s ⊗ cn(g )
s }. (17)

The Equation (16) involves a constant phenomenological tensor D whose components must be
calibrated. They are determined by comparing the model responses between β-model and a
reference full-field FEM simulation of a polycrystalline aggregate following the strategy depicted
in [36]. The effective accommodation variable β is given by [25, 37]:

β=∑
g

f(g )L
∗−1
C :B(g ) : L∗C :β(g ). (18)

The macroscopic plastic strain ep generally deviates from the average plastic strain over all grain
orientations by the following contribution:

ep =∑
g

f(g )e(g)
p +∑

g
f(g )[C

(g )−1 :B(g ) : L∗C : (β−β(g ))]. (19)

Depending on the choice ofD, theβ-model can reproduce the response of the Kröner model or
other self-consistent schemes better accounting for elasto-plastic accommodation of the grains
than the usual Taylor model [18].

3. Assessment of the pencil glide model for single crystals

3.1. Validation: comparison with Mandel’s original scheme

The formulation of crystal plasticity using two local objective frames will be compared with
Mandel’s model [29] which is based on the multiplicative elastic-plastic decomposition of the
deformation gradient. The comparison is made for simple shear F = 1+γe1 ⊗e2, with prescribed
overall shear γ. According to Mandel’s theory, the Mandel stress tensor is used to compute
the resolved shear stress on each slip system whereas the present theory makes use of the
corotational stress. Due to the fact that elastic strains in metals generally remain small, no
significant discrepancy is expected. The initial orientation of the crystal is e1 = [100] and e2 =
[010]. These simulations are conducted in the absence of strain hardening with a constant critical
resoved shear stress r0, and considering 12 slip systems {110}〈111〉. It can be checked from
Figure 1 that the Cauchy stress components predicted by the Mandel and corotational models
are identical.

The “fish-like” oscillations of the stresses observed in Figure 1 for this orientation of a f.c.c.
single crystal under simple shear were discussed in [21, 38]. It is of interest to consider the
response of b.c.c. crystals to the same loading conditions. Figure 2 provides three Cauchy stress
components for three slip system families, namely 12 slip systems {110}〈111〉, 24 slip systems
{110}+{112}+{123} or 4 pencil glide mechanisms. We have found that the response of 12 b.c.c. slip
systems, see Figure 1, is the same as in the f.c.c. case. The consideration of 24 slip systems leads to
a similar periodic response with slightly lower stress values. The lower envelope of these curves is
obtained using the pencil glide model. In all cases, the rotation rate of the lattice is −γ̇/2, i.e. the

C. R. Mécanique, 0000, 1, n 0, 000-000
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Figure 1. Simple glide test for a single crystal endowed with 12 slip systems {110}〈111〉:
stress responses of the Mandel and corotational single crystal models.

Figure 2. Simple glide test for a b.c.c. single crystal endowed with 12 slip systems
{110}〈111〉, 24 slip systems {110}+ {112}+ {123} or pencil glide: stress components (MPa)
computed using the single crystal model based on local objective frames, with r0 = 50 MPa,
in the absence of hardening.

spin of the corotational frame. This is a remarkable feature of simple shear for ideally oriented
single crystals.

3.2. Tension of α-iron single crystals

The relevance of the Schmid law is well-known for many f.c.c. crystals deforming by slip on
{111} planes at low and intermediate temperatures. In the case of b.c.c. metals, in particular
α-iron at room temperature, the situation is more complicated since multiple slip planes are
available, namely {110} and {112}, see Table 1. Several experiments [39, 40] have highlighted the
fact that thermal effects are still at play. Slip planes {123} are also possible for the accommodation
of plastic strain [41]. Screw dislocations gliding in {110} slip planes and all dislocations gliding

C. R. Mécanique, 0000, 1, n 0, 000-000
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Table 1. The slip planes in b.c.c. crystals, with notations from [45, 46]

Notation Plane b Notation Plane b
2A (01̄1) [1̄11] 6′A (11̄2)T [1̄11]
3A (101) [1̄11] 2′′A (211)AT [1̄11]
6A (110) [1̄11] 3′A (121̄)T [1̄11]

2B (01̄1) [111] 4′′B (12̄1)AT [111]
5B (1̄10) [111] 2′B (21̄1̄)T [111]
4B (1̄01) [111] 5′′B (112̄)AT [111]

1C (011) [1̄1̄1] 3′′C (1̄21)AT [1̄1̄1]
5C (1̄10) [1̄1̄1] 5′C (112)T [1̄1̄1]
3C (101) [1̄1̄1] 1′′C (21̄1)AT [1̄1̄1]

1D (011) [11̄1] 6′D (1̄12)T [11̄1]
4D (1̄01) [11̄1] 1′′D (211̄)AT [11̄1]
6D (110) [11̄1] 4′D (1̄2̄1̄)T [11̄1]

Table 2. Chemical elements in ARMCO® commercial iron (% weight), according to [3]

C Mo Si P S Ti Cr Mn Cu Ni Al N Va Sn Pb
0.0026 0.001 0.004 0.002 0.0047 0.016 0.080 0.009 0.011 0.002 0.006 0.002

in {112} planes experience an energy barrier to overcome lattice friction [42, 43]. Besides, cross-
slip in iron is easier owing to the dislocation compact core in b.c.c. crystals [44]. The existence
of multiple cross-slip planes leads to the formation of wavy slip lines characterizing the pencil
glide.

The objective of this section is to compare the description of the tensile behaviour of α-iron
single crystals by crystal plasticity models involving either all slip systems of Table 1 or only 4
pencil glide systems. The results of experiments with ARMCO® iron that contains impurities re-
ported in Table 2 are taken from [3]. The dimensions of the matrix hsl for b.c.c. materials is usually
12×12 considering only one family of slip systems, but in the case of α-iron, the dimensions is
24×24. The difficulty is that the interaction matrix required at least 17 independent coefficients,
as summarized in Table 3. Some of them could be predicted by Dislocation Dynamics simula-
tions [47–49] but many are essentially unknown. Values taken from the works [46,50,51] are used
in the sequel.

In contrast, the pencil glide model requires a 4×4 interaction matrix and only two parameters
must be given to define this matrix, see Table 4. Calibration of these parameters is performed in
order to obtain closest agreement with experimental curves.

The material parameters of both models are reported in Table 5. The power law value n = 20
and low K value ensure rate–independence of the results for the considered range of strain rates.

Initially, the crystallographic axes (X1, X2, X3) of the samples coincide with the axes of the
sample frame, labelled N, S and L to specify the directions normal to the sample observed surface,
the sample side face and the sample loaded face, respectively. Tensile loading is applied along
axis X3 (parallel with L). During the test, the axial material fibers remain parallel to the loading
axis, which means that F13 = F23 = 0. In compression along axis X3, material planes normal to
X3 are assumed to remain parallel, leading to the conditions F31 = F32 = 0. A third condition is
that the rotation with respect to axis X3 vanishes, which leads to F12 = F21 for both tension and
compression.

C. R. Mécanique, 0000, 1, n 0, 000-000
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Table 3. The interaction matrix in b.c.c. single crystals using {110}+ {112} slip planes and
the associated parameter values used for α-iron. The notations and parameters values are
taken from [46, 50]

Table 4. The interaction matrix in b.c.c. crystals using pencil glide, where H1 = 0.07 and
H2 = 0.09 as found in the present work

[111] [1̄11] [1̄1̄1] [1̄11̄]
[111] H1 H2 H2 H2
[1̄11] H1 H2 H2
[1̄1̄1] H1 H2
[1̄11̄] H1

Table 5. Material parameters used for both pencil glide and {110}〈111〉+ {112}〈111〉 single
crystal models

C11 = 284 GPa C12 = 149 GPa C44 = 105 GPa
r0 = 27 MPa Q = 1285 MPa b = 1.5

n = 20 K = 5 MPa1/n

Simulations are presented for 5 distinct single crystal orientations:

• Orientation 1 (Figure 3a): For this orientation in the centre of the reference triangle, the
primary active slip system leads to a rotation of the L axis towards the [111] slip direction
without activation of the secondary (1̄01)[111] slip system.

• Orientation 2 (Figure 3b): Although the initial orientation for this case is close to a
boundary [001] − [011], and although the secondary traces do not differ much from
those of the primary system, the measured rotation of the L axis towards the [111] slip
direction provides unambiguous evidence of single slip even in the overshoot regime.

C. R. Mécanique, 0000, 1, n 0, 000-000
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Figure 3. Rotations of the three axes of the sample measured by EBSD (left), and simulated
rotations of the three sample axes: (middle) {110}+ {112} slip systems, (right) pencil glide.
The initial orientation is marked by a square symbol.

C. R. Mécanique, 0000, 1, n 0, 000-000
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This rotation of the L axis indicates that the primary system is (1̄01)[111], which has
initially a slightly higher Schmid factor. The reported measured rotations of the N and
S axes also correspond with the simulated ones.

• Orientation 3 (Figure 3c): This orientation lies on the boundary [001] − [1̄11]: the two
equally loaded {110} systems were found to activate in spatially separated parts of the
sample with dense and straight slip lines. Then one of the two systems rapidly takes
over and single slip mainly takes place for the rest of the strain path in most of the
sample volume, as assessed by the lattice rotation. The lattice rotation predicted by the
pencil glide model displays some discrepancy with experimental results. The reason is
that it allows here for only one slip system. The interaction between 2 {110} systems is a
junction, and the corresponding coefficient in the interaction matrix has the same value
as the self-hardening, however these coefficients are different when using the pencil glide
model.

• Orientation 4 (Figure 3d): This orientation is situated close to the corner of the domain
where the (11̄2)[1̄11] system has the highest Schmid factor. At the corner, two other slip
systems of the {110} type have equal Schmid factors. The rotation of the L axis was found
to be towards the [1̄11] slip direction, which confirmed the activation of the (11̄2)[1̄11]
slip system, with good agreement between both models.

• Orientation 5 (Figure 3e): The highest Schmid factor for this orientation is for the
(2̄11)[111] system, in competition with the collinear (1̄01)[111] slip system. However, the
Schmid factor ratio is initially 5% higher in favour of the {112} system type, with good
agreement between both models.

Figure 4a shows the experimental stress-train curves for α-iron at ambient temperature. It
can be seen that the hardening modulus for single slip systems {110} and {112} are different.
The tensile tests performed have also reported the dissymmetric occurrence of {112} slip for
orientations near the boundaries of the standard triangle (near direction [001] for twinning
direction, and near direction [011] for anti-twinning direction). The value of the hardening
modulus for the systems {112}AT (activated in antitwinning direction) is greater than for the
systems {110}, and the hardening modulus for the systems {110} is larger than the systems
{112}T (activated in twinning direction). When multiple slip systems are active, the hardening
moduli are larger than for single slip even if the activation of multiple slip systems is not
stable.

Corresponding tensile curves for the full single crystal and the reduced pencil glide models are
provided in Figure 4b. It is found that the pencil glide model predicts the tensile response of α-
iron as accurately as classical crystal plasticity with 24 slip systems. There is little difference even
if the same parameters are used for both models (see Table 5) except the interaction matrix which
differs for both models (see Tables 3 and 4 respectively). The simulated curves are essentially
in good agreement with experimental results. Lattice rotation is also well-predicted in general.
Some discrepancies can be observed in the stress-train curves that can be attributed to the fact
that we did not account for the dissymmetric activation of slip systems {112}. This can be done
but it is out of the scope of the present paper.

4. Assessment of the pencil glide model for α-iron polycrystals

4.1. Identification of scale bridging parameters

In the β-model, D denotes a fourth order phenomenological constant tensor to be calibrated.
Its components are identified by comparing the model responses between the β-model and

C. R. Mécanique, 0000, 1, n 0, 000-000
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Figure 4. True stress–true strain curves for 6 single crystal orientations: (a) experimental
results, (b) simulation results: {110} + {112} slip systems (continuous line), pencil glide
model (stars). The corresponding initial orientations are indicated in the standard triangle
by a square of the same color.

reference full-field simulations. In this work, the following form is considered for D, as proposed
by [22, 23] for the anisotropic elasto-plastic properties of multi-axial aggregates:

[Dβ(g )] =



D11 D12 D23

D12 D33 D23

D23 D23 D33

D44

D55

D55





β
(g )
11

β
(g )
22

β
(g )
33p

2β(g )
12p

2β(g )
23p

2β(g )
31


(20)

where the components are given in the material frame (X1, X2, X3) of the metal sample, assuming
transverse isotropy for the textures considered in the following simulations. The β variables

C. R. Mécanique, 0000, 1, n 0, 000-000
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Figure 5. Meshes for full-field finite element model (FEM), and initially isotropic 1000
grain orientation distribution. Each grain contains eight finite elements with quadratic
interpolation and reduced integration.

Table 6. Identified parameters for the β-model

D11 = 10 D12 = 1 D23 = 1 D44 = 5 D55 = 5

are assumed to be deviatoric, i.e. trace(β(g )) = 0, so that the following additional condition
is enforced [22]:

D11 = D33 +D23 −D12. (21)

We keep five independent coeficients Di j to be determined by an identification procedure. With
this form of D, it will be found that β-model predictions fit satisfactorily the results obtained by
the full-field FEM reference for the anisotropic behaviour of polycrystalline aggregates. For that
purpose, an elementary volume V made of a parallelepipedic tessellation of (10× 10× 10) 1000
grains is considered, see Figure 5. Periodic boundary conditions are prescribed. The parameters
D11, D12, D23 can be calibrated from a tensile test on this volume, whereas D44 and D55 are
obtained from shear tests. An isotropic distribution of 1000 orientations is considered for the
simulation and distributed randomly among the square grains of Figure 5. Almost isotropic
CHomo and D tensors are obtained. The found parameters for D are given in Table 6. The same
set of parameters is found to provide a correct fit for both {110}+ {112} and pencil glide models,
as illustrated in Figure 6.

The FEM simulations were performed twice for each loading: one simulation taking the 24
slip systems into account in each grain, and one with the 4 pencil glide systems. The predicted
yield stresses are very close to both models but the pencil glide model predicts significantly lower
hardening. This is due to the fact that the applied resolved shear stress on the pencil glide systems
are greater than on the {110}+{112} slip systems. Accordingly, the pencil glide model provides the
lowest stress-strain relation possible due to an increase in degrees of freedom for the selection of
the slip plane. Furthermore, the larger number of available slip systems in the reference model
leads to more interactions via the interaction matrix and associated additional hardening. The
mean field β-model is found to overestimate hardening compared with the reference FEM. It
has been checked that different Di j combinations will not reduce this deviation. It is noted that
the same material parameters are used for the single crystal model in the FEM and mean field
simulations. Better agreement can be reached using more sophisticated evolution equations
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Figure 6. Tensile (called S22) and shear (called S12) curves for a 1000-grain polycrystal
according to the full field (continuous line) and mean field (dashed lines) models: blue and
green curves for the {110}+ {112} crystal plasticity model; red and orange curves for the
pencil glide model. Stress (resp. strain) values correspond to the Cauchy stress components
σ22 and σ12 (resp. F22 −1 and F12 prescribed components).

Figure 7. Activation zone for the slip direction [1̄11] according to the pencil glide model?
(left) and activation zones for slip planes families according to Schmid’s law (right).

for the β-variables [24] but this is not the focus of the present work. As such, these results
demonstrate that the fast computational β-model is an efficient homogenization tool correctly
reflecting the responses of full-field and mean field models at least for the considered loading
conditions.

4.2. Tensile test

Tensiles tests have been performed for the mean field models with 352 random orientations. The
result is a combination of all the examples of the previous section. In simple tension of single
crystals, single slip leads to rotation of the tensile axis towards a 〈111〉 slip direction. In the case of
polycrystals, because of the deviation of stress and strain from uniaxial tension, the phenomenon
is more subtle. But the average rotation of grains can be similar. Figure 7 shows the activated
zone associated with slip direction [1̄11] for pencil glide (left) and the activated zone in standard

C. R. Mécanique, 0000, 1, n 0, 000-000



14 Lu Tuan Le et al.

Figure 8. (a) Initial isotropic (left) and final grain orientations after 50% tensile straining
using {110}+ {112} slip systems (middle) and pencil glide systems (right). (b) Trajectories of
individual grains in the standard triangle in tension using {110}+ {112} slip systems (left)
and pencil glide systems (right).

triangle by Schmid’s law. The lattice rotation will be different if the initial orientation lies in the
green or orange zones. More complex orientation paths are observed for initial orientations close
to boundaries of the standard triangle.

Figure 8a shows the initial and final grain orientations as predicted by the crystal plasticity
model using {110} + {112} slips systems or pencil glide systems. The tensile axis at the end
of the two simulations after 50% strain is close to the boundary [001] − [011], and the zone
[1̄12]− [111]. The pencil glide predicts similar results as the {110}+ {112} model, however with
a more pronounced texture development.

Figure 8b shows the trajectories of individual grains according to both model predictions in
tension. In both cases, if the tensile axis is close to [011]− [1̄11], the tensile axis will start rotating
towards the slip direction [111] (with activation of (2̄11)[111] slip system), as long as single slip
conditions dominate. At larger deformations, a secondary slip system (211)[1̄11] is activated,
associated with [1̄11] slip direction. The tensile axis will then turn towards [011] direction and
stay there. In contrast, if the tensile axis is close to [001]−[1̄11] boundary, at the beginning, double
slip starts right away and the tensile axis turns down to [001] direction. When the grains reach the
activation zone for {110} slip systems, the tensile axis turns down toward [111] direction because
the (1̄01)[111] slip system starts gliding.

If the initial orientation of the tensile axis is close to direction [001], one or multiple slip
systems {112} are activated. But this direction is not stable in tension, so that at the end the tensile
axis will turn up towards slip directions 〈111〉 (if the slip plane is (11̄2), the slip direction is [1̄11]).
At large deformations, the tensile axis will rotate towards the activation zone of {110} slip systems.
Their actual activation depends on the interaction matrix and the corresponding stress value that
would allow for the activation of one or 2 slip systems, (1̄01) or (011). In the case of single slip, the
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Figure 9. Activation zone of {110} + {112} slip systems (color) and pencil glide systems
(dots).

tensile axis will turn down to direction [111]. In the case of double slip, the tensile axis could
remain stable at [1̄12] direction. It is observed that both models provide the same results in this
respect.

If the tensile axis lies in the central region of the standard triangle, the activated slip system
family is {110}, and the tensile axis will rotate towards the slip direction [111]. The trajectory
could pass the boundary [001]− [011], in this case latent hardening will postpone activation of
new systems. At large deformations, the secondary slip system (101)[1̄11] is activated so that
the tensile axis will turn up again to the slip direction [1̄11]. At the end the tensile axis may
stabilize at the boundary [001]−[011]. For such initial orientations, larger differences are observed
between the two model predictions (Figure 8b). With pencil glide, the tensile axis will turn down
to boundary [001]− [011] whereas the consideration of {110}+ {112} slip systems stabilizes the
tensile axis at the upper corner of the green–orange intersection due to three activated slip
systems: (11̄2)[1̄11], (1̄01)[111], (101)[1̄11].

Figure 9 shows the comparison of the activation zones for {110}+{112} slip systems associated
with [111] slip direction (orange, blue) and for pencil glide associate with the same slip directions
(dotted region). Only slight differences can be observed. The circled region coincides with the 3
corner zone of 3 activated slip systems: (11̄2)[1̄11], (1̄01)[111], (101)[1̄11]. More precise compar-
ison is possible looking at the ODF maps of Figure 10. These maps are rather similar for both
models, but in the case of pencil glide, the intensity of hot spots is a little higher: 7.66 compare
to 6.44.

4.3. Compression test

In axial compression along axis X3, assuming that material planes remain parallel to the com-
pression plane leads to the conditions F31 = F32 = 0. The third condition is taken as the rotation
F12 −F21 = 0. Figure 11 shows the initial and final orientations after 0.5 compression straining
(F33 = 0.5) using {110}+ {112} slip systems or pencil glide systems. The compression axis of most
grains at the end of both simulations is close to the boundary [001]− [1̄11] and particularly in
the [001] and [1̄11] directions. Both models predict similar trends. It should be noted that, in ten-
sion, the slip directions of {110}+ {112} slip systems and the pencil glide are the same 〈111〉 but in
compression, the difference between the {110}+ {112} model and pencil glide can reach 15◦.

The trajectories of individual grains are given in Figure 11b. If the compression axis is close
to [011]− [1̄11], the activated slip system is (2̄11)[111], so that the compression axis will rotate
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Figure 10. ODF maps for 352 grains after 0.5 tensile straining according to two crystal
plasticity models.

toward the slip plane normal [2̄11] close to [1̄11] direction. At very large deformations, the
secondary slip systems {112} can be activated and then the compression axis remains stable in the
direction [1̄11].

If the compression axis lies in the middle of the standard triangle, the active slip planes are
{110}, and the compression axis will turn up to the slip plane [1̄01]. Then when the compression
axis goes close to the boundary [001] − [1̄11], the secondary slip system (011)[1̄1̄1] could be
activated, leading to a slow rotation of the compression axis towards direction [1̄11]. If the loading
direction is at the boundary [001] − [011], two slip systems {110} could be activated, then the
compression axis will turn towards the [001] direction.

If the compression axis is close to [001], the activated slip system is (11̄2)[1̄11]. The compres-
sion axis turns down towards [11̄2]. When it passes close to the [001] direction, multi-slip can
occur and [001] will be a stable orientation.

At the end the compression axis will stay close to [001] − [1̄11] zone and most probably
close to the corner directions [001] or [1̄11]. According to the model using {110} + {112}, the
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Figure 11. (a) Initial isotropic texture (left) and final texture after compression straining
using {110}+ {112} slip systems (middle) and pencil glide systems (right). (b) Trajectories of
individual grains in the standard triangle during compression straining using {110}+ {112}
slip systems (left) and pencil glide systems (right).

compression axis could stabilize at the corner where three systems are activated: (11̄2)[1̄11],
(1̄01)[111], (101)[1̄11]. This cannot occur when pencil glide is considered. The ODF maps of
Figure 12 show that the pencil glide and {110} + {112} essentially predict the same texture in
simple compression. The maximum intensity in the case of pencil glide is almost identical: 12.71
compared to 12.62.

4.4. Rolling

Rolling textures are crucial to evaluate the capabilities of crystal plasticity models. Rolling is
simulated here by plane strain compression along axis X3, with the plane strain direction along
axis X2 (ND): Fi j = 0 for i 6= j , F22 = 1, F33 = 1+ε is prescribed. The rolling direction RD is X1.

The rolling textures of b.c.c. metals are generally composed of certain orientation fibers and
their main features can thus be represented in a condensed manner by plotting the orientation
density along these fibers. The most important fibers and the ideal rolling texture components
are described in Table 7 and illustrated in Figure 13. Figure 14 (top figure) shows the textures
obtained from experiments in [52] that can be compared with the results of several crystal
plasticity models.

The bottom Figure 14 presents the pole figures predicted by the Taylor model at 20% defor-
mation. The experimental and predicted textures are similar. The main fibers like α or γ can
be observed. At small deformations the Taylor model is known to provide good predictions of
rolling textures at limited strain levels. Limitations of the Taylor model are expected at large
deformations.

Figure 15 displays the rolling textures as predicted by the β-model at 100% logatithmic strain
(F33 = 0.36) using the {110} + {112} slip systems and the pencil glide. The comparison shows
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Figure 12. ODF maps for 352 grains after 0.5 compression straining according to two
crystal plasticity models.

Table 7. The important fibers and texture components for crystallographic textures of
b.c.c., after [53, 54]

Fiber name Fiber axis Important texture components
α-fiber {110} parallel to RD {001}〈110〉, {112}〈110〉, {111}〈110〉
γ-fiber {110} parallel to ND {111}〈112〉, {111}〈110〉
η-fiber {001} parallel to RD {001}〈100〉, {011}〈100〉

that pencil glide leads to an increase in the intensity of texture. This result is known from other
works [32]. The final textures are rather similar. However there are some differences in the
development of the two fibers α and γ between the models. Figure 16 shows the ODF sections
for ϕ2 = 45◦ as predicted by the β-model using the {110} + {112} slip systems and the pencil
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Figure 13. Description of α-fiber and γ-fiber, after [55].

Figure 14. Top: {110} pole figures for ARMCO® iron (a) as-received; (b) after cold rolling to
64% rolling reduction [52]. Bottom: texture predicted by the Taylor model with {110}+ {112}
slip systems: (a) {100} pole figure, (b) {110} pole figure, after [56].
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Figure 15. Rolling pole figures predicted by the β-model based on two different slip mech-
anisms.

Figure 16. ODF section for φ2 = 45 after 100% logarithmic rolling strain.

glide models. One can observe the distinct development of the two fibers α and γ according to
both models, see also the discussion in the ideal case in [57].

For a more accurate comparison, the evolution of the intensity of the α fiber is plotted in
Figure 17a. All the models predict that the α fiber continuously grows with strain. The shape,
the number of peaks and their location are similar for the two models considered in this work, at
least after 70%. Clearly the final intensity resulting from the pencil glide mechanism is larger,
18, than considering the {110} + {112} slip systems, 12. Comparison with other models shows
that the number of available slips systems controls the intensity of the fiber [59]. For instance in
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Figure 17. Comparison of rolling texture fibers as predicted by (a) theβ-model, (b) the Tay-
lor model [58] and (c) the VPSC model, for various combinations of slip system families [58],
against pencil glide.
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Figure 18. Experimental pole figures for ARMCO® iron sheared, after [61].

Table 8. The important fibers and texture components for crystallographic textures of b.c.c.
metals, after [60]

Components {hkl} 〈uv w〉 φ1 Φ φ2

D1 {1̄1̄1} 〈011〉 125.26 45.0 0.0
D2 {1̄1̄1} 〈011〉 54.74 45.0 0.0
E1 {11̄1} 〈121〉 270.0 35.26 45.0
E2 {1̄1̄1} 〈112〉 90.0 35.26 45.0
F {1̄00} 〈011〉 180.0 45.0 0.0
J1 {12̄1} 〈111〉 270.0 54.74 45.0
J2 {1̄1̄2} 〈111〉 90.0 54.74 45.0
T {91̄010} 〈15536〉 46.5 55.3 17.1

Figure 17b, a different development of the peaks and the intensity values is observed for the Taylor
model [58]. Including the {123} family in addition to {110}+ {112} slip systems makes the Taylor
prediction closer to the predictions of Figure 17a (right), with a maximal intensity of about 11
and larger peak width. After 50% strain, theβ-model predicts a single peak whereas two peaks are
observed in the Taylor simulations. The results of theβ-model are closer to the VPSC (Viscoplastic
Self-Consistent) estimates, reproduced in Figure 17c from [58], but the intensities are found to
be higher. The maximum intensities according to the VPSC model for {110} slip systems and for
{110}+ {112}+ {123} slip systems respectively are 11 and 14, instead of 12 and 18 (pencil glide).
It follows that not only the number of slips systems controls the intensity but also the chosen
homogenization scheme. The other parameters influencing the peak sharpness is the interaction
matrix and the hardening modulus.

4.5. Simple shear case

The simple shear test conditions correspond to a prescribed value of the component F12 = γ,
whereras all other components of the deformation gradient F−1 vanish. Experiments are often
performed using torsion tests, which may not be equivalent for the simple shear considered
here for simplicity. In b.c.c. materials, the crystallographic texture is composed of several main
components listed in Table 8, after [60].

There are fewer texture evolution results under simple shear in the literature for b.c.c. met-
als than for f.c.c. Williams [61] tested the ARMCO® iron at room temperature, up to a shear
strain of 2.1 (Figure 18). The final texture is dominated by the {112}〈111〉 (J1,J2), {110}〈001〉 (F)
components.

The β-model provides a good estimation of the experimental results as shown in Figure 19.
At γ = 1. there is a slight difference between the pencil glide and the {110}+ {112} slip systems.
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Figure 19. Pole figures showing the crystallographic textures induced by simple shear using
the β-model.
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Figure 20. Volume fractions of main components after simple shear according to the β-
model.

Looking at the volume fraction of these components plotted in Figure 20a shows that the texture
is dominated by the {112}〈111〉 (J1,J2) and {110}〈001〉 (F) components. But the component F is
more important in the pencil glide case (volume fraction = 0.4) than in the {110}+ {112} case
(volume fraction = 0.26), see Figure 20a.

Increasing the shear strain γ leads to significant texture changes, and the pencil glide does
not describle accurately the experimental results. At γ = 1.5 the texture induced by pencil glide
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is dominated by the {112}〈111〉 (J1,J2) components (volume fraction = 0.35) even though the
F component is still present (volume fraction = 0.18). In contrast, {110} + {112} slip leads to a
dominating {110}〈001〉 (F) component (volume fraction = 0.41) (Figure 20b).

At γ = 2.1 the texture resulting from pencil glide is dominated by the {112} 〈111〉 (J1,J2)
components (volume fraction = 0.4) and the F component is fading away. The texture resulting
from {110} + {112} slip systems is dominated only by the {110}〈001〉 (F) components (volume
fraction = 0.5) (Figure 20c).

5. Discussion

Recent detailed studies on iron single crystals show that the pencil glide must be regarded as a
simplified view of actual slip processes occurring on many slip planes [2, 3, 62]. In the present
work we insist on the merits of the pencil glide model from the point of view of computational
efficiency. In metals and alloys deforming by means of many simultaneous plasticity mechanisms
like multiple slip families, twinning and martensitic transformation (like in TRIP-TWIP steels),
accounting for all mechanisms leads to a dramatic increase in the number of internal variables
to be intregrated. This can be accompanied by numerical instabilities or excessive computation
time and storage. The use of pencil glide systems can therefore become advantageous. The
analyses of the previous sections show that the pencil glide model can mimick the results
obtained considering {110} + {112} slip systems in many situations, even though significant
differences have been evidenced in some loading cases.

Some comparisons between both approaches were performed in the past using the Taylor
model for some limited loading conditions. In the present work the more general β-model was
used and new situations were considered for comparison, namely the single crystal case, the
simple shear of polycrystals and detailed analyses of tension, compression and rolling.

It must be emphasized that the final texture also depends on the interaction matrix and
hardening parameters. On the one hand, 24 slip systems are used with the complete interaction
matrix. On the other hand, the pencil glide approach makes use of a reduced interaction matrix.
The full interaction matrix requires as much as 17 parameters: one for self-hardening, one for the
dipolar interaction, twelve for junction formation and three for collinear annihilation. Some of
them controls the activation of secondary slip system, that can be evidenced by the tension and
compression tests. In the work [63], the authors used “full constraint” and “relaxed constraint”
Taylor models. When glide is limited to {112} slip systems, the simulated texture is very sharp
and the tube of orientations {111}(uuw) is not well described by any of these models. On the
other hand, when glide is restricted to {110} systems, the simulations predict all the observed
components. The simulated textures in this case are less sharp. A combination of the simulated
textures however provides most of the features observed experimentally.

The collinear annihilations are known as the strongest interactions between dislocations
because they decrease the length of dislocation sources [64]. It follows that collinear slip systems
are not activated in many cases. This is in contrast to experimental observations showing that
the cross slip mechanism is ubiquitous in b.c.c. crystals, so that dislocations can change plane to
overcome obstacles. This is at the origin of the pencil glide mechanism. In the present work, we
have still adopted the collinear annihilations as the strongest interaction in the matrix. Changing
this value could result in significantly different final textures.

The β-model at large deformations used in the present work is an extended version of the
one proposed in [21] where isotropic elasticity was assumed and the tensor D was reduced to
a scalar. Improvements are still needed like the account of grain shape changes during defor-
mation. The presented β-model assumes that, in contrast to the strain rate tensor, the material
spin is the same for all grains. Special localization rules should also be developed for the spin
tensor.
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6. Conclusion

The homogenizationβ-model at large deformations has been used to predict the crystallographic
textures of b.c.c. metals when accounting for 24 slip systems or when introducing the pencil glide
mechanism instead.

The effect was first analyzed in the case of single crystal behaviour including a detailed
comparison with recent experimental results for α-iron. For simple tension and compression of
various single crystal orientations, no significant difference was found in the overall stress–strain
curves and in lattice rotation whether pencil glide or the 24 {110}+ {112} slip systems were used.

In the rolling and simple shear tests where the number of slips systems and the interaction
matrix control the texture, some discrepancies were found in the predictions based on pencil
glide or {110}+ {112} slip systems, especially at larger deformation values. These discrepancies
are not significant for strain values below 100%.

Finally, it must be underlined that the computational time required for the pencil glide
simulations is three times smaller than for the 24 slips systems. This lower computing time is
a major advantage of the pencil glide approach. This makes the pencil glide model particularly
well-suited for finite element simulations of alloy forming processes using polycrystal models
which are still computationally demanding problems at the present time [28, 65].
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Appendix A.

In this section, the parameterization of space rotations by means of exponential mapping used
in the code is reviewed. Any rotation R can be represented by the elementΦ of the associated Lie
group such that:

R = exp(1×Φ) and Φ= θn = [Φ1,Φ2,Φ3] (22)

where θ is the rotation angle (in radians) around a specified unit axis n. One can rewrite the
expression using the standard matrix exponential series, noting that: exp(A) =∑∞

k=0 1/k !Ak ,

R = exp(1×Φ) = cosθ1+ 1−cosθ

θ2 Φ⊗Φ+ sinθ

θ
1×Φ. (23)

In the matrix form:

R =



cosθ+ 1−cosθ

θ2 Φ2
1

1−cosθ

θ2 Φ1Φ2 − sinθ

θ
Φ3

1−cosθ

θ2 Φ1Φ3 + sinθ

θ
Φ2

1−cosθ

θ2 Φ1Φ2 + sinθ

θ
Φ3 cosθ+ 1−cosθ

θ2 Φ2
2

1−cosθ

θ2 Φ2Φ3 − sinθ

θ
Φ1

1−cosθ

θ2 Φ1Φ3 − sinθ

θ
Φ2

1−cosθ

θ2 Φ2Φ3 + sinθ

θ
Φ1 cosθ+ 1−cosθ

θ2 Φ2
3

 (24)
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Defining the spin tensor ṘRT = }L{ =Ω, the following relation can be worked out:

Φ̇= T−1
×
Ω. (25)

Note that any skew-symmetric matrix Ω can be represented by the pseudo–vector
×
Ω such that:

Ωb = ×
Ω×b. In matrix form:

Ω=


0 − ×

Ω3
×
Ω2

×
Ω3 0 − ×

Ω1

− ×
Ω2

×
Ω1 0

 so that
×
Ω= [

×
Ω1,

×
Ω2,

×
Ω3]T . (26)

The matrix form of the operator T is

T =



sinθ

θ
+ 1− sinθ

θ

θ2 Φ2
1

1− sinθ
θ

θ2 Φ1Φ2 − 1−cosθ

θ2 Φ3
1− sinθ

θ

θ2 Φ1Φ3 + 1−cosθ

θ2 Φ2

1− sinθ
θ

θ2 Φ1Φ2 + 1−cosθ

θ2 Φ3
sinθ

θ
+ 1− sinθ

θ

θ2 Φ2
2

1− sinθ
θ

θ2 Φ2Φ3 − 1−cosθ

θ2 Φ1

1− sinθ
θ

θ2 Φ1Φ3 − 1−cosθ

θ2 Φ2
1− sinθ

θ

θ2 Φ2Φ3 + 1−cosθ

θ2 Φ1
sinθ

θ
+ 1− sinθ

θ

θ2 Φ2
3


(27)

The rotation angle can be obtained from the rotation matrix R by the following operation:

θ = arccos

(
trace(R)−1

2

)
(28)

and, if θ 6= 0 and Ri j are the components of R, the rotation axis is

n = Φ
θ

= 1

2sinθ
[R32 −R23,R13 −R31,R21 −R12]. (29)

Appendix B.

Each grain is represented by an ellipsoidal inclusion (a1, a2, a3) embedded in a homogeneous
effective medium (HEM) resulting from the average over all the grains. The Eshelby tensor SEsh

is calculated by using the Green function that depends on the inclusion shape and the elasticity
tensor of the HEM CHomo:

SEsh
i j kl =

CHomo
mnkl

8π

∫ 1

−1
dζ3

∫ 2π

0
[Gi m j n(ξ)+G j mi n(ξ)]dω (30)

with

Gi j kl (ξ) = ξkξl
Ni j (ξ)

D(ξ)
(31)

ξ1 =
√

1−ζ2
3

a1
cosω, ξ2 =

√
1−ζ2

3

a2
sinω, ξ3 = ζ3

a3
(32)

Ki k =CHomo
i j kl ξ jξl (33)

Ni j (ξ) = 1
2εi j kε j mnKkmKln (34)

D(ξ) = εmnl Km1Kn2Kl3 (35)

εi j k is the Levi-Civita symbol. The Gaussian quadrature method is used to compute the integra-
tion in (22):

SE
i j kl =

CHomo
mnkl

8π

M∑
p=1

N∑
q=1

[Gi m j n(ωq ,ζ3p )+G j mi n(ωq ,ζ3p )]Wpq . (36)
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Here M , N are the number of nodes, and Wpq are the weights at the Gauss points. In the present
article, the values M = 32 and N = 32 are applied.
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