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A B S T R A C T   

When a sample is cyclically loaded under a mean stress or strain, incremental strain ratcheting or 
mean stress relaxation phenomena are usually observed. Experiments show that for metallic 
materials there is generally no full mean stress relaxation as well as saturation of macroscopic 
strain ratcheting. In contrast, most macroscopic constitutive models produce both quantities in 
excess, and complex sets of additional internal variables must be introduced to improve the 
modeling. Little attention has been paid to model such phenomena using polycrystal aggregates 
especially going up to the regime of cyclic mechanical stability. In this work based on an 
elementary crystal plasticity model for FCC crystals and large scale finite element simulations, it 
is shown that the interaction between different grains is sufficient to cater for such complex 
phenomena. Light is shed on how different regions of the polycrystal accommodate each other 
and how the classical definition of constant rate strain ratcheting or a zero mean stress is nearly 
impossible to apply to a polycrystalline aggregate. In addition, it is shown that even if a 
macroscopic stable hysteresis stress strain loop is observed, ratcheting phenomena can still be 
observed at the local scale. The distributions of different constitutive quantities within a poly-
crystal are also analyzed which gives a new insight into what is happening inside a polycrystal in 
terms of stress and strain redistribution. In particular, the existence of evolving bimodal distri-
butions of stress and accumulated plastic strain is evidenced and related to the occurrence of 
plastic shakedown and incomplete mean stress relaxation. Two numerical criteria to detect strain 
ratcheting are finally proposed and discussed.   

1. Introduction 

Most metallic materials have a heterogeneous microstructure, and this local disorder results in specific mechanical properties. 
Several studies have been undertaken to link micro-macro properties of metals (Barbe et al., 2001; Dunne et al., 2007; Zhang et al., 
2007, 2016; Guilhem et al., 2018), but how local properties affect macroscopic properties is still not fully understood. In particular, the 
behavior of metallic materials under cyclic loading conditions is the subject of considerable attention (Ghorbanpour et al., 2017; Smith 
et al., 2018; Yu et al., 2013). The present paper explores two topics, namely ratcheting and mean stress relaxation in polycrystalline 
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aggregates under cyclic loading. Both phenomena result from asymmetric cyclic loading conditions. In this context, elastic shakedown 
refers to the material deforming plastically during the first few cycles and the subsequent response becomes elastic. Plastic shakedown 
refers to an open stabilized stress-strain hysteresis loop which does not move forward or backward on the strain axis. Asymmetric 
stress-controlled uniaxial cyclic loading can result in strain ratcheting, i.e. a progressive, incremental inelastic deformation leading to a 
shift of the stress-strain hysteresis loop along the strain axis (Fournier and Pineau, 1977; Jiang and Sehitoglu, 1994; Hassan and 
Kyriakides, 1994a,b; Ohno et al., 1998; Portier et al., 2000; Kang et al., 2010). Mean stress in this article is defined as (Σmax þ Σmin)/2 
where Σmax and Σmin are the maximum and minimum applied stresses in a cyclically loaded component. The stress amplitude is defined 
as (Σmax � Σmin)/2. With regards to asymmetric strain controlled cyclic loadings, it is also known that under a given stress amplitude, 
increasing the mean stress, or increasing the applied mean stress under constant amplitude, both increase the rate of ratcheting 
(Goodman, 1984). On the other hand, experimental observations indicate levels of mean stress for which there is very low ratcheting 
and the mechanical state of the material converges towards plastic shakedown (Pellissier-Tanon et al., 1982). Similarly, for asymmetric 
strain controlled loading conditions, a cyclic mean stress is observed, and several experimental studies (Wehner and Fatemi, 1991; 
Nikulin et al., 2019; Prithivirajan and Sangid, 2018) have deciphered the corresponding physical mechanisms. These observations 
show that for a given positive mean strain, and a low strain amplitude, the mean stress does not completely relax to zero. Also, 
increasing the strain amplitude leads to a nonlinear decrease of the mean stress until it finally vanishes (Arcari et al., 2009). From a 
modeling perspective, the mechanical cyclic response is sensitive to the strain path and is driven by the Bauschinger effect, as modeled 
by Chaboche (1986, 1989). Classical macroscopic models (Chaboche, 1989) predict an excess of strain ratcheting as well as mean 
stress. Some researchers have proposed to introduce additional kinematic and isotropic hardening terms (Chaboche et al., 2012), 
resulting in numerous material parameters to be calibrated. Any change in the material requires recalibration of parameters. Also, no 
microstructural characteristics of the underlying material are captured by such phenomenological models, which inhibits further 
inspection of the physics of deformation of the material. Crystal plasticity models coupled with computational homogenization, on the 
other hand, offer a way to link cyclic micro-macro properties of metallic materials (Shenoy et al., 2008). The deformation behavior of a 
single crystal at the slip system level is used to determine the properties of polycrystalline aggregates using representative volume 
elements. This procedure, although phenomenological at constitutive single crystal level, provides a realistic insight into what is 
happening within a polycrystal as shown by comparison between simulations and strain field measurements (Zhao et al., 2008b; 
Zaafarani et al., 2006). 

Xie et al. (2004) and Sinha and Ghosh (2006), followed by Dingreville et al. (2010), were among the first authors to use poly-
crystalline aggregates coupled with CPFEM to model ratcheting. These researchers simulated the first few cycles and then extrapolated 
their results to larger cycle numbers. More recently, Hennessey et al. (2017) and Cruzado et al. (2017) proposed to change the ki-
nematic hardening law from an Frederick and Armstrong (2007) formulation to a modified Ohno and Wang (1993) type law. Hen-
nessey et al. use an accelerated simulation and run the simulation for a hundred cycles, while Cruzado et al. resort to a cycle jump 
technique (Cruzado et al., 2012; Azzouz et al., 2010; Mary and Fouvry, 2007) to extrapolate the constitutive response. Both groups 
focus on the macroscopic properties of the aggregate rather than on local stress and strain distributions. The main limitations of all the 
conducted studies are that local heterogeneity and the physics behind these phenomena are neglected in favor of focusing on the 
macroscopic stability of the stress-strain hysteresis loop. Attention is paid essentially to matching simulation and experimental results 
at the macroscopic level. In the recent contribution by Colas et al., 2019 the authors evidence local ratcheting phenomena in a 
polycrystalline aggregate under symmetric strain loading conditions. Local ratcheting phenomena are found to be more pronounced at 
a free surface than in the bulk. The analysis is however limited to one single realization, without statistical considerations. 

The objective of the present work is to show that simulations of polycrystalline aggregates based on the most simple crystal 
plasticity laws can reproduce the main phenomenological features of asymmetric cyclic uniaxial plasticity and to correlate them with 
the stress and strain distributions inside the aggregates. 

As stated earlier, the driving force for strain ratcheting and cyclic mean stress relaxation is the Bauschinger effect, which in a 
modeling perspective is governed by kinematic hardening. Kinematic hardening controls the ratcheting behavior as well as mean stress 
relaxation in structural components. Isotropic hardening, on the other hand, decreases the rate of plastic strain evolution per cycle. 
Single crystal behavior exhibits isotropic hardening effects due to multiplication and interaction of dislocations, as well as kinematic 
hardening as a result of polarization of dislocation structures. In a polycrystal, the cyclic response results from these two hardening 
components inside the grains and from the intergranular interactions. Hence, to assess these complex mechanisms, a very simple 
constitutive law is retained at the single crystal level for the systematic study of the present work. It is first limited to purely kinematic 
hardening. This is a simplification which complies with usual observations that isotropic hardening remains very limited in metallic 
alloys used for engineering purposes such as nickel-based superalloys under cyclic loading, which is the target material class of the 
present work (Chaboche et al., 2012). A rate–independent crystal plasticity model formulation is used to avoid the contamination of 
the final results by viscosity effects. The selected crystal plasticity model by (Forest and Rubin, 2016) exhibits a smooth elasto-plastic 
transition and is strictly rate-independent. In what follows, finite element simulations of polycrystalline aggregates will be shown to 
provide a realistic description of ratcheting and mean stress relaxation in face centered cubic (FCC) metals, without resorting to 
complex memory variables in contrast to macroscopic approaches. Two types of materials are taken into account, one with a low 
hardening limit and high yield strength similar to Nickel base superalloys, and a second one with stronger hardening and a low yield 
strength as seen in copper based alloys as a reference (Siska et al., 2007). Finally, the results are analyzed along two lines, i.e. at the 
macroscopic scale first and then at the local scale looking at field variables influencing the phenomena. 

Three main original contributions discussed in this work must be pointed out: (1) the evidence that simulations of grain to grain 
interactions based on most simple single crystal model can predict limited ratcheting and mean stress relaxation phenomena, as 
observed in experiments; (2) the existence of bimodality in the stress-strain distribution functions inside the polycrystal and its 
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relations to the overall cyclic behavior; (3) the results are supported by large scale finite element simulations of polycrystalline ag-
gregates up to large cycle number, namely 100 for the statistical analysis, more than 1000 for validation. 

The paper is organized in the following manner. In Section 2 the crystal plasticity material model is formulated. Section 3 presents 
the finite element model, material parameters, as well as the physical aspects of the microstructure. Results and discussions are 
provided in Sections 4, regarding macroscopic aspects, and 5, regarding local stress and strain fields. They are followed by the con-
clusions in Section 6. 

2. Crystal plasticity model 

In the present work a small strain crystal plasticity formulation is used for the computation as most local strains remain below 5%. 
Each grain is considered as an initially homogeneous single crystal. To ease the interpretation of the numerical results, a rate-
–independent formulation is selected, using the single crystal plasticity model recently proposed by Forest and Rubin (2016). An 
advantage of using a rate–independent model coupled with a small strain assumption is the numerical efficiency which is crucial when 
simulating hundreds of cycles under various load amplitudes. In addition, it has been decided to use exclusively kinematic hardening 
because it governs ratcheting and mean stress relaxation. Face centered cubic (fcc) single crystal metallic materials comprising n 
plastic slip systems, each having a slip system direction ℓ s and a normal to the slip plane ns are considered. The partition of the strain 
tensor introduces elastic and plastic parts: 

ε ¼ εe þ εp (1) 

The Hooke law relates the stress tensor to the elastic strain tensor. For cubic elasticity, a fourth rank tensor of elastic moduli C, 
involving three independent parameters, governs the elastic behavior: 

σ ¼ Cεe (2) 

The plastic strain rate results from the slip processes with respect to all active slip systems, 

_εp
¼
Xn

s¼1
_γsms (3)  

with ms being the Schmid orientation tensor defined as 

ms ¼
1
2
ðℓ s
� ns þ ns � ℓ s

Þ (4) 

The amount of slip on each slip system is denoted by the variable γs. The driving force for plastic slip on slip system s is the resolved 
shear stress, computed using the Cauchy stress tensor σ according to: 

τs ¼ σ : ms ¼ σijms
ij (5) 

The yield criterion is a generalization of Schmid’s law involving scalar hardening variables rs and xs according to M�eric et al. 
(1991). 

f sðσ; xs; rsÞ ¼ jτs � xsj � rs (6)  

Here, rs denotes the radius of the elastic domain and xs is a scalar back-stress characterizing the center of the elastic range in the one- 
dimensional space of resolved shear stresses. In slip based crystal plasticity, there are n such elastic ranges. Plastic slip can occur only if 
the function fs becomes positive. The viscoplastic flow rule given by M�eric and Cailletaud (1991), is proposed in terms of the viscosity 
parameters, K and n: 

_γs ¼ 〈
f s

K
〉nsignðτs � xsÞ (7)  

with the Macaulay brackets < x >¼Max (x, 0). In the present work following Forest and Rubin (2016), the rate of slip on each slip 
system is replaced by a rate-independent formulation of the form: 

_γs ¼ _ε〈
f s

K
〉signðτs � xsÞ (8)  

where K is a positive constant having now the unit of stress and _ε is a non-negative homogeneous function of order one in the total 
strain rate. In this model, _ε is taken to be the total equivalent distortional strain rate: 

_ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ε0 : _ε0
r

; _ε0 ¼ _ε � 1
3
ðtraceð _εÞÞ1 (9)  

where ε0 is the deviatoric part of the total strain rate tensor _ε and 1 the unit. Since the rate of inelasticity is linear in the total equivalent 
strain rate _ε, all the evolution equations in the proposed theory are homogeneous of order one in time, characterizing a rate- 
independent response. Also, the rate of inelasticity is used for all states entailing no need for special treatment of loading and 
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unloading conditions. In particular no consistency condition is needed in contrast to standard rate–independent plasticity. The 
amplitude of the overstress is controlled by the value of parameter K. It tends to zero for vanishing values of K. There is no indeter-
minacy in the selection of active slip systems according to the present model. The functional form of f and the evolution equations for 
isotropic (rs) as well as kinematic (xs) hardening remain unchanged compared to the original model (M�eric and Cailletaud, 1991). The 
accumulated slip variable vs is defined for each slip system by the following evolution equation: 

_vs ¼ j_γsj (10) 

The evolution equations for the kinematic hardening variable is taken from M�eric et al. (1991) and Busso and Cailletaud (2005) 
without modification. The nonlinear kinematic hardening evolution law 

_xs ¼ C _γs � D _vsxs (11)  

depends on two material parameters, C and D. In the present paper, there is no isotropic hardening so that the variable rs has a constant 
value R0, which corresponds to the initial resolved shear stress. Under monotonic loading Eq. (11) can be integrated into an expo-
nential function with maximal value x ¼ C/D (Besson et al., 2009), called saturated value. As a result, the satured value of the critical 
resolved shear stress is R0 þ C/D. 

Two crystal plasticity parameter sets were chosen, as stated in Table 2, where the saturated resolved shear stress is the same (i.e. R0 
þ C/D ¼ 420 MPa for both parameter sets); The difference however lies in the flipping of kinematic hardening and initial critical 
resolved shear stress. Parameter set ‘LK’ has a low kinematic hardening but a high initial critical resolved shear stress resembling 
aerospace alloys such as Inconel where the saturated value of the kinematic hardening variable is around one third of the initial yield 
stress. Parameter set ‘HK’ resembles an alloy with a low yield stress and a strong hardening such as copper where the saturated value of 
the kinematic hardening variable is three times that of the initial yield stress (Siska et al., 2007). Both parameter sets pertain to unit 
cells made of FCC crystals deforming plastically on octahedral slip systems {111}〈110〉. The slip systems, as ordered in the implicit 
simulation software Z–set package (2013), are given in Table 1. 

3. FE model description 

Literature findings show that the macroscopic representation of a micro-heterogeneous metallic material can be achieved with as 
few as one hundred grains (Barbe et al., 2001; Kanit et al., 2003; Bouchedjra et al., 2018), but matching macroscopic properties is not 
the goal. The goal here is to have a large enough statistical database so that local material response can be analyzed. The question of 

Table 1 
The 12 octahedral FCC slip systems numbered in the same order as they are defined in the code.  

Slip system Slip plane normal Slip direction 

1 (111) ½101�
2 (111) ½011�
3 (111) ½110�
4 ð111Þ ½101�
5 ð111Þ [011] 

6 ð111Þ [110] 

7 ð111Þ ½011�
8 ð111Þ [110] 

9 ð111Þ [101] 

10 ð111Þ ½110�
11 ð111Þ [101] 

12 ð111Þ [011]  

Table 2 
Crystal plasticity parameters used for both parameter sets. The saturated critical resolved shear stress is the same for both 
parameter sets; The only difference being that parameter set LK has a low kinematic hardening and high critical resolved 
shear stress and vice versa.  

- Parameter set LK Parameter set HK 

Cubic elasticity C1111 ¼ 259600 MPa C1111 ¼ 259600 MPa 
C1122 ¼ 179000 MPa C1122 ¼ 179000 MPa 
C1212 ¼ 109600 MPa C1212 ¼ 109600 MPa 

Critical resolved shear stress R0 ¼ 320 MPa R0 ¼ 100 MPa 
Kinematic hardening C ¼ 100000 MPa C ¼ 320000 MPa 

D ¼ 1000 D ¼ 1000 
Overstress K ¼ 9 MPa K ¼ 9 MPa  
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choice of number of grains to be considered in the polycrystal is important in mechanics of heterogeneous media. Following guidelines 
by Kanit et al. (2003), about the definition of a Representative Volume Element (RVE) for random composite materials, a statistical 
approach is used consisting in selecting several realizations of the microstructure with a finite number of grains. Such polycrystal 
geometries are called Volume Elements (VE). Due to extremely long simulation times under cyclic loading, only 2 such volumes are 
considered. This is sufficient for a first estimate of the scatter of our predictions. It will be checked that both VEs give very close 
mechanical responses both at the macroscopic (overall curves) and local scales (strain distribution functions). In that sense, our 
method can be called an RVE approach. Two aggregates containing equiaxed grains, respectively called VE1 and VE2, were generated 
using the Voronoi tessellation technique with the help of the software VOROþþ (Rycroft, 2009). A periodicity constraint was applied 
to obtain periodic microstructures. The software Gmsh was used to mesh both geometries, enforcing conditions of periodicity for the 
obtained meshes. Both aggregates contain 300 grains and reduced quadratic tetrahedral elements C3D10. The mesh of VE1 contains 
194903 nodes and 130171 elements whereas the mesh of VE2 is made of 192042 nodes and 128166 elements (see Fig. 1 (a) and (d)). 
Each tetrahedral finite element has 10 nodes and 4 Gauss points. 

The grain sizes in both VEs (as seen in Fig. 1 (b) and (e)), have a normal distribution with the crystal orientations uniformly 
distributed in the polycrystal (Fig. 1 (c) and (f)). 

3.1. Computational requirements 

The implicit finite element solver (Z–set package, 2013) is used to solve the problem. The global equilibrium is solved using a 
Newton-Raphson algorithm. Integration of constitutive equations at the Gauss points is performed using the second order Runge-Kutta 
method with automatic time stepping (Besson et al., 2009). For a crystal plasticity simulation, loading one job of the present size 
requires 31.5 gigabytes RAM. The MPI parallel computing algorithm implemented in Zebulon is used with 4 processors for each job. 
Each job requires around 24 h to complete one cycle and to run one hundred cycles, it required 100 days each. More than 320 sim-
ulations are being post-processed for this paper, while the actual number of calculated test cases is at least fifty times more than this. 
Given the number of degrees of freedom of each mesh and the cyclic nature of the problem, data of more than 20 TBytes were 
generated. 

3.2. Boundary conditions 

In the article, ε will be used to refer to the local strain tensor, and E will point to the macroscopic symmetric second-rank strain 
tensor defined as the average strain over the whole volume: 

< ε >¼ 1
V

Z

V

εdV ¼ E (12) 

Fig. 1. 300 grain polycrystals for the FE simulations, along with the inverse pole figures of the crystallographic orientations used in the VEs.  
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Similarly, σ will be the local stress tensor and the macroscopic stress Σ will be defined as its spatial average as follows: 

< σ >¼ 1
V

Z

V

σdV ¼ Σ (13) 

Periodic boundary conditions were prescribed on the VEs such that the displacement vector field u over the entire volume takes the 
form: 

u ¼ E � xþ v 8x 2 V (14)  

where the fluctuation v is periodic. This fluctuation takes the same value for each pair of homologous points at ∂V. Anti-periodic 
boundary conditions are prescribed to the traction vector σ.n where n is the outer normal to ∂V at x. The displacement and trac-
tion vectors are assumed to be continuous at the grain boundaries. For strain ratcheting, the macroscopic stress component Σ11 was 
imposed, whereas for mean stress relaxation the macroscopic strain component E11 was controlled. In both cases, all remaining volume 
averaged stress components are fixed to zero i.e. Σ22 ¼ Σ33 ¼ Σ12 ¼ Σ23 ¼ Σ31 ¼ 0. 

4. Results at macroscopic scale 

This section presents the results obtained at a global level by averaging the stress and strain fields on the whole aggregate. Two 
loading types are investigated leading to ratcheting and mean stress relaxation respectively. In each case, the response obtained with a 
single crystal is given as an elementary reference. 

4.1. Ratcheting in single crystals 

The simulations of this subsection are performed at the material point level assuming homogeneous deformation. A uniaxial cyclic 
stress was imposed on the material element. Depending on the stress amplitude (ΔΣ/2) and the mean stress Σ, the resulting cyclic 
behavior can be broken down into three distinct responses i.e. elasticity, elastic shakedown and ratcheting. These three regions depend 
on the single crystal hardening parameters i.e its yield stress, and the kinematic and isotropic hardening parts. For a single crystal, yield 
stress in tension refers to the critical resolved shear stress divided by the Schmid factor. Fig. 2 depicts these regimes in a stress 
amplitude (ΔΣ/2 ¼ (Σmax � Σmin)/2) vs mean stress1 (Σ ¼ ðΣmax þ ΣminÞ=2) diagram. This figure is schematic in the sense that the actual 
values on the two axes will depend on the crystal orientation. However, in the simplified model considered in this work where isotropic 
harening is neglected, the general shape of the diagram will always be the same. From Fig. 2, it can be seen that elastic shakedown 
refers to the material deforming plastically during the first few cycles and the subsequent response being elastic. Ratcheting in a single 
crystal is the progressive accumulation of strain per cycle without stopping, as signified by the red region. So depending on the loading 
type, a single crystal is bound to either ratchet or elastically shakedown. A missing region, as opposed to experimental observations, is 
that of plastic shakedown, which refers to an open stress-strain hysteresis loop which does not move forward on the strain axis. These 
three regimes can be classified as follows:  

∙ Elastic if ΔΣ/2 is smaller than the yield stress  
∙ Shakedown if ΔΣ/2 is smaller than the combination of the yield stress and the saturated isotropic hardening  
∙ Ratcheting if ΔΣ/2 is greater than the combination of the yield stress and the saturated isotropic hardening 

4.2. Ratcheting in polycrystals 

A periodic macroscopic stress (Σ11) was imposed on polycrystalline volume element periodic boundary conditions. Two stress 
strain curves pertaining to the two parameter sets are shown in Fig. 3. The boundary conditions for both simulations are kept the same 
where Σmax ¼ 1020 MPa and RΣ ¼ � 0.7. RΣ ¼ Σmin/Σmax is the stress controlled loading ratio. To avoid clutter only the first ten cycles 
are plotted for both simulations. From the plot it can be seen that the curve for parameter set HK ratchets much more than the curve for 
parameter set LK because of the presence of a much higher kinematic hardening in the former. 

Both simulations ratchet at different rates and comparing the accumulated axial strain can give a misleading estimation of what is 
ratcheting and what is shakedown. The same argument is valid for tests done at different amplitudes or loading ratios. Also, for a 
polycrystal, no matter how high the applied loading, the increment in accumulated strain ΔE ¼ Enþ1 � En always tends to decrease. This 
calls for the formulation of a robust test for discriminating ratcheting from shakedown. A test is proposed such that the delta accu-
mulated strain per cycle is plotted (ΔE11) against the number of cycles and identified with a power law series in the form: 

E11ðNÞ ¼ A
XN

n¼1

1
nα (15)  

where α is the slope of the series. The condition α larger than 1 is required for the power law series to converge. It follows that 

1 This definition is classical in fatigue but should not be confused with the same name given to the ratio between hydrostatic stress/divided by von 
Mises stress used in modeling ductile fracture. 
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Fig. 2. Under asymmetric load control, the single crystal response which shows three distinct regions i.e. elastic, shakedown and ratcheting.  

Fig. 3. For an asymmetric load controlled test, stress (Σ11) vs strain (E11) curves for both parameter sets. The loading conditions are kept the same 
for both i.e. Σmax ¼ 1020 MPa and RΣ ¼ � 0.7. Only the first ten cycles are plotted in each case. 

Fig. 4. For asymmetric load controlled tests, the left figure shows the evolution of the ratcheting strain increment as a function of cycle number for 3 
polycrystal simulations using parameter set LK, with three different stress amplitudes. The macroscopic stress (Σ11) vs strain (E11) plot is shown on 
the right for three simulations showing the cyclic response at cycles 1 and 100. The simulations selected illustrate the elastic shakedown, plastic 
shakedown and ratcheting phenomena. 

H. Farooq et al.                                                                                                                                                                                                        



International Journal of Plasticity 126 (2020) 102619

8

the  test  series
�

converges; if α � 1:
diverges; if α < 1: (16) 

The left plot in Fig. 4 shows 3 simulations that were run for parameter set LK for three different stress amplitudes. For comparison, a 
slope of � 1 is also plotted on the left corner. The series test was performed after running the simulations for a hundred cycles each. 
There is a clear difference between a curve that will converge (shakedown) or one that will diverge (ratchet). As a second criterion, the 
second derivative at cycle 100 is also computed for all curves which indicates the convexity (ratcheting) or concavity (shakedown) of 
the curves. After applying the convergence or divergence criteria, the converging test cases are broken into two parts depending on 
whether or not the width of the stress strain loop is open or closed at cycle 100. An open loop signifies that there is plastic shakedown, 
whereas a closed loop points to elastic shakedown. A small offset of tolerance is needed to establish what is meant by a closed loop. In 
the present work, the tolerance for the width of the loop at its mean stress is set to be δ ¼ 1.0 � 10� 6. The right hand plot in Fig. 4 shows 
the macroscopic stress vs strain response for three selected cases at the first and at the hundredth cycle. It can already be established 
that the red curves are diverging while the green and blue curves are converging. Multiple simulations are run, on the polycrystal 
aggregates, at various load amplitudes and mean stresses for a hundred cycles each. Then the evolution of macroscopic strain in each 

Fig. 6. For a single crystal under asymmetric strain controlled loading, (a) stress vs strain plot showing the three scenarios of cyclic mean stress 
relaxation, and (b) mean stress at saturation vs maximum axial strain plot. 

Fig. 5. Ratcheting maps in polycrystals (a) VE 1 and parameter set LK, (b) VE 2 and parameter set LK, (c) VE 1 and parameter set HK, (d) VE 2 and 
parameter set HK. The blue, green and red dots respectively denote elastic shakedown, plastic shakedown and ratcheting. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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simulation is assessed using the series comparison test, and a diagram similar to that of Fig. 2 is drawn for four cases i.e. for both VEs 
and for both parameter sets. Fig. 5 shows that this diagram differs from the single crystal case. Four regions can be seen i.e. elastic, 
elastic shakedown, plastic shakedown and ratcheting instead of three in the single crystal case. The elastic region is determined using 
the plasticity criterion for metals of a yield strength of 0.2% plastic strain Ep, and is characterized by the grey region. The maximum 
stress limit for the polycrystal is computed by applying a macroscopic strain of 4%, the resulting stress being taken to be the limit above 
which the material cannot be loaded i.e. the top and bottom right corner of each plot in Fig. 5. In the same figure, the dots are found to 
segregate into three regions, namely elastic shakedown, plastic shakedown and ratcheting respectively. For parameter set LK, the 
region in which ratcheting and plastic shakedown occur is very small because of the low kinematic hardening. Parameter set HK, on the 
other hand, leads to a much larger region for plastic shakedown and ratcheting. It should however be noted that the diagrams of Fig. 5 
(a) and (b), as well as (c) and (d) are very similar signifying that it is both VEs can be regarded as representative microstructures 
capable of reproducing the typical cyclic mechanical behavior of the material. 

4.3. Mean stress relaxation in single crystals 

Under asymmetric cyclic strain control, the mean stress relaxes to a certain value when increasing the cycle number. At the macroscopic 
level, this mean stress Σ11, defined as (Σmax þ Σmin)/2, where Σmax and Σmin are the maximum and minimum stresses under peak strains. In 
this case, a single crystal cyclic response can be broken down into three distinct scenarios which are represented in Fig. 6 (a) and (b). Focusing 
on Fig. 6 (a), the first scenario shows the elastic regime where cyclic loading will have no effect on the cyclic mean stress redistribution. To 
remain in this regime plasticity has to be avoided i.e. the applied maximum strain (Emax) should be: 

Emax <
Σy

Y
; (17)  

where Σy is the stress at which yielding starts and Y is the Young’s modulus of the single crystal in the loading direction. Next, in the 
second scenario plasticity is observed only during the first tensile loading but upon unloading immediately after, elastic response is 
observed in the following cycles. To characterize the second scenario, the loading ratio RE is defined as: 

RE ¼
Emin

Emax
; (18)  

where Emin is the minimum applied strain. Then, the maximum applied strain Emax in the second regime should be in the following 
interval: 

Σy

Y
< Emax <

2Σy

Yð1 � REÞ
; (19)  

in the absence of isotropic hardening. Finally in the last regime, the mean stress relaxes to zero and the maximum applied strain should 
be: 

Emax >
2Σy

Yð1 � REÞ
: (20) 

Fig. 6 (b) then depicts the curve of the mean stress at saturation vs maximum applied axial strain. The first scenario corresponds to 
the initial straight line with a slope of Y (1 � RE)/2; The second scenario depends on the type of kinematic hardening, and finally in the 
third scenario, a zero mean stress is found. 

Fig. 7. Under asymmetric strain controlled boundary conditions on VE 1, stress (Σ11) vs strain (E11) plot for both parameter sets with RE ¼ � 0.2, and 
E11 ¼ 0.85%. Responses were extracted at cycles 1 and 100 for both parameter sets. Cyclic mean stresses (Σ11) are also given for each case 
respectively. 

H. Farooq et al.                                                                                                                                                                                                        



International Journal of Plasticity 126 (2020) 102619

10

4.4. Mean stress relaxation in polycrystals 

The boundary conditions applied to the meshes of Fig. 1 were periodic with an average strain E11 imposed on all elements. Fig. 7 
shows the average stress (Σ11) vs strain (E11) response for the two parameter sets on VE 1. Both VEs were submitted to the same loading 
conditions E11 ¼ 0.85% and RE ¼ � 0.2. It can be seen that at cycle 100, the curve for parameter set LK stabilizes to a mean stress of 

Fig. 8. Mean stress relaxation in polycrystals (a) VE 1, parameter set LK, (b) VE 1 parameter set HK, (c) comparison of VE 1 and 2 for parameter set 
LK and HK at cycle 1, (d) comparison of VE 1 and 2 for parameter set LK and HK at cycle 100. Comparison with single crystal response with lattice 
orientation <001 >, for figures (a) and (b). 

Fig. 9. A slice of VE 1 and 2 along the 2–3 plane, at x ¼ 0.5.  
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40 MPa, whereas the curve for parameter set HK relaxes to less than 0.5 MPa. 
According to Fig. 8, the response of the polycrystal can be characterized by the mean stress vs maximum axial strain diagram. Each 

point represents one simulation, with 100 cycles each, and a total of 21 simulations were run ranging from E11 ¼ 0.3%–1.3% with R ¼ �
0.2 for parameter set LK and VE 1. Similarly, 21 simulations ranging from E11 ¼ 0.11%–1.31% with R ¼ � 0.2 were performed for 
parameter set HK and VE 1. Fig. 8 (a) and (b) show the response for parameter sets LK and HK. It can be seen how the cyclic mean stress 
relaxes with the number of cycles. The response of a single crystal oriented at 〈001〉 is also plotted for both parameter sets for comparison. 
In both cases, it was found that a steady state was achieved at cycle 100. Fig. 8 (c) and (d) shows the response of both VEs for each 
parameter set at cycle 1 and 100. It can be seen that parameter set LK does not lead to mean stress relaxation to zero even at a high 
maximum axial strain. In contrast the material with parameter set HK relaxes to zero for E11 ¼ 0.5%. It can be seen that, when compared 
to a single crystal, the polycrystal response displays a smooth transition between the three scenarios which conforms to experimental 
findings (Chaboche et al., 2012). In addition, both VEs produce a similar response suggesting that the considered volume elements are 
representative with respect to this macroscopic response. 

5. Analysis of local results 

Attention is now focused on intragranular response of the material. Two types of local results are considered here, namely contour plots 
of stress and plane strain fields, as well as Gauss point statistics. For the contour plots, VE 1 and 2 are sliced at x ¼ 0.5, as depicted in Fig. 9. 

5.1. Local ratcheting behavior 

The results of one stress controlled simulation up to 100 cycles with Σ11 ¼ 1021 MPa and RΣ ¼ � 0.7 for both VE 1 and 2 are 
analyzed. They are plotted in Fig. 10 at the time step corresponding to the tensile peak of the one hundredth cycle. An overlay of the 
grain boundaries is also superimposed on top of each contour map to make the observations easier to interpret. Eight contour plots are 
shown for the following field variables:  

∙ von Mises strain εvM ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3ε0ijε

0

ij

q
, where ε0 is the deviatoric part of the local strain tensor, 

Fig. 11. Three different asymmetric stress controlled simulations with Σ11 ¼ 849 MPa, Σ11 ¼ 983 MPa, and Σ11 ¼ 1021 MPa, and RΣ ¼ � 0.7 for all 
cases (VE 1, parameter set LK). Macroscopically, the first and second shakedown while the third ratchets. Local regions for ratcheting and 
shakedown (per finite element) are respectively shown in red and blue for each case. 
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∙ equivalent plastic strain εp
eq ¼

ffiffiffiffiffiffiffiffiffiffiffi
2
3εp

ijε
p
ij

q

∙ accumulated plastic strain εacc ¼
R t

0

ffiffiffiffiffiffiffiffiffiffiffi
2
3 _εij _εij

q

dt,  

∙ von Mises stress σvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2σ0ijσ

0

ij

q
, where σ0 is the deviatoric part of the local stress tensor,  

∙ stress triaxiality σtri ¼
σii=3ffiffiffiffiffiffiffiffiffi

3
2σ0ijσ

0

ij

p ,  

∙ number of active slip systems: 
�PN

s¼1jγsj
�.

maxs¼1;NðjγsjÞ, where s is the slip system,  

∙ maximum axial Schmid factor per grain mmax ¼maxs¼1,N (|ms|), where ms ¼ (ns.t) (ls.t), t being the tensile direction and s the slip 
system. This factor is computed assuming uniaxial tension.  

∙ total axial Schmid factor per grain mtotal ¼
PN

s¼1jmsj. 

Fig. 12. Distribution curves of Gauss point variables for an asymmetric stress controlled test using parameter set LK, RΣ ¼ � 0.7 and 
Σ11 ¼ 1021 MPa. The variables shown are (a) von Mises stress (b) von Mises strain, (c) accumulated slip, (d) accumulated plastic strain, and (e) stress 
triaxiality. 
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For both VEs, the von Mises strain and equivalent plastic strain maps in Fig. 10 show that these quantities have very similar maps and 
it can be seen that they segregate in some regions of the microstructure. These regions do not specifically conform to any specific grain or 
orientation. Similar observation is made for the accumulated plastic strain map. One important feature from the accumulated plastic 
strain map is the extreme heterogeneity with locations experiencing very little plastic strain accumulation, and regions of accumulated 
plastic activity as high as 55%. Looking at the von Mises stress plot, it can be seen that there is much less heterogeneity, at least when 
compared to the strain plots. The von Mises stress scale begins at 800 MPa and even at this scale, not many regions can be seen to have 
such low stresses. Nonetheless, the von Mises stress seems to obey morphological constraints such as grains and grain boundaries, in 
contrast to other quantities. The same holds for the stress triaxiality plot. The map of the number of active slip systems is also given in 
Fig. 10. This variable ranges in principle from 1 to 12. However, it can be seen that the estimated number of activated slip systems does 
not reach such large values but mostly remains between 1 and 3. The plot shows that a value of 1 is observed mostly at the core of the 

Fig. 13. For both VE 1 and 2, von Mises stress distribution at the tensile peak of the 100th cycle for Σ11 ¼ 1021 MPa and RΣ ¼ � 0.7. The distribution 
curve has been broken down into two parts and the associated regions are shown in the microstructure respectively. All Gauss points in the first part 
of the distribution curve are colored grey in the microstructure, while all Gauss points in the second part of the distribution curve are colored black. 
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grains where a single slip system is active. On the other hand, darker regions of the active slip system plot exist at the grain boundaries 
where different grains interact and multislip is likely. Lastly, two plots for the Schmid factors are provided in Fig. 10: the maximum axial 
Schmid factor mmax and the total axial Schmid factor mtotal. A high value of mmax indicates that the grains are rather soft, meaning that 
they experience low stress values. No clear correlation can be seen between the mmax map and the previous stress and strain maps. In 
contrast, interesting observations can be made from the mtotal map. The variable mtotal is the sum of all Schmid factors for uniaxial tensile 
direction. This quantity, is another indicator of multislip activity. A clear correlation can be seen between the mtotal map and the field of 
von Mises stress. Wherever there is a high value of the von Mises stress, mtotal is low and vice versa. 

5.1.1. Observation of local ratcheting phenomena 
Up till now the series comparison test to detect ratcheting or shakedown has been applied to the macroscopic averaged results. In this 

section the test is applied to each element of the finite element mesh in order to detect local ratcheting phenomenon. In the VE, the 
elements which ratchet are then displayed in red while those which exhibit shakedown are shown in blue. For the application of this test, 
three simulations are selected from the asymmetric stress controlled batch (VE 1, parameter set LK) after running 100 cycles. All three 
have the same loading ratio of RΣ ¼ � 0.7 while the maximum applied stress varies as follows:  

1. Σ11 ¼ 849 MPa, macroscopic shakedown, 1.9% of ratcheting volume  
2. Σ11 ¼ 983 MPa, macroscopic shakedown, 29.0% of ratcheting volume 

Fig. 14. Probability distribution curves for the accumulated plastic strain in five simulations with RΣ ¼ 0 and Σ11 ¼ 284–620 MPa, using parameter 
set HK. 
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3. Σ11 ¼ 1021 MPa, macroscopic ratcheting, 53.8% of ratcheting volume 

Using the series comparison test for ratcheting and shakedown, the first two cases display macroscopic shakedown while the third 
exhibits macroscopic ratcheting. Fig. 11 elaborates this further where the three aforementioned cases are shown. The first line shows the 
whole VE. In the second line of the figure, only the finite elements of the volume which undergo ratcheting can be seen for all three loads. 
The third line shows a 2D slice with the ratcheting and shakedown regions. It seems that the regions that ratchet do not conform to grain 
morphology or any particular locations and are rather random in nature. 

It can be seen that the ratcheting zones of the polycrystal tend to percolate to form a connected ratcheting domain when increasing the 
applied stress and before macroscopic ratcheting is observed. The volume fraction of the percolating ratcheting zone has been deter-
mined following the method proposed in Kanit et al. (2006) and was found to reach full percolation for the two higher loads illustrated in 
Fig. 11. In contrast, in the left column of Fig. 11 for lower load values, isolated islands of ratcheting are observed. No direct link could be 
derived between the corresponding percolation threshold and the occurrence of plastic shakedown or ratcheting. 

5.1.2. Probability density distributions 
Fig. 12 presents Gauss point distribution plots for Σ11 ¼ 1021 MPa, and RΣ ¼ � 0.7. Both VEs are considered: The solid line represents 

VE 1, while the dotted line represents VE 2. To show the evolution of each variable with respect to cycle number, the statistics are 
collected at the tension peak of cycles 1, 10 and 100. In Fig. 12(a), the histogram plot of von Mises stress shows a multi-modal distribution 
where the peaks can be seen to progressively split as the number of simulated cycles increases. This point will be analyzed in the next 
paragraph and in the next two figures. With regards to the accumulated plastic strain according to Fig. 12(c), it can be seen that for the 
first cycle, the distributions are first unimodal but as the cycle number increases, a hump is produced in the left part of the curves. This 
will be characterized later in this article. Looking at the von Mises strain distribution, it can be seen that, with an increase in the number of 
cycles, the curves translate along the strain axis, as a result of the ratcheting phenomenon. The standard deviation of von Mises strain is 
found to increase with the cycle number. Regarding the stress triaxiality, the standard deviation similarly increases with the cycle 
number. Lastly, the number of active slip systems can be seen to be less than six and with the progression of cycles, single slip starts to 
dominate. The representativity of the results is confirmed by the fact that all the dotted and solid lines corresponding to VE 1 and 2 are 
close to each other. An exception is the von Mises strain distribution plots for which slight deviations are observed, which shows a slightly 
different ratcheting intensity of each volume. The intensity of ratcheting surely is a very sensitive result of polycrystalline material 
response. More precise estimates would require the consideration of additional volume elements. 

5.1.3. Evidence of bimodal stress distribution 
As seen in Fig. 12, the von Mises stress probability distribution curves exhibit a multimodal distribution. This fact has already been 

observed by several authors using crystal plasticity simulations (Osipov et al., 2008; Schwartz et al., 2013; Lee et al., 2011; Choi et al., 
2012). What is missing is a detailed analysis showing the origin of this phenomenon. Fig. 13 shows the von Mises stress distribution curve 
taken at the tensile peak of the 100th cycle for Σ11 ¼ 1021 MPa and RΣ ¼ � 0.7. Two distinct peaks can be seen in the distribution 
arbitrarily separated by a dashed line. This separation makes it possible to split the polycrystalline volume into two parts, the first (resp. 
second) one containing the Gauss point displaying a von Mises equivalent stress lower (resp. larger) than this separation value. The 
volume fractions in each peak are then shown in the 3D and 2D views of Fig. 13, with a grey (resp. black) color corresponding to the first 
(resp. second) peak. It can be noted that the black and grey regions contain mostly full grains, i.e. each grain is either completely black or 
grey. Of course there are some exceptions where some grains are split into grey and black zones. They reflect the fact that the distribution 
curve of von Mises stress was split arbitrarily and the region between the two black dotted lines in the histogram of Fig. 13 has over-
lapping points. The observation of the total axial Schmid factors plot of Fig. 10 indicates that the black regions correspond to hard grains, 

Fig. 15. Modality diagram for parameter set HK, VE 1. It characterizes the existence of unimodal or bimodal distributions of accumulated plas-
tic strain. 
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and the grey regions correspond to soft grains. It is concluded that the polycrystal aggregate progressively splits into main regions of high 
and low stresses strongly correlated with the hard/soft character of the grains. 

5.1.4. Evidence of bimodal accumulated plastic strain distribution 
Bimodality is also observed in the distribution of accumulated plastic strain or accumulated slip in Fig. 12(c and d), when the 

number of simulated cycles increases. This is not always the case. Fig. 14 shows the Gauss point results from five simulations. These 
simulations pertain to parameter set HK, Σ11 ¼ 284, 368, 452, 536, 620 MPa, and RΣ ¼ 0. The trend that can be seen in log accumulated 
plastic strain plot distribution curves is that the first and last plots (Σ11 ¼ 284 and 620 MPa) are unimodal regardless of the number of 
simulated cycles while the other three plots start with one peak and then split into two peaks. This bimodality reveals the existence of 
two regions that develop inside the polycrystal: A first one where elastic or plastic shakedown occurs and the second where ratcheting 
takes place. It can also be seen that the volume of these regions depends on the applied load. 

Most importantly, it is noted that this bimodality does not always arise depending on loading values. It is therefore possible to draw 
a map of the existence domain of bimodal accumulated plastic strain distribution depending on the applied stress amplitude and mean 
stress. This is done in Fig. 15 taking the already performed simulations for VE 1 and parameter set HK. The obtained modality diagram 
of Fig. 15 can be compared to the ratcheting diagram of Fig. 5 based on the series criterion. It is remarkable that the domain of 
bimodality is found to almost coincide with the domain of plastic shakedown. This major finding suggests that stable bimodal plastic 
strain distributions correspond to a transition regime between shakedown (elastic or plastic) and ratcheting material response. This 
feature can be also be used as a criterion for the detection of plastic shakedown replacing or in addition to the series convergence 
criterion. This conclusion is confirmed by the results of VE 2 (modality map not provided here for conciseness). Note that the dis-
tribution of equivalent plastic strain is not bimodal. It looks rather very similar to the von Mises strain distribution plots. 

5.2. Mean stress relaxation 

The analysis of the local results must also be performed for other loading conditions. Such an analysis is performed in this section in 
the case of strain controlled tests in order to characterize some microstructural features associated with mean stress relaxation. For the 
next three figures a strain controlled simulation for VE 1 with parameter set LK and RE ¼ � 0.2 and E11 ¼ 0.85% is considered. The results 
plotted pertain to the tensile peak of the 100th cycle. The contour plots of Fig. 16 can be compared with those of Fig. 10 (a) (stress 
controlled compared to strain controlled). It can be seen that both are very similar. In particular, the map of the von Mises strain shows 

Fig. 16. Contour plots of a simulation with asymmetric strain of E11 ¼ 0.85% and RE ¼ � 0.2 after running one hundred cycles, extracted at the 
maximum strain of the one hundredth cycle (VE 1, parameter set LK). The contour plots show the von Mises strain, accumulated plastic strain, von 
Mises stress, stress triaxiality, maximum slip divided by total slip, and the local mean stress. 
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that the most deformed grains are almost the same for both simulations, except that the strain controlled simulation leads to much lower 
strain values. The following definition of a local mean stress is proposed: 

ððσt
11 þ σt

22þ σt
33Þþ ðσc

11 þ σc
22þ σc

33ÞÞ
�

2 (21)  

where the subscripts t ans c indicate that the variables were collected at the macroscopic tensile or compressive peak of their cycle. The 
observation of the mean stress plot indicates that it segregates at the grain boundaries or at triple junctions, and is less prone to be high 
within the grains. It is hypothesized that this intergranular interaction prevents the mean stress from relaxing to zero in a polycrystal. 

The distribution curves for Gauss point variables are plotted in Fig. 17. The solid lines represent VE 1 while dotted lines represent 
VE 2. Both VEs exhibit a matching response which signifies good representativity of the material. The von Mises stress plot shows the 
distributions curves translating back on the stress axis which reflects the decrease of the average mean stress per cycle. Again, multi- 
modality is observed for the strain based loading conditions as it was observed for stress control in the previous section with regards to 
ratcheting. Von Mises strain and stress triaxiality plots display somewhat similar distributions. The plot of the number of active slips 
systems indicates that single slip gets more dominant as the number of cycles increases. Accumulated slip and accumulated plastic 

Fig. 17. Distribution curves of Gauss point variables for an asymmetric strain controlled test using parameter set LK, RE ¼ � 0.2 and E11 ¼ 0.85%. 
The variables shown are (a) von Mises stress (b) von Mises strain, (c) accumulated slip, (d) accumulated plastic strain, and (e) stress triaxiality. 
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strain exhibit bimodal distributions as in the stress controlled case. The next figure sheds some light on the development of bimodality 
in the context of mean stress relaxation test. Fig. 18 shows the breakdown of bimodality in accumulated plastic strain for parameter set 
LK, VE 1 and 2. It can be seen that for the first two cases (a) and (b), the curves start as a unimodal distribution but then split into 
bimodal distributions. Just like in the stress controlled case, these curves indicate that a hundred cycles are not enough to reach a 
saturated response, as the bimodal peaks are still splitting. The two peaks that form imply that the microstructure splits into two 
regions, one in which plastic activity stops after some cycles (the first stagnant peak), and the other accommodating all plastic 
deformation (the second peak which keeps moving forward). At high strains, as shown in Fig. 18 (d), the whole microstructure un-
dergoes plastic activity resulting in a unimodal distribution. It is hypothesized from the present observations that when the plasticity 
distribution becomes unimodal, mean stress will relax to zero. 

6. Simulations at high cycle numbers 

The previous observations have been made from the hundred cycle response of the polycrystalline aggregates. The objective of this 
last section is to check the validity of the drawn conclusions at higher cycle numbers. Using crystal plasticity for low cycle fatigue, some 
authors have already simulated thousands of cycles (Joseph et al., 2010; Zhang et al., 2015), but the results provided here for the first 
time pertain to a finely meshed polycrystal aggregate under asymmetric loading conditions. The mesh is fine enough to provide 
detailed distribution of local stress and strain fields as illustrated in the previous sections. For instance the present finite element 
meshes contain almost 600000 degrees of freedom for 300 grains to be compared with 150000 d.o.f. and 250 grains considered by 
Colas et al., 2019 where more than 1000 cycles were simulated. Two cases are reported in this section where the first case pertains to 

Fig. 18. For VE 1 and 2, parameter set LK, distribution curves for the accumulated plastic strain per Gauss point for four maximum axial strain 
values. (a), (b) and (c) show a bimodal while (d) shows a unimodal distribution. (e) gives the mean stress for different maximum axial strains at 
cycle 100. 
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one simulation on VE 1 under asymmetric strain controlled periodic boundary conditions with RE ¼ � 0.2, and E11 ¼ 0.7% run for 1500 
cycles. Fig. 19 (a) and (b) illustrate the global mean stress relaxation over the 1500 cycles. It can be seen that the cyclic mean stress 
does not relax to zero even after 1500 cycles, and seems to have reached a saturated value signified by the saturating curve of mean 
stress in (b). The accumulated plastic strain plot of Fig. 19 (c) further confirms the bimodal distribution with one part of the aggregate 
experiencing further plastic activity whereas the first peak corresponds to an elastically accommodated region of the crystal. The same 
trend was observed after 100 cycles and is continuing further after 1500 cycles. 

It is instructive to compare the obtained results with a simulation involving a larger number of grains at the expense of a coarse 
mesh. The objective is to confirm the representativity of the presented results even though this feature was supported by the 
consideration of VE 1 and 2. A new VE with 153 ¼ 3375 grains and with one single hexahedral quadratic element per grain is 
generated, see Fig. 20(a). Using parameter set LK, asymmetric periodic strain loading of 0.6% and RE ¼ � 0.2 is imposed. The simu-
lation is run for 6000 cycles. Fig. 20(b) shows the macroscopic stress strain response while (c) shows the accumulated plastic strain at 
the first, hundredth and six thousandth cycles. It can be seen that the macroscopic stress strain response does not change from the 
hundredth to the thousandth cycle but the accumulated slip has the same bimodal response as observed in the previous simulations. 
Just as before, the microstructure divides into two distinct regions: one that stops accumulating plasticity, and the other which takes all 
the plastic deformation indicating that these results are consistent with the study presented in this paper. 

7. Discussion 

The motivation of the present work is to show the capabilities of the crystal plasticity model to reproduce the types of asymmetric 
cyclic responses observed for engineering metallic materials. The contents of the work are therefore of computational nature and 
experimental confirmation of some evidenced phenomena, like statistical distributions of field variables is an open question. The 
objective of the present work is not to match macroscopic curves for a particular material but to prove that the different experimentally 
observed regimes, namely ratcheting, elastic shakedown, plastic shakedown, and a complete or incomplete mean stress relaxation, are 
properly accounted for by full field polycrystal simulations. The simulation results are now discussed with respect to experimental 
evidence from the literature. 

Regarding asymmetric stress controlled simulations, Fig. 5 illustrates different cyclic regimes experienced by polycrystals. These 
regimes i.e. ratcheting, plastic shakedown and elastic shakedown, depend on the applied stress amplitude and mean stress. For 316 
stainless steels Pellissier-Tanon et al. (1982) have presented experimental evidence for plastic shakedown and ratcheting. Similarly, 
with an increasing mean stress, Park et al. (2007) present experimental data for ratcheting in Inconel 718, and Lim et al. (2009); Das 

Fig. 19. Long cyclic simulation with asymmetric strain controlled boundary conditions for VE 1, parameter set LK: E11 ¼ 0.7%, RE ¼ � 0.2. (a) The 
stress strain hysteresis loops for cycles 1, 10, 100 and 1500. (b) Macroscopic mean stress plotted against the number of cycles. (c) Gauss point 
distribution of the accumulated plastic strain for different cycles. 
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and Chakraborti (2011) for ratcheting in copper. For 316 and 304 steels, an important feature found by Goodman (1984) and recently 
Taleb and Keller (2018), is that increasing the stress amplitude under a constant non-zero mean stress or increasing the applied mean 
stress under a given stress amplitude, both increase the rate of ratcheting. Fig. 5 in the present article numerically characterizes these 
complex cyclic phenomena and gives an insight of how a little variation in the applied stress can result in a switch between shakedown 

Fig. 20. Using asymmetric strain controlled boundary conditions, with E11 ¼ 0.6% and RE ¼ � 0.2 and parameter set LK: (a) a coarse meshed volume 
element with 3375 grains and one quadratic element per grain, (b) The macroscopic stress vs strain loops for cycles 1, 100 and 6000. (c) Accu-
mulated plastic strain after the three cyclic instances. 

Fig. 21. Using asymmetric strain controlled tests, evolution of mean stress for two different strain amplitudes: εa ¼ 0.6 and 0.8%. Simulation are 
presented with solid lines while experiments are shown with dotted lines. The experimental curves are taken from Gribbin et al. (2016). 
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and ratcheting. 
In contrast, under asymmetric strain controlled loadings, depending on the applied strain amplitude, experiments usually exhibit a 

non-zero cyclic mean stress. For Inconel 718, this has been demonstrated experimentally by Prithivirajan and Sangid (2018); Gribbin 
et al. (2016) whereas for steels Wehner and Fatemi (1991); Nikulin et al. (2019) have reported such behavior. In addition, asymmetric 
strain controlled experiments show that the mean stress relaxes to progressively lower values with an increasing strain amplitude as 
found for Inconel 718 by Chaboche et al. (2012) and aluminum by Hao et al. (2015). Figs. 7 and 8 show a qualitative replication of such 
behaviors where increasing the applied strain amplitude leads to smooth decreasing of mean stress until complete relaxation. Using 
literature findings to validate the qualitative results on mean stress relaxation, two simulations were run using parameter set LK and 
compared with the experimental data reported by Gribbin et al. (2016) for Inconel 718. The plots of Fig. 21 show that the full field 
polycrystal simulations predict non complete stress relaxation as observed in the corresponding experiments. The model however 
overestimates the amount of stress relaxation. A calibration of the parameters to the IN718 behavior is necessary to deliver more 
precise predictions. 

After establishing that the crystal plasticity model can reproduce generic macroscopic responses, the next step is to check what 
happens inside the microstructure at the grain scale. The motivation behind this scrutiny is that full field crystal plasticity simulations 
are known to predict strong local strain heterogeneities induced by incompatibilities at grain boundaries (Barbe et al., 2001). Some 
authors have already been able to model asymmetric cyclic responses using mean-field homogenization models like the self-consistent 
scheme (Krishna et al., 2009; Sai and Cailletaud, 2007; Zecevic and Knezevic, 2018; Zecevic et al., 2016). In addition to that, full field 
simulations also provide local heterogeneities that play an essential role in fatigue crack initiation. 

At the local level, two types of simulation results were presented, namely contour maps as well as probability distribution plots of 
several constitutive variables. For intragranular strain localization several experimental observations are available either using in-situ 
SEM DIC (Stinville et al., 2016; Stein et al., 2014; Zhao et al., 2008a; Walley et al., 2012), or for sub-grain strain fields (Di Gioacchino 
and Quinta da Fonseca, 2013; Kammers and Daly, 2013). These findings though important are mostly reported after applying 
monotonic tensile loadings. Measurements by Abuzaid et al. (2012) reveal the experimental distribution of the accumulated plastic 
strain after a monotonic tensile load. A major finding of our simulations is that under asymmetric cyclic loads, the accumulated plastic 
strain splits into a bimodal distribution, see Figs. 12 and 17. It must be noted also that the distribution curves in the present paper 
pertain to the bulk of the polycrystal whereas experimental findings usually adhere to surface measurements. Interestingly, crack size 
distributions in a nickel-based superalloy under HCF loading conditions were experimentally determined by Shenoy et al. (2007). Such 
damage distributions can be correlated with the distribution of Fatigue Indicator Parameters directly linked to plastic activity in the 
grains. However, such papers deal with symmetric loading conditions which also in computations result in a unimodal plastic strain 
distribution. To this extent, no experimental evidence of bimodal strain distributions has been found in literature. It is hoped that the 
new features of plastic behavior found in the present study will give incentives for future experimental works including strain field 
measurements for non-symmetric cyclic loading conditions. 

8. Conclusions 

Using rate-independent crystal plasticity with kinematic hardening, the cyclic response of FCC polycrystalline materials has been 
characterized both at the macroscopic and local levels. The macroscopic response was summarized by appropriate mean stress/stress 
amplitude maps whereas the mechanisms underlying each type of material response were explored using local statistics. Two sets of 
materials parameters with various amounts of yield stress and hardening were considered in order to illustrate the capability of the 
polycrystal model to capture complex loading behavior under strain or stress loading control. All simulations were run for a hundred 
cycles each, and more than 1000 cycles for some of them, and then the response was analyzed. The single crystal material model was 
kept as simple as possible because it is sufficient to explain, at least qualitatively, most features of the observed polycrystal behavior. 
Evaluation of the results reveals the following major findings:  

∙ For stress controlled asymmetric simulations:  
1. Strain ratcheting in a single (resp. poly) crystal is characterized by three (resp. four) regimes. Elastic accommodation and 

ratcheting regimes are common to single and polycrystals. In contrast, plastic shakedown takes place only in polycrystals.  
2. A series comparison test as well as the bimodality of accumulated plastic strain distribution criterion were proposed to detect 

ratcheting or plastic shakedown. A remarkable result of the analysis is the evidence of a correlation between the existence of a 
bimodal distribution and overall plastic shakedown.  

3. A theoretical diagram for ratcheting in single crystals is built in terms of the stress amplitude versus mean stress. Several 
simulations were run and a similar diagram was filled for the polycrystal showing different regimes of elastic and plastic 
shakedown as well as ratcheting.  

4. Gauss point statistics indicate that the von Mises stress in polycrystals is bimodal. These two modes become more prominent 
under progressive cyclic loading and they correspond to different regions of the polycrystal respectively made of soft and hard 
grains in the sense of Schmid factor.  

5. Local ratcheting events were observed in polycrystals experiencing plastic shakedown at the macroscopic scale.  
6. Evolution of the number of activated slip systems during cycling shows a trend towards single slip occurring in the core of the 

grains while multislip is observed mostly at grain boundaries.  
∙ For strain controlled asymmetric simulations: 

H. Farooq et al.                                                                                                                                                                                                        



International Journal of Plasticity 126 (2020) 102619

23

1. Cyclic mean stress relaxation in a single crystal can be broken down into three distinct regimes: Purely elastic response, elastic 
accommodation after a first elastoplastic period and plastic shakedown with vanishing mean stress. Instead, in a polycrystal, a 
smooth transition between these scenarios is observed. Mean stress relaxation towards stabilized finite values was observed for 
polycrystals.  

2. Cyclic mean stress relaxes to near zero for parameter set HK (high kinematic hardening), whereas it does not relax to zero for 
parameter set LK (high yield strength).  

3. Distribution curves of the accumulated plastic strain are found to be bimodal under some loading conditions. One part of the 
microstructure undergoes purely elastic accommodation whereas the remaining part of the polycrystal experiences continuing 
plastic activity. From these observations, it is conjectured that the mean stress in a polycrystal will relax to zero when the 
distribution becomes unimodal.  

4. Contour plots reveal that the high cyclic mean stress is more susceptible to segregate at grain boundaries or at triple junctions 
and this local interaction causes a nonzero mean stress in a polycrystal. 

These results show that the grain to grain interactions induce cyclic responses that strongly differ from that of the single crystal. In 
particular these interactions are responsible for the existence of plastic shakedown regimes under stress control and of incomplete 
mean stress relaxation under strain control. This work contributes to the understanding of complex stress-strain redistribution phe-
nomena at work in cyclically loaded polycrystals using standard crystal plasticity models. These crystal plasticity models are uses 
extensively and their capability to mimic real polycrystals has been scrutinized in this article. The macroscopic responses of both stress 
and strain controlled tests are in good agreement with experimental results for engineering FCC alloys where a plastic shakedown as 
well as a non-zero mean stress are frequently observed, for example in nickel-based superalloys. It remains that the present work is 
limited to computational analyses and should serve as an incentive for experimental observations of the evidenced features of 
asymmetric cyclic plasticity in FCC polycrystalline aggregates. 

Other methods of statistical analysis could be used to dig into the huge amount of data produced in this work. Machine learning 
techniques have also been used in recent works to find out some meta-models for fatigue crack initiation. The potential of such 
methods is considered by Rovinelli et al. (2014) to predict the initiation of small fatigue cracks in polycrystals. 

The current ongoing work compares the presented results with both the predictions from mean field polycrystal models and those 
from multiaxial macroscopic loading conditions. Consideration of rate-dependence in future simulations could shed some light on the 
cyclic-creep behavior of alloys at higher temperatures (Taleb and Keller, 2018). The evidence of local ratcheting in the complex 
simulated fields can be used to define fatigue indicator for damage initiation (P�echeur et al., 2012; Lu et al., 2014; Colas et al., 2019). 
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Appendix A. Analysis of mesh sensitivity 

Selecting the appropriate mesh density for finite element polycrystal simulations is not straightforward. A start can be taken by 
refining the mesh until a converged macroscopic tensile curve is obtained but finding macroscopic properties is not the only goal of the 
work. If macroscopic properties were the main goal, then macroscopic models could have been used or even mean field models which 
take into account a lot of local information and are much faster to perform as well as require considerably less computational resources. 
The goal here is also to assess local responses inside the grains. This requires large number of degrees of freedom in each grain. Also 
there is considerable difference in the solutions obtained using different boundary conditions. In this article two types of boundary 
conditions are used: Periodic strain control or periodic stress control. Periodic stress boundary conditions are anticipated to produce 
more convergence issues as compared to periodic strain because in metal plasticity, a small increment in stress produces a large 
increment in strain. This effect is even more pronounced at the local level because of severe heterogeneity in crystal plasticity sim-
ulations. With regards to VE 1 which contains 300 grains, three mesh densities were tested for this paper:  

1. Coarse mesh with 112565 nodes and 74270 quadratic elements  
2. Mesh in use with 194903 nodes and 130171 quadratic elements  
3. fine mesh with 270670 nodes and 181905 quadratic elements 

A tensile test on these meshes was performed and three responses were compared i.e. the macroscopic averaged stress strain 
response, the von Mises equivalent stress and strain at each Gauss point at the maximum traction/displacement. For periodic strain 
control a 2% macroscopic strain was imposed while for periodic stress a macroscopic stress of 1110 MPa was imposed in the tensile 
direction. Figs. 22 and 23 Figure 22Figure 23 show the three responses for both loading conditions. For strain controlled loading, all 
three meshes provide a somewhat converged solution, both at the macroscopic level and at the local level. Apart from some mismatch 
in the local von Mises stress distribution curve there even the coarse mesh seems to do the job. This is not the case for stress based 
loading conditions. At the macroscopic scale, the three meshes do not lead to the same value of the mean strain at the final loading 
point, see Fig. 23(a). The largest discrepancies are found for the equivalent stress distribution, Fig. 23(b). This shows that load 
controlled asymmetric simulations require a very fine mesh to obtain converged local strain distributions. Also, even if there is a small 
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error in the applied stress at each increment, it can result in a significant error in the calculated strains. Using 24 parallel cores for each 
job, the time needed to run one tensile load controlled test on each mesh was 10, 33 and 60 h respectively. Although differences can be 
observed in the load controlled simulation, hundreds of tests were required for this study and hence the intermediate mesh size with 
130171 elements was selected. 

Fig. 22. Using parameter set LK, tensile test simulations for three finite element meshes under a macroscopic periodic strain of 2%: (a) macroscopic 
averaged stress strain plot,(b) and (c) von Mises equivalent strain and stress distributions at the peak macroscopic strain.  

Fig. 23. Using parameter set LK, tensile test simulations for three finite element meshes under a macroscopic periodic load of 1100 MPa: (a) 
macroscopic averaged stress strain plot, (b) and (c) show the von Mises equivalent strain and stress at the peak macroscopic stress. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijplas.2019.10.007. 
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