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Abstract: This work addresses the question of the existence and determination of a Representative
Volume Element (RVE) for the mechanical properties of thin polycrystalline metal structures. A
computational homogenization strategy is developed to determine the number of grains necessary
to estimate the effective elastic properties of isotropic polycrystalline copper with a given precision.
Finite element simulations of polycrystalline aggregates are presented, using homogeneous and
periodic boundary conditions. For each volume size, several realizations are considered. The mean
apparent shear modulus and the associated scatter are estimated as a function of the number
of grains. Two types of microstructures are considered: thin polycrystalline sheets with a fixed
number of grains within the thickness and bulk polycrystals as a reference. For one–grain–thick
polycrystalline plates, it is shown that effective properties cannot be defined unambiguously. For
3–grain–thick polycrystalline plates, the bulk properties are recovered, provided that a sufficient
number of grains are considered along the in–plane directions. The size of the RVE Element is
related to the concept of integral range.

1 INTRODUCTION

Computational homogenization methods are efficient tools to estimate effective properties of het-
erogeneous materials. They can take realistic distributions of phases and sophisticated constitutive
equations of the constituents into account [1]. A key–point in such models is the determination of
the appropriate size of volume elements of heterogeneous materials to be computed in order to get a
precise enough estimation of effective properties. This is related to the long–standing problem of the
determination of the size of the Representative Volume Element (RVE) in homogenization theory.

The present work raises the question of the existence and determination of the RVE in the case of
thin polycrystalline structures (metal sheets, plates, layers, films...). For that purpose, the apparent
mechanical properties of volumes of increasing sizes are compared in the case of polycrystalline thin
sheets but also bulk polycrystals taken as a reference. The statistical and numerical methodology
proposed in [2] is used to estimate the size of a RVE in isotropic linear elastic copper polycrystals.
The method follows three main steps: the choice of a random model for polycrystalline microstructures
containing a finite number of grains; the resolution of boundary value problems on such polycrystalline
aggregates of increasing sizes; the analysis of the convergence of the calculated apparent properties
towards an asymptotic value as a function of the number of grains and of the boundary conditions. The
asymptotic value is regarded as the effective property [3]. In other words, the objective is to find the
minimum number of grains required in a volume element to estimate the effective elastic property with
a given accuracy. The size of the RVE for several cubic elastic bulk polycrystals was investigated in [4]
using three–dimensional FE simulations and periodic boundary conditions. A relationship between the
RVE size and the anisotropy coefficient of each material was identified. The author links the notion of
representativity of considered material volumes with the decay of the scatter in the calculated apparent
properties for increasing grain numbers, as done in [2]. The present contribution lays the stress on the
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Figure 1: Regular FE mesh superimposed on Voronoi mosaics using the multiphase element technique:
(a) cube containing 50 grains with periodicity constraint at the boundaries, (b) layer with 3 grains
within the thickness containing 657 grains, with in–plane periodicity constraint. Arbitrary colors are
attributed to the grains.

dependence of the result on the choice of boundary conditions and the determination of a statistical
parameter quantifying the decrease in scatter with increasing grain number. Such a parameter makes
it possible to compare RVE sizes for other microstructures and properties.

Thin polycrystalline materials have only a limited number of grains through the thickness,
in contrast to bulk polycrystals. Such microstructures are increasingly encountered in micro–
electromechanical systems (MEMS) but also in coatings and layered microstructures [5]. The existence
of effective properties and their determination can be useful for subsequent structural computations,
since one usually cannot afford considering all grains in the simulations. The proposed methodology
for the determination of effective properties is applied to copper thin plates with a fixed number of
grains through the thickness. The lateral dimensions of the plate are then increased in order to de-
termine the wanted RVE size, if it exists. The possible bias induced by the boundary conditions in
the computation must be carefully investigated. The determination of effective properties in textured
copper thin films on a substrate was tackled in [6] but the question of the existence of a RVE and the
effect of boundary conditions were not addressed.

All simulations are carried out for linear elastic copper polycrystals with a uniform distribution of
crystal orientations, leading to an isotropic texture in both bulk and thin polycrystals. The cubic elas-
ticity constants of pure copper at 300K are taken from [7]: C11 = 168400 MPa, C12 = 121400 MPa,
C44 = 75390 MPa. The corresponding value of the anisotropy coefficient a = 2C44/(C11 −C12) is 3.2.

In the following, vectors are underlined and boldface quantities are second–rank or fourth–rank
tensors. The symbol := defines the quantity on the left of the symbol.



2 COMPUTATIONAL HOMOGENIZATION METHOD

2.1 Generation of microstructures

Voronoi mosaics are used here as a random model to represent the polycrystalline morphology, as
explained in [2]. For each realization, one given volume V (a cube or a plate with fixed thickness) that
contains a given number Ng of Voronoi cells is simulated. In the following, n realizations of volume
V are considered. The number of cells for each realization of the microstructure obeys a Poisson
distribution with given mean value N̄g = N . The average volume of one Voronoi cell is equal to 1. No
unit length is introduced because the models involved in this work cannot account for absolute size
effects. As a result, one has N = V . A crystal orientation is attributed to each Voronoi cell which is
then regarded as an individual grain of the polycrystal. The crystallographic texture is assumed to
be uniformly random. It is possible to impose a geometrical periodicity constraint at the boundary
of the polycrystalline cube or thin structures, as shown in figures 1 (see also [2]). This condition is
enforced in the subsequent FE simulations involving periodicity conditions, if not otherwise stated. It
results in a slight decrease of the dispersion of the apparent properties when compared to simulations
relying on the initial Voronoi model.

2.2 FE meshing of microstructures and parallel computing

The so–called multi–phase element technique is used in order to superimpose a regular 3D FE mesh on
the Voronoi tessellation. The crystal orientation of the closest voxel is attributed to every integration
point of each element of the mesh [2]. The elements are 20–node quadratic bricks with 27 Gauss
points. Figures 1(a) and (b) show such meshes made of 16x16x16 and 7x36x36 elements respectively.
The effect of mesh density, i.e. of the number of elements per grain, on apparent shear modulus µapp

was investigated for an elastic polycrystalline volume, containing 50 grains, when the number of finite
elements is increased. For each simulation, the geometry of the microstructure is unchanged but the
number of degrees of freedom, namely, the unknown displacement components, was changed from
5568 to 56355. From these results, a resolution of 16 elements per grain was chosen for the following
calculations.

The largest volume computed in this work is a cube with 423 = 74088 elements, i.e. 937443 degrees
of freedom. Such computations are made possible in a reasonable time by using parallel computing.
The FE program used in this work implements the subdomain decomposition method FETI [8]. The
mesh is split into 32 subdomains and the tasks are distributed on a platform of 32 processors (768
MB RAM, 800 MHz). Compatibility and equilibrium at interfaces between subdomains are restored
by an iterative procedure. The whole resolution requires 21 GB of memory.

2.3 Boundary conditions and definition of apparent moduli

Three types of boundary conditions to be prescribed on an individual volume element V are considered:

• Kinematic uniform boundary conditions (KUBC): The displacement vector u is imposed at all
points x belonging to the boundary ∂V according to:

u = E.x ∀x ∈ ∂V =⇒ < ε > :=
1
V

∫
V

ε dV = E (1)

where E is a given constant symmetrical second–rank tensor. The macroscopic stress tensor Σ
is then defined as the spatial average of the local stress tensor σ.

• Static uniform boundary conditions (SUBC): The traction vector is prescribed at the boundary
∂V according to:

σ.n = Σ.n ∀x ∈ ∂V =⇒ < σ > :=
1
V

∫
V

σ dV = Σ (2)



where Σ is a given constant symmetrical second–rank tensor. The outer normal to ∂V at x is
denoted by n . The macroscopic strain tensor E is then defined as the spatial average of the
local strain ε.

• Periodicity conditions (PERIODIC): The displacement field over the entire volume V takes the
form

u = E.x + v ∀x ∈ V (3)

where the fluctuation v is periodic. v (resp. σ.n ) takes the same value (resp. opposite values)
at two homologous points on opposite sides of V .

The local behaviour at every integration point inside each grain in the simulation is described by the
fourth–rank linear elasticity tensor c:

σ(x ) = c(x ) : ε(x ) (4)

For a given volume V, and owing to the linearity of the considered boundary value problems, fourth–
rank tensors of apparent moduli Capp

E and apparent compliances Sapp
Σ can be defined by the following

macroscopic relations:

Σ =< σ >=
1
V

∫
V

σ dV = Capp
E : E, E =< ε >=

1
V

∫
V

ε dV = Sapp
Σ : Σ (5)

The first relation is used for KUBC and PERIODIC problems, the second one for SUBC problems.
Note that in general, the tensor Sapp

Σ cannot be expected to coincide with the inverse of Capp
E . However,

for sufficiently large volumes V (along all three directions of space), the apparent moduli do not depend
on the type of boundary conditions any longer and coincide with the effective properties of the medium
[3]:

Sapp−1
Σ = Seff−1 = Ceff = Capp

E (6)

For intermediate volumes V , the following inequalities, written in the sense of quadratic forms, hold
[9]:

Sapp−1
Σ ≤ Ceff ≤ Capp

E (7)

In the next sections, both Ceff and the periodic estimations are checked to remain between the bounds
defined by (7).

The following two shear loading conditions Eµ and Σµ are used in this work:

Eµ =

 0 1
2 0

1
2 0 0
0 0 0

 , Σµ =

 0 a 0
a 0 0
0 0 0

 with a = 1MPa (8)

in the particular Cartesian coordinate frame attached to the cubic volume element. In the case of
KUBC and PERIODIC conditions prescribed to a given volume V , one defines the apparent modulus
µapp

E by the work of internal forces in the volume V subjected to the loading Eµ:

µapp
E (V ) :=< σ : ε >=< σ >: Eµ =

1
V

∫
V

σ12 dV (9)

In the case of SUBC boundary conditions, an apparent shear modulus µapp
Σ is defined as the work of

internal forces generated in V by the application of the loading Σµ:

a2

µapp
Σ (V )

:=< σ : ε >= Σµ :< ε >=
2a

V

∫
V

ε12 dV (10)

These definitions remain formal insofar as the apparent elasticity properties of a given material volume
element V are not necessarily isotropic.



V n µ̄app(MPa) Dµ(V )(MPa) εrel

KUBC 25 100 52543 3186 1.2%
KUBC 400 50 50088 836 0.4%
KUBC 1000 25 49787 533 0.4%
KUBC 5000 10 49336 222 0.2%

PERIODIC 25 100 49669 3162 1.2%
PERIODIC 123 50 48886 1400 0.8%
PERIODIC 400 50 48784 811 0.4%
PERIODIC 500 50 48764 778 0.4%

SUBC 25 100 43397 3185 1.4%
SUBC 400 50 47308 823 0.4%
SUBC 1000 25 47566 538 0.4%
SUBC 5000 10 48390 178 0.2%

Table 1: Mean apparent shear modulus, associated scatter and relative error on the mean as a function
of the domain size and of the number of realizations for three different boundary conditions (bulk
copper polycrystals).

2.4 A definition of the RVE size

It is known that the RVE size is property and morphology dependent, but a well–suited parameter
is necessary for quantitative comparisons. The choice of the boundary conditions applied to volumes
of heterogeneous materials introduce a bias in the estimation of the apparent mechanical properties.
A deterministic definition of the RVE is related to the volume size at which the estimated properties
do not depend, within a given statistical precision, on the choice of boundary conditions any longer
[3]. This leads however to large volume sizes that are sometimes hardly tractable numerically. In
contrast, a series of simulations for various microstructures have shown that the use of periodicity
conditions provide, with relatively small volumes, estimations that are close to the wanted effective
properties [2, 4]. Such estimations based on rather small volumes require however a sufficient number
of realizations of the microstructures to get accurate enough estimates. This suggests a pragmatic
and statistical definition of the RVE size, as the minimum size for which the effective properties
are estimated with a wanted precision [2] for a well–chosen set of boundary conditions. This is the
definition of RVE size adopted in the present work. A quantitative definition of this RVE size is given
in section 3.2.

3 RESULTS FOR BULK COPPER POLYCRYSTALS

3.1 Apparent shear moduli for bulk polycrystalline copper

Due to the uniform distribution of crystal orientations, the effective medium exhibits an isotropic
linear elastic behaviour, described by effective bulk and shear moduli keff and µeff . For cubic
symmetry, the apparent bulk modulus is not a random variable [7]. It is uniquely determined from
the single crystal elasticity constants according to the formula kapp = keff = (C11 + 2C12)/3 =
137067 MPa. As a result, the homogenization problem reduces to the estimation of apparent shear
properties µapp and in fine of the effective shear modulus µeff . It is shown in [2] that the fourth–rank
tensor of apparent moduli Capp

E (V ) obtained for a finite domain V containing Ng grains is generally not
isotropic. However, its ensemble average C̄

app
E (V ), i.e. its mean value over a sufficiently large number of

realizations turns out to be isotropic. This has been checked here for polycrystalline copper aggregates.
The shear modulus associated with the isotropic elasticity tensor C̄

app
E (V ) coincides with µ̄app

E (V ), the
ensemble average of the apparent shear moduli µapp

E (V ) defined by equation (9) and computed for
a domain V of given size (or equivalently containing N = V grains in average). Accordingly, the
estimation of µ̄app

E (V ) only requires the determination of µapp
E (V ) for each realization. This is the
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Figure 2: Mean values and intervals of variation for the shear modulus µapp as a function of domain
size, for three different boundary conditions (bulk copper polycrystals).

computation strategy adopted in this work. Similarly, using SUBC conditions, it is sufficient to
compute µapp

Σ for each realization according to equation (10).
The apparent shear moduli µapp(V ) were estimated using cubic volume elements V of increasing

size, ranging from V = 25 to V = 5000 grains, with n(V ) realizations for every volume. The value
of n is such that the estimation of the mean µ̄app(V ) is obtained with a precision better than 1%.
Simulation results for bulk copper polycrystals are shown in table 1.

Mean values and intervals of variation for the apparent shear modulus [µ̄app(V )−2Dµ(V ), µ̄app(V )+
2Dµ(V )], are plotted in figure 2, as a function of volume size V . The mean apparent shear moduli
strongly depend on the domain size and on the boundary conditions. However, the values converge
towards an asymptotic constant µeff as the volume size increases, as expected. A striking feature
of these results is the very fast convergence of the periodic solution and, in contrast, the very slow
convergence associated with homogeneous boundary conditions. The periodic estimate is bounded by
the KUBC and SUBC estimates:

µReuss ≤ µ̄app
Σ ≤ µ̄app

PERIODIC ≤ µ̄app
E ≤ µV oigt (11)

where µReuss and µV oigt denote the first order lower and upper bounds for the effective shear modulus
of the polycrystal. For decreasing values of V , the apparent moduli µ̄app

E (V ) (resp. µ̄app
Σ (V )) get closer

to the upper (resp. lower) limit µV oigt (resp. µReuss). The bias observed on the mean value for all
loading conditions for small volumes is clearly due to the specific boundary layer effect induced by
each type of boundary condition. Another important result is the rate of decrease in the variance
D2

µ(V ) of µapp with increasing V for all three types of boundary conditions.
Finally, the estimated effective shear modulus is compared to the self–consistent estimate according

to [7] in figure 2. The self-consistent method predicts a shear modulus of 48167 MPa, which is 1.2%
lower than the periodic solution found with 500 grains. This difference lies within the numerical
precision associated with the mesh density chosen in section 2.2. Note that this result a priori depends
on the anisotropy coefficient of the considered cubic material.



3.2 Size of the RVE for bulk polycrystalline copper

The notion of RVE is necessarily related to the choice of a statistical precision in the estimation of the
investigated effective property. First, we set a tolerance error α on the bias and find a corresponding
volume V0 such that:

|µ̄app(V0)− µeff | ≤ α (12)

This condition sets a lower bound for the size of the RVE. Then, the relative precision of the estimation
of the mean µ̄app(V ) of apparent shear moduli for a given volume V ≥ V0 and a given number of
realizations n, can be defined according to the sampling theory by:

εrel =
2Dµ(V )

µ̄app(V )
√

n
(13)

This definition includes explicitly the number of realizations n. In turn, the number of realizations
required to correctly estimate µ̄app(V ) is deduced from equation (13) provided that the variance D2

µ(V )
is known. According to homogenization conditions (8), (9) and (10), the apparent shear modulus is
obtained by averaging an additive scalar over the volume V . As a result, for asymptotically large
volumes, the variance D2

µ(V ) of µapp(V ) is given by:

D2
µ(V ) = D2

µ

A3

V
(14)

where A3 is the integral range, a well–established quantity for additive geometrical properties such
as volume fraction. It has the dimension of a volume. D2

µ is the point variance of c1212(x ), which
depends on the crystal orientation at x . For uniform orientation distributions, it can be expressed in
terms of the single crystal cubic elasticity constants as follows:

D2
µ =< (c : c)1212 > − < c1212 >2, with < c1212 >=

1
5
(C11 − C12 + 3C44) (15)

< (c : c)1212 >=
1
35

(−6C44C12 − 4C12C11 + 2C2
12 + 2C2

11 + 6C11C44 + 15C2
44) (16)

where < . > denotes here averaging over uniformly distributed crystal orientations. For pure copper,
one gets Dµ = 13588 MPa. We choose to identify the integral range A3 from the results obtained
with periodicity conditions because they introduce the smallest bias in the estimated effective shear
modulus. We find A3 = 1.43, to be compared with the mean grain size set to 1. It can also be
compared to the integral range for the volume fraction of a given orientation A3 = 1.17 given in
[2]. The integral range A3 is a well–suited parameter to compare RVE sizes for different properties
and morphologies. It characterizes the rate of decrease in the dispersion of apparent properties for
increasing volume sizes, according to equation (14).

Equations (12), (13) and (14) can now be used quantitatively to determine a minimal size of RVE
for a given precision εrel and a given number of realizations n:

V =
4
n

D2
µ

A3

ε2rel(µeff )2
(17)

In the case of periodic boundary conditions, the choice (εrel, n) = (1%, 10) gives a minimal volume
corresponding to V = 445. For n = 100 computations, this volume reduces to 45. This low number
of grains still remains in the domain range for which periodic boundary conditions introduce only a
slight bias in the estimation of the effective property. The obtained results compare quite well with
the prediction of the formula identified in [4] that relates the size of the RVE for a given precision to
the anisotropy coefficient a. Taking a relative error εrel = 1% and 20 realizations, Nyg̊ards’ formula
predicts V = 265, vs 220 according to our formula (17). Interestingly, the simulations of [10] for
2D elastic copper polycrystals lead to a value V = 484, but in the case of homogeneous boundary
conditions and without any information about the variance of the results.



V n C̄app
66 or C̄app

44 (MPa) Dµ(V )(MPa) εrel

KUBC C66 50 50 52498 2039 1.1%
KUBC C44 50 50 53234 2771 1.5%
KUBC C66 120 50 52143 1372 0.7%
KUBC C44 120 50 52842 1310 0.7%
KUBC C66 260 50 52350 1101 0.6%
KUBC C44 260 50 52608 945 0.5%
KUBC C66 400 50 52211 797 0.4%
KUBC C44 400 50 52428 675 0.4%

PERIODIC C66 50 50 48794 2066 1.2%
PERIODIC C44 50 50 49884 2985 1.7%
PERIODIC C66 120 50 48467 1437 0.8%
PERIODIC C44 120 50 49609 1375 0.8%
PERIODIC C66 260 50 48788 1149 0.7%
PERIODIC C44 260 50 49405 1024 0.6%
PERIODIC C66 400 50 48604 785 0.5%
PERIODIC C44 400 50 49431 905 0.5%

mixed PERIODIC–SUBC C66 400 50 46350 791 0.5%

Table 2: Mean apparent shear moduli, associated scatter and relative error on the mean as a function
of the domain size and of the number of realizations for three different boundary conditions (1–grain–
thick polycrystalline copper sheets).

4 RESULTS FOR THIN POLYCRYSTALLINE COPPER SHEETS

In this section, the question of the existence of homogeneous equivalent properties and of the size of the
corresponding representative volume element is investigated in the case of linear elastic polycrystalline
copper sheets exhibiting a small and fixed number of grains through the thickness. The crystallographic
orientations are distributed randomly among the grains in each simulation, which results in an isotropic
crystallographic texture. The grain morphology and distribution in space still correspond to the
Voronoi mosaic random model.

4.1 Apparent shear moduli for thin copper polycrystalline structures

The polycrystalline copper layer of figure 1(b) is obtained by superimposing a regular mesh of a plate
with a given thickness on a bulk Voronoi mosaic. As in the previous section, a crystallographic orien-
tation is attributed to each integration point in each element according to the color of the underlying
voxel. The same mesh density as in section 3 is used for the plate, namely 16 elements per grain. Two
thicknesses are considered corresponding respectively to an average of 1 grain and 3 grains through the
thickness. Square sheets are considered, the normal to the sheet being the direction 3. Two orthog-
onal in–plane directions parallel to edges of the square plate are labelled 1 and 2. In all simulations
presented in this section, the thickness of the plate and grain size are kept constant whereas the width
is increased gradually leading to larger volumes V and therefore larger numbers of grains.

The boundary conditions KUBC and PERIODIC defined in section 2.3 are applied to the entire
outer surface of the plates, namely both faces normal to direction 3, and the four lateral faces. In the
case of PERIODIC boundary conditions, a periodicity constraint is imposed in the morphology of the
grains, as depicted in section 2.1 but only with respect to lateral faces. This accelerates slightly the
convergence of the apparent moduli. No periodicity constraint is prescribed to the morphology of the
grains on the faces normal to direction 3. Special boundary conditions called mixed PERIODIC–SUBC
are introduced that are especially relevant for free–standing films. According to these conditions,
periodicity conditions for all displacement components are imposed to the lateral faces of the plate,
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Figure 3: Finite element computations of a plate containing 500 grains with one grain within the
thickness: (a) finite element mesh and morphology of the grains, (b) stress heterogeneities induced
by in–plane shear under mixed PERIODIC–SUBC conditions. The deformation state of the grains is
magnified for the illustration. The represented variable is the normalized equivalent von Mises stress
σeq/σmin

eq .

whereas the stress vector is prescribed to both surfaces normal to direction 3.
The volume sizes, or equivalently the numbers of grains in the sample plates, considered in the

simulations of the elastic deformation of copper polycrystalline plates are listed in table 2 in the
case of one grain through the thickness and in table 3 in the case of three grains, for all types of
boundary conditions. They range from 50 to 400 grains per polycrystalline plate in average. The
numerical analysis is restricted to the computation of the apparent shear moduli of a large number of
plates corresponding to different realizations of the microstructure. Whatever the type of boundary
conditions, the apparent shear moduli are defined as proper ratios of mean shear stress and shear
strain components over the whole volume of the plate, according to the formula: Σ23

Σ31

Σ12

 =

 Capp
44 × ×

× Capp
55 ×

× × Capp
66


 2E23

2E31

2E12

 (18)

In the case of KUBC and PERIODIC boundary value problems, the components E12 = 1/2 and
E23 = 1/2 are imposed successively to estimate Capp

66 and Capp
44 respectively, the remaining components



self-consistent model
Voigt and Reuss bounds

mixed PERIODIC–SUBC C66
PERIODIC C44
PERIODIC C66

KUBC C44
KUBC C66

V

µa
p

p
(M

Pa
)

1000100

56000

54000

52000

50000

48000

46000

44000

42000

40000

Figure 4: Mean values and intervals of variation for the shear modulus µapp as a function of domain
size, for three different boundary conditions (one–grain thick copper polycrystalline sheets).

of the average strain tensor E being set to zero. In the case of mixed PERIODIC–SUBC problems, the
components Σ12 = a and Σ23 = a(= 1 MPa) of the average stress tensor Σ are prescribed successively
to the volumes, the remaining components being set to zero.

It cannot be expected a priori that the mean apparent properties C̄app
66 and C̄app

44 will coincide, even
for a sufficiently high number of realizations or number of grains, due to the special morphology of the
plates with a small number of grains through the thickness. That is why both properties are evaluated.
For reasons of statistical homogeneity of grain distribution and isotropy of the given crystallographic
texture, the mean apparent property C̄app

55 coincides with C̄app
44 . It is therefore not reported here. For

the same reasons, the components labelled with a cross × in equation (18) vanish in average (but,
of course, not in general for an individual plate). A number of 50 realizations for each investigated
volume size corresponding to distinct grain and orientation distributions was found to be sufficient
to ensure a relative error always smaller than 1.7% in the estimation of the apparent properties. A
relative precision of 0.4–0.5% was even reached for larger volumes. An example of such computations
is given in figure 3. The finite element mesh of a thin sheet with one grain through the thickness is
shown in figure 3(a). The figure 3(b) gives the fields of stress concentration in the case of in–plane
shear loading according to mixed PERIODIC–SUBC boundary conditions. The stress concentration
is defined here as the ratio of the local von Mises equivalent stress σeq divided by the minimum value
reached in the aggregate for a given mean shear strain E12 (resp. shear stress Σ12). The roughness of
the deformed plate and the stress gradient that develops along the normal direction are visible.

Mean values and intervals of variation for the apparent shear moduli Capp
44 and Capp

66 are plotted,
as a function of volume size V , in figure 4 in the case of one grain through the thickness. Each mean
apparent shear modulus for each type of boundary conditions is found to slightly depend on the volume
size and to converge towards an asymptotic value. These limit values can be defined unambiguously
since the mean apparent properties do not significantly vary for the considered largest volume sizes.
They are called C̄44 and C̄66 respectively. In the meantime, the scatter of the individual apparent
properties decreases slowly with increasing the volume size. Two main results can be pointed out.
First, the asymptotic mean apparent shear modulus C̄66 (resp. C̄44) depends on the type of boundary
conditions:

C̄KUBC
66 6= C̄PERIODIC

66 6= C̄mixed
66 , C̄KUBC

44 6= C̄PERIODIC
44 6= C̄mixed

44 (19)

The same ranking of asymptotic shear moduli according to the type of boundary conditions was found



for bulk polycrystals:

C̄mixed
66 < C̄PERIODIC

66 < C̄KUBC
66 , C̄mixed

44 < C̄PERIODIC
44 < C̄KUBC

44 (20)

The found difference of 7% between C̄PERIODIC
66 and C̄KUBC

66 is significant compared to the rela-
tive precision of the estimations. It can be noticed that the asymptotic in–plane shear modulus
C̄PERIODIC

66 = 48604 MPa is close to the effective shear modulus µeff = 48764 MPa found for bulk
copper polycrystals. Second, an anisotropy of asymptotic shear properties pertains for large plates:

C̄KUBC
66 6= CKUBC

44 , C̄PERIODIC
66 6= C̄PERIODIC

44 (21)

unlike what happens to bulk polycrystals. The found differences of about 1.7% between C̄PERIODIC
66

and C̄PERIODIC
44 is significant, compared to the relative precision of the estimations. The effective shear

properties based on KUBC boundary conditions are close to the values that one gets by considering
2D crystal aggregates under plane strain conditions [10].

4.2 Discussion on the existence of a RVE for thin structures

The new feature of the analysis of thin layers is that the boundary conditions induce a bias in their
asymptotic elastic behaviour, even for very large plates. This is in contrast to the bulk behaviour of
elastic polycrystals for which the apparent shear modulus µ̄app was found to converge towards a single
asymptotic value µeff irrespective of the type of boundary conditions. Even though asymptotic shear
properties can be associated to the polycrystalline plate for a given type of boundary conditions,
we reserve the term of effective properties to the case of asymptotic values that eventually do not
depend on the type of boundary conditions. Accordingly, unambiguous effective properties do not
exist for copper polycrystalline layers with one grain through the thickness. As a result, a RVE
cannot be defined unambiguously in this case. In practice, the asymptotic values found for each type
of boundary conditions can be used to model the elastic behaviour of thin copper layers provided
that the in situ material layers undergo similar boundary or interface conditions. For instance, in the
case of thin copper sheets with free surfaces, the asymptotic shear properties obtained from mixed
PERIODIC–SUBC conditions (or equivalently SUBC conditions) will be the relevant ones for further
structural analyzes. The found slight anisotropy of the asymptotic tensor of elastic moduli should
also be taken into account. The authors in [6] also study the evolution of scatter when increasing
the number of grains in textured copper one–grain thick coatings on a substrate in the case of mixed
KUBC–SUBC–PERIODIC boundary conditions. They also found asymptotic values of the apparent
elastic properties, which are specific of the chosen boundary conditions.

When the number of grains within the thickness increases, the bias introduced by the boundary
conditions is reduced. The case of thin copper sheets having 3 grains through the thickness was
investigated in the present work. The table 3 shows that 50 simulations over 400 grains with PE-
RIODIC boundary conditions provide mean apparent shear properties close to the shear modulus
of bulk polycrystalline copper (the difference is less than 0.8%). There is still a difference of 2%
between the asymptotic values of the apparent properties C̄PERIODIC

66 and C̄KUBC
66 . The bias intro-

duced by the boundary conditions does still exist but is significantly smaller than for one–grain–thick
sheets. Furthermore, the anisotropy of the shear moduli has almost disappeared since C̄PERIODIC

66

and C̄PERIODIC
44 do not differ from more than 0.05% with a relative precision of 0.35% on the mean.

Accordingly, the concepts of effective properties and RVE are found to be meaningful in the case of
3–grain thick copper polycrystalline sheets with a tolerance of 2%. The concept of RVE is also char-
acterized by the value of the integral range Alayer

3 that can be defined as in section 3.2, equation (14).
The value Alayer

3 = 1.40 is deduced from the results of table 3, which is almost equal to the integral
range found for bulk polycrystals. Finally, for a given precision of εrel = 1% in the estimated mean
and for n = 10 realizations and periodic boundary conditions, the RVE size is found to be equal to
435 grains, which is close to the result of 445 grains found for bulk polycrystals. The main difference
is that, in the case of copper polycrystalline layers, the RVE does not have the shape of a cube. It is
a plate with 3 grains within the thickness and 12 grains along the edges, instead of a cube of about
8×8×8 grains.



5 CONCLUSION AND PROSPECTS

The statistical definition of the Representative Volume Element, first proposed in [2], was applied
to aggregates of linear elastic copper uniformly oriented crystals for bulk and thin structures. It is
associated with the choice of a targeted relative precision εrel on the estimated effective property and
of a number n of realizations. The corresponding RVE size is then given by equation (17), where the
integral range A3 fully characterizes the asymptotic response of volumes made of the considered het-
erogeneous material. Bulk copper polycrystals were considered as a reference to analyse the behaviour
of thin sheets and layers. The following conclusions were drawn:

• Effective properties do not exist for all types of polycrystalline aggregates. In particular, it
was shown that it is not possible to determine shear properties that are independent of the
type of boundary conditions for copper polycrystalline thin sheets with only one grain within
the thickness. In such cases, however, asymptotic apparent properties can be associated to
each type of boundary conditions. They may be anisotropic even though the crystallographic
and morphological textures of the aggregate are isotropic. Such asymptotic values can be used
in structural computations provided that the boundary conditions are indeed relevant for the
considered situation. This is the case of SUBC or mixed PERIODIC–SUBC conditions for
one–grain thick copper polycrystalline sheets with free surfaces or for free–standing films.

• For polycrystalline copper sheets having three grains through the thickness, the asymptotic ap-
parent shear modulus determined using periodic boundary conditions coincides with the effective
shear modulus for bulk polycrystals with a precision better than 1%.

• The value of the integral range A3 = 1.4± 0.05 was found for bulk copper polycrystals but also
for 3–grain thick copper sheets.

• As a result of the proposed definition, a rather small RVE size can be determined by using
periodic boundary conditions rather than homogeneous boundary conditions. This confirms the
results found in [2] and [4]. For εrel = 1% and n = 10, the required number of grains is a little
higher than 400 grains for bulk and 3–grain thick polycrystals.

• The shape of a RVE is not necessarily a cube. It can have a rather small (but not too small!)
number of grains along one direction, provided that the number of grains is sufficiently high
along the two other directions. The adequate ratio was determined in the case of 3–grain thick
copper plates with a tolerance of 2%.

The question of RVE size addressed in this work can be raised also in at least two other situations:
the case of textured bulk and thin films (especially {111} and {001} textures relevant in the latter
situation [6]), and the case of the elastoplastic behaviour of polycrystals.

Another important application is the modeling of the mechanical behaviour of polycrystalline
coatings which often have only one grain within the thickness. In this case, mixed periodic–KUBC–
SUBC conditions should be developed to include the substrate constraint effect (first attempts can be
found in [6] for copper films on a substrate and in [11] for zinc coatings).
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7. B.K.D. Gairola and E. Kröner. A simple formula for calculating the bounds and the self–consistent
value of the shear modulus of polycrystalline aggregates of cubic crystals. Int. Engng Sci., 19:865–
869, 1981.

8. Z–set package. www.nwnumerics.com, www.mat.ensmp.fr. 2001.

9. C. Huet. Application of variational concepts to size effects in elastic heterogeneous bodies. J.
Mech. Phys. Solids, 38:813–841, 1990.

10. Z.-Y. Ren and Q.-S. Zheng. A quantitative study of minimum sizes of representative volume
elements of cubic polycrystals–numerical experiments. Journal of the Mechanics and Physics of
Solids, 50:881–893, 2002.

11. R. Parisot, S. Forest, A. Pineau, F. Grillon, X. Démonet, and J.-M. Mataigne. Deformation and
Damage Mechanisms of Zinc Coatings on Galvanized Steel Sheets, Part I : Deformation Modes.
Metallurgical and Materials Transactions, 35A:797–811, 2004.


