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1. Introduction

In this paper we consider the so-called microcurl model in plasticity. The model was introduced in Forest (2013) and
Cordero et al. (2013) to serve the purpose of augmenting classical plasticity with length scale effects while otherwise keeping
the algorithmic structure of classical plasticity. We recall that several experimental tests on micron-sized metallic structures
have shown the dependence of the mechanical response on the specimen size (see e.g. Fleck et al., 1994, 1997; Stolken and
Evans, 1998). Classical theories of plasticity (see e.g. Alber, 1998; Han and Reddy, 2013; Hill, 1950) are unable to account for
those size effects because they do not involve any material length scale. Various models of strain gradient plasticity have been
introduced and developed in the past thirty years with the purpose to accommodate the experimentally observed size effects
in material behaviour in small scales. The size effects are captured through the introduction of plastic strain gradient (or its
higher derivatives) and sometimes together with higher order stress tensors in the constitutive equations (see e.g. Aifantis,
1984; Aifantis, 1987, 2003; Fleck and Hutchinson, 2001; Gurtin, 2004; Gudmundson, 2004; Gurtin and Anand, 2005, 2009;
Gurtin and Reddy, 2014; Fleck and Willis, 2009a, 2009b; Menzel and Steinmann, 1998; Menzel and Steinmann, 2000;
Miihlhaus and Aifantis, 1991; Reddy, 2011a; Svendsen et al., 2009 and also the recent contributions in Anand et al., 2015;
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Chiricotto et al., 2016; Chang et al., 2012; El-Naaman et al., 2016; Le and Giinther, 2014; Wulfinghof and Bohlke, 2015;
Woaulfinghof et al., 2013). Models of strain gradient plasticity lead to the flow law involving nonlocal terms.

The idea in the microcurl model is simple and straight-forward: the in general non-symmetric plastic distortion p (single
crystal plasticity and polycrystal plasticity with plastic spin) with its local in space evolution is energetically coupled to a
micromorphic-type additional non-symmetric tensorial variable x,, via a penalty-like term 1 u Hy [|p — x, Hz The tensor field
Xp is generally assumed to be incompatible i.e., it may not derive from a vector field. The total energy in the model is then
augmented by a quadratic contribution acting on the Curl of x,,. The new variable x,, is now determined by free-variation of
the energy w.r.t. the displacement field u and the micromorphic field y, together with corresponding tangential boundary
conditions for x,. This generates the usual equilibrium equation on the one hand and what we will call a micro-balance
equation for x, on the other hand.

In the penalty limit Hy — oo, when one expects p = x,, the variable Curl y, is then interpreted to be the dislocation density
tensor Curl p. The advantage of such a formulation is clear: there is no need for an extended thermodynamic setting, since ¥,
is not directly taking part in the dissipation. Constitutive laws including dissipative contributions of the microdeformation
and microcurl can be proposed, as done in Forest and Sievert (2006) in the general micromorphic case, but they will require
additional material parameters whose identification necessitates material specific physical considerations. Thus, also no
higher order boundary conditions at interfaces between elastic and plastic parts need be discussed. The resulting model can
therefore be described as a pseudo-regularized strain gradient model.

The microdeformation variable x,, has at least two different interpretations. First, it can be regarded as a mathematical
auxiliary variable used to replace the higher order partial differential equations arising in strain gradient plasticity by a system
of two sets of second order partial differential equations for the displacement and microdeformation. This method has
computational merits for the implementation of strain gradient plasticity models in finite element codes, see Anand et al.
(2012). In that case, Hy is regarded as a mere penalty parameter and should be large enough to enforce the constraint
p = Xp- In contrast, the microdeformation variable y,, can also be viewed as a constitutive variable with physical interpre-
tation, for instance based on statistical mechanics, p representing the average plastic distortion over the material volume
element and y, being related to the variance of plastic deformation inside this volume. This interpretation is similar to the
microconcentration variable introduced in Ubachs et al. (2004) and Forest et al. (2014) to solve Cahn—Hilliard equations. In
this context, H, must be regarded as a true material higher order modulus to be identified from suitable experimental results.
Compared to standard strain gradient plasticity, the microcurl model therefore possesses one additional parameter, H,, which
allows for better description of physical results, as suggested in Cordero et al. (2010). An interpretation of the micro-
deformation x, was recently proposed in the case of polycrystalline plasticity and damage in Poh (2013) and Poh and
Peerlings (2016) where it is related to the grain to grain heterogeneity of plastic deformation.

Another computational advantage of the microcurl single crystal plasticity model is that the number of independent
degrees of freedom (9 tensor components of x,, or 8 in the case of incompressible microplasticity) is independent of the
crystallographic structure of the material and of the number of slip systems. This is in contrast to strain gradient plasticity
models involving the directional gradient of the slip variables (Gurtin, 2002), which require as many degrees of freedom as
slip systems (12 at least in FCC crystals, up to 48 in BCC crystals!). A comparison and discussion of models based on the full
dislocation density tensors with models involving densities of geometrically necessary dislocations can be found in Mesarovic
et al. (2015). A variant to the microcurl model for single crystal plasticity was proposed in Bayerschen and Bohlke (2016)
where the micromorphic variable is rather a scalar which is coupled with an equivalent plastic strain measure, defined as
the average of the plastic slips along all the slip planes.

In this paper we will consider the microcurl model in two variants. First, in its original form as a computational approach
towards single crystal strain gradient plasticity. We formulate the governing system and show its well-posedness in the rate-
independent case. The natural solution space for the micro-variable x,, is the Sobolev-like space H(Curl).

Second, we extend the approach formally to polycrystalline plasticity in which the plastic variable ¢, := sym p (the plastic
strain) is assumed to be symmetric. In this case we still allow for a non-symmetric micro-variable x, which is now coupled to

2
the plastic variable only via its symmetric part by % u Hy||sym(p — Xp) || . This represents an alternative to recently proposed

strain gradient plasticity models involving a plastic spin tensor for polycrystals (Gurtin, 2004; Bardella and Panteghini, 2015;
Poh and Peerlings, 2016). Again, we show the well-posedness of the formulation. Here, we need recently introduced coercive
inequalities generalizing Korn's inequality to incompatible tensor fields (Bauer et al., 2014, 2016; Neff et al., 2011, 2012a,
2012b, 2014b).

The mathematical analysis (with results of existence and uniqueness) for both variants (single crystal and polycrystalline)
is obtained through the machinery developped by Han and Reddy (2013), Theorems 6.15 and 6.19 for classical plasticity and
recently extended to models of gradient plasticity in Djoko et al. (2007a), Neff et al. (2009a), Ebobisse and Neff (2010),
Ebobisse et al. (2016a) and Ebobisse et al. (2016b). In this approach, the model through the primal form of the flow rule is
weakly formulated as a variational inequality and the key issue for its well-posedness is the study of the coercivity of the
bilinear form involved on a suitable closed convex subset of some Hilbert space. Let us mention that, other mathematical and
computational results for higher order models related to gradient plasticity theories were obtained in the past years (see e.g.
Bargmann et al., 2014; Djoko et al., 2007a, 2007b; Ebobisse et al., 2008; Kraynyukova et al., 2015; Neff, 2006, 2008; Neff and
Reddy, 2008; Neff et al., 2009b; Nesenenko and Neff, 2012; Nesenenko and Neff, 2013; Nguyen, 2011; Reddy, 2011b; Reddy
et al., 2014).
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The polycrystalline variant of the microcurl model bears some superficial resemblence with the recently introduced
relaxed micromorphic models (Neff et al., 2014a, 2015). For purpose of clarification, we present the relaxed micromorphic
model and clearly point out the differences. In order to put the microcurl modelling framework further on display we finish
this introduction with another dislocation based strain gradient plasticity model with plastic spin (Ebobisse and Neff, 2010;
Ebobisse et al., 2016a; Ebobisse et al., 2016b), see Table 1.

Here, the microcurl-type regularization would be obtained by considering the microcurl energy

<wlsoee7ee>+ uHxllp wllF +5 uk1||sympH uLZ |[Curl x, |* (1.1)

and for Hy — o we would recover the model from Table 1.
The polycrystalline microcurl variant which we introduce in this paper is, however, based on the energy

1 1
§<Cisoge7€e>JFE/*‘HX”Sym(p*Xp)H +3 uklllsympll 2;LLZHCurlpo (12)

This ansatz seems to be appropriate for polycrystalline plasticity without plastic spin.
2. Some notational agreements and definitions

Let Q be a bounded domain in R3 with Lipschitz continuous boundary 8Q, which is occupied by the elastoplastic body in its
undeformed configuration. Let I" p be a smooth subset of 9Q with non-vanishing 2-dimensional Hausdorff measure. A ma-
terial point in Q is denoted by x and the time domain under consideration is the interval [0, T].

For every a, beR3, we let {a, b),> denote the scalar product on R3 with associated vector norm |a| 23 = (@, a)ps. We denote
by R3*3 the set of real 3 x 3 tensors. The standard Euclidean scalar product on R3*3 is given by (A, B);s.s = tr [ABT], where BT
denotes the transpose tensor of B. Thus, the Frobenius tensor norm is ||A||> = (A, A)zs.. In the following we omit the sub-
scripts R? and ®3>3. The identity tensor on R3*3 will be denoted by 1, so that tr(A) = (A,1). The set 50(3) := {XeR>3|XT =
—X} is the Lie-Algebra of skew-symmetric tensors. We let Sym(3) := {XeRr3*3 |XT = X} denote the vector space of symmetric
tensors and 3((3) := {X€R>3|tr (X) =0} be the Lie-Algebra of traceless tensors. For every XeR3*3, we set
sym(X) = (X +XT), skew (X) =1 (X — XT) and dev(X) = X — 1tr (X) 1€3[(3) for the symmetric part, the skew-symmetric
part and the deviatoric part of X, respectively. Quantities which are constant in space will be denoted with an overbar,
e.g., Aeso(3) for the function A : R3 — s0(3) which is constant with constant value A.

The body is assumed to undergo infinitesimal deformations. Its behaviour is governed by a set of equations and consti-
tutive relations. Below is a list of variables and parameters used throughout the paper with their significations:

u is the displacement of the macroscopic material points;

p is the infinitesimal plastic distortion variable which is a non-symmetric second order tensor, incapable of sustaining

volumetric changes; that is, p< s((3). The tensor p represents the average plastic slip; p is not a state-variable, while the

rate p is an infinitesimal state variable in some suitable sense;

e e = Vu — p is the infinitesimal elastic distortion which is in general a non-symmetric second order tensor and is an
infinitesimal state-variable;

e ¢p = sym p is the symmetric infinitesimal plastic strain tensor, which is trace free, e, €3((3); ¢p is not a state-variable; the
rate & is an infinitesimal state-variable;

e o = SsymVu — ¢ is the symmetric infinitesimal elastic strain tensor and is an infinitesimal state-variable;

Table 1
The polycrystalline plasticity model with linear kinematic hardening and plastic spin studied in Ebobisse et
al. (2016a).
Additive split of distortion: Vu=e+p, e :=syme, ¢ :=Symp
Equilibrium: Div o + f = 0 with ¢ = Cjsoee

Free energy: 1(C isoteree) + L ky |ep|* +3u L2]|Curl p| 2

Yield condition:
where

Dissipation inequality:
Dissipation function:
Flow rule in primal form:
Flow rule in dual form:
KKT conditions:

Boundary conditions for p:

Function space for p:

$(2g) = [|dev Zg|| — 0o < 0
Sg =0+, 4 sl

kin*
shin = —uI2 Curl Curlp, St = —uk; &

kin

Jo(ZE,pYdx >0
7(q) = aolqll
EEEa /(p)

= Aaevsg A= 1P
A >0, ¢(Zp) <0, A4(ZE) =
pxn=0onTp, (Curlp) x n=00ndQ\T p
p(t,-)EH(Curl; Q, R3*3)
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* Xp €Rr3*3 is the non-symmetric infinitesimal micro-distortion with symy,, being the symmetric micro-strain;

e o is the Cauchy stress tensor which is a symmetric second order tensor and is an infinitesimal state-variable;

e 0y is the initial yield stress for plastic variables p or ¢, := sym p and is an infinitesimal state-variable;

e fis the body force;

e Curl p = « is the dislocation density tensor satisfying the so-called Bianchi identities Div @ = 0 and is an infinitesimal
state-variable;

o Ny = Jo||ép| ds is the accumulated equivalent plastic strain and is an infinitesimal state-variable;

e % is the slip in the a-th slip system in single crystal plasticity while I* is the slip direction and »* is the normal vector to the
slip plane with a = 1, ..., ng;,. Hence, p = >~ y*I* ®v*.

03

For isotropic media, the fourth order isotropic elasticity tensor C j5, : Sym(3) —Sym(3) is given by
CisoSym X = 2u dev symX + « tr(X)1 = 2u sym X + A tr(X)1 (2.1)
for any second-order tensor X, where p and A are the Lamé moduli satisfying

u>0 and 32+2u>0, (2.2)
and « > 0 is the bulk modulus. These conditions suffice for pointwise positive definiteness of the elasticity tensor in the sense
that there exists a constant mg > 0 such that

vXer33: (symX,CiosymX) > m0||sme||2. (2.3)

The space of square integrable functions is L2(Q), while the Sobolev spaces used in this paper are:

H'(Q) = {uel?(Q)| graduel?Q)}, grad=V,

ulifi gy = llulZq + lgrad ullfq),  YueH'(Q),
H(curl;Q) = {vel?(Q) | curl vel?(Q)}, curl = Vx,

934 curt) = IVl + lcurl vl|fq),  YveH(curl; Q).

(2.4)

For every XeC1(Q, R3*3) with rows X!, X2, X3, we use in this paper the definition of Curl X in Neff et al. (2009a) and
Svendsen (2002):

curl X! — —
Curl X = | curl X? - — ER3X3, (2.5)
curl X3 — —

for which Curl Vv = 0 for every ve C2(Q, R3). Notice that the definition of Curl X above is such that (Curl X)"a = curl (XTa) for
every aeR3 and this clearly corresponds to the transpose of the Curl of a tensor as defined in Gurtin and Anand (2005) and
Gurtin et al. (2010).

The following function spaces and norms will also be used later.

H(Curl; Q, #33) = {Xel?(Q, r>3) | curlXel?(Q, R**3)},
Xlficuriey = X1 + || Curl X| g, VX <H(Curl; @, 83°3), (2.6)
H(Curl; Q, [E) = {X Q—E ‘ XEH(CUFI; Q, R3X3)}7

for E := 3[(3) or Sym(3)n3((3).
We also consider the space

Ho (Curl; Q, I'p,r>*3) (2.7)

as the completion in the norm in (2.6) of the space {X&C®(Q,®3*3) | X x n|p, = 0}.
Therefore, this space generalizes the tangential Dirichlet boundary condition

X><n|FD:O

to be satisfied by the plastic micro-distortion . The space

HO (Clll'l; Q, FD7 [E)
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is defined as in (2.6).
The divergence operator Div on second order tensor-valued functions is also defined row-wise as

diVX]
DivX= | divX; |. (2.8)
diVX3

3. The microcurl model in single crystal gradient plasticity
3.1. Kinematics

Single-crystal plasticity is based on the assumption that the plastic deformation happens through crystallograpic shearing
which represents the dislocation motion along specific slip systems, each being characterized by a plane with unit normal »*

and slip direction I* on that plane, and slips y*(a = 1, ..., ngj,). The flow rule for the plastic distortion p is written at the slip
system level by means of the orientation tensor m® defined as

me = [ @p®. (3.1)

Under these conditions the plastic distortion p takes the form

Ngip

p=>_y'm* (32)
a=1

so that the plastic strain ¢, = sym p is

nslip ”slip

ep = Zlyasym(m”‘) -5 Zly“(l%bv“ ) (3.3)
o= o=

and tr(p) = O since [* Ly,
For the slips v*(a = 1, ..., ng;p) We set

Therefore, we get from (3.3) that

p=my, (3.4)

where 7 is the third order tensor' defined as

My, = mg» = lf‘vf‘ for ij=1,2,3anda=1,...,ngp,. (3.5)

Let n:= (n!,...,n"ip) with n¢ being a hardening variable in the a-th slip system.
3.2. The case with isotropic hardening

The starting point is the total energy

E(u,y,xp,m) = /[‘I‘(Vu,l, Xp> Curl xp, 1) — (f,u)]dx (3.6)
Q

where the free-energy density W is given in the additively separated form

1 The terminology “tensor” used here is just intended as “matrix” since m does not fulfill the rules of change of orthogonal bases for the last index and
therefore is not a tensor in the usual sense.
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li i
U(Vu, 1, xp. Curl xp,m) == Welee)  + Wi (pxp) +  Wan(Curly,)  + Wie (1) . (37)
—— N—— S ————
elastic energy micro energy defect—like energy (GND) hardening energy (SSD)
where
lin 1 1 .
we (€e) = i(fﬁ Cisote) = 5 (sym(Vu — p), CisoSym(Vu — p)),
lin 1 2 lin 1 2 2
IIImlcro (p7 XIJ) = jlu' H)(Hp - XPH ’ III::url (CUI‘I Xp) = z:u LC HCl.ll‘l Xp” ) (3-8)
1
Uio(n) = zusznH ZukzZ\n 2.

Here, L. > 0 is an energetic length scale which characterizes the contribution of the defect-like energy density to the
system, H, is a positive nondimensional penalty constant, k; is a positive nondimensional isotropic hardening constant.

The starting point for the derivation of the equations and inequalities describing the plasticity model is the two-field
minimization formulation

Uy, xp,m) —  min. wort. (u,x,). (3.9)

The first variations of the total energy w.r.t. to the variables u and x,, lead to the balance equations in the next section.

3.2.1. The balance equations
The conventional macroscopic force balance leads to the equation of equilibrium

dive+f=0 (3.10)

in which o is the infinitesimal symmetric Cauchy stress and f is the body force.
An additional microscopic balance equation is obtained as follows. Precisely, the first variation of the total energy w.r.t. x,
gives for every dy, €C*(Q,R33),
0 (P, + )|

[u Hy(Xp — P, 6Xp) -+  L2(Curl xp, Curl dxy) | dx

:o\ &|Q

) (3.11)
/{u Hy (xXp — p. 0xp) + p L2(Curl Curl x,, x,) + Zdlv (w12 6x}, x (Curl xp)')]dx
Q i=1
3 ) )
/(u Hy (Xp — p) + w LECurl Curl x, xp)dx + > /,uL?(é)dy x (Curl x,)', nyda,
Q =140
which on the one hand gives from the choice oy, €CX(Q, ®3*3) the micro-balance in strong formulation’
w L2 Curl Curl x, = —u Hy (x, — p)- (3.12)
One the other hand we get
z uL2(oxh x (Curlyp),myda =0 Véx,eC®(Q,233) (313)

i=1
0Q

which is satisfied if we choose certain homogeneous boundary conditions on the micro-distortion y,. Following Gurtin
(2004) and also Gurtin and Needleman (2005) we choose the simple boundary condition

2 Here, we have assumed uniform material constants for simplicity.
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Xp XN, =0 and (Curl x,) x njyg\, =0 (3.14)

which in the case of models in strain gradient plasticity, where ¥, is replaced by p or &p simply implies that there is no flow of
the plastic distortion or plastic strain across the piece I'p of the boundary 0.

3.2.2. The derivation of the dissipation inequality
The local free-energy imbalance states that

W — (g, &) — (a,p) < 0. (3.15)

Now we expand the first term, substitute (3.7)—(3.8) and get

Cs . a0 alplrg}cro 0 alpiso K <0 3.16
<41508970-7£€>7;<0-7m >’Y +2a: a,Ya Y + = anan —= Y ( . )
That is
Ciso €6 — 0, &e) — Y _(0,m*)¥* = " wHy(xp —p, M)y +pky > 5** < 0. (3.17)
o o« o
Therefore we obtain
0 < —(Ciso €0 — 0, €¢) + Z[(Tu + 57" + 8% = ~(Ciso € — 0, &) + Z[Tﬁﬁ"a +g%1"], (3.18)
o o
where we set
7% := (0,m“) (resolved shear stress for the « — th slip system), (3.19)
s := wHy(xp — p,m*) = —u LZ(Curl Curl x,, m*), (3.20)
g% = —uky n* (thermodynamic force power — conjugate to 7“), (3.21)
TE =74 + 5% = (Zp, m"), (3.22)

with 3¢ being the non-symmetric Eshelby-type stress tensor defined by

S =0+ u Hy (xp — p) = 0 — p LZ Curl Curl y,,. (3.23)

Since the inequality (3.18) must be satisfied for whatever elastic-plastic deformation mechanism, including purely elastic
ones (for which ¥* = 0, % = 0), Equation (3.18) implies the usual infinitesimal elastic stress-strain relation

0 =Ciso €e = 2uSym(Vu — p) + A tr(Vu — p)1

=2 (sym(Vu) — gp) + A tr(Vu)1 (324)
and the local reduced dissipation inequality
S +g n*] >0 (3.25)
o
which can also be written in compact form as
<o
S(sg.1) >0, (3.26)
o
where we define
35 = (1§,8%) and T := (v n%). (3.27)

3.2.3. The flow rule
We consider a yield function on the a-th slip system defined by
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¢(Zp) = |E| +8%—00 for Zj=(1f,8%). (3.28)

Here, 0y is the yield stress of the material, that we assume to be constant on all slip systems and therefore, o§ := g9 — g*
represents the current yield stress for the a-th slip system.> So the set of admissible generalized stresses for the a-th slip
system is defined as

T = {zg = (1%.8%) | $(z) <0, g < 0}, (3.29)

with its interior Int(.%*) and its boundary 8.7 being the generalized elastic region and the yield surface for the a-th slip
system, respectively.
The principle of maximum dissipation* associated with the a-th slip system gives us the normality law

=0
Iy ENGe (Zp), (3.30)
where N« (25) denotes the normal cone to .7 at 3. That is, I"Z satisfies

(5" -sa1)) <0 foralls"e7. (331)

Notice that N ,« = d)_,«, Where y ;. denotes the indicator function of the set 7 and 9 ;« denotes the subdifferential of
the function y j«.
Whenever the yield surface 0.7 is smooth at =7 then

Y . TH . )
[, ENy«(2p) = 3A%suchthaty* = ,\0‘|T_§| and % =% = 7|

with the Karush-Kuhn Tucker conditions: 1“ > 0, ¢(£5) < 0 and A“¢(=5) = 0.
Using convex analysis (Legendre-transformation) we find that

12 € 0Ny (55) (3.32)
N—
flow rule in its dual formulation for the a-th slip system

3

32 € O (I9) (3.33)
—— —

flow rule in its primal formulation for the a-th slip system

where x*,. is the Fenchel-Legendre dual of the function x ;« denoted in this context by Z{,, the one-homogeneous dissi-
pation function for the a-th slip system. That is, for every I'* = (g%, 8%),

7%, (M%) = sup{(Ef,‘,F“) ‘ 2;’,‘67/"‘}

~’iso
= sup{ri ¢" + g6 $(,8%) <0, g" <0} (3.34)
_ Joolg¥l if |g% < 6%
o otherwise.

We get from the definition of the subdifferential (=5 eax}/a(f‘z)) that

T (%) = T8 (T5) + (=8, 1% ~T7) forany '™ (3.35)

~ 1s0 1s0

That is,

3 Note that, for the sake of simplicity, the presented isotropic hardening rule g* does not involve latent hardening and the associated interaction matrix,
see Franciosi and Zaoui (1991) for a discussion on uniqueness in the presence of latent hardening.

4 The principle of maximum dissipation (PMD) is shown to be closely related to the so-called minimum principle for the dissipation potential (MPDP)
(Hackl and Fischer, 2008; Hackl, 1997; Ortiz and Repetto, 1999), which states that the rate of the internal variables is the minimizer of a functional con-
sisting of the sum of the rate of the free energy and the dissipation function with respect to appropriate boundary conditions. Notice that, as pointed out in
Ebobisse et al. (2016a), both PMD and MPDP are not physical principles but thermodynamically consistent selection rules which turn out to be convenient if
no other information is available or if existing flow rules are to be extended to a more general situation.
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To(0°6%) > T (5" 0% + TG — ¥*) +g4(68° — if") forany (q%,6°%). (3.36)

In the next sections, we present a complete mathematical analysis of the model including both strong and weak for-
mulations as well as a corresponding existence result.

3.2.4. Strong formulation of the model
To summarize, we have obtained the following strong formulation for the microcurl model in the single crystal infini-
tesimal gradient plasticity case with isotropic hardening. Given f eH'(0, T; 12(Q, ®3)), the goal is to find:

(i) the displacement ueH' (0, T; H}(Q, 'p, B3)),
(ii) the infinitesimal plastic slips yY*€H'(0,T;12(Q)) fora =1, ..., Mgips
(iii) the hardening variables n* eH! (0,T;12(Q)) fora=1,..., Nslips
(iv) the infinitesimal micro-distortion x, €H' (0, T; H(Curl; @, R>*3)), with Curl Curl x, €H'(0,T; [?(Q, &3*3))

such that the content of Table 2 holds.
3.2.5. Weak formulation of the model
Assume that the problem in Section 3.2.4 has a solution (u, v, x,, 7). We will extensively make use of the identity (3.4). Let

ve H'(Q,R3) with vr, = 0. Multiply the equilibrium equation with v — 1 and integrate in space by parts and use the symmetry
of ¢ and the elasticity relation to get

/(Cisosym(Vu —Mmy),sym(Vv — Vii)) dx = /f(v — 1) dx. (3.37)
Q Q

Now, for any XeC>(Q, 5((3)) such that X x n = 0 on I'p we integrate (3.12) over , integrate by parts the term with Curl
Curl using the boundary conditions

(X—%p) xn=00nTp, Curly,x n=00ndQ\Tp
and get

/ [,u L2(Curl Xp, Curl X — Curl y,) + p Hy(xp — M v, X — %p)|dx = 0. (3.38)
Q

Moreover, for any q = (q,...,q") with geC>(Q) and any 8= (,@1_’ g™y with *eL?(Q), summing (3.36) over

a=1,...,ng;, and integrating over €, we get

Table 2
The microcurl model in single crystal gradient plasticity with isotropic hardening.

Additive split of distortion:
Plastic distortion in slip system:

Equilibrium:

Microbalance:

Free energy:

Yield condition in a-th slip system:
where

Dissipation inequality in a-th slip system:

Dissipation function in a-th slip system:

Flow rules in primal form:
Flow rules in dual form:

KKT conditions:
Boundary conditions for y,:
Function space for x,:

Vu =e+p, ee =Syme, ep = symp
p =3y m® with m® = €@ %, tr(p) = 0
Div ¢ + f = 0 with ¢ = Cjsoge = Cjso(Sym Vu — EP)
L2 Curl Curl x, = — Hy (x, — D),

~ 2 2
Y Cisoresce) + i Hylp = x| + b Z[Curl x|+ 3 o P
7| +8" —00<0
7§ = (3, m*) with
g =0+ i Hy (xp —p) = 0 — u L2 Curl Curl x,,
gt =—ukyn*
Y gt >0

' oolq¥| if |g%| < 67,

ol = { O =0
(18,8 €075, (1", 11%)
JTE =t = g

R
120, ¢(rE.g*) <0, 1" ¢(1E,g) =0
Xp xn=0o0nTp, (Curl x,) xn=00ndQ\TIp
Xp(t, -) EH(Curl; Q, R3*3)

¥ =
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/9/'1'50 (ﬂv ﬁ) dx — / Jiso(Y s E)dx - /(‘Cisosym(vu - mZ)v Sym(mﬂ - ml) ydx
Q Q Q

. (3.39)
+ [ [~ iy — my.mg — m) + ko, 8~ )] de > 0.
Q
where
Tiso (0, 8) = Ffeo(a%,6%). (3.40)

o

Now adding up (3.37)—(3.39) we get the following weak formulation of the problem set in Section 3.2.4 in the form of a
variational inequality:

/ {(«Cisosym(Vu —my),sym(Vv - q) — sym(Vii — M 7)) + p L2(Curl Xp, Curl X — Curl %)

+uHy(p =My, (X =11 q) = (Xp — M 7)) + pka(n, 8 — n)}

/_/lso q.8) d / o (7.17) X > /fv—u)dx (3.41)
Q

3.2.6. Existence result for the weak formulation

To prove the existence result for the weak formulation (3.41), we closely follow the abstract machinery developed by Han
and Reddy in Han and Reddy (2013) for mathematical problems in geometrically linear classical plasticity and used for
instance in Djoko et al. (2007a), Reddy et al. (2008), Neff et al. (2009a), Ebobisse and Neff (2010) and Ebobisse et al. (2016a,
2016b) for models of gradient plasticity. To this aim, Equation (3.41) is written as the variational inequality of the second kind:
findw = (u,v,xp,7 7)€H'(0, T;Z) such that w(0) = 0, Ww(t)eW for a.e. t€[0,T] and

aw,z —w) +j(z) —j(w) > (2,z — w) for every zeW and for a.e. t€[0, T}, (3.42)

where Z is a suitable Hilbert space and W is some closed, convex subset of Z to be constructed later,

a(w,z) = /[(Cisosym(Vu —my),sym(Vv—Tmq))+uLZ(Curl Xp> Curl X) + wHy(x, —my,X —mgq) +;Lk2(ﬂ,§)] dx

Q
(3.43)
i@ = //1so(g ﬁ)dx, (3.44)
Q
2,2) = /fvdx, (3.45)

Q

for w = (u,v,xp,n) and z = (v,¢,X, ) in Z.

The Hilbert space Z and the closed convex subset W are constructed in such a way that the functionals a, j and  satisfy the
assumptions in the abstract result in Han and Reddy (2013), Theorem 6.19. The key issue here is the coercivity of the bilinear
form a on the set W, that is, a(z,z) > CHZH% for every zeW and for some C > 0.

We let
V:=H)(Q,I'p,R3) = {veH (Q,R?)|yp, =0}, (3.46)
P:=L3(Q, RMip), (347)
Q := Ho(Curl; Q, T'p, 5((3)), (3.48)

A = [2(Q, R, (3.49)
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Z:=VxPxQxA, (3.50)
W= {Z= (U,Q,X,§)€Z| g < 6%, a= 17~~~7nslip}7 (3.51)

and define the norms

lolly = 19l [lal2 =S g%u, 1815 = ST 18415 Xl = X1 ncurnays
o o

5 5 (3.52)
l2lz = vy + llallp + 1XI& + 8]l for 2= (v.q.X.8)€Z.
Let us show that the bilinear form a is coercive on W. Let therefore z = (v,q,X, ) eW.
First of all notice that
[mal. <ldll, < [I8],- (3.53)

So,
2
a(z.z) = mo||sym(vv— 1 q)|| , (from(2:3)) + p Hy[ X = 1 g|[f, + p L2 Curl X |7, + k2 B3

2
= o sym. + [sym(m q) [, ~ 2symv.sym(m @)y, |-+ H I + [mal, - 20 m
2 2 2
2 Curl X|, + kg B

2 — 2 2 1 — 2 2 e 12 2
> mo[sym¥uf, + [sym(m a) [}, ~ 8] sym(S)|. ~ glsym(m )], | + 1y X1+ [mal, ~ 01

1, - . 1 1 .
—4lm g”ﬂ (Young's inequality) + u L2 || Curl X |7, + FH ko [1BI1% + Skl |}g||12) (using second
<in (3.53))

= mo(1 = )symo| + mo (1~ ) sym(m ), + s H (1§ )l + 3o el w1 = o)

1
+ L[ Curl X[[5 + 5. ko |8
1 1
> mo(1 — §)||symv|| + {(mo +uH)(1-3) + 54 kz} a2 + & Hy(1 = 0)[[X]17, + p L]|Curl X| 3
1
+5uka||B]}  (foro<d<1). (3.54)

So, since the hardening constant k, > 0, it is possible to choose f such that

m0+uHX

Mo+ Hy + 31 ks

we always are able to find some constant C(6, mg, u, Hy, ky, Lc, Q) > 0 such that

a(z.2) = C[Jolly + llallp + XN ycune + 1813 = Clizl; 2= (n.g.X.6)W. (3.55)

This shows existence for the microcurl model in single gradient plasticity with isotropic hardening.

3.2.7. Uniqueness of the weak/strong solution

As shown in Ebobisse et al. (2016a) for a canonical rate-independent model of geometrically linear isotropic gradient
plasticity with isotropic hardening and plastic spin, the uniqueness of the solution for our model can be obtained similarly. To
this aim, notice that if (u, v, x,, 1) is a weak solution of the model, then (u, v, x,, 1) is also a strong solution. In fact, choosing
appropriately test functions in the variational inequality (3.41), we obtain both equilibrium and microbalance equations on
the one hand. The latter which is
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w L2 Curl Curl x, = —u Hy (x, — P)
is satisfied first in the distributional sense and hence is satisfied also in the L2-sense since the right hand side is in L?(Q, R3*3).
Therefore, it follows that Curl Curl ,, is also in L?(Q, R3*3).
Now going back to (3.41), we also derive the boundary condition (Curl x,) x n1|yg\ r, = 0 which is now justified because
we derived that Curl x, €H(Curl; Q, 3((3)).
On the other hand, we also obtain from (3.41) the following set of inequalities
([, 59— 38) <0 vV=¥er®, a=1,..ng, (3.56)
and hence, (u, 7, X, 7) is a strong solution.

Now let us consider two solutions w; := (U, 7, Xp i, i), i = 1,2 of (3.41) satisfying the same initial conditions, let
F;’J‘, = (v{,n{) and let =5 := (7§, g{") be the corresponding stresses. That is,

T8 = (2, M%) = (0 + u Hy (Xp, — pi), m*) = (g; — u HyCurl Curl y,,, m®), (3.57)
g'=—ukan (3.58)

so that T’y and =§ satisfy

(5,59 -3¢ )<0 and (I, ,3¢-3%)<0 Vs“er (3.59)

Now choose =* =27 in (3.59); and 2* = = in (3.59); and add up to get

<Eg2 - 231 ) r‘z1 - Fg2> <0. (3.60)
That is,
(03 — a1, m* 4§ = m® ¥5) + wHy((xp, — Xp,) — (P2 — 1), m* 4§ — m* ¥5) + (g5 — &f) (7§ —15) < 0 (361)

and adding up over «, we get

<02 70—17pl 7P2>+MHX<(XPZ 7XP]) - (pz 7p1)7p1 *p2>+<g_2*g_177771*7772> <0 (362)

Now, substitute sym p; = symvu; — C;_1

Ciso0i Obtained from the elasticity relation, into the expression (s, — ¢, 1 — P3) and

Pi = Xp, -4—#,—3X Curl Curl ¥, , obtained from the microbalance equation into the expression (x,, — Xp,,P1 — P2) and get from
(3.62) that

(02-01, Cigg (72 — 01)) + pt Hy(P1 — P2, P1 — P2) + 1 Hy(p, = Xpy» Xpy — Xps) + B LE(Xp, — Xp,» Curl Curl x,,

. . 3.63
— Curl Curl ) + (85 — 8111 — ) < (01 — 02, 5Ym(Vuy) — sym(Vuiz)) 5:63)

Now for every t €10, T], we integrate (3.63) over Q x (0, t) using the boundary conditions on y,, , and using the fact that

/(Ul — 02,Sym(Vuy) — sym(Vuy))dx = 0,
Q

we get
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t
d 2
/ & { 155502 (02(5) = 15Dl + 1 HylIp1 () = P2(5)1 — 1 Hllxp, () = xp, ()|I52 — st LZ|Curl i, 5) — Curl g, (5
0

+ e ka[n1 (5) fn_z(s)Hi ds < 0.

Therefore, we obtain

_ 2
17550 (02 = 91) |12+ HylIp1 = P2 +#’<2||7771*7772sz < wHy|[xp, = X lIf2 + 1 L2 Curl g, — Curl x|, (3.64)

On the other hand, we write the micro-balance equation for p; and x, , withi = 1,2, as
wHy py = w L2 Curl Curl x,, + u HyXp, - (3.65)
w Hy py = w L2 Curl Curl x,,, + p Hy X, (3.66)
then we subtract, take the scalar product with X, — x,,, integrate using the boundary condition

(Xp, — Xp,) X n|FD =0 and (Curlyy, — Curlxp,) x n|aQ\le =0

and get

p Hx/@l — P2 Xp, — Xp,)dlx = L[| Curl xy, — Curl x, |17, + 1 Hy[[Xp, — Xp, |- (3.67)

Therefore, we obtain from (3.64) and (3.67) that

wHyllp1 — P27 < L2||Curl xp, — Curl xp, 12, + 1 Hy|[Xp, — Xpo I (3.68)
< wHyllp1 = P2lliz [ Xp, = Xp, 2 (3.69)
which implies that

Ip1 = p2lliz = [|[Xp, = Xp, ||, and hence, ||Curl x,, — Curl x,||,, = 0. (3.70)

Now, going back to (3.64), we get

2
€602 = o0l + wkallmy ~mz|” <0 (371)

Hence, we obtain so far,

01—-03, M =7, and Curly, =Curly, = 7f =7E.

Now, let us prove that v§ = v§ for every o. In fact, from the definition of the normal cone it follows that 1" = 0 that is,
¥ = 7 = 0 inside the elastic domain Int(.#“) (for the a-slip system), which from the initial conditions 1mply that y§ =0
inside Int(:7*). Now, looking at the flow rule in dual form (for the a-slip system) in Table 2, we obtain from 7§ = 7§ that
¥{ = ¥3 which implies that v§ = v§ from the initial conditions. Therefore, we obtain p; = p, which implies from (3.70); that
Xp 1= Xp 2°

Now, it remains to show that u; = u,. This is obtained exactly as in Ebobisse et al. (2016a). We repeat the proof here just for
the reader's convenience. To this end, we use sym(Vu;) = C~1g; + symp; obtained from the elasticity relation and get

sym(V(uy — up)) = C~ (07 — 03) + sym(p; —pz) =0

and hence, from the first Korn's inequality (see e.g. Neff, 2002), we get V(u; — uy) = 0 which implies that u; = u,. Therefore,
we finally obtain
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up=uy, o1=03, (Y1="2 = Di1=D02) Xp, = Xp,» M1 =M2,

and thus the uniqueness of a weak/strong solution.

Remark 3.1. It should be stressed that, in the proof, k, > 0 is necessary for uniqueness of the displacement field (and of the
slip variables). If k, = 0, we have perfect plasticity and multiple solutions involving displacement discontinuities along slip
lines, as in conventional Hill's plasticity, are possible. The curl operator does not regularize such discontinuities since curl p
may vanish in the presence of gradient of slip y* perpendicularly to the slip planes. It is shown in Forest (1998) that gradient
models lead to finite width kink bands but still allow for slip band discontinuities, parallel to slip planes, in single crystals.

3.3. The model with linear kinematical hardening
Here we consider the model where the isotropic hardening has been replaced with linear kinematical hardening.

3.3.1. The description of the model
Here the free-energy density W is also given in the additively separated form as

W(Vu,p,xp, Curl ) = Weh(ee)  + Wiao(poXxp) +  Weh(Curlyy) + Wit (ep)
——— —_— —_— ——
elastic energy micro energy defect—like energy (GND) hardening energy (SSD)
(3.72)
where
lin 1 ~ 1
Wi"(ee) = 5 (ee, Cisote) = 5 (SYM(Vtt = ), CigoSYm(Vu — p)),
IIIH“ ._1 H 2 lplin Curl ._1 LZ Curl 2 (3 73)
micro(pvxp) ok Xprpo ) curt (Cur Xp) ok c” ur Xp” ) :

i 1 1
Wi (ep) =5 mkafep]|” = 5 pkallsym p|.

In this case, the equilibrium equation and the microcurl balance are obtained as in (3.10) and in (3.12) respectively.
Now, the free-energy imbalance

W < (0,Vu) = (0, ) + (0. P)
and the expansion of W lead to the usual infinitesimal elastic stress-strain relation
0 = 2u sym(Vu — p) + A tr(Vu — p)1 = 2u(sym(Vu) — gp) + A tr(Vu)1
and the local reduced dissipation inequality
(=g, p) > 0, (3.74)

where the non-symmetric Eshelby-type stress tensor in this case takes the form

Spi=0+ 3 o4 sin (3.75)

with
=i o =1 Hy(xp —p) = —p L2Curl Curl y,,, (3.76)
sin— _pky ep = —pky symp. (3.77)
Two sources of kinematic hardening therefore arise in the model: the size—dependent contribution, =il ' induced by

strain gradient plasticity, and conventional size—independent linear kinematic hardening E{E;}l.
Following the steps in the derivation of the strong formulation of the microcurl model with isotropic hardening in Section

3.2.4, we get the strong formulation in Table 3 for the model with linear kinematical hardening.

3.3.2. The weak formulation of the model with linear kinematical hardening
The equilibrium and microbalance equations in weak form are
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Table 3
The microcurl model in single crystal gradient plasticity with linear kinematical hardening.
Additive split of distortion: VU =e+p, e =Syme, ep =symp
Equilibrium: Div ¢ + f = 0 with ¢ = Cjsoee = Ciso(SymVu — p)
Microbalance: w L2 Curl Curl Xp = 4 Hy(Xp — p),
Free energy: N(Cisote, ee) + 31 Hy|lp — XpH2 + 1w L2||Curl Xsz +3pky[sym p|?
Yield condition: ¢(Z) = ||devg|| —op <0
where 2 =0+ pHy(Xp —p) — mkysymp
Dissipation inequality: (Zg,p) >0
Dissipation function: Diso(q) = 0ollq||
Flow rule in primal form: SE €0 Ziso (D)
Flow rule in dual form: p= Hg:z EEH’ A= Bl
KKT conditions: A>0, ¢(3(8 <0, A¢(ZE,8) =0
Boundary conditions for x,: Xp x=0o0nIp,(Curl x,) x n=00n0Q \ I'p
Function space for ,: Xp(t, ) €H(Curl; Q,R3*3)
/(Ciso(symVu —&p), sym(Vv — Vii))dx = /f(v — u)dx, (3.78)
Q
/ [ 12(Curl . Curl X — Curl )+t Hy(p — p.X — )] de = 0, (3.79)
Q

for every veV and X=Q with V and Q defined in (3.46) and in (3.48), respectively.
Now, the primal formulation of the flow rule (S €0 7y, (p)) in weak form reads for every ge12(Q, 3((3)) as

/ka dX /jl(ln dX > /<2E:q p)dx

/ (CisoSYm(Vut — p), sym(q — p))dx + / [k Hy(xp = P) = 1 kysym p. g — p)| dx
Q
(3.80)

Now adding up (3.78), (3.79) and (3.80) we get the following weak formulation of the microcurl model of single crystal
strain gradient plasticity with linear kinematical hardening in the form of a variational inequality:

/ [(Cisosym(vu —p),sym(Vv — q) — sym(Vii — p)) + p L2(Curl x,, Curl X — Curl %,) + u Hy(x, — P, (X — q)

2 (3.81)

~ (i =)+ wky(symp,sym(q ~ o)) e+ [ (@~ [ Fran(B)dx = [ 10— iax
Q Q Q

That s, setting Z := V x P x Q with V, Pand Q defined in (3.46)—(3.48) and their norms in (3.52), we get the problem of the
form: Find w = (u,p, x,) €H' (0, T;Z) such that w(0) = 0 and

aw,z —w) +j(z) — j(w) > {2,z — w) for every zeZ and for a.e. t<[0,T], (3.82)
where
/ CisoSYM(Vu — p), sym(Vv — q)) + w L2(Curl Xp> Curl X) + w Hy (xp — p, X — q) + p ky(sym p, sym q) | dx,
’ (3.83)
i@ = [ (@ dx. (3.84)
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@z = [fudx, (3.85)
/

for w = (u,p,xp,) and z = (v,4,Q) in Z.

3.3.3. Existence and uniqueness for the model with linear kinematic hardening

In order to show the existence and uniqueness for the problem in (3.82)—(3.85) using Han and Reddy, 2013, Theorem 6.15,
we only need to show here that the bilinear form a is Z-coercive. However, this is obtained following a different approach. We
will make use of the following result.

Lemma 3.1. The mapping ||-||, : P x Q—[0, ) defined by

(g, X)11 := llg — X||2 + lsym q|| > + ||Curl X2 (3.86)

is a norm on P x Q equivalent to the norm defined by

19 X)3wq = llgli?> + IX I curtoy- (3.87)

Proof. To show that ||-||, is a norm on P x Q, we only check the vanishing property of a norm since the other properties are
trivially satisfied. The vanishing property is obtained through the Korn-type inequality for incompatible tensor fields
established in Neff et al. (2011), 2012a, 2012b, 2014b, namely

X% < C(|lsym X|[% + ||Curl X||%) VX&€Q := Ho(Curl;Q, Tp, 23<3). (3.88)

In fact, let (q,X) €P x Q be such that ||(g,X)||, = 0, that is, g = X, sym q = 0 and Curl X = 0.

Thus we get sym X = 0 and Curl X = 0. From (3.88), we then get X = 0 and hence also g = 0.

Now to show that both norms are equivalent, we will first show that (P x Q, ||-||,) is a Banach space. To this aim, let (qn, Xn)
be a Cauchy sequence in (P x Q, ||-||,). Hence, the sequences (g, — X»), (Sym g) and (Curl X;,) are all Cauchy in L?(Q, R3*3) and
therefore, there exist A, B, CeL2(Q,R3*3) such that

qn — Xpn—A, symqgp—B, and CurlX,—C. (3.89)
Thus,
sym X, = sym qn — sym(qn — Xp) =B — symA =sym(B—A) and Curl X,—C.

Hence, it follows from the inequality (3.88) that (X») is a Cauchy sequence in (Q, |||l ycuri))-
Hence, there exists X=Q such that

X,—X and Curl X,—Curl X = C in [*(Q,R3>*3).

Now gn = Xi + (qn — Xn) =X + A and sym g, —sym(X + A) = B. Therefore,
(G Xn) — X +AX)|% = 1(qn — (X +A), X0 — X)|I?
= [(gn — Xn) — AllZ + [|sym g — sym(X + A)||% + [|Curl X, — Curl X|| —0.

So, the sequence (qn,Xy) converges to (X +A,X) in (P x Q,|-|,)-
Since the two normed spaces (P x Q,|||[pxq) and (P x Q, |-||) are Banach and the identity mapping

Id: (PxQ,[llpxg) = (P> Q)
is linear and continuous, then as a consequence of the open mapping theorem, we find that
Id : (P X Q: || : H*)_) (P X Q7 ” ' HPXQ)

is also linear and continuous. Therefore, the two norms ||-||, and ||-||p,q are equivalent and this completes the proof of the
lemma.
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We are now in a position to prove that the bilinear form a in (3.84) is Z-coercive.
Lemma 3.2. There exists a positive constant C such that a(z,z) > C\|z||% for every zeZ

Proof. letz= (v,q,X)€Z=V xPxQ
a(z,z) > mo|sym(Vv - q)||% (from (2.3)) + i Hy[|IX — ql% + p L2||Curl X|7> + p ky | sym q|Z2

— mo|lsym Vvl + [sym g7z — 2(sym Vo, sym @) + u HyllX — glif2 + wL2[Curl X|17 + u ki lsym gl

1
> mo(1 = O)symulf -+ |mo (1) + k| Isvm a1 + wHy b — qlfs + a2l Curl X

Now, since the hardening constant k; >0, we choose 6 such that

Mo

— < <1,
Mo + p kq

and using Korn's first inequality (see e.g. Neff, 2002) and Lemma 3.1, we then get two constants C = C(0, mg, u, Hy, k1, Lc, Q) >0
and C' = C'(8, mg, 4, Hy, k1, L, 2) > 0 such that

a(z.2) > (|90l + 1@, X)112] = C[IVvlE: + 1aliZ: + IXIiFcuny | = ClzIZ:

4. The microcurl model in polycrystalline gradient plasticity
4.1. The case with isotropic hardening

The free-energy density W is given in the additively separated form

lin lin lin lin
W(Vu,ep, xp, Curlyp, mp) = Wo'(ee)  + Whicro(ep:Xp) + Wean (Curl xp) + Wiso (7p) o (41)
SN—— N——
elastic energy micro energy defect—like energy (GND) hardening energy (SSD)
where

i 1 1
‘lile'“(se) =3 (€e, Cisoe) = 5 (SymVu — gy, Ciso (Symvu — ep)),

1 i 1
Whiero (e0: Xp) = 5 Hylep — sym xp||*, Wi (Curl xp) = 5 12| Curl x|, (42)
1
Wieo (7 p) ¢:§/Jk2}’7p|2-

Here, 7, is the isotropic hardening variable.

It should be noted that there is no constraint on the skew—symmetric part of the microdeformation, skew ¥, in (4.2), due
to the fact that no plastic spin is considered in the original plasticity model for skew Xp to be compared with. It will be shown
that, in spite of that, no indeterminacy of skew ¥, arises in the formulation.” ThlS represents the most straightforward
microcurl extension of a phenomenological polycrystal plasticity model.

4.1.1. The balance equations
As in Section 3.2.1, we have the balance equations:

dive +f =0 (macroscopic balance), (4.3)

pL2Curl Curl x, = — uHy(symx, — &) €Sym(3) (microbalance), (4.4)

where (4.4) is supplemented by the boundary conditions

5 No simple characterization of skew Xp for Hy — o is known at present.
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Xp xnlp, =0 and (Curlx,) x n|aQ\FD =0. (4.5)

4.1.2. The derivation of the dissipation inequality
The local free-energy imbalance states that

W — (0,ée) —(0,&p) < 0. (4.6)
Now we expand the first term, substitute (4.1) and get
(Ciso €e — 0, e) — (0, ép) — w Hy(sym xp, — ep, &p) + p kp 1 M < 0. (4.7)

Since the inequality (4.7) must be satisfied for whatever elastic-plastic deformation mechanism, inlcuding purely elastic
ones (for which 7, = 0, & = 0), then it implies the infinitesimal stress-strain relation

0 = Ciso €e = 21(SymVu — gp) + A tr(symVu — )1 (4.8)

and the local reduced dissipation inequality

—(0,ép) — p Hy(sym xp, — ep, &p) + p kp mp 9 < 0. (4.9)
That is,
(0 + u Hy (Sym prgp)vép>7/ik2 Mp hp >0, (4.10)

which can also be written in compact form as
(Zp.Tp) >0 (4.11)
where

Zp = (3,8 and Ty = (e,mp) (4.12)

with 3¢ being a symmetric Eshelby-type stress tensor and g being a thermodynamic force-type variable conjugate to 7, and
defined as

g =0+ uHy(sym x, — ep) = 0 — u LZ Curl Curl x,,, (4.13)
g = —ukym,. (4.14)
4.1.3. The flow rule

We consider a yield function defined by

¢(Sp) :=||dev=g||+g—0o forZp = (3k,8). (4.15)
So the set of admissible (elastic) generalized stresses is defined as

T = {Zp = (3£,8) | ¢(3p) <0,g <0}. (4.16)
The principle of maximum dissipation gives the normality law

TpeNy(2p), (4.17)

where N (3p) denotes the normal cone to .7 at =, which is the set of generalized strain rates I’ that satisfy
(E—-3p,Ip)<0 for all Se.7. (4.18)

Notice that N = dx , where x , denotes the indicator function of the set .7 and 9y, denotes the subdifferential of the
function x .
Whenever the yield surface 8.7 is smooth at £, then
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dev 3k

and i, = = &

with the Karush-Kuhn Tucker conditions: 4 > 0, ¢(2p) < 0 and A ¢(Zp) = 0.
Using convex analysis (Legendre-transformation) we find that

Ipedx, (Zp) & Speox’ (I'p) (4.19)
— —
flow rule in its dual formulation flow rule in its primal formulation

where y*, is the Fenchel-Legendre dual of the function x ;- denoted in this context by & i, the one-homogeneous dissi-
pation function for rate-independent processes. That is, for every I' = (q, §),

Ziso(D)  =sup{(zp,T) | Zpe7}
= sup{(Zg,q) + 86 | #(3E,8) < 0,8 < 0} (4.20)

_ [oollqll if [lg]] <8,
) otherwise.

We get from the definition of the subdifferential (£, €0y*, (I'p)) that,

ZisoT) > Ziso(Tp) + (Zp, T —Tp) foranyT. (4.21)
That is,
Tiso(@,8) > Fiso (ép, p) + (2p.q — ép) +&(B—1p) for any (q,p). (4.22)

In the next sections, we present as in the case of single-crystal gradient plasticity, a complete mathematical analysis of the
model including both strong and weak formulations as well as a corresponding existence result.

4.14. Strong formulation of the model
To summarize, we have obtained the following strong formulation for the microcurl model in the poycrystalline infini-
tesimal gradient plasticity setting with isotropic hardening. Given f e H! (0, T; 12(Q, ®3)), the goal is to find:

(i) the displacement ueH' (0, T; H} (Q, T'p, &3)),
(ii) the infinitesimal plastic strain e, eH'(0,T;L2(Q, Sym(3)ns((

1(3))), the infinitesimal micro-distortion ¥, with
sym x, €H' (0, T; 12(Q, Sym(3)nsi(3))), Curl x, €H' (0, T; L2(Q, R3*3)

) and Curl Curl x, €H'(0, T; [2(Q, R3*3))
such that the content of Table 4 holds.

4.1.5. Weak formulation of the model
Assume that the problem in Section 4.1.4 has a solution

(u7 €p, Xp7 np)

Table 4
The microcurl model in polycrystalline gradient plasticity with isotropic hardening. The boundary condition on x,, necessitates at
least x, €H(Curl; Q, r3x3) This is proven to be the case in the next sections through a weak formulation of the model as a variational

inequality.
Additive split of strain: VU = e +p, g = Syme, ep = Sym p
Equilibrium: Div o + f = 0 with ¢ = Cisoee = Ciso(SymVu — ¢p)
Microbalance: w L2 Curl Curl x, = —p Hy(sym x, — &p),

Free energy: $(Cuee.ee) + it Hylep — sym xp|* + G L[| Curl xp |* + 1 ko |°

Yield condition:
where

Dissipation inequality:
Dissipation function:

Flow rule in primal form:
Flow rule in dual form:

KKT conditions:

Boundary conditions for x,:

Function space for x,:

#(Zp) = ||dev Zg|| + g~ g <0

Sg =0+ pHy(symx, —ep), § = —pkz 7p
(SE,ép) +81p =2 0

. . [oollall if]gll <,
Ziso(d:8) i= { o otherwise
(257g)667150(é‘p, ﬂp)

b= Misp  p=2= |

220, ¢(2E,8) <0,1¢(2E,8) =0
Xp x 1 =0on I'p,(Curl x,) x n=0on dQ\Tp
Xp(t, -) EH(Curl; Q, 73>3)
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Let ve H(Q,R3) with v|p, = 0. Multiply the equilibrium equation with v — 1 and integrate in space by parts and use the
symmetry of ¢ and the elasticity relation to get

/(Ciso(sym(Vu — &p)),SymVv — symvii)dx = /f(v —u)dx (4.23)
Q )

Now, for any XeC*(Q, 5((3)) such that X x n = 0 on I' j we integrate (4.4) over €, integrate by parts the term with Curl
Curl using the boundary conditions

(X—%y) xn=00nTp, Curlx,xn=0 on dQ\Tp
and get

/ [u L?(Curl Xp> Curl X — Curl x,) — p Hy(ep — sym y,, sym X — sym )‘(p)} dx = 0. (4.24)
Q

Moreover, for any geC*(Q, 3((3)) and any $€L%(Q), we integrate (4.22) over Q and get

[ Zo(@ B~ [ ol ip)dx [ (Cio(symi(T) - ).~ ep)dx-+ [ [ Hlep — sym 1.0 i)
Q Q Q Q (4.25)

+ wka mp (8 — hp)]dx > 0.

Now adding up (4.23), (4.24) and (4.25) we get the following weak formulation of the problem in Section 4.1.4 in the form
of a variational inequality:

/ [(Qso (symvu — ep), (SymVv — q) — (Ssymvii — ép)) + u L3(Curl Xp> Curl X — Curl ¥,,) + u Hy(sym x,
Q

~ ep, (SYMX Q) — (sym iy — ép)) + ke 0y (8~ 1) [dx + [ Figo(@ B [ o)
Q Q

> | f(v—u)dx (4.26)
/

4.1.6. Existence result for the weak formulation

As in the case of single-crystal gradient plasticity in Section 3.2.6, the existence result for the weak formulation (4.26) is
obtained through the abstract machinery developed in Han and Reddy (2013) for mathematical problems in geometrically
linear classical plasticity. To this aim, (4.26) is written as the variational inequality of the second kind: find
W = (U, ep, Xp, Mp) €H' (0, T; Z) such that w(0) = 0, v(t) W for a.e. t€[0,T] and

a(w,z —w) +j(z) — j(w) > (2,z — w)for every zeW and for a.e. t[0,T], (4.27)

where Z is a suitable Hilbert space and W is some closed, convex subset of Z to be constructed later,

aw,z) = / [(Ciso (symVu — gy),symVv — q) + [2(Curl Xp> Curl X) + w Hy(sym x,, — ep, sym X — q) + u kp n, |dx,

Q
(4.28)
j(z) = / T 150(. ) dx (429)

Q
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8,2y = [fvdx, (4.30)
/

for w = (u, ep, xp,mp) and z = (v,4,X, ) in Z.

The Hilbert space Z and the closed convex subset W are constructed in such a way that the functionals a, j and ¢ satisfy the
assumptions in the abstract result in Han and Reddy (2013), Theorem 6.19. The key issue here is the coercivity of the bilinear
form a on the set W, that is, a(z,z) > C||z|2 for every z&Z and for some C> 0.

We let
V:=Hy(Q,Tp,B?) = {veH" (Q,23) |y, =0}, (431)
P :=L3(Q,5((3)nSym(3)), (4.32)
Q := Ho(Curl; @, T, 5((3)), (4.33)
A=1%(Q), (4.34)
Z:=VxPxQxA, (4.35)
W= {z=(vq.X.0)€ Z||q] <8}, (4.36)

and define the norms

Wlly == [1Vollzs gl = lallz  1Xllq = IXllcung)

(4.37)
2% = [vliZ + g% + IIXI3 + 181%  forz = (v,q.X,B8)EZ.

Let us show that the bilinear form a is coercive on W. Let therefore z = (v,q, X, f) eW.

a(z,z) > m0{|syva—q{|fz(from(2.3)) -s—uHXHsme—qu2 Jr;LLgHCurIXHf2 +pk2||46||f2

= o[l sy, + |al[f; ~ 2(symVv.q)] + wHy [ [}symX|[s + a]: ~ 2(symX. q)] + wLZ||Curl |5 + k2 6]

1 - .
> mo sy, sy, . (voung' inequatiy) .y sym x|+ a7, ~ sy
1, 2 , s . 2 2 1 2 1 2 .
—p||q||L2 (Young's inequality) + u LZ || Curl X|| +§/.LI<2||6||L2 +j/,al<2||q||L2 (using||q|| < B)

1\ 1
—mo(1—6)|[symvl|?, + [(moﬂmx) (1 fp) +§uk2} llq||?, + wHy (1= 6)|[symX |7, + u L2 || CurlX]|7,

1
ks |87 (438)

So, since the hardening constant k, > 0, it is possible to choose f such that

mo + u Hy

Mo + puHy + 31 ks

and using Korn's first inequality (see e.g. Neff, 2002) and the Korn-type inequality for incompatible tensor fields established in
(Bauer et al., 2014, 2016; Neff et al., 2011, 2012a, 2012b, 2014b), namely

IX||Z < C(lsym X|[% + [|Curl X|[%) VX €Hy(Curl; @, Tp, 233), (4.39)
there exists some constant C(my, u, Hy, kz, L¢, Q) >0 such that

a(z,2) = C[IWIG + lali?: + XV cuny + 1817:] = Clz3 ¥z = (v.9.X.8)€W. (4.40)
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This shows existence for our microcurl model in polycrystalline gradient plasticity with isotropic hardening.

Remark 4.1. Arguing as in Section 3.2.7, we get for any two solutions (u;,&p,, Xp,»Mp,) With i =1, 2 of (4.26) that

Uy =Uy, éep, =épyy Mp, =Tp,, SYMYp, =Symy,,, Curly, = Curlp,

Now, using the Korn-type inequality for incompatible tensor fields established in Neff et al. (2011, 2012a, 2012b, 2014b)
and applied to x, , — X, ,, namely

5 2 2
”XPI - XPZH[_Z < C(HSym(Xpl - sz)HLz + ||Curl<xpl - XP2)||L2)7 (441)
we also get that x, , = X,, and this show the uniqueness of the weak/strong solution.

4.2. The model with linear kinematical hardening

Here we consider the model where the isotropic hardening has been replaced with linear kinematical hardening. Here the
free-energy is given by

W(Vuv €py Xp» Curl Xp) = mgn(fe) + IIIg?icro (“"P’ Xp) + lciSrl (Curl Xp) + w}ilnn (817) )
e —— —_———— —_——— e ——

elastic energy micro energy defect—like energy (GND) hardening energy (SSD)

(4.42)
where
lin 1 1 ~
Wol(ee) = §<ee7 Cisote) = i(symVu — &p, Ciso (SYymVu — &p)),
i 1 2

W iero (6ps Xp) 1= FH Hy|lep — sym x,||”, (443)

i 1 2 li 1 2
Wt (Curl x,) =k LZ||Curl x,||°, Wi (ep) =S killep ||
The strong formulation of the model is presented in Table 5 while the weak formulation reads as

Table 5

The microcurl model in polycrystalline gradient plasticity with kinematical hardening. Also in this model, the boundary condition on x,,
necessitates at least x, €H(Curl; Q, R3x3)_ Unlike the model with isotropic hardening for which uniqueness is obtained through the
strong formulation, here we have uniqueness of the weak solution straight from the formulation as a variational inequality.

Additive split of strain:
Equilibrium:
Microbalance:

Free energy:

Yield condition:
where
with

Dissipation inequality:
Dissipation function:
Flow law in primal form:
Flow law in dual form:

KKT conditions:

Boundary conditions for y,:

Function space for x,,:

Vu=e-+p, e =syme, ep =symp
Div ¢ + f = 0 with ¢ = Cjso €e = Cigo (SYymVu — &p)
w L2 Curl Curl x, = —u Hy(sym x,, — &p),

- 2 2
$(Cisote, £e) + 3 Hy||ep — sym xp||* + 3 L2||Curl x,||* -+ ky [lsym p|?
#(Zp) := ||dev Zg|| — 09 <0
Spi=0+3in 4 slin
E%CW = wHy(symy, — &p) = —u L2 Curl Curl x,,

2%::1 = —pkigp

fg(EE.é‘p)dX >0

Zin(q) = 0ollql|

Sp €0 xin(ép)

o _ 3 devs

ép =1 Hdg EiH

A>0,¢(2) <0,2¢(2) =0

Xp xn=0o0nTIp, (Curlx,) x n=00ndQ\TIp

Xp(t, ) €H(Curl; Q,R3*3)
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/ {(Ciso (symvu — ep), (SymVv — q) — (Symvi — &,)) + u L2(Curl Xp, Curl Q — Curl ¥,) + u Hy(sym x,,
o)
~ e, (SYMQ — Q) — (sYm iy — ép)) + ki (ep 4 — &) k-t [ Fianl@dx— [ Fin(ip)ax
Q Q

> [ fw— t)dx. (4.44)
/

That s, setting Z := V x P x Q with V and Q defined in (4.31)—(4.33), P = [2(Q, Sym(3)n&((3)) and their norms in (4.37), we
get the problem of the form: Find w = (1, &p, X;) €H'(0,T;Z) such that w(0) = 0 and

a(w,z —w) +j(z) — j(w) > (2,z — w)for every zeZ and for a.e. t€[0, T], (4.45)

where

aw,z) / (Clso Symvu — gp),SymVv — q) + j L2(Curl Xp» Curl X) + u Hy (sym x,, — ep, sym X — q) + p kq{ep, q)] dx,
Q

(4.46)
j@=/%mmm, (4.47)
0
®,2)= [ fvdx, (4.48)
/

for w = (u,&p, xp) and z = (v,q,X) in Z.
The existence and uniqueness result for the problem in (4.45)—(4.48) is obtained from Han and Reddy (2013), Theorem
6.15 as the bilinear form a is Z-coercive (arguing as in (4.38)).

5. The relaxed linear micromorphic continuum

The relaxed micromorphic model is a very special subclass of the micromorphic model approach in which the extra
dependence on gradients of the micro-distortion appears only through the Curl-operator. In the static and isotropic cases, the
purely elastic model consists of a two-field minimization problem for the displacement u: QcR3—R3 and the non-
symmetric micro-distortion tensor x, : QcR3 —R3*3 so that for

_ Ae 2
“(u, Xp) ::/ {#e”sym(vu —Xp H + /'LCHSkEW (Vu - Xp H t= tr( Xp)) + /‘micro”sym Xp||2
Q (5.1)

Ami 2 2
+ S (tr () + | Curl x|

& (u, xp) »min w.r.t(u, xp,) (5.2)

subject to displacement boundary conditions u|F = 0 and the tangential boundary conditions ¥, x n|F = 0 (equivalent to
Xp T\F = 0 for all vectors 7 tangent to I" p). Here te and A with

pe>0 and 2u,+32.>0, (5.3)

are new elastic material constants which are not the Lamé constants of linear elasticity. Well-posedness results in statics and
dynamics have been obtained in Neff et al. (2014a, 2015), making crucial use of a recently established Korn's inequality for
incompatible tensor fields (Neff et al., 2011, 2012a, 2012b, 2014b). The parameter u. > 0 is called the Cosserat couple modulus
and may be set to zero in this model.



24 E. Ebobisse et al. / International Journal of Plasticity 107 (2018) 1-26

Regarding the relation to the polycrystalline microcurl model (4.42)—(4.43), we see that in (5.1) the minimization variable
Xp is elastically coupled to the displacement gradient Vu instead of being (penalty)-coupled to the plastic distortion p in the
microcurl model (4.42)—(4.43).

In the single crystal microcurl model, the equation for the micro-distortion can be obtained from the one-field minimi-
zation problem

1 1 .
/ [j'“ Hy|lp - )(p||2 +ok L2||Curl Xp||2:| dx—min y,, (5.4)
Q

at given plastic distortion p.
Now, if we let e, pic, A — oo (x, — Vi) then the static model turns indeed into a linear elastic model

[ [slisymeui? + 5w ] dx—minu, (55)
Q

where 1, 1, can be determined analytically (Barbagallo et al., 2017).

The formulation (5.1) in the dynamic case has a number of distinguishing features. As it turns out, the so-called meta-
materials with band-gaps at certain frequency ranges can be qualitatively and quantitatively described. For this, a nonzero
Cosserat couple modulus u. > 0 is mandatory. Materials that do not show band-gaps must be modelled with p, = 0. Note that
the formulation (5.1) contains as the special case f micro, A micro — o the well-known infinitesimal Cosserat model in which
the additional field y, is restricted to be skew-symmetric (i.e., X, is set as A€s0(3)) and the elastic minimization problem
reads

12 .
/ [ullsymvul? +§(tr<w>)2 + icllskew(Vu — A)||? + u=||Curl A | dx—min(u, A), (5.6)
Q

see e.g. Barbagallo et al. (2017). The latter formulation has been coupled to perfect plasticity in an endevour to regularize ill-
posedness of perfect plasticity, see e.g. Neff and Chetminski (2007) and Neff et al. (2007).

6. Conclusion

Examples of finite element computations based on the microcurl single crystal models can be found in Cordero et al.
(2013) where polycrystalline microstructures are discetized in order to account for grain size effects on the local stress
and lattice curvatures fields inside the grains and on the overall Hall-Petch effect. Orowan-type size effects were addressed for
laminate microstructures in Wulfinghof et al. (2015). It remains to implement the polycrystalline formulation proposed in the
present work and to compare its response to that of polycrystalline aggregates using the single crystal model. In that way the
new material parameters could be identified from this multiscale analysis. This would also help to decide between the two
possible penalty couplings, namely

1 1 2
siHp—xl*  versus  SuHy[sym(p- )]
-

direct couplin symmetric couplin
ping tlyeated in thispwg’rrk

Mathematically, both formulations are well-posed, provided sufficient hardening is present. The direct coupling has the
advantage of a clear penalty interpretation while the symmetric coupling does not see the plastic spin altogether, which may
be advantageous from a modelling and implementational point of view.

The present mathematical analysis was performed within the infinitesimal framework. The reader is referred to Aslan et al.
(2011) for a finite deformation formulation of the microcurl single crystal model that can be used for further applications
involving significant lattice rotations and strains.
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