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Definitions

Micromorphic media are three-dimensional con-
tinua made of material points endowed with usual
translational degrees of freedom and additional
kinematical degrees of freedom accounting for
the rotation and distortion of a triad of direc-
tors. The directors are related to an underly-
ing microstructure (lattice directions in a crystal,
fiber directions in a composite materials, etc.).
Their transformation is represented by a gener-
ally noncompatible field of second rank generally
nonsymmetric microdeformation tensors. More
generally, the micromorphic approach consists in
enriching the kinematics of the material point by
additional degrees of freedom related to plastic
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strain, damage, or phase field variables. An essen-
tial feature of such theories is that the gradient of
the micromorphic variable enters the constitutive
functions which therefore include internal length
parameters.

Overview

The micromophic model represents one of the
most sophisticated generalized continuum theo-
ries since each material point is endowed with
12 independent degrees of freedom in the gen-
eral three-dimensional case. It aims at incor-
porating some features of the underlying mate-
rial’s microstructure into the macroscopic contin-
uum setting, namely the existence of priviledged
microstructural directions whose orientation and
curvature affects the material’s response. It was
invented simultaneously by Mindlin (1964) and
Eringen and Suhubi (1964) but the seminal name
micromorphic was coined by C.A. Eringen who
also provided the complete theory at finite defor-
mations including inertial effects. It is a first gra-
dient theory in so far as only the first gradient of
all degrees of freedom, i.e., displacement gradient
and microdeformation gradient, are included in
the theory in contrast to strain gradient models
involving second and even higher order gradi-
ents of the displacement field. The micromorphic
model overcomes the limitations of the Cosserat
theory which relies on the rotation and curvature
of microstructure directors only. For example,
the Cosserat model is suitable for the prediction
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of shear bands with finite width in plasticity
but inappropriate for crushing bands in cellular
materials due to the absence of rotation in such
localization modes (Forest et al. 2005).

In the 1960s and 1970s, the micromorphic
model was essentially confined to applications
related to the elastic behavior of materials in-
cluding the dispersion of elastic waves and the
regularization of stress and strain singularities at
the crack tip and dislocation core Eringen (1999).
The modern interest in micromorphic approaches
is due to the strong development of computa-
tional methods and experimental field measure-
ment techniques allowing for proper identifica-
tion of intrinsic length scales. The most promis-
ing applications of the micromorphic approach
deal with the modeling and simulation of strain
and damage localization phenomena in materials.

This entry deals only with the statics of mi-
cromorphic media. The reader is referred to the
entries Waves and Generalized Continua in this
Encyclopedia for the dynamical equations.

Intrinsic notations are used throughout the
entry. Vectors and tensors of various order are
denoted by boldface letters. Double and triple
contractions are written as:

a:b= ai_;bij, afb = a,'jkbijk (1)

using the Finstein summation rule for repeated
indices. The tensor product is denoted by ®.
For example, the component (@ & b);ii is a;jby.
A modified tensor product X is also used: the
component (a X b);j is aubj;.

The gradient operators V or Vy are introduced
when the functions respectively depend on cur-
rent spatial coordinates x or Lagrangian material
coordinates X. The following notation is used:

. aU;
U Vy = Ul',j e; ®ej,W1th U,"j = ﬁ

2

u®V=uje Qe;, withu; ; = Z?xLl, 3
where (e;); = 1,2, 3 is a Cartesian orthonormal ba-
sis.
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Kinematics

The degrees of freedom of the theory are the
displacement vector u and the generally nonsym-
metric second rank microdeformation tensor x.
The current position of the material point with
reference position X is given by the transforma-
tion ® according tox = (X, 1) = X + u(X, 1).
The microdeformation describes the deformation
of a triad of directors, Z' attached to the material
point

£ (X,1)=x(X,1)-E 4

As such, its determinant is taken as strictly
positive. The polar decomposition of the gener-
ally incompatible microdeformation field y(X)
into a pure rotation and a symmetric second rank
tensor is written as

X = R U 5)

Internal constraints can be prescribed to the
microdeformation. The micromorphic medium
reduces to the Cosserat medium when the mi-
crodeformation is constrained to be a pure ro-
tation: y = R*. The microstrain medium is ob-
tained when y = U*. Finally, the second gradient
theory is retrieved when the microdeformation
coincides with the deformation gradient, y = F.
A hierarchy of higher order continua can be
established by specializing the micromorphic the-
ory and depending on the targeted material class,
see Forest and Sievert (2006).

The following kinematical quantities are then
introduced:

* The velocity field v (x,7) :=a (@' (x,1))

¢ The deformation gradient F =14+ u ® Vy

* The velocity gradient v ® V, = F.F7!

+ The microdeformation rate j - y !

* The third rank Lagrangean microdeformation
gradient K:= xy~™' - y ® Vx

e The gradient of the microdeformation rate
tensor
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(- x)®Ve=x-K:(x'RF) (©
with the corresponding index notation:

()'m x,_jl) K= HinKpgr X Fri

General Micromorphic Media

Germain (1973) interpreted the microdeforma-
tion tensor as the first term in an expansion of
the relative motion around the material volume
element center of mass:

I/t; (x') =u; + XUXIJ -+ X,-jkx;-x,; (7)

/ !\
+ Xijkl XjXpXj + e

where x’ refers to the position of microscopic
points around the center of mass, x, and the
coefficients y. .., symmetric w.r.t. to all indices
except the first one, are microdeformation tensors
of higher orders. This concept generalizes Erin-
gen’s model to micromorphic media of order n,
corresponding to the truncation of the previous
expansion. This expansion is a Taylor series if
the various micromorphic degrees of freedom
coincide with gradients of the displacement field:

Xij =8 Fui . Xijk = Ui jk,
(8

Nijkl = Ui jki,

Germain’s general micromorphic model has
been recently extended to totally nonsymmet-
ric microdeformation tensors by Forest and Sab
(2017), who interpreted them as relaxed deforma-
tion gradients.

Balance Laws for Momentum
and Generalized Moment
of Momentum

The method of virtual power is used to introduce
the generalized stress tensors and the field and
boundary equations must satisfy following Ger-
main (1973).

The virtual power of internal forces of a sub-
domain D C B of the current body is

el (”*ai*'l*_l):/ PO (v g x ) dv
D

The virtual power density of internal forces is
a linear form on the fields of virtual modeling
variables:

p=0: (F'F_l) +s:(F-F‘1_)'(.X71>
+M((x-x7")®Vy)
=0 (PP ) (- () )

+M5<X~K : (X_1®F_1))
©)

where the relative deformation rate F - F~1 —
x - x~ ! is introduced and expressed in terms of
the rate of the relative deformation y~! - F. The
virtual power density of internal forces is invari-
ant with respect to virtual rigid body motions so
that 0 must be symmetric. The generalized stress
tensors conjugate to the velocity gradient, the
relative deformation rate, and the gradient of the
microdeformation rate respectively are the simple
stress tensor o, the relative stress tensor s, and the
double stress tensor M of third rank. The Gauss
theorem is then applied to the power of internal
forces

/P‘“dV:/ v (6 +5)-ndS
D 0D
+/ (*-x*'):M-nds
D
—/v*-(a—i—s)-VdV
D
—[ (X x Y :(M-V+s)dV
D

The form of the previous boundary integral
dictates the possible form of the power of contact
forces acting on the boundary 99 of the subdo-
main D C B

P((,’) (v*,x*.x*—l) = fM) p(c) (v*,j(*-x*_l)dV
PO X T =0t m ()7 )



where the simple traction ¢ and double traction
m, a tensor of second rank, are introduced. The
power of forces acting at a distance is defined as

ple) (v*’ X*
p@ (v x”

'X*_]) — po(e) (v*ﬂx* 'X*_l) dv
sk X*—l)

) =fv'+p:(x

including simple body forces f and double body
forces p. More general double and triple volume
forces could also be incorporated according to
Germain (1973).

The principle of virtual power is now stated in
the static case,

Yo*, x*, VD C 8B, P (v*’ i X*—l)
= P(C) (0*7 X* . X*_l) + P(e) (U*, X* . X*_l)
(10)

This variational formulation leads to the field
equations of the problem (static case) (Germain
1973; Kirchner and Steinmann 2005; Lazar and
Maugin 2007; Hirschberger et al. 2007):

* Balance of momentum equation

(0+s)-V+f=0,Vxe8B (11

* Balance of generalized moment of momentum
equation

M-V+s+p=0,Vxe8B (12)

e Boundary conditions
(c+s)-n=t,Vx €08 (13)
M-n=m,Vx €iB (14)

Thermomechanical Setting
and Constitutive Laws

This section is dedicated to the formulation of
constitutive equations for micromorphic media.
The general case of hyperelastic-viscoplastic
materials is considered. According to Eringen
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(1999), the following Lagrangian strain measures
are adopted:

C:=FT.F, Y:=y'F,
K:=x" - (x®Vx)

i.e., the Cauchy—Green strain tensor, the relative
deformation, and the microdeformation gradient,
a third rank tensor.

In the presence of plastic deformation,
the question arises of splitting the previous
Lagrangian strain measures into elastic and
plastic contributions. Following Mandel (1973), a
multiplicative decomposition of the deformation
gradient is postulated:

F=F¢ - FP=R®-U°-F? (15)
which defines an intermediate local configura-
tion at each material point. Uniqueness of the
decomposition requires the suitable definition of
directors. Such directors are available in any mi-
cromorphic theory. As an example, lattice direc-
tions in a single crystal are physically relevant di-
rectors for an elastoviscoplasticity micromorphic
theory, see (Aslan et al. 2011). A multiplicative
decomposition of the microdeformation is also
considered:

x=xx?=R*.UFx? (16
according to Forest and Sievert (2003, 2006).
Finally, a partition rule must also be proposed for
the third strain measure, namely the microdefor-
mation gradient. Sansour (1998a, b) introduced
an additive decomposition of curvature:

K =K°+ K? (17)

A quasi-additive decomposition was proposed
by Forest and Sievert (2003) with the objective of
defining an intermediate local configuration for
which all generalized stress tensor are simultane-
ously released, as it will become apparent in the
next section:

K=xP"'K:(x? XRF?)+ K? (18)
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The continuum thermodynamic formulation is
essentially unchanged in the presence of addi-
tional degrees of freedom provided that all func-
tionals are properly extended to the new set of
variables. The local equation of energy balance is
written in its usual form:

pe= p@ — gV +r (19)
where ¢ is the specific internal energy density,
and p® is the power density of internal forces
according to Eq. (9). The heat flux vector is ¢
and r is a heat source term. The local form of the
second principle of thermodynamics is written as

1

T)'V_%ZO

P+ (
where 7 is the specific entropy density. Introduc-
ing the Helmholtz free energy function ¥, the
second law becomes

p(i)—p‘il—nT'—%-(VT)zo

The state variables of the elastoviscoplastic
micromorphic material are all the elastic strain
measures and a set of internal variables g. The
free energy density is a function of the state
variables:

V(C®:=FT .F°,re:=x"'F° K* q)
The exploitation of the entropy inequality

leads to the definition of the hyperelastic state
laws in the form:

_ e 0w eT _ pe-T v eT
o =2F paC_eF ,S—F ’OaT_eF
_ T . ¥ . (T T
M=x" pyge: (){ X F
(20)
. e )
while the entropy density is given by n = —57.

The thermodynamic force associated with the
internal variable g is

The hyperelasticity law (20) for the double
stress tensor was derived for the additive decom-
position (17). The quasi-additive decomposition
(18) leads to an hyperelastic constitutive equation
for the conjugate stress M in the current config-
uration, that has also the same form as for pure
hyperelastic behavior. One finds:

1
M=x"p

e (x"=FT) @

The residual intrinsic dissipation is
D=3%:(FIFP)+8: ()" x"™)
+ MK? — RG>0

where generalized Mandel stress tensors have
been defined

Y=FT. (0 +s) - FT,
(22)
S — _Ueﬂ . Re#T .5 - Reﬁ . Ueﬂ—l
M=x"-s:(x"® F—T) (23)
At this stage, one may define a dissipation
potential, function of the Mandel stress tensors,
from which the viscoplastic flow rule and the
evolution equations for the internal variables are
derived.

Q (Z,8 M R)

: a0 a0
Prp-1 _ 2D, p—1 _
F'F Ty XX T s (24
. 0 aQ
KPP =22 =222
am” 17 R

Appropriate convexity properties of the dis-
sipation potential with respect to its arguments
ensure the positivity of the dissipation rate at each
instant.

Explicit constitutive equations can be found
in (Forest and Sievert 2003; Grammenoudis and
Tsakmakis 2009; Grammenoudis et al. 2009;
Regueiro 2010; Sansour et al. 2010), including
extension of von Mises isotropic plasticity.
Examples of application of elastoplastic



micromorphic media can be found in (Dillard
et al. 2006) for plasticity and failure of metallic
foams.

Linearized Constitutive Laws

The previous constitutive laws can now be lin-
earized, thus providing a close set of equations
for infinitesimal gradients of displacement, mi-
crodeformations, and gradients of microdeforma-
tion (the latter is not dimensionless and should
therefore be compared to some characteristic cur-
vature value). The gradient of the displacement
and the microdeformation itself are additively
split into elastic and plastic parts:

H:=u®V=H®+H?, y=yx°+ x?
(25)

all of these second rank tensors being generally
nonsymmetric. In the linearized case, y is written
for the previous y — 1. The microdeformation
gradient is also split into elastic and plastic parts
which are generally distinct from the elastic and
plastic microdeformation gradients: K = K® + K
P, The state and evolution laws (20) and (24) are
linearized into:

o
o.:p_,s:p—y
de® d(H® — e
W ;w ) (20)
M=p——\R=p—
paKe’ paq
szaa—sz’ ‘p:aa—sz’
o N (27)
PRI
oM 1T 9R

The skew-symmetric parts of H” and x?
must be provided to determine the associated
plastic spins that are essentials for the description
of the elastic-plastic behavior of anisotropic ma-
terials like metal polycrystals or composites.
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The Micromorphic Approach
to Gradient Elasticity, Viscoplasticity,
and Damage

The previous micromorphic model can be ex-
tended to other types of additional degrees of
freedom. This leads to a systematic approach
for the construction of generalized continuum
models with enriched kinematics. The method of
thermomechanics with additional degrees is pre-
sented within the small deformation framework,
following (Forest 2009). The reader is referred
to Forest (2016) for the formulation at finite
deformations.

The method amounts to enhancing any elasto-
viscoplasticity model formulation within classi-
cal continuum thermodynamics according to Ger-
main et al. (1983), Maugin (1999), by introducing
suitable additional degrees of freedom. The small
strain tensor is denoted by &, whereas g represents
the whole set of internal variables of arbitrary ten-
sorial order accounting for nonlinear processes
at work inside the material volume element, like
isotropic and kinematic hardening variables. The
absolute temperature is 7. Additional degrees of
freedom ¢, are then introduced in the origi-
nal model. They may be of any tensorial order
and of different physical nature (deformation,
plasticity, or damage variable). The notation ,
indicates that these variables eventually represent
some microstructural features of the material so
that we will call them micromorphic variables
or microvariables (microdeformation, microdam-
age, etc.). The spaces of degrees of freedom and
state variables are the following, respectively:

{u, ¢x}»{€’ T, q, ¢y V¢x} (28)

Depending on the physical nature of ¢, it
may or may not be a state variable. For instance,
if the microvariable is a microrotation as in the
Cosserat model, it is not a state variable for ob-
jectivity reasons and will appear in the state space
only in combination with the macrorotation. In
contrast, if the microvariable is a microplastic
equivalent strain, as in Aifantis model, it then
explicitly appears in the state space.
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The method of virtual power can be used in the
same way as for regular micromorphic media in
order to introduce the generalized stresses and the
balance laws they must satisfy. The virtual power
of internal forces is a linear form with respect to
the virtual fields and their gradients:

PO (v*.¢F) =0 :Vv* +adX +b.VeX
(29

The Cauchy stress tensor ¢ is symmetric and a
and b are generalized stresses associated with the
micromorphic variable and its first gradient. The
method of virtual power is used then to derive the
standard local balance of momentum equation in
the static case:

divo+pf=0VxeQ 30)
and the generalized balance of micromorphic
momentum equation:

div b—a =0 Vx € Q 31

The associated boundary conditions for the
simple and generalized tractions are:

t=o.n,a° =b.n,Vx € 0D (32)
where t is the traction vector and a“ a generalized
traction.

The thermodynamic formulation and the con-
stitutive laws follow the same lines as exposed
for the regular micromorphic media. As a special
case, the constitutive formulation is given here
in the case of nondissipative contributions of the
generalized stresses, because it plays an essential
role in the construction of regularization oper-
atores for ill-posed boundary value problems.
Total strain is split into elastic and plastic parts:

e =¢e°+¢? (33)

The following constitutive functional depen-

dencies are then introduced

7
V=V (e4 T, q, ¢y Véby) »
0 =0(eT.q,¢y. Voy).
77 :,ﬁ(é‘e,T,q, ¢X7V¢X) (34)
a=1a(eT.q ¢y Voy),
b=">b(eT.q ¢y Vy)
The state laws take the form:
ad ad ad
o =pyle.n=—gr R=p5 (35
— 0V — 5, 0
a=paL.b=psh (36)
The residual dissipation is
D =g :é"—Rq—%VTEO (37)

where R the thermodynamic force associated
with the internal variable g. The existence of a
dissipation potential, 2(a, R) depending on the
thermodynamic forces can then be assumed from
which the evolution rules for internal variables
are derived, that identically fulfill the entropy
inequality provided the dissipation potential
possesses suitable convexity properties:

éPZB_Q . _Q

504 = "R (38)

After presenting the general approach, we
readily give the most simple example which
provides a direct connection to several existing
generalized continuum models. An element ¢ is
selected among the state variables (example: the
accumulated plastic strain variable, p, or damage
variable, d), or among other variables present in
the classical model. The presentation is limited
to cases where ¢ and ¢, are observer invariant
quantities. The free energy density function ¥ is
chosen as a function of the generalized relative
strain variable e defined as:

e=¢— ¢y (39)
thus introducing a coupling between macro and
micromorphic variables. Assuming isotropic ma-
terial behavior for brevity, the additional con-



tributions to the free energy can be taken as
quadratic functions of e and V¢, :

Y (e.T.q.¢5. Voy) = vy (€. T.q)
+ 9@ (e,Vg,,T)

with
(40)

1
Pl/f(z) (e, Voy, T) = EHX(d’ - ¢’X)2
41

1
+ 5 AV Vo,

where H, and A are the additional moduli intro-
duced by the micromorphic model. The function
¥ (e, T, g) refers to any constitutive function in
a classical continuum thermomechanical model
with internal variables. After inserting the state
laws (36)

Iy

a ZPW =—Hy (¢ —¢y).
a;‘/ (42)
b= Prvg. = AV

into the additional balance equation (31), the fol-
lowing partial differential equation is obtained, at
least for a homogeneous material under isother-
mal conditions:

A

¢ =ox— H_XA¢X (43)

where A is the Laplace operator. This type of
equation is encountered at several places in the
mechanics of generalized continua especially in
the linear micromorphic theory (Mindlin 1964;
Eringen 1999; Dillard et al. 2006) and in the so-
called implicit gradient theory of plasticity and
damage (Peerlings et al. 2001, 2004; Engelen
et al. 2003). Note however that this equation
corresponds to a special quadratic potential and
represents the simplest micromorphic extension
of the classical theory. It involves a characteristic
length scale defined by:
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A
12=_— 44
C=H, (44)

This length is real for positive values of the ra-
tio A/H,. The additional material parameters H,
and A are assumed to be positive for stability rea-
sons. This does not exclude a softening material
behavior that can be induced by the proper evo-
lution of the internal variables (including ¢ = ¢
itself). As an example, if ¢ = p, the accumulated
plastic strain in an isotropic classical plasticity
model, with R as the yield stress function, and
¢y = Py, is a plastic microstrain variable, the
isotropic hardening rule is:

0
R= p% =Ropra =R

— Hy (P - Px) = Ro(p) — AApy

where Ry(p) is any classical hardening function.
The classical isotropic hardening law is therefore
modified by a Laplace operator. When the penalty
modulus H is 12 large enough, p, cannot be dis-
tinguished from p itself so that the micromorphic
model degenerates into Aifantis celebrated strain
gradient plasticity model (Aifantis 1984, 1987),
involving the Laplacian of the accumulated plas-
tic strain field. Note that this contribution, with
A > 0, can regularize softening functions Ry(p).

The reader is referred to Aslan and Forest
(2011) for considerations of dissipative terms
induced by the generalized stresses and for the
relation between the micromorphic approach and
phase field model (see also the entry “» Phase
Field Models and Mechanics” in this Encyclope-
dia).

Micromorphic Media
and Heterogeneous Materials

The micromorphic models introduce new kine-
matical degrees of freedom and several additional
constitutive parameters like higher order elas-
tic moduli or the moduli H,, A arising in the
previous section. Even though these parameters
can be identified from strain field measurements


http://link.springer.com/Phase Field Models and Mechanics

Micromorphic Approach to Materials with Internal Length

in appropriate experimental tests (Geers et al.
1998; Maziere et al. 2017), one may ask for their
microstructural origin and try to find ways of
derivation of the micromorphic model from the
underlying microstructural discrete or continuum
models. Atomic systems can be approximated
by micromorphic media as discussed by Erin-
gen (1999) and Chen and Lee (2003) who de-
rived associated virial theorems. Homogenization
methods for composite media must be extended
to derive effective micromorphic theories from
periodic or random Cauchy microcontinua. Such
techniques are still under development but ac-
counts of these can be found in Alibert et al.
(2003), Forest (2012, 2014), Forest and Trinh
(2011), Trinh et al. (2012), Nassar et al. (2016),
and Hiitter (2017a).

Application to Strain and Damage
Localization Phenomena

Strain localization phenomena are overwhelm-
ing in the plasticity of metals, alloys, polymers,
and geomaterials in the form of static or prop-
agating shear bands (Miihlhaus and Vardoulakis
1987). They result from unstable material be-
havior induced by material softening. They can
be predicted based a bifurcation analysis of the
boundary value problem, see Besson et al. (2009).
Strain and damage localization are precursors of
crack initiation and subsequent structural failure.
The finite element simulation of such localization
phenomena is known to be associated with spuri-
ous mesh-dependence which makes it impossible
to make post-bifurcation predictions of the over-
all structural response and local strain field. The
ill-posedness of such boundary value problems
can be restored by introducing intrinsic length
scale(s) into the continuum mechanical setting
(Miihlhaus 1995).

A simple one-dimensional example can be
given in the case of microstrain gradient plasticity
based on the enhanced hardening law (45). In
the 1D case, the stress is uniform and equal to
R(p, py) under plastic loading conditions. This
provides a second order differential equation for
Dy involving p. At the strain gradient plasticity

limit p = p,, this differential equation is solved
by harmonic functions for plastic strain for a
linear softening material (Ro(p) = Ro + Hp,
H < 0). The localization band is described by a
sinus arc of finite width that is directly related to
the parameters H, H,, A, see Forest et al. (2005);
Mazieére and Forest (2015).

Localization and damage up to fracture surely
belong to the most-promising domain of appli-
cation of the micromorphic approach. Internal
lengths are necessary for the reliable prediction
of crack initiation, propagation, and crack path
including crack branching. Successful examples
are available for example in the case of the ductile
fracture of metals and alloys, see (Dillard et al.
2006; Lorentz et al. 2008; Enakoutsa and Leblond
2009; Feld-Payet et al. 2015; Hiitter 2017b).
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