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Modelling Finite Deformation of Polycrystals Using Local Objective Frames

The formulation of constitutive models at finite strain using local objective frames is applied to solids with mi-
crostructure. Priviledged space frames are introduced at both the material level and the microstructure level. For
single crystals, the method leads to a model almost equivalent to Mandel’s theory. For polycrystals, an explicit con-
centration rule written in the corotational frame is proposed. Simulations of texture evolutions are then presented.

1. Introduction

The use of local objective frames, recommended for instance in [5,7], has proved to be an efficient method to develop
constitutive models at finite strain, that automatically fulfill the material frame indifference requirement. A local
space frame Ex is defined for each material point X by the rotation field Qx (¢) with respect to the current space
frame E. It is said to be objective if, for any space frame E’' related to E by the rotation 9' (t), the rotation field
linking E' to Ex is Q% = QxQT,Vt. Local objective frames can also be used to extend, in a straightforward manner,
constitutive equations that have been developed at small strains, to the finite strain framework, as proposed in [9].
The choice of the local objective reference frame in which the constitutive equations are written, then becomes a
major issue in the modelling. Dogui and Sidoroff [5] have weighted the pros and the cons for the use of the corotational
frame, which is associated with the skew-symmetric part of the velocity gradient L, and of the “eigenrotational”
frame which involves the rotation in the polar decomposition of the deformation gradient F. As for him, Rougée [12]
resorts to an intrinsic description of material behaviour, and he shows that a canonical material derivative exists if
one considers the non-Euclidean structure of the manifold M of all local metric states. The Euclidean counterpart of
this covariant derivative turns out to be the Jaumann rate which is related to the corotational frame. This endows
the corotational frame with a strong geometrical meaning.

When one aims at taking some features of material microstructure into account, one may think that the corotational
or the “eigenrotational” frames can be of no use because they do not incorporate any available physical information.
In contrast, we propose here to introduce local objective frames at two levels into the modelling. The first one,
called material level, is of purely geometrical nature: we choose an observer to follow the rotation of material fibers.
This can be done only in an approximate manner [7], and, for that purpose, we retain the corotational frame.
On the other hand, at the microstructural level, we will assume that a frame can be attached to each element of
microstructure retained in the modelling. Its rotation will then be measured with respect to the first observer. By
using the corotational frame, we get rid of material rotations that do not intervene in the material behaviour. This
gives furthermore a privileged point of view from which the evolution of the microstructure (grain rotation in a
polycrystal for instance) can be observed. We lay the stress on the fact that the corotational frame best follows,
at a given time and in average, strain gauges that are stuck on a specimen for testing. Consequently, when such
measurements are the only way to have direct access to material behaviour, an efficient and reliable inductive method
for developing constitutive equations, consists in infering them directly in the corotational frame.

We apply successively this program to f.c.c. single crystals and polycrystals. In the following, ¥, Y,Y and Y
respectively denote a scalar, a vector, a second-rank and a four-rank tensor.
2. Finite deformation of single crystals

Let E,E°, E* respectively be the current space frame, the corotational space frame and a lattice space frame.
Variable y will be denoted y, ¢y, 'y, when considered with respect to E, E¢, Ef. Rotation °Q links E° to E and

rotation *Q, Ef to E°. The corotational frame is defined by

‘Q Q" =Ll and °Q(ty) =1, (1)



where the inverted brackets denote the skew-symmetric part of the expression. We adopt an additive partition of
the strain rate in the corotational frame into its elastic and viscoplastic parts
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where the brackets denote the symmetric part. The elastic law reads

§=Ce, with §= (DetE) Q" T °Q, ®)

where T is the Cauchy stress tensor. In single crystals, viscoplastic deformation proceeds through collective glide of
dislocations according to particular slip systems
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m?® and z° respectively are the slip direction and the normal to the slip plane for slip system s. ® is the associated
slip amount. Evolution equations for these variables are given in the next section. The yield criterion is based on
Schmid law. The second local frame is attached to the lattice and its rotation is given by

ﬁQ ﬂQT — _ Z &8 }cms® ch{ and ﬁg(to) = 1. (5)
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Crystallographic directions are known in the lattice frame : ‘m® = fQ *m? °g® = 1Q fz°.

This formulation of crystal plasticity using two local objective frames can be compared with Mandel’s model [11],
which involves a multiplicative decomposition of the deformation gradient. In fact rotation °Q can be eliminated
in the previous equations, and one can prove the model then is equivalent to Mandel’s theory when elastic strains
remain small [6]. The role played by the corotational frame in crystal plasticity becomes clear when one considers
the simple shear test. If shear occurs in the plane of normal n = (010) and in direction d = [100], the stress oscillates
as shown in figure 1 and we find that *Q = 1 during the whole test. It means that the crystal directions follow
the corotational frame. Because of the endless rotation of the corotational frame for simple shear, slip systems are
successively activated and desactivated (figure 1). The result holds also for Mandel’s theory (see also [1,3]), although
the corotational frame does not explicitely appear in the model. The fact that the corotational frame displays an
endless rotation for simple shear does not imply that the crystal orientation cannot stabilize. For d = [110] and
n = (112) for instance, the corotational and the lattice frames rotate in phase opposition so that CCNQ ﬂg =1.
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Figure 1 : Cauchy stress components and cumulative amounts of slip on slip systems during simple shear (F =
1+ve;1 ®e», single crystal with g = 76190 MPa, v = 0.33, k = 150 MPa s'/? n =10, 7y = 150 MPa, mo hardening).

3. Finite deformation of polycrystals

The same method can be used to extend the models accounting for the elastoviscoplastic behaviour of polycrystals
proposed in [4], to the finite strain framework. We restrict ourselves to isotropic elasticity. The additive strain rate
decomposition (2) is still assumed. The overall viscoplastic strain rate is taken as the averaged viscoplastic strain



rate over all crystal orientations G
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where f9 is the volume fraction of orientation g. Interphase accommodation variables 37, attached to the corotational
frame (and therefore invariant), are introduced with the evolution rule

B =& — DB — 5e)/3em em. (7

We assume that an estimation of the mean stress over all grains having the same orientation can be explicitely
computed knowing the stress S in the corotational frame, according to a concentration rule of the form:

S =S +au(B — B, ®)

where B = ) gec 1! @g . At small strain, the combination (a« = 1,D = 0) corresponds to a Kroner-based
model [8], whereas the so-called static model is obtained for a = 0. An appropriate choice of D,§ and a = 1,
leads to a concentration rule which is numerically identical to Berveiller and Zaoui’s one [2] corresponding to the
self-consistent scheme. The constitutive behaviour of the individual grains is the same as in the previous section
(viscoplastic formulation):
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where 759 = §9 : (‘m®? ® “n®) is the resolved shear stress on slip system s in grain g. The rotation of the lattice
frame associated with each orientation still follows evolution rule (5), where subscripts g must be added.

A fully self-consistent scheme for elastoplastic polycrystals at finite strain has been proposed in [10]. The behaviour
of each grain is described by Mandel’s model. However no explicit concentration rule can be worked out, and an
intricate integral equation must be solved at each step. In contrast the method proposed here is a more pragmatic
approach which advantageously combines micromechanical and phenomenological aspects, with a view to structural
calculations using the finite element method.

4. Texture evolution

For the evaluation of a polycrystal model, attention should be paid to both the overall stress-strain response and
texture evolution. The predicted textures can be compared with the results given by more classical models (Taylor-
based, static models...), for given grain hardening properties, or for a given macroscopic stress-strain response. In
the first case, the resulting overall responses will be very different, and in the second case, the material parameters
must be modified for each model so as to obtain overall stresses of the same magnitude. In this work, the comparison
has been made for both cases. In figure 2, the texture evolution is shown for a tensile test. The initial texture is
isotropic, and is represented by 1000 random orientations in the numerical simulation. The material parameters are
{p =30 GPa,» =0.33, a =1, D =60, 6§ = 0.01, 79 = 140 MPa, ¢ = 120 MPa, h;; = 1 (no summation) , h;; =
3 (i#]))}, and approximately correspond to aluminium (k and n are chosen to get an almost rate-independent
response). Figure 3 shows textures obtained after rolling, that can be compared with classical experimental data.

Figure 2 : Initial isotropic texture (left) and final texture after tensile straining using the proposed model (middle)
and a Kroner-type model (right), (64%, logarithmic strain, inverse pole figure, 1000 orientations).



However the previous tests do not induce any rotation of the corotational frame. That is why we have then considered
a simple shear test on an anisotropic aluminium sheet. The initial and the final texture after shearing in the plane
1-2 and in direction 1, are given in figure 4. One observes a global rotation of the quasi-orthotropic initial texture
and some distorsion.

Finally it must be noted that, for a given macroscopic response, the final texture also depends on the form of the
interaction matrix h;; (diagonal, isotropic or with strong latent hardening as in the previous case). Furthermore
more realistic stress-strain responses after large straining require the use of local non-linear hardening contrary to
the previous illustrative cases.

Figure 3 : < 111 > rolling texture with the proposed model (left, § = 0.1, ¢ = 100 MPa) and a Kroner-based
model (right) (-128%, logarithmic strain, direct pole figure, 2016 orientations).

Figure 4 : Anisotropic initial texture and final texture after simple shear (F = 1++ye; ®ea, v = 1, 423 orientations).
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