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a b s t r a c t

Eringen’s micromorphic approach for materials with microstructure is applied to the plas-
ticity and damage of single crystals. A plastic microdeformation variable and its rotational
part are introduced in a standard crystal plasticity model in order to predict size effects in
the overall stress response of crystalline solids. In the case of an ideal laminate microstruc-
ture including a purely elastic layer and a plastic layer undergoing single slip, the model,
called microcurl, is shown to produce a kinematic hardening component that depends on
the size of the layers. In a second part of the paper, a microdamage variable is introduced
that accounts for cleavage or plasticity induced pseudo-cleavage phenomena in single crys-
tals. The formulation accounts for straight crack paths but also allows for crack branching
and bifurcation.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The links between the micromorphic continuum and the plasticity of crystalline materials have been recognized very
early by Eringen himself (Claus & Eringen, 1969; Eringen & Claus, 1970). Lattice directions in a single crystal can be regarded
as directors that rotate and deform as they do in a micromorphic continuum. The fact that lattice directions can be rotated
and stretched in a different way than material lines connecting individual atoms, especially in the presence of static or mov-
ing dislocations, illustrates the independence between directors and material lines in a micromorphic continuum, even
though their deformations can be related at the constitutive level.

The identification of a micromorphic continuum from the discrete atomic single crystal model is possible based on suit-
able averaging relations proposed in Chen et al. (2003). These works contain virial formula for the higher order stress tensors
arising in the micromorphic theory. This atomistic-based approach can be used to predict phonon dispersion relations (see
also Claus & Eringen, 1971 for the study of dispersion of waves in a dislocated crystal).

Analytical solutions have been provided that give the generalized stress fields around individual screw or edge disloca-
tions embedded in an elastic generalized continuum medium, like the micromorphic medium. The physical meaning of such
a calculation is the account of non-local elasticity at the core of dislocations that may suppress or limit the singularity of the
stress fields. For instance, non-singular force and couple stress were determined by Lazar and Maugin (2004) for a screw
dislocation embedded in a gradient micropolar medium that combines the first strain gradient with independent rotational
degrees of freedom. The unphysical singularities at the core of straight screw and edge dislocations are also removed when
the second gradient of strain is introduced in the theory, while the first strain gradient is not sufficient (see Lazar, Maugin, &
Aifantis, 2006).
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The next step is to consider the collective behavior of dislocations in a single crystal by means of the continuum theory of
dislocations. The material volume element is now assumed to contain a large enough number of dislocations for the contin-
uum theory of dislocation to be applicable. Non-homogeneous plastic deformations induce material and lattice incompati-
bilities that are resolved by a suitable distribution of the dislocation density tensor field which is a second rank statistical
mean for a population of arbitrary dislocations inside a material volume element (Kröner, 1969). Nye’s fundamental relation
linearly connects the dislocation density tensor to the lattice curvature field of the crystal. This fact has prompted many
authors to treat a continuously dislocated crystal as a Cosserat continuum (Forest, Barbe, & Cailletaud, 2000; Günther,
1958; Kröner, 1963). The Cosserat approach records only the lattice curvature of the crystal but neglects the effect of the
rotational part of the elastic strain tensor, which is a part of the total dislocation density tensor (Cordero et al., 2010). Full
account of plastic incompatibilities is taken in strain gradient plasticity theories, starting from the original work by Aifantis
(1984) up to recent progress by Gurtin (2002) and Acharya (2004). Formulation of crystal plasticity within the micromorphic
framework is more recent and was suggested in Clayton, Bamman, and McDowell (2005) for a large spectrum of crystal
defects, including point defects and disclinations. Limiting the discussion to dislocation density tensor effects, also called
geometrically necessary dislocation (GND) effects, it is shown in Cordero et al. (2010), within a small deformation setting,
how the micromorphic model can be used to predict grain and precipitate size effects in laminate crystalline materials. These
models represent extensions of the conventional crystal plasticity theory (see for instance Teodosiu & Sidoroff, 1976), that
accounts for single crystal hardening and lattice rotation but does not incorporate the effect of the dislocation density tensor.

The objective of the present work is, first, to formulate a finite deformation micromorphic extension of conventional crys-
tal plasticity to account for GND effects in single crystals, and, second, to show that the micromorphic approach can also be
used to introduce cleavage induced damage in a single crystal model. The first part, see Section 2, represents an extension to
finite deformation of the model proposed by Cordero et al. (2010). It also provides new analytical predictions of size effects
on the hardening of laminate microstructures. The theory is called the microcurl model because the evaluation of the curl of
the microdeformation, instead of its full gradient, is sufficient to account for the effect of the dislocation density tensor. The
second part, see Section 3, reports on a crystallographic model of damage in ductile single crystals, assuming that cracking
occurs on specific crystallographic planes. The micromorphic approach is used here to obtain finite size damage zones and
mesh-independent simulations of crack growth. In that way, the model is able to predict crack branching and bifurcation
which are frequently observed in single crystals. It represents an extension to finite deformation and full coupling between
plasticity and damage of the work initiated in Aslan and Forest (2009) and Aslan, Quilici, and Forest (2011).

The models proposed in this work for single crystals fall in the class of anisotropic elastoviscoplastic micromorphic media
for which constitutive frameworks at finite deformations exist (Forest & Sievert, 2003; Lee & Chen, 2003; Regueiro, 2010;
Sansour, Skatulla, & Zbib, 2010). The introduction of damage variables was performed in Grammenoudis, Tsakmakis, and Ho-
fer (2009). In fact, the micromorphic approach can be applied not only to the total deformation by introducing the micro-
deformation field, but can also be restricted to plastic deformation, for specific application to size effects in plasticity, or
to damage variables for application to regularized simulation of crack propagation, as proposed in Forest (2009) and Hirsch-
berger and Steinmann (2009).

Vectors and second rank tensors are denoted by a;a
�

, respectively. The theories are formulated within the general finite
deformation framework essentially following Eringen’s choice of strain measures (Eringen, 1999). The initial and current
positions of the material point are denoted by X and x, respectively. Throughout this work, the initial configuration of the
body is V0 whereas V denotes the current one. The associated smooth boundaries are @V0 and @V with normal vector N
and n. The gradient operators with respect to initial and current coordinates are called $X and $x, respectively. Similarly,
the divergence and curl operators are Div, div and Curl, curl whether they are computed with respect to initial or current
positions, respectively. Intrinsic notation is used in general but it is sometimes complemented or replaced by the index
notation for clarity. A Cartesian coordinate system is used throughout with respect to the orthonormal basis (e1,e2,e3).
The notations for double contraction and gradient operations are

A
�

: B
�
¼ AijBij; u� $X ¼

@ui

@Xj
ei � ej ð1Þ

2. The microcurl model for crystal plasticity

2.1. Balance equations

The degrees of freedom of the proposed theory are the displacement vector u and the microdeformation variable v̂
�

p, a
generally non-symmetric second rank tensor. The field v̂

�

pðXÞ is generally not compatible, meaning that it does not derive
from a vector field. The exponent p indicates, in advance, that this variable will eventually be constitutively related to plastic
deformation occurring at the material point. In particular, the microdeformation v̂

�

p is treated as an invariant quantity with
respect to rigid body motion. The constitutive model will eventually ensure this invariance property. A first gradient theory
is considered with respect to the degrees of freedom. However, the influence of the microdeformation gradient is limited to
its curl part because of the aimed relation to the dislocation density tensor associated with the curl of plastic distortion. The
following sets of degrees of freedom and of their gradients are therefore defined:

DOF ¼ u; v̂
�

p
� �

; GRAD ¼ F
�

:¼ 1
�
þu� $X ;K� :¼ Curl v̂

�

p
� �

ð2Þ

1312 O. Aslan et al. / International Journal of Engineering Science 49 (2011) 1311–1325



Author's personal copy

The following definition of the Curl operator is adopted, �ijk being the permutation tensor:

Curl v̂
�

p
:¼

@v̂
�

p

@Xk
� ek; Kij :¼ �jkl

@v̂p
ik

@Xl
ð3Þ

The method of virtual power is used to derive the balance and boundary conditions, following (Germain, 1973). For that pur-
pose, we define the power density of internal forces as a linear form with respect to the velocity fields and their Eulerian
gradients:

pðiÞ ¼ r
�

: ð _u� $xÞ þ s
�

: _̂v
�

p
þM
�

: curl _̂v
�

p
; 8x 2 V ð4Þ

where the conjugate quantities are the Cauchy stress tensor r
�

, which is symmetric for objectivity reasons, the microstress
tensor, s

�
, and the generalized couple stress tensor M

�
. The curl of the microdeformation rate is defined as

curl _̂v
�

p
:¼ �jkl

@ _̂vp
ik

@xl
ei � ej ¼ _K

�
�F
�
�1 ð5Þ

The form of the power density of internal forces dictates the form of the power density of contact forces:

pðcÞ ¼ t � _uþm
�

: _̂v
�

p
; 8x 2 @V ð6Þ

where t is the usual simple traction vector and m
�

the double traction tensor. The principle of virtual power is stated in the
static case and in the absence of volume forces for the sake of brevity:

�
Z

D
pðiÞ dV þ

Z
@D

pðcÞ dS ¼ 0 ð7Þ

for all virtual fields _u; _̂v
�

p
, and any subdomain D � V. By application of Gauss divergence theorem, assuming sufficient reg-

ularity of the fields, this statement expands into:Z
V

@rij

@xj
_ui dV þ

Z
V
�kjl

@Mik

@xl
� sij

� �
_̂vp

ij dV þ
Z
@V
ðti � rijnjÞ _ui dSþ

Z
@V
ðmik � �jklMijnlÞ _̂vp

ik dS ¼ 0; 8 _ui; 8 _̂vp
ij ð8Þ

which leads to the two field equations of balance of momentum and generalized balance of moment of momentum, and two
boundary conditions:

div r
�
¼ 0; curl M

�
þ s
�
¼ 0; 8x 2 V ð9Þ

t ¼ r
�
�n; m

�
¼M
�
��

g
�n; 8x 2 @V ð10Þ

the index notation of the latter relation being mij = Mik�kjlnl.

2.2. Constitutive equations

The deformation gradient is decomposed into elastic and plastic parts in the form

F
�
¼ F
�

e � F
�

p ð11Þ

The isoclinic intermediate configuration is defined in a unique way by keeping the crystal orientation unchanged from the
initial to the intermediate configuration following (Mandel, 1973). The plastic distortion F

�
p is invariant with respect to rigid

body motions that are carried by F
�

e. The current mass density is q whereas the mass density of the material element in the
intermediate configuration is qi, such that qi=q ¼ Je :¼ det F

�
e. The elastic strain is defined as

E
�

e :¼ 1
2
ðF
�

eT � F
�

e � 1
�
Þ ð12Þ

The microdeformation is linked to the plastic deformation via the introduction of a relative deformation measure defined as

e
�

p :¼ F
�

p�1 � v̂
�

p � 1
�

ð13Þ

It measures the departure of the microdeformation from the plastic deformation, which will be associated with a cost in the
free energy potential. When e

�
p � 0, the microdeformation coincides with the plastic deformation. The state variables are as-

sumed to be the elastic strain, the relative deformation, the curl of microdeformation and some internal variables, a:

STATE :¼ E
�

e; e
�

p;K
�
;a

n o
ð14Þ

The specific Helmholtz free energy density, w, is assumed to be a function of this set of state variables. In particular, in this
simple version of the model, the curl of microdeformation is assumed to contribute entirely to the stored energy. In more
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sophisticated models, as proposed in Forest and Sievert (2006), Forest (2009) and Gurtin and Anand (2009), the relative
deformation, the microdeformation and its gradient can be split into elastic and plastic parts. This is not necessary for the
size effects to be described in the present work.

The dissipation rate density is the difference:

D :¼ pðiÞ � q _w P 0 ð15Þ
which must be positive according to the second principle of thermodynamics. When the previous strain measures are intro-
duced, the power density of internal forces takes the following form:

pðiÞ ¼ r
�

: _F
�

e � F
�

e�1 þ r
�

: F
�

e � _F
�

p � F
�

p�1 � F
�

e�1 þ s
�

: ðF
�

p � _e
�

p þ _F
�

p � e
�

pÞ þM
�

: _K
�
�F
�
�1

¼ q
qi

P
�

e : _E
�

e þ q
qi

P
�

M : _F
�

p � F
�

p�1 þ s
�

: ðF
�

p � _e
�

p þ _F
�

p � e
�

pÞ þM
�

: _K
�
�F
�
�1 ð16Þ

where P
�

e is the second Piola–Kirchhoff stress tensor with respect to the intermediate configuration and P
�

M is the Mandel
stress tensor:

P
�

e :¼ JeF
�

e�1 � r
�
�F
�

e�T ; P
�

M :¼ JeF
�

eT � r
�
�F
�

e�T ¼ F
�

eT � F
�

e �P
�

e ð17Þ

On the other hand,

q _w ¼ q
@w
@E
�

e
: _E
�

e þ q
@w
@e
�

p
: _e
�

p þ q
@w
@ K
�

: _K
�
þq

@w
@a

_a

We compute

JeD ¼ P
�

e � qi
@w
@E
�

e

0
@

1
A : _E

�

e þ JeF
�

pT � s
�
�qi

@w
@e
�

p

0
@

1
A : _e

�
p þ Je M

�
�F
�
�T � qi

@w
@ K
�

0
@

1
A : _K

�

þ P
�

M þ Je s
�
�v̂
�

pT
� �

: _F
�

p � F
�

p�1 � qi
@w
@a

_a P 0 ð18Þ

Assuming that the processes associated with _E
�

e
; _e
�

p and _K
�

are non-dissipative, the state laws are obtained:

P
�

e ¼ qi
@w
@E
�

e
; s

�
¼ J�1

e F
�

p�T � qi
@w
@e
�

p
; M

�
¼ J�1

e qi
@w
@ K
�

� F
�

T ð19Þ

The residual dissipation rate is

JeD ¼ P
�

M þ Je s
�
�v̂
�

pT
� �

: _F
�

p � F
�

p�1 � R _a P 0; with R :¼ qi
@w
@a

ð20Þ

At this stage, a dissipation potential, function of stress measures, XðS
�
;RÞ, is introduced in order to formulate the evolution

equations for plastic flow and internal variables:

_F
�

p � F
�

p�1 ¼ @X
@S
�

; with S
�

:¼ P
�

M þ Je s
�
�v̂
�

pT
; _a ¼ � @X

@R
ð21Þ

where R is the thermodynamic force associated with the internal variable a, and S
�

is the effective stress conjugate to plastic
strain rate, the driving force for plastic flow.

In the case of crystal plasticity, a generalized Schmid law is adopted for each slip system s in the form:

f sðS
�
; ss

cÞ ¼ jS� : P
�

sj � ss
c P 0; with P

�
s ¼ ls � ns ð22Þ

for activation of slip system s with slip direction, ls, and normal to the slip plane, ns. We call P
�

s the orientation tensor. The
critical resolved shear stress is ss

c which may be a function of R in the presence of isotropic hardening. The kinematics of
plastic slip follows from the choice of a dissipation potential, X(fs), that depends on the stress variables through the yield
function itself, fs:

_F
�

p � F
�

p�1 ¼
XN

s¼1

@X
@f s

@f s

@S
�

¼
XN

s¼1

_cs P
�

s; with _cs ¼ @X
@f s

signðS
�

: P
�

sÞ ð23Þ

A possible viscoplastic potential is then:

Xðf sÞ ¼ K
nþ 1

f s

K

� �nþ1

;

where K, n are viscosity parameters associated with viscoplastic slip, and the brackets stand for h�i = Max (0, �). The general-
ized resolved shear stress can be decomposed into two contributions:

S
�

: P
�

s ¼ ss � xs; with ss ¼ P
�

M : P
�

s and xs ¼ � s
�
�v̂
�

pT
: P
�

s ð24Þ
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The usual resolved shear stress is ss whereas xs can be interpreted as an internal stress or back-stress leading to kinematic
hardening. The fact that the introduction of the effect of the dislocation density tensor or, more generally, of gradient of plas-
tic strain tensor, leads to the existence of internal stresses induced by higher order stresses has already been noticed by
Steinmann (1996) (see also Forest, 2008). The back-stress component is induced by the microstress s

�
or, equivalently, by

the curl of the generalized couple stress tensor, M
�

, via the balance Eq. (9).
When deformations and rotations remain sufficiently small, the previous equations can be linearized as follows:

F
�
¼ 1
�
þH
�
’ 1
�
þH
�

e þ H
�

p; H
�

e ¼ e
�

e þx
�

e; H
�

p ¼ e
�

p þx
�

p ð25Þ

where e
�

e; x
�

e (resp. e
�

p; x
�

p) are the symmetric and skew-symmetric parts of F
�

e � 1
�

(resp. F
�

p � 1
�

). When microdeformation is
small, the relative deformation is linearized as

e
�

p ¼ ð1
�
þH
�

pÞ�1 � ð1
�
þv
�

pÞ � 1
�
’ v
�

p � H
�

p; with v
�

p ¼ v̂
�

p � 1
�

ð26Þ

When linearized, the state laws (19) become:

r
�
¼ q

@w
@e
�

e
; s
�
¼ q

@w
@e
�

p
; M
�
¼ q

@w
@ K
�

:

The evolution equations read then:

_e
�

p ¼ @X
@ðr
�
þ s
�
Þ ;

_a ¼ � @X
@R

:

We adopt the most simple case of a quadratic free energy potential:

qwðe
�

e; e
�

p;K
�
Þ ¼ 1

2
e
�

e : C
	

: e
�

e þ 1
2

Hve
�

p : e
�

p þ 1
2

A K
�

: K
�

ð27Þ

The usual four-rank tensor of elastic moduli is denoted by C
	

. The higher order moduli have been limited to only two addi-
tional parameters: Hv (unit MPa) and A (unit MPa mm2). Their essential impact on the prediction of size effect will be ana-
lyzed in the next section. It follows that

r
�
¼ C
	

: e
�

e; s
�
¼ Hve

�
p; M

�
¼ A K

�
ð28Þ

Large values of Hv ensure that e
�

p remains small so that v̂
�

p remains close to H
�

p and K
�

is close to the dislocation density tensor.
The yield condition for each slip system becomes

f s ¼ jss � xsj � ss
c; with xs ¼ � s

�
: P
�

s ¼ ðcurl M
�
Þ : P
�

s ¼ Aðcurlcurlv
�

pÞ : P
�

s ð29Þ

2.3. Size effects in a two-phase single crystal laminate

Let us consider a periodic two-phase single crystal laminate under simple shear as in Forest (2008) and Cordero et al.
(2010). This microstructure is described in Fig. 1; it is composed of a hard elastic phase (h) and a soft elasto-plastic
phase (s) where one slip system with slip direction normal to the interface between (h) and (s) is considered. A mean
simple glide �c is applied in the crystal slip direction of the phase (s). We consider a displacement and microdeformation
fields of the form:

u1 ¼ �cx2; u2ðx1Þ; u3 ¼ 0; vp
12ðx1Þ; vp

21ðx1Þ ð30Þ

γ

h 2
h 2

γ

l

1

2

O

n

s

(s) (h+)(h−)

Fig. 1. Single slip in a periodic two-phase single crystal laminate under simple shear: the gray phase (h) displays a purely linear elastic behavior whereas
the inelastic deformation of the white elasto-plastic phase (s) is controlled by a single slip system (n, l).
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within the context of small deformation theory. It follows that

½H
�

 ¼

0 �c 0
u2;1 0 0
0 0 0

2
64

3
75 ½H

�
p
 ¼

0 c 0
0 0 0
0 0 0

2
64

3
75 ½H

�
e
 ¼

0 �c� c 0
u2;1 0 0
0 0 0

2
64

3
75 ð31Þ

½v
�

p
 ¼
0 vp

12ðx1Þ 0
vp

21ðx1Þ 0 0
0 0 0

2
64

3
75 ½curlv

�

p
 ¼
0 0 �vp

12;1

0 0 0
0 0 0

2
64

3
75 ð32Þ

The resulting stress tensors are

½r
�

 ¼ l

0 �c� cþ u2;1 0
�c� cþ u2;1 0 0

0 0 0

2
64

3
75 ½s

�

 ¼ �Hv

0 c� vp
12 0

�vp
21 0 0

0 0 0

2
64

3
75 ð33Þ

½M
�

 ¼

0 0 �Avp
12;1

0 0 0
0 0 0

2
64

3
75 ½curl M

�

 ¼

0 �Avp
12;11 0

0 0 0
0 0 0

2
64

3
75 ð34Þ

These forms of matrices are valid for both phases, except that c � 0 in the hard elastic phase. Each phase possesses its own
material parameters, Hv and A, the shear modulus, l, being assumed for simplicity to be identical in both phases. The balance
equation, s

�
¼ �curl M

�
, gives vp

21 ¼ 0 and the plastic slip:

c ¼ vp
12 �

A
Hv

vp
12;11 ð35Þ

In the soft phase, the plasticity criterion stipulates that

r12 þ s12 ¼ sc þ Hccum ð36Þ

where H is a linear hardening modulus considered in this phase and ccum is the cumulative plastic slip defined by _ccum ¼ j _cj.
The following analytical resolution is done for the first loading branch, under monotonic loading. The slip direction, l, has
been chosen such that c > 0 for this first loading branch, so that we have ccum = c. Considering Eqs. (35) and (36), we obtain
the second order differential equation for the microdeformation variable in the soft phase, vps

12,

1
xs2 vps

12;11 � vps
12 ¼

sc � r12

H
; with xs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hs

vH

As Hs
v þ H

	 

vuut ð37Þ

where 1/xs is the characteristic length of the soft phase for this boundary value problem. The force stress balance equation
requires r12 to be uniform. It follows that the non-homogeneous part of the differential equation is constant and then the
hyperbolic profile of vps

12 takes the form:

vps
12 ¼ Cs coshðxsxÞ þ D ð38Þ

where Cs and D are constants to be determined. Symmetry conditions ðvps
12ð�s=2Þ ¼ vps

12ðs=2ÞÞ have been taken into account.
In the elastic phase, where the plastic slip vanishes, an hyperbolic profile of the microdeformation variable, vph

12, is also
obtained:

vph
12 ¼ Ch cosh xh x� sþ h

2

� �� �
; with xh ¼

ffiffiffiffiffiffi
Hh

v

Ah

s
ð39Þ

where, again, Ch is a constant to be determined. It is remarkable that the plastic microvariable, vph
12, does not vanish in the

elastic phase, close to the interfaces, although no plastic deformation takes place. This is due to the transmission of double
traction. Such a transmission has been shown in Cordero et al. (2010) to be essential for size effects to occur. The meaning of
the linear constitutive equation for the double stress tensor in (28) can be interpreted, for the elastic phase, as non-local elas-
ticity. That is why the corresponding characteristic length, 1/xh, will be kept of the order of nanometer in the presented
simulation.

The coefficients Cs, D and Ch can be identified using the interface and periodicity conditions:

� Continuity of vp
12 at x = ±s/2:

Cs cosh xs s
2

	 

þ D ¼ Ch cosh xh h

2

� �

1316 O. Aslan et al. / International Journal of Engineering Science 49 (2011) 1311–1325



Author's personal copy

� Continuity of the double traction, as given in Eq. (10), m12 = �M13 at x = ±s/2:

AsxsCs sinh xs s
2

	 

¼ �AhxhCh sinh xh h

2

� �
: ð40Þ

� Periodicity of displacement component u2. The constant stress component r12 ¼ lð�c� cþ u2;1Þ is obtained from the plas-
ticity criterion in the soft phase (Eq. (36)):

r12 ¼ sc þ Hccum � Asvps
12;11 ð41Þ

Still considering the first loading branch for which ccum = c, it follows that

us
2;1 ¼

r12

l
� �cþ c ¼ sc

l
� �cþ Asxs2Cs

H
coshðxsxÞ þ H þ l

l
D ð42Þ

in the soft phase and uh
2;1 ¼

r12
l � �c ¼ sc

l � �cþ H
l D, in the hard phase. The average on the whole structure,Z ðsþhÞ=2

�ðsþhÞ=2
u2;1 dx ¼ 0 ð43Þ

must vanish for periodicity reasons and gives

sc

l
� �c

� �
ðsþ hÞ þ 2AsxsCs

H
sinh xs s

2

	 

þ Hðsþ hÞ þ ls

l
D ¼ 0 ð44Þ

Fig. 2 shows the profiles of plastic microdeformation in the two-phase laminate for different sets of material parameters and
for a fraction of soft phase (s), fs = 0.7. These profiles clearly show the continuity of vp

12 at the interfaces. The different shapes
presented are obtained for various values of the modulus As, the other material parameters being fixed and given in Table 1.
When the intrinsic length scale is small compared to the size of the microstructure, the microdeformation gradient can
develop inside the phase (s) which leads to a rounded profile of the plastic microdeformation vps

12. When the intrinsic length
scale becomes of the order of the size of the microstructure or even larger, the model starts to saturate so that vps

12 becomes
quasi-homogeneous (flat profile).

From Eq. (41) we derive the expression of the macroscopic stress tensor component, R12, defined as the mean value of the
stress component r12 over the microstructure size, l = (s + h):

R12 ¼ hr12i ¼
1
l

Z l
2

� l
2

r12 dx ¼ sc þ
H
fs
hccumi � As

fs
hvps

12;11i; ð45Þ

where brackets h�i denote the average values over the microstructure unit cell.

 0

 0.001

 0.002

 0.003

 0.004

-0.4 -0.2  0  0.2  0.4

χp 12

x1/l

(1)
(2)
(3)

Fig. 2. Profiles of plastic microdeformation vp
12 in the two-phase microstructure with the microcurl model at 0.2% overall plastic strain obtained with the set

of material parameters given in Table 1 and (1) in the absence of mismatch between the moduli of the two phases, Ah = As = 5 � 10�5 MPa mm2, (2) with a
stronger mismatch, Ah = 5 � 10�5 MPa mm2 and As = 1 � 10�3 MPa mm2 and (3) Ah = 5 � 10�5 MPa mm2 and As = 5 � 10�2 MPa mm2. The associated
intrinsic length scales, 1/xs, are respectively: 100 nm, 449 nm and 3.2 lm. In all three cases, the fraction of soft phase fs = 0.7 and the microstructure size is
fixed, l = 1 lm. The vertical lines indicate the position of interfaces.

O. Aslan et al. / International Journal of Engineering Science 49 (2011) 1311–1325 1317



Author's personal copy

We obtain the mean plastic slip for the first loading branch from Eq. (35):

hci ¼ vps
12 �

As

Hs
v
vps

12;11

* +
¼

2AsxsCs sinh xs fsl
2

	 

Hl

þ fsD; ð46Þ

where fs is the fraction of soft phase. From this we obtain expressions of Cs and D as functions of hci,

Cs ¼ �hci Asxs sinh xs fsl
2

� �
fs

coth xs fsl
2

	 

Asxs

þ
coth xh ð1�fsÞl

2

	 

Ahxh

0
@

1
A� 2

Hl

0
@

1
A

2
4

3
5
�1

ð47Þ

D ¼ hci fs �
2
Hl

coth xs fs l
2

	 

Asxs

þ
coth xh ð1�fsÞl

2

	 

Ahxh

0
@

1
A
�12

64
3
75
�1

ð48Þ

The macroscopic stress takes the form:

R12 ¼ sc þ HDhci ð49Þ

The hardening produced by the model is a combination of the kinematic hardening arising from the higher order back-stress
component and the linear isotropic hardening introduced in (36). Its modulus, Htot, is size-dependent and is obtained using
Eqs. (48) and (49):

Htot ¼ H fs �
2
Hl

coth xs fs l
2

	 

Asxs

þ
coth xh ð1�fsÞl

2

	 

Ahxh

0
@

1
A
�12

64
3
75
�1

ð50Þ

When the size of the elasto-plastic phase (s) becomes large compared to the intrinsic length scale 1/xs, strain gradient effect
is small and the kinematic hardening arising from the microcurl model tends to vanish. Then the model reduces to conven-
tional crystal plasticity theory. In contrast, the maximum extra-stress, DR, predicted by the model at small microstructure
sizes can be computed as

DR ¼ lim
l!0

R12ðhciÞ � lim
l!1

R12j0:2 ¼
1� fs

fs
Hvhci ð51Þ

Table 1
Set of material parameters used in the simulations. The intrinsic length scales, defined as 1/xh,s, induced by these parameters is of the order of 10 nm for the
elastic phase (h) and 500 nm for the plastic phase (s).

l [MPa] sc [MPa] H [MPa] Hv [MPa] A [MPa mm2]

Phase (s) 35000 40 5000 500000 1 � 10�3

Phase (h) 35000 – – 500000 5 � 10�5

1e+02

1e+03

1e+04

1e+05

1e-06 1e-05 1e-04 1e-03 1e-02 1e-01

Σ 12
|0

.2
 (M

Pa
)

l (mm)

Hχ→ ∞

Hχ=108 MPa
Hχ=107 MPa
Hχ=106 MPa
Hχ=105 MPa

Fig. 3. Evolution of the macroscopic flow stress R12j0.2 at 0.2% plastic strain as a function of the microstructure length scale l, plotted for different coupling
moduli Hvð¼ Hs

v ¼ Hh
vÞ. The other material parameters are given in Table 1 and fs = 0.7.
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Fig. 3 presents the predicted evolution of the macroscopic flow stress R12j0.2 at 0.2% plastic strain (obtained by setting
hci = 0.002) as a function of the microstructure length scale l in a log–log diagram. This evolution is plotted using the material
parameters given in Table 1 and for various values of the coupling modulus, Hs

v ¼ Hh
v ¼ Hv. The four lower curves exhibit a

tanh-shape with saturation for large (l > 10�2 mm) and small (l < 10�5 mm) values of l. A transition domain with strong size
dependence is observed between these two plateaus. The limits and the maximum extra-stress, the position of the transition
zone and the scaling law exponent in the size dependent domain (defined as the slope in the log–log diagram) are directly
related to the material parameters used in the model. The microcurl model can produce scaling law exponents ranging from 0
to �2. The upper curve is obtained for Hv ?1, it no longer exhibits a tanh-shape as no saturation occurs for small values of l,
the limit DR ?1 follows. This limit case will be described in next subsection.

2.4. Strain gradient plasticity as a limit case

In the proposed microcurl model, the modulus Hv introduces a coupling between micro and macro variables. A high value
of Hv forces the plastic microdeformation v

�

p to remain as close as possible to the macro plastic deformation H
�

p. Conse-
quently, it enforces the condition that K

�
coincides with the dislocation density tensor. In this case, the microcurl model

degenerates into the strain gradient plasticity model by Gurtin (2002). The microcurl model can then be used to predict
the response of the strain gradient plasticity model in the size effect zone. For that purpose, let us consider the limit of
R12j0.2, when Hv goes to infinity. Indeed, when Hv tends to infinity, the expression of D in Eq. (48) can be simplified. We con-
sider sizes of the microstructures in the size effect zone, i.e. intermediate values of l. Since Hv is very high, the term tanh
(xh(1 � fs)l/2) tends to 1. Considering that l is small enough, the term l (tanh(xsfsl/2)) can be approximated by its Taylor
expansion at the order 2, which leads to D of the form:

D 	 alþ b

cl2 þ dlþ e
ð52Þ

a ¼ hcifs

2
ffiffiffiffiffiffi
Hv

p ; b ¼ hcifsA
h 1þ H

Hv

� �
; c ¼ � f 3

s H
ffiffiffiffiffi
Ah

p
12

; d ¼ f 2
s H

2
ffiffiffiffiffiffi
Hv

p ; e ¼ � fs

ffiffiffiffiffi
Ah

p
H

Hv
ð53Þ

The terms a, d and e tend to 0 when Hv ?1, so that

D 	 12Ashci
f 3
s Hl2 ;

and the macroscopic stress is

R12 	 sc þ
12Ashci

f 3
s l2 ð54Þ

This expression indicates a l�2 scaling law for the strain gradient plasticity model. This scaling law differs from Hall–Petch
relation, l�1/2, typical for grain size effects, and from Orowan’s law, l�1, valid for precipitate size effects.

3. Microdamage modeling of cracking in single crystals

Cracks in single crystals occur on specific cleavage planes in brittle crystals with BCC and HCP structures (Parisot et al., 2004).
In ductile single crystals like aluminum, copper or even nickel base superalloys (Flouriot et al., 2003), cracking is also observed in
specific crystallographic planes following intense shear activity in some slip planes, under monotonic or cyclic loading condi-
tions. These observations prompted (Musienko & Cailletaud, 2009) to formulate a single crystal plasticity and damage model
that attributes damage variables to specific crystallographic planes in order to simulate crack propagation in the individual
grains of a polycrystal. A regularization procedure based on the micromorphic continuum has then been proposed in Aslan
and Forest (2009) to limit the mesh-dependency of the results of such finite element simulations. The damage variables intro-
duced in these models are defined as irreversible strains that measure the apparent deformation of the micro-cracked volume
element. Such strain-based damaged models differ from classical brittle damage mechanics theories where a damage variable is
introduced that varies from 0 to 1 and that rely on the degradation of the elastic stiffness. They are more closely related to ductile
models of fracture accounting for cavity initiation and growth, see (Besson, 2009). The model presented in this section intro-
duces several crystallographic damage mechanisms in the spirit of multi-mechanism plasticity and damage theory (Besson,
2009). This represents a similar choice of variable as the equivalent strain measure used in the gradient damage models by Peer-
lings, Massart, and Geers (2004), for the mesh-independent simulation of crack propagation in isotropic materials.

3.1. Balance equations

Microdamage theory restricts the gradient effect to a scalar damage variable d, the precise definition of which will be
given later. The number of additional degrees of freedom is deliberately limited to a single one with a view to efficient
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numerical simulations of crack propagation which are quite demanding from the computational point of view. Therefore, the
degrees of freedom are the vector component ui and the scalar microdamage variable vd. The degrees of freedom and their
gradients on which constitutive relations may depend, are as follows:

DOF ¼ u; vdf g; GRAD ¼ F
�

:¼ 1
�
þu� $X ;$X

vd
n o

ð55Þ

In order to derive the balance and boundary conditions, the method of virtual power is used and power of internal forces are
written as

pðiÞ ¼ r
�

: ð _u� $xÞ þ av _dþ b � $x
v _d; 8x 2 V ð56Þ

where a and b are generalized stresses. Note that, in this expression, the gradients of velocity fields are taken with respect to
the current coordinates. Corresponding power density of contact forces reads:

pðcÞ ¼ t � _uþ ac
v _d; 8x 2 @V ð57Þ

where t is the traction vector and ac is the generalized traction. The variational formulation of the static microdamage prob-
lem can be derived directly from the principle of virtual power as

�
Z

X
ðr
�

: _F
�
�F
�
�1 þ av _dþ b � rv _dÞdV þ

Z
@X
ðt � _uþ ac

v _dÞdS ¼ 0 ð58Þ

from which momentum and generalized balance equations are derived by using Gauss divergence theorem, together with
the associated boundary conditions:

div r
�
¼ 0; a ¼ div b

�
; 8x 2 V ð59Þ

t ¼ r
�
�n; ac ¼ b � n; 8x 2 @V ð60Þ

3.2. Constitutive coupling between plasticity and damage for single crystals

We consider plasticity and damage as inelastic deformation mechanisms so that the deformation gradient is decomposed
into elastic and inelastic parts:

F
�
¼ F
�

e � F
�

i ð61Þ

Note that the orientation of the intermediate configuration is such that the lattice vectors do not rotate from the initial to the
intermediate configuration. Such a definition is possible only if both the plasticity and damage mechanisms have common
crystallographic features. In particular, crystallographic fracture planes will be chosen so that the crystal orientation will not
be affected by the development of damage from the initial to the intermediate isoclinic configuration. The plastic strain rate
_F
�

i � F
�

i�1 is not expected to be traceless since it will contain a damage part. Accordingly, the volume change associated with
inelastic phenomena is Ji ¼ det F

�
i – 1 in the presence of damage. The elastic strain measure is still defined by Eq. (12). Elastic

strain, microdamage, the gradient of microdamage and a, referring to any other internal variable, are considered as the state
variables:

STATE :¼ E
�

e; vd;$X
vd;a

n o
ð62Þ

qi
_w ¼ qi

@w
@E
�

e
: _E
�

e þ qi
@w
@vd

v _dþ qi
@w

@$X
vd
� $X

v _dþ qi
@w
@a

_a; ð63Þ

As a result, the dissipation rate density (15) becomes

JeD ¼ P
�

e � qi
@w
@E
�

e

0
@

1
A : _E

�

e þ Jea� qi
@w
@vd

� �
v _dþ Jeb � F

�
�T � qi

@w
@$X

vd

� �
� $X

v _dþP
�

M : _F
�

iF
�

i�1 � qi
@w
@a

_a P 0 ð64Þ

As in Section 2.2, the most simple version of the model consists in assuming that the additional degree of freedom and its
gradient are not associated with dissipative mechanisms. As a result, we obtain the following state laws:

a ¼ q
@w
@vd

; b ¼ q
@w

@$x
vd
� F
�

T ð65Þ

in addition to (19)1. The residual dissipation then reads

JeD ¼ P
�

M : _F
�

iF
�

i�1 � R _a P 0 ð66Þ
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where R is the generic name for the thermodynamic force associated with internal variables and still given by (20). Intro-
ducing a dissipation potential, XðP

�
M;RÞ, the evolution equations for inelastic flow and internal variables can be formulated

as follows:

_F
�

iF
�

i�1 ¼ @X
@P
�

M
; _a ¼ � @X

@R
ð67Þ

Yield functions are now introduced for crystal plasticity, f sðP
�

M ; rsÞ, on the one hand, and for damage, f s
c ðP�

M ;YsÞ, on the other
hand, where rs and Ys are the corresponding yield limits for both families of criteria. The plastic component of the flow rule is
written at the slip system level, while the damage components will be defined on crystallographic damage planes. Plastic
deformation takes place through the slip processes associated to the N slip systems characterized by the slip direction ls

and the slip plane normal ns defined for the system s. Cleavage damage is represented by the opening ds
c of crystallographic

cleavage planes with the normal vector ns
c . Additional damage systems are introduced for the in-plane accommodation along

orthogonal directions ls
1 and ls

2, once crack opening has started. ds
c; ds

1 and ds
2 are strain like variables that account in a con-

tinuum way for micro-cracking inside the volume element under mode I, mode II and mode III loading conditions, respec-
tively, and Nc stands for the number of damage planes which are fixed crystallographic planes depending on the crystal
structure. The corresponding yield functions are

f sðP
�

M; ss
cÞ ¼ jP�

M : P
�

sj � ss
c; with P

�
s ¼ ls � ns; 1 6 s 6 N ð68Þ

f s
c ðP�

M; ss
cÞ ¼ jP�

M : P
�

s
cj � Y ; with P

�
s
c ¼ ns

c � ns
c; 1 6 s 6 Nc ð69Þ

f s
1;2ðP�

M; ss
cÞ ¼ jP�

M : P
�

s
1;2j � Y; with P

�
s
1;2 ¼ ls

1;2 � ns
c; 1 6 s 6 Nc ð70Þ

The driving force for cleavage plane opening therefore is the normal stress to the cleavage plane, ns
c �P�

M � ns
c . The same

threshold, Y, is used for all 3 damage mechanisms. Specific conditions must be added to handle unilateral damage. Such con-
ditions have been described in Aslan et al. (2011) and are not presented here because only simulations under monotonic
loading are considered. In particular, the condition that crack opening, ds

c , cannot be negative, is enforced.
The dissipation potential is the sum of the individual contributions:

X ¼
XN

s¼1

Xsðfs; ss
cÞ þ

XNc

s¼1

Xs
cðf s

c Þ þXs
1ðf s

1Þ þXs
2ðf s

2Þ
� �

ð71Þ

The kinematics of plastic slip and damage follows:

_F
�

i � F
�

i�1 ¼
X

s¼1;N

_csP
�

s þ
XNc

s¼1

_ds
cP
�

s
c þ _ds

1P
�

s
1 þ _ds

2P
�

s
2

	 

ð72Þ

with

_cs ¼ @Xs

@P
�

M
sign P

�
M : P

�
s

	 

; _ds

c ¼
@Xs

c

@P
�

M
sign P

�
M : P

�
s
c

	 

; _ds

1;2 ¼
@Xs

1;2

@P
�

M
sign P

�
M : P

�
s
1;2

	 

ð73Þ

Note that the trace of _F
�

i � F
�

i�1 does not vanish due to the kinematics of cleavage plane opening P
�

s
c . Damage is therefore asso-

ciated with volume changes in a way similar to classical ductile damage models (Besson, 2009).
At this stage, the meaning of the microdamage variable, vd, has still not been defined. It will be related to an additional

scale internal variable, d, that will be shown to measure the total amount of cumulative damage. A quadratic free energy
potential is then chosen which allows for a proper coupling between plasticity and damage:

qiwðE�
e;.s;d; vd;$X

vdÞ ¼ 1
2

E
�

e : C
	

: E
�

e þ r0

XN

s¼1

.s þ 1
2

q
XN

r;s¼1

hrs.r.s þ rc
0d exp �H

XN

s¼1

.s

 !
þ 1

2
Hd2 þ 1

2
vHðd� vdÞ2

þ 1
2

A$X
vd � $X

vd

where r0, q, H, vH and A are scalar material constants. Coupling between plasticity and damage is controlled by parameter H.
The .s variables are standard isotropic work-hardening variables for crystal plasticity, that can be related to dislocation den-
sities, q being the usual nonlinear hardening modulus, and hrs, the interaction matrix (taken as the identity in the case of
nickel-base superalloys considered in the next section). The initial critical resolved shear stress for the activation of plastic
slip is r0. The coupling parameter vH represents a penalty term that forces the microvariable vd to follow the cumulative
damage variable, d, in the spirit of the micromorphic approach (Forest, 2009). The parameter A (unit MPa mm2) contains
the characteristic length of the medium. The state laws take the form:
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P
�

e ¼ qi
@w
@E
�

e
¼ C
	

: E
�

e ð74Þ

ss
c ¼ qi

@w
@.s
¼ r0 þ q

XN

r¼1

hsr.s � rc
0Hd exp �H

XN

l¼1

.l

 !
ð75Þ

Y ¼ qi
@w
@d
¼ rc

0 exp �H
XN

l¼1

.l

 !
þ Hdþ vHðd� vdÞ ð76Þ

a ¼ q
@w
@vd
¼ �vHðd� vdÞ; b ¼ q

@w
@rvd

¼ A$X
vd � F

�
T ð77Þ

The thermodynamic force, Y, enters the threshold of the yield functions (69) and (70). Damage starts when the normal stress
component to one cleavage plane 1 6 s 6 Nc reaches the threshold:

Y0 :¼ rc
0e�Hccum ; with ccum :¼

XN

l¼1

.l ð78Þ

where ccum represents cumulative plastic slip, as it will become clear from the evolution rule for .s in Eq. (79). In the absence
of plasticity, the fracture stress rc

0 is very high and corresponds to the cleavage stress. It is well-known that in BCC and HCP
crystals the cleavage stress is reduced by the accumulation of plasticity (Parisot et al., 2004). This is the origin of the coupling
between plasticity and damage. Once damage has started, a negative modulus H induces localization of damage into a crack-
like zone in a region of the component. Plastic strain also localizes due to the softening induced by damage in the hardening
rule (75).

The evolution laws of the internal variables .s and d, that are associated with dissipation, are

_.s ¼ � @X
@ss

c
¼ @X
@f s

@f s

@ss
c
¼ j _csj ð79Þ

_d ¼ � @X
@Y
¼
XNc

i¼1

@Xs
c

@f s
c

@f s
c

@Y
¼
XNc

s¼1

j _ds
cj þ j _ds

1j þ j _ds
2j

	 

ð80Þ

Due to the chosen quadratic potential, the variable .s turns out to be nothing but the cumulative slip on slip system s.
According to the normality rule, the damage variable d is found to be equal to the cumulative damage strain on the cleavage
systems. It is a measure of the total amount of damage corresponding to micro-crack opening and shearing. The residual dis-
sipation finally is

JeD ¼
XN

s¼1

ss
c
_.s þ Y _d P 0 ð81Þ

3.3. Finite element simulation of crack propagation in single crystals

A small strain version of the previous model has been implemented in a finite element code following the method pro-
posed in Aslan and Forest (2009). Quadratic elements with reduced integration have been retained, displacement and micro-
damage degrees of freedom being attributed to each node. 2D finite element simulations under plane strain conditions are
presented in this section. The capacity of the model to provide mesh-independent results has been demonstrated in Aslan
and Forest (2009).

In the present work, a 2D single crystal CT-like specimen under monotonic tension is analyzed with an horizontal cleav-
age plane. The corresponding finite element mesh is given in Fig. 4. Analyses are performed for two different crack widths,
obtained by furnishing different material values of parameter A, which controls the size of the crack width for the same
boundary conditions. As it is demonstrated in Fig. 5 larger crack widths can be obtained resulting in shorter crack lengths
for the same macro opening.

The main advantage of the proposed model is to consider simultaneously several possible fracture planes so that compli-
cated crack paths can be predicted, including crack bifurcation or branching. Fig. 6 presents the analysis result for the same
geometry as Fig. 4 under monotonic tension but with two orthogonal planes oriented at 45� replacing the previous horizon-
tal single cleavage plane. The two orthogonal fracture lines stand for the traces of {111} planes on the (001) plane of com-
putation. Such {111} fracture planes are relevant in the case of BCC and FCC single crystals. The computation also accounts
for the slip systems for crystal plasticity in FCC crystals. The vertical direction is a [010] crystal direction while the horizontal
direction is [100]. The figure shows that the crack starts with branching and one of the branches dominates for further open-
ing, thus validating that the model is able to predict crack branching and bifurcation, as observed for instance in single crys-
tal nickel-base superalloys (Flouriot et al., 2003). The simulation of a straight crack path is possible when both damage
systems cooperate. Finite elements are considered as broken when the driving force for damage, Y is below an ultimate stress
value of 0.01 MPa. The typical stress distribution at a crack tip was found at the tip of the dominating crack at the different
stages.
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Crack initiation and growth take place only when sufficient plastic strain has taken place in the crack tip zone. Material
parameters of the model can be calibrated in order to favor straight crack growth or branching, which is necessary for
describing the real behavior of cracks in nickel-base superalloys at different temperatures (Wen & Yue, 2007).

4. Conclusion

The micromorphic approach amounts to selecting a constitutive variable, /, in a mechanical continuum model and to
introduce an associated microvariable, v/, and its gradient, $X

v/, in the extended continuum theory (Forest, 2009). In Erin-

Fig. 4. Finite element mesh of a CT-like specimen. Mesh refinement is required in the crack propagation zone.

Fig. 5. Crack growth in a 2D single crystal CT-like specimen with a single cleavage plane aligned through the horizontal axis under vertical tension. Field
variable d. (Top) A = 100 MPa mm2, H = �20,000 MPa, vH = 30,000 MPa, (bottom) A = 150 MPa mm2, H = �10,000 MPa, vH = 30,000 MPa.

Fig. 6. Crack growth in a 2D single crystal CT-like specimen under tension with two orthogonal cleavage planes oriented at 45�. Field variable d.
A = 100 MPa mm2, H = �20,000 MPa, vH = 30,000 MPa.
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gen (1999), it is applied to the deformation itself, / � F
�

, thus introducing the microdeformation, v/ � v
�

. The departure of the
microstructure from the macromotion is represented symbolically by the difference, v/ � /, and corresponds to an energetic
cost in the free energy function. In the case of crystal plasticity, we have proposed in this work to consider the plastic mic-
rodeformation, v/ � v̂

�

p, associated with the plastic deformation F
�

p. The relative plastic deformation, e
�

p ¼ F
�

p�1 � v̂
�

p, measures
the difference between the micro and macro-plastic deformation. As long as this difference remains small, the curl of the
plastic microdeformation is close to the dislocation density tensor, representing plastic incompatibility in the crystal. The
microcurl models represents the restriction of the micromorphic model to the rotational part of the microdeformation, in-
stead of the full gradient. The simple example of a two-phase laminate microstructure undergoing single slip provides ex-
plicit scaling laws for the yield strength of the material as a function of microstructure characteristic size. Material
parameters can be identified so as to recover scaling exponents from 0 to �2, including the scaling laws, l�1/2 and l�1, respec-
tively known as Hall–Petch and Orowan relationships. In contrast, the strain gradient plasticity model obtained as a limit
case of the microcurl theory when the internal constraint e

�
p � 0 is enforced, delivers a unique scaling law with a power

�2, without direct physical meaning, to the knowledge of the authors.
The micromorphic approach has then been applied to a damage variable, / � d, representing the cumulative opening and

shearing modes of microcracks in a single crystal material volume element. The corresponding microvariable, vd, and its gra-
dient, are used as a regularization method for mesh-insensitive simulation of crack propagation in ductile single crystals. The
main interest of the model is that the crack path is not predefined and rather is an outcome of the simulation. Crack opening
is allowed with respect to {111} planes in FCC crystals. In the two-dimensional situation, two crack planes are possible and
allow crack branching and crack bifurcation, but also a straight crack path when both mechanisms cooperate.

The results obtained in this work illustrate the potential of micromorphic models to handle in a generic way size effects in
crystals. However, the effects shown remain qualitative and there is still a long way to obtain quantitative agreement with
experimental data. For instance, the linear kinematic component generated by the microcurl model is unrealistic and more
general constitutive equations between higher order stresses and the microdeformation gradient will be necessary to rep-
resent non-linear kinematic hardening. In the context of multiple slip, size-dependent isotropic hardening is also expected
and not accounted for in the present version of the model.

Promising results were presented for the simulation of crack propagation in single crystals under monotonic loading.
Crack propagation under cyclic loading also is of the utmost important, especially for single crystal nickel-base superalloys
used in turbine blades, and extensions of the presented constitutive framework allow for the simulation of cyclic crack prop-
agation, including some crack closure effects by introducing unilateral damage in the modeling (Aslan et al., 2011). Material
parameters of the damage model can be identified from experimental crack growth rate, whereas the characteristic length of
the model mainly controls branching vs. straight propagation.
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