
Cosserat Media

Conventional continuum mechanics approaches can-
not incorporate any intrinsic material length scale.
However real materials often have a number of
important length scales, which must be included in any
realistic model (e.g., grains, particles, fibers, and
cellular structures). So-called nonlocal theories can be
used to account for size effects in the mechanical
behavior of materials. The departure from local
theories begins with the Cosserat continuum. A
Cosserat (or micropolar) medium is a continuous
collection of particles that behave like rigid bodies.
Accordingly, each material point is endowed with
translational and rotational degrees of freedom, that
describe its displacement and the rotation of an
underlying microstructure. The material may then
oppose couple stresses to the development of curvature
i.e., gradient of microrotation. Although the idea of
introducing couple stresses in the continuum modeling
of solids goes back to Voigt and the Cosserat brothers
(1909), the mechanics of generalized continua really
culminated in the late 1950s and 1960s (Kro$ ner 1968).
The recent renewal of Cosserat mechanics is due, on
the one hand, to the dramatic increase of com-
putational capabilities and, on the other hand, to the
development of local strain field measurement me-
thods (Bertram and Sidoroff 1998). For, Cosserat
effects can arise only if the material is subjected to
nonhomogeneous straining conditions.

1. Mechanics of Cosserat Media

1.1 Kinematics

The Cartesian components of the displacement and
rotation vectors are respectively denoted by u

i
and }

i
.

The Cosserat theory is presented here within the
framework of small perturbations. The Cosserat
microrotation R

ij
relates the current state of a triad of

orthonormal directors attached to each material point
to the initial one:
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where δ
ij

is Kronecker’s symbol and ε
ijk

the signature
of the permutation (i, j, k). The associated Cosserat
deformation e

ij
and torsion-curvature (or wryness)

tensor κ
ij

read:
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where subscript i denotes partial derivation with
respect to space variable x

i
.

1.2 Balance Equations

It is assumed that the transfer of the interaction
between two particles of the body through a surface

element n
i
dS occurs not only by means of a traction

vector t
i
dS but also by means of a moment vector m

i
dS

(Fig. 1). Surface forces and couples are then repre-
sented by the generally nonsymmetric force–stress and
couple–stress tensors σ

ij
and µ

ij
(units MPa and

MPam) respectively:
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The force and couple stress tensors must fulfill the
equations of balance of momentum and of balance of
moment of momentum:
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where volume forces f
i
, volume couples c

i
, mass density

ρ, and isotropic rotational inertia I have been
introduced.

1.3 Constrained Cosserat Medium

In the often used couple–stress or Koiter theory, the
Cosserat microrotation is constrained to follow the
material rotation given by the skew-symmetric part of
the deformation gradient:
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The associated torsion-curvature and couple stress
tensors are then traceless. The antimetric force stresses
degenerate into reaction forces directly given by Eqn.
(5). If a Timoshenko beam is regarded as a one-
dimensional Cosserat medium, constraint (6) then is
the counterpart of the Euler–Bernoulli condition.

1.4 Constituti�e Equations

The resolution of the previous boundary value prob-
lem requires constitutive relations linking the defor-
mation and torsion-curvature tensors to the force- and
couple-stresses. The example of linear isotropic elas-
ticity is given here:
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where e
(i,j)

and e²i,j´
respectively denote the symmetric

and skew-symmetric part of e
ij
. Four additional

elasticity moduli appear in addition to the classical
Lame! constants. Several characteristic lengths can
then be defined; among them and after Nowacki
(1986):
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Figure 1
Volume element of Cosserat mechanics.

Cosserat elastoplasticity also is a well-established
theory. Von Mises classical plasticity can be extended
to micropolar continua in a straightforward manner
(see references in Mu$ hlhaus 1995). The yield criterion
depends on both force- and couple-stresses:
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where s denotes the stress deviator and a
i
, b

i
are

material parameters. It can be seen that the ratio a
i
}b

i

has the dimension of the square of a length. The
normality rule can be used to compute the amount and
direction of plastic flow and curvature. The isotropic
hardening variable R can be a function of cumulative
plastic deformation and curvature.

2. Cosserat Materials

The Cosserat continuum provides a relevant descrip-
tion of the mechanical behavior of several classes of
materials with microstructure; some examples are
briefly reported here.

2.1 Liquid Crystals

Liquid crystals naturally possess directors that make
them good candidates for Cosserat modeling. Linear
Cosserat viscoelasticity has been used to describe the
shear flow of nematic liquid crystals, their change of
orientation due to magnetic fields and the bending and
torsion of smectic crystals (Lee and Eringen 1973).

2.2 Rocks and Granular Media

The inelastic response and the stability of block-
systems in masonry are adequately predicted using the
Cosserat continuum (Besdo 1985). The material de-
grees of freedom are related to the rigid body motion
of individual blocks. The approach has also been
successfully applied to faulted rocks in geomechanics.
The flow of mineral charges in blast furnaces or in silos
is often simulated experimentally by the motion of

stacked cylinders that can both translate and rotate.
The elastic and inelastic behavior of granular materials
like sands and soils can also be described properly by
generalized continua.

2.3 Cellular Solids and Composites

Beam networks, frames and reinforced grids display
strong Cosserat effects when their bending stiffness is
relatively high compared to their shear stiffness.
Accordingly, the Cosserat properties of polymeric
foams, bones and other open or closed-cell periodic or
random cellular solids have been extensively studied
regarding elastic and failure properties. More gen-
erally, heterogeneous materials and composites under-
going strong overall deformation gradients can be
modeled as homogeneous Cosserat media. The de-
pendence of the effective properties of metal matrix
composites on the size of the particles or fibers can be
accounted for by treating the matrix as a Cosserat or
generalized medium.

2.4 Dislocated Crystals

The idea that a crystal element containing dislocations
can carry both surface forces and couples goes back to
Gu$ nther and MacClintock in the late 1950s. The
influence of so-called geometrically necessary disloca-
tions on the hardening behavior of metals can be
accounted for using generalized continua (Fig. 2). This
provides an efficient way to model size effects in
crystals (Forest 1998).

3. Applications

3.1 Dispersion of Elastic Wa�es in Heterogeneous
Elastic Solids

Heterogeneous materials can become dispersive under
dynamical conditions in the elastic regime when the
incident wavelength and the size of the heterogenities
have the same order of magnitude. Longitudinal waves
in a Cosserat medium remain nondispersive as in the
classical case but dispersion relations exist for trans-
verse and rotational waves. They can be used to
interpret the results of nondestructive testing methods.

3.2 Regularization Methods in the Computation of
Localization Phenomena

Finite element simulations of localization deformation
modes, like shear banding in elastoplastic materials
exhibiting a strain-softening behavior, lead to spurious
mesh-dependence as a result of the loss of ellipticity of
the field equations (de Borst 1991). Generalized
continua have been used as regularization methods to
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Figure 2
Cosserat crystal plasticity: initial, intermediate, and final
configurations (F and K denote the deformation gradient
and curvature).

predict mesh-independent load-displacement curves.
The finite width of shear bands can be predicted using
the Cosserat approach. Applications deal with sands
and soils as well as fracture and damage in metals and
concrete.

4. Conclusions

The mechanics of generalized continua can be useful
in the modeling of heterogeneous materials when the
size of the heterogenities (internal length) and the
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wavelength of the loading conditions (external length)
have the same order of magnitude. It may apply when
discrete simulations remain untractable and conven-
tional continuum modeling breaks down. The cor-
responding validity range may be sometimes rather
narrow, which contributes to a long-standing debate
on the physical interest of generalized continua.
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