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Abstract : The method of virtual power and continuum thermodynamics are used
to incorporate temperature and temperature gradients into the theory of second
grade solids settled by [Germain, 1973] in the isothermal case. In a second part, it
is shown that heterogeneous classical materials submitted to slowly-varying mean
fields can be replaced by a homogeneous equivalent medium including higher or-
der gradients of displacement and temperature. For that purpose, an asymptotic
analysis of thermoelastic heterogeneous periodic materials is performed. The form
of the derived effective properties are compared to the previous phenomenological
framework.
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1. INTRODUCTION AND NOTATIONS

Although the mechanical and constitutive framework of second gradient theory has
been settled by Mindlin, the work of Germain [Germain, 1973] shows that the prin-
ciple of virtual power is a powerful and elegant tool to derive the balance equations
and boundary conditions for a medium modelled by the first and second gradients
of the displacement field.

In several works including recent ones like [Boutin, 1996] and [Triantafyllidis,
Bardenhagen, 1996], the need for such a theory arises in the mechanics of hetero-
geneous materials and in particular homogenization theory. The usual assumption
that the size of the heterogenities is much smaller than the size of the considered
structure inevitably leads to a classical first gradient Cauchy medium to model a
homogeneous equivalent medium (HEM). As soon as slowly-varying mean fields over
the heterogenities are possible (due to strong deformation gradients in a structure
for instance), the HEM, if it exists, must be regarded as a generalized continuum



[Pideri, Seppecher, 1997] [Forest, 1998]. In the case of periodic media, asymptotic
methods can be used to derive the effective properties of a second grade medium
[Boutin, 1996] [Triantafyllidis, Bardenhagen, 1996].

The need for higher grade theories appears also in the thermomechanical frame-
work. For instance, strong stress gradients can develop in a structure made of
a heterogeneous material as a result of strong thermal gradients. Accordingly, a
thermoelasticity theory must be developed for second grade media. This has been
undertaken in [Cardona et al., 1998], where motivations and examples based on the
mechanics of heterogeneous materials are given. Part 2 of the present work shows
how the principle of virtual power combined with the thermodynamical principles
can be used to settle a thermoelasticity theory of second grade media. The linear
case is presented in part 3. In the last part, the asymptotic analysis of periodic
heterogeneous classical media of [Boutin, 1996] is extended to the thermomechan-
ical case, in order to show that the additional constitutive tensors arising in the
pheneomenological theory of part 2 can be computed explicitely as functions of
the classical thermomechanical properties of the constituents. In this sense, the
mechanics of heterogeneous materials provides an example of thermoelastic second
grade effective medium, for which balance and constitutive equations have the form
predicted by the basic principles of continuum thermomechanics.

An invariant notation is used throughout this work. First, second, third and
fourth order tensors are respectively denoted by a,a,a (ora) and a. The gradient

and divergence operators are defined as follows
VU =VU,;e;®e;, VVU=U, e, ®e; ® e (1)
VX =1Ye, V.S=Sjire Qe (2)

where the nabla operator and an orthonormal basis (e;);=1 3 have been introduced :
V= 68_@ e;. The notations for the contraction of tensors are :

A:B=A;B;;, KL =KLy (3)
The gradient operator can be decomposed into its normal and tangent parts D,, and
Dy, n being the normal to a surface :

Vu = D,u + Diu  with  D,u = (Vu).n (4)

The gradient of the velocity field U on a solid © can be decomposed into a symmetric
and a skew—symmetric part : )

VU=D+W (5)
For simplicity, the small perturbation framework is adopted, so that Lagrangian and
Eulerian configurations are not distinguished. That is why tensor D will be replaced
by E = (VU + (VU)7”)/2. The boundary 99 of body Q will be regarded as twice
differentiable and thus admits at each point a unique mean curvature R. The reader
is referred to [Germain, 1973] for the treatment of edges and corners.



2. MECHANICS AND THERMODYNAMICS OF SECOND GRADE MEDIA
2.1 Principle of virtual power

The method of virtual power has proved to be an efficient tool for deriving balance
equations and boundary conditions and has been applied to several coupled me-
chanical problems. Following [Maugin, 1980], the first step consists in defining the
set V° of virtual motions relevant for the considered physical situation. Within the
present thermomechanical framework, velocity fields U* and temperature rates T+
are regarded as generalized virtual motions. It means that temperature is treated
formally as an additional degree of freedom. The set V then contains the variables
that have to be introduced in a second grade theory :

v ={U, T}, v={U, VU, VVU, T, VT} (6)

The latter may be restricted to objective virtual fields V°% and an additional set V¢
is defined : ' _ _ ) o
Vb = (D,VD,T,VT}, V°={U,D,U,T} (7)

Since the small perturbation framework is used in this work, D will be replace by EN]
in the following. The principle of vitual power states that, in a Galilean frame, the
virtual power of inertial forces balances the virtual power of internal and external
acting forces, for all generalized virtual motions ¥* and for all subdomain D of body
Q-

PO (9 € VoPI) + PO (9 € V) + PO € V°) = P (9" € V°) (8)

The virtual power of internal (7), volume (d), contact (¢) and inertial forces (a) are
supposed to admit densities according to :

Pl — _ / pDay. P = / p©ds,  Pple) — / P9 gy 9)
D oD D

The densities are then taken as linear forms on the appropriate set of generalized
virtual motions :

p(c) (u*’ T*) _ IH* + M(Dnﬂ*) + CL(C) T*; p(a) (u*) = puu* (12)

The quantities dual to the strain rate and strain rate gradient in the power density
of internal forces are the symmetric stress tensor X and the hyperstress tensor S
(Sijk = Sjir). Volume forces f, volume couples C and volume double and triple forces
F and P may exist in general. A traction vector T and a normal surface double force
M may act on the domain surface. The acceleration at a given material point reads
U. For the sake of generality, additional terms associated with virtual temperature
rates and their gradients have been systematically introduced. Note that a similar



term should in principle appear in (12),. However it will be assumed that, if such
additional terms exist in the power of acceleration forces and in the expression of
the kinetic energy IC, they are still such that :

P =K (13)

Note that the homogenization procedure developed in section 4 and restricted to
the static case, should be applied to the full dynamical case in order to justify the
existence or not of additional terms in P® and K.

The application of the principle of virtual power and the successive use of Stokes
theorem for volumes and surfaces as shown in [Germain, 1973] and in [Cardona et
al., 1998] lead to the balance equations

Vr+f=p0 with 7=%X-F-C-VS+VP (14)
b

~

Vb—-—a=0 with a=2a? — a9 and b = b(i) —
and associated boundary conditions :
T=r7n+2RS:(m®n) — D, (Sn); M = §: (n®n); ol = b (16)

Note that the equations (15) and (16)3 can be regarded as a definition of a and a(®
depending on b, and thus the formulation does not require any additional partial
differential equation to be solved. In the classical first gradient theory, the term a)T
could also be introduced in the power density of internal forces, but, for vanishing
a'®), it would have no counterpart b® so that the application of the principle finally
implies a(Y = 0. As a result, the proposed thermomechanical framework is relevant
for a second grade theory and reduces to the classical case if higher order gradients
are excluded. Similarily, the subsequent developments will show that a constitutive
dependence on temperature gradient that seems to be necessary for instance in the
modelling on some thermal treatments, can be introduced only within the framework
of a second grade theory for the displacement.

2.2 Energy and entropy principles
The global form of the energy balance equation on €2 takes the forms :
E+K=PD+P1Q,; £=-PV+Q, (17)

where £ is the internal energy of the system and Q. the total heat supply. In the
second form, the kinetic energy theorem (13) and the principle of virtual power (8)
have been applied. Introducing the specific internal energy ¢, the heat flux vector
Q, and an inner heat production rate r,

E:/pédV;Q:—/ Q.gdS+/rdV (18)
Q o — Q
a local form of the energy balance is obtained :

pé = p — V.Q + r (19)



where the expression (10) of the power density of internal forces is to be substituted.

The global form of the second principle reads : & > @, where S is the global
entropy of the system and Q; is the total flux of entropy. Introducing the local
specific entropy s, the following relations are assumed to hold :

T Q
= s = = s-11 T ds = & 2

S /stdV, o) /mg ndS-i—/QTdV and I, = = (20)

where J, is the entropy flux vector. A local form of the entropy imbalance is
adopted :

. Q r
(=)— = >0 21
ps + V (T) T2 (21)

Combining (19) and (21) and introducing the Helmholtz free energy ¥ = e —T's, we
get the Clausius-Duhem inequality :

. . . 1
—p(¥ + sT) + p¥ — FQVT > 0 (22)

In the case of hyperelastic material behaviour, the specific free energy is a function
of (E,K = VE, T, VT). The Clausius-Duhem inequality (22) can then be expanded
as follows :

ov. . ov . ov

Pl g 2%y (@) _ _ 20 NT
ov . Q
G _ p — (VT — =.(TV) > 2
0 - o (V) - 2T 20 ()
from which the state laws can be deduced :

ov ov . ov ov X
=, _ Y*. () — . - _, 2" (2) 24
¥ = P E S &S b P 5Ty P pop T a7 (24)

When compared to the isothermal second grade theory in [Germain, 1973], the pro-
posed thermodynamical framework takes full account of the introduction of variable
VT in the constitutive modelling. The main consequence is the modification of the
entropy by the term a(® which, according to the balance equation (15), is nothing
but the divergence of the generalized thermodynamical force b associated with the
temperature gradient. As a result, dissipation is reduced to its thermal part :

_ 9
D = —=NT (25)

2.4 Alternative formulations

Alternative thermodynamical formulations of second grade thermoelasticity exist
and some of them have been described in [Cardona et al., 1998]. The common
feature of the alternative formulations is to avoid the introduction of additional
terms in the power density of internal forces (10) and the modifications may then



appear in the energy balance (thus extending the treatment of [Dunn and Serrin,
1985] in the isothermal case) or in the entropy flux as recommended in [Maugin, 1990]
for the introduction of gradients of internal variables in the constitutive framework.
According to the latter procedure, the 7' and V7 terms can be dropped in (10) and
an extra-entropy flux must be defined :

T
Jds = % + k, with k = T b, and b= pd¥/0(VT) (26)
This framework however leads to the same state laws as (24), but the classical heat
conduction inequality is changed leading to a non-classical Fourier’s law modified
by the extra-entropy flux k.

3. SECOND GRADE LINEAR THERMOELASTICITY

The previous general framework is explicited in the case of linear thermoelasticity in
the static case and the associated constitutive properties are derived. The additional
terms arising then in the heat equation are discussed.

3.1 Linearized constitutive equations

A reference thermomechanical state (Ey = 0, K =0Ty, (VT)o = 0) is considered
and the kinematic, balance and constitutive equations are linearized with respect
to this reference state. The small perturbation framework requires sufficiently small
strains, strain gradients, temperature changes and temperature gradients. The rel-
evant variables then are :

E=eU), K=VE, A=T-T, VT (27)

where the symmetric gradient operator e means e(U) = (U, ; + Uj;)/2e; ® e;. The
free energy is then taken as a quadratic form in all these variables :

1 1 1
pU = §EN]:Q:ENJ—AEN]:Q:g—§ﬁA2+§I§EéEI§+E:1\z/IEI§+AI§EI;I
1
+ VIBVT+ARVT -K': ((é : 13).VT> +E:N.VT (28)

T = C:(E-Ag + MiK+ NVT (29)
S = A(K-PoVI) +M:E+AH (30)
b® = Nl;I:E—(é IN’)SI§+_AE + B.VT (31)
ps = (C:a) ]g)N—I;IEI§+ﬁA—E.VT+a(Z) (32)



in which classical and additional terms can be recognized. In particular, there exist
a thermal eigenstrain Aq and, in the same way, an eigen-(strain gradient) P ® VT,
the interpretation of which is given in [Cardona et al., 1998]. In the linearized
scheme, the introduced constitutive properties are independent from temperature.
The constitutive equations can be written as a single relation linking the effective
stress tensor 7 = ¥ — V.S and strain and temperature gradients :

7=C:(E-Ag)+ (M~ M)K+(N-H).VT - A (VK - P (VVT)) (33)

~

. - . . . .
where M7, = Mpgijr. In this expression, second order strain gradients and second

order temperature gradients necessarily appear.
3.2 Linearized heat equation

The heat equation is deduced from the energy equation (19) and takes the form :
pTs = =V.Q+r (34)

Substituting the linear state laws in (34) and taking the fact that a® is nothing but
the divergence of b(® (setting b® to zero without loss of generality) into account,
the linearized heat equation is obtained :

TBT =r—QY-TE:C:q+T(A:P): VK-TB: (VVT)-T(N-H)K (35)

~

In the isotropic case, all odd order constitutive tensors vanish so that the last term
disappears. It turns out that the proposed approach leads to an additional thermo-
mechanical coupling term (A : P) :: VK in addition to the classical term E : C : a.

It can be noted that a generalized specific heat can be defined [Cardona et al.,
1998], the positivity of which is preserved at least in the present linearized case.
In the purely thermal case, the heat equation is also modified as indicated below.
Introducing a linear relationship between the heat flux vector and the temperature
gradient :

Q=-kVT (36)

that still identically fulfills the positive thermal dissipation requirement (25). The
purely thermal part of the heat equation reduces, in the isotropic case, to :

BT = kV.NT — BV.VT (37)

where V.V simply is the Laplacian operator. It is interesting to notice that this equa-
tion is identical to the first Cattaneo equation presented for instance in [Miiller and
Ruggeri, 1993]. Cattaneo’s argument is rather based on a modification of Fourier’s
law :

Q=-xkVT+BVT (38)

which may lead to up-hill heat diffusion, contrary to the present formulation. How-
ever Cattaneo proposed a second modification of Fourier’s law aiming at restoring



the hyperbolic character of the heat equation. This modification falls into the frame-
work of extended thermodynamics and is not contained in our formulation.

4. ASYMPTOTIC ANALYSIS OF HETEROGENEOUS MATERIALS

The aim of this section is to show that the additional constitutive properties as-
sociated with higher order strain and temperature gradients that have been intro-
duced in a purely phenomenological manner in the previous sections, can be deduced
from an analysis of the effective properties of a heterogeneous material subjected to
slowly-varying mean fields. For simplicity, classical heterogeneous materials with
periodic microstructure are considered, in the static case. In a first analysis, the local
temperature field is assumed to be known and the fully coupled thermomechanical
problem is treated at the end. The main features of the constitutive framework for
thermoelastic second grade media proposed in section 2 and 3 are confirmed by the
following analysis but additional ones are pointed out in the last section.

4.1 Field equations at the local scale

The linear thermomechanical properties of a heterogeneous classical material, ade-
quately represented by a Cauchy continuum, are considered. The aim is to deduce
the global properties of an homogeneous equivalent medium from the local prop-
erties. The local and global (effective) variables (free energy, deformation, stress,
temperature, temperature change, specific entropy and heat flux) must be distin-
guished :

local variables : v, g a, 0, §=0-0., n q (39)
global variables : v, E X T, A=T-Ty, s, Q (40)

The heterogeneous material is described locally by the following free energy with con-
stitutive properties varying in space but independent from temperature (linearized
formulation) :

1 1
p(gd)=5€:Cie—deicia— 5B (41)
The local specific heat for constant deformation is related to parameter 5 through :
on 0?4
C. =16 — =0p=—-0— 42
p p ( 89>€ B 502 (42)

The equations of the linear coupled thermomechanical problem P to be solved on the
heterogenous material are Hooke’s and Fourier’s laws and the balance of momentum
and energy :

:(e-dq); Vag+£f=0 (43)

g:

20

q=—-AVT; Béz—V.g—Hg: tE+T (44)

220



where q stands in fact for q/6,.s, r for r/6,.r and X for Fourier’s heat conduction
tensor divided by 60,.;. This convention holds for the remaining of this part. The
unknowns fields are the local displacement u(x) and temperature 6(x).

In this part, the problem is restricted to an inifinite body, so that the additional
problems associated with boundary conditions are not addressed. Initial conditions
for the evolution problem close the formulation of P.

4.2 Dimensional analysis and asymptotic developments

For simplicity, it is assumed that the heterogeneous material admits a periodic
microstructure that can be described by a unit cell Y of characteristic size [. The
macroscopic scale is characterized by a typical wave length L, of variation of the
mean fields like overall stress and strain. In a finite body, L, may be of the order of
magnitude of its size L. The dimension analysis performed below provides the small
parameters involved in the thermomechanical problem, to be taken into account in
a homogenization procedure.

Dimensionless space coordinates, displacements, time and temperature, several
operators and constitutive properties can be defined :

x"=x/L,, u" =u/L,, t"'=t/t, 0" =0/0,; (45)
ore
e(w)=e'(u), V'=L,V, Vo= Avals (46)
ca ca (1, \°t
— ok — % * A %
(z::c(:la a=oa, %\:ereﬁli%" 5:9Tef (L_w> %ﬁ (47)

where reference time ¢ and characteristic time ¢z and length [, have been introduced.
A dimensionless formulation P* of the thermomechanical problem P can then be
expressed on a dimensionless unit cell Y* :

L,
Vig'+f" =0 with g"'=g/c=c":(e'(u") —ab,r6"a"), £ = ?ﬁ (48)
Oe*(u* 00" cal,
-Viq" - eaiu ) : g* o = epe *%, with q" = CO% q (49)
The characteristic numbers of the thermomechanical problem then are :
1 Y g
e—Lw, s,\—Lw, =3 (50)

Note that another characteristic length appears if boundary conditions like heat
convection are introduced but this is not treated here.

In the following a homogenization procedure is considered for which ¢ is the rel-
evant small parameter whereas €, and €3 are regarded as constant and independent
from . For that purpose and similarly to classical multiscale asymptotic meth-
ods used in periodic homogenization [Sanchez-Palencia, 1980], a series of problems



(P:)eso is considered. Once the small parameter of the problem has been chosen
after considering the dimensionless problem P*, it is possible to define each P. on
Y

Y={yly=x/e,xeY"} (51)

and the equations of P, are chosen to be the equations (43) and (44) in which
displacements, temperature, stress and heat flux have to be replaced by u®, 6%, g°
and g°. Each constitive tensor a appearing in these equations is to be replaced by
a® such that

a*(y) = ale y) (52)
The limiting case obtained for ¢ — 0 gives the balance and constitutive equations
of a homogeneous equivalent medium. This is recalled in the next section where the
corrections for non-vanishing ¢ are also investigated since they are relevant when
the macroscopic mean fields are not strictly constant but slowly varying. All fields
are regarded as functions of the two variables x and y, that can be expanded in a
series of powers of small parameter ¢ :

23

54
55
qx) =qxy)+eaq(xy) +e°qxy) +° qs(x,y) + - 56

where the terms of the series are Y-periodic with respect to the second variable. In
order to put these expressions into the balance and constitutive equations of P,, the
gradient operator can be split into partial derivatives with respect to x and y :

(53)
(54)
(55)
(56)

V-V, + gvy, e() = () + éey(.) (57)

4.3 Derivation of the effective balance and constitutive equations

The expansion of stress and heat flux are introduced into the equations of balance
of momentum and energy. The terms can be ordered with respect to the powers of
¢. Identifying the terms of same order, the different contributions in the expansions
(53) to (56) can be shown to be solution of the following auxiliary problems on Y :
Problem Ay:

ey(ug) =0; V0, =0 (58)

Problem A, :
g, =¢ : (ex(wo) +ey(w1) — " 6o); Vy.g; =0 (59)
Qo = —A(Vablo + Vyb1); Vyqq =0 (60)

Problem As:

g, =c :(es(u) +ey(uz2) — @ 01); Vegy+Vyg, +£ =0 (61)



q; = =M (Vb + Vy.02); =Veqy— Vy.qp — gg raf i (eg(g) +ey(1y)) +7° = 36,
(62)
Problem As:

g, =¢ : (ex(u2) +ey(us) — " 03); Vog, +Vy.q, =0 (63)

94 = _)\E(Vw02+vy03)§ _vw'ﬂl_vy-ﬂ2_gs taf : (ep(1y) + ey(QQ)) = /3691 (64)

The solutions of problem A; are (w;, g, |,0;,q;_;), for i > 0. Problem Ay gives ug
and fy. The resolution of Ay and A; corresponds to classical homogenization theory
applied to coupled thermoelasticity. The reader is referred to [Francfort, 1983] and
[Brahim-Otsmane et al., 1992] for a detailed solution. We simply give the form of
the solution :

u(x,y) = Ug(x); bo(x,y) = Oo(x) (65)
i (x,y) = Ui(x) + X(y) : €2(Uo) + X ()do; 01(x,y) = O1(x) + X (y)-Vaby (66)

where X, X', X" are concentration tensors, the existence of which is ensured by the
linearity of the problem.

4.4 Links with second gradient theory

Following the technique used for instance in [Boutin, 1996], the problems A, and Aj
dealing with the correcting terms us and uz can be solved in order to evidence some
links with second gradient theory. In this section and for simplicity, the analysis is
restricted to the thermomechanical problem for a given temperature field 6°(x) =
©¢(x). The problem associated with the two first equations of A, (resp. A3) can
then be interpreted as an elasticity problem with fictitious body forces that are
linear in e;(U;), Ve, (Upy) and V0 (resp. ez(Us), Ve (Ur), Ve Veer(Up) and
V.:Vb). Accordingly, there exist 4 additional concentration tensors such that :

us(x,y) = Us(x) + X(y) : €x(Ur) + Y(¥)i(Vaeo(Uo)) + Y (¥)-Vabo  (67)

w(x,y) = Us(x)+X(y): e:(Us) + Y(y)i(Veer(Us))
+ Z(y) = (VaVaes(Uo)) + Z (y) : (VaVabo) (68)

I

~

where the U; are constant translation terms. The concentration tensors can be

taken such that their average over the unit cell vanishes. These expressions are now
used to compute the local strain fields with the correctors :

e(w) = e(Uo)+X(y) : ex(Uo) + X (y) do — @° &y

22|D-<>

s ( $):(Vaen(Un)) + @s(vmex(uo»+z§’<z>.vmeo+¥’<x>.vzeo)

z22N>

¥ = (vwiew@o)))

(g (¥)i(VaVaer (Us)) +
(Y 0)-(V29200) + 2 () : V¥ (69)

+ &2



where concentration tensors modified by application of the symmetric gradient op-
erator have been introduced and the translation terms have been put into the first
term U, for simplicity. The mean stress is obtained by averaging the local stress
over the unit cell :

<g> = < (e)-e) >=C": (e(Up) - 6oe”)

+ sglf(Vem(Ho) - gl.VHO) +&2C? 1 (VVe,(Up) — @? : VVy) (70)

0Q

where < . > denotes the averaging process. This relation can be interpreted as the
effective constitutive equation for the homogenization problem up to order 3. The
involved constitutive tensors are related to the concentration tensors as follows :
Cl=<c:X> C':a’=<c: ():(l—cf) >; Cl=<¢: ()§+¥) >; ... (71)
It appears that the overall constitutive equations involve higher order gradients of
the overal strain and temperature fields. They are found to be identical to the
constitutive equations (33) of a linear thermoelastic medium, providing that the
mean stress is interpreted not as an overall Cauchy stress tensor but rather as the
“effective” stress T of a second grade medium defined by (33). The mean stress can
be shown to fulfill the following effective balance equation :

<V.ig*>+<f >=0. (72)

which actually is the balance of momentum equation (14) satisfied by the “effective”
stress T of a second grade medium. The identification of the homogeneous equiv-
alent medium with a second grade thermoelastic material should be closed by the
statement of the boundary conditions of the boundary value problem for the body
endowed with the properties of the HEM.

4.5 Coupled thermomechanical problem

The resolution of the fully coupled thermomechanical problem of heterogeneous
elasticity goes through the resolution in cascade of problems Ay to Ajz for the dis-
placement end temperature fields u; and ;. Note that, in each case, the thermal
and mechanical problems are decoupled, since the coupling term in the heat equa-
tion of problem A;,; involves the solution of problem A; only. The mechanical
part of the problem has been solved in the previous section. The partial differential
equation of each thermal problem in 4; can be interpreted as a heat equation with
fictitious heat source terms linear in 6y, e,(Uy), Vg, Ve, (Uy), so that the solutions
for temperature can be proved to have the form :

bo(x,y) = Y () : (VoVabo) + YO (¥) : ex(Uo) + YO (y) bo (73)

05(x,y) = Z“ (y){(Va Ve Vabo) + 27 (y){(Ves(Uo)) + Z9(y). Vo (74)



The thermomechanical coupling terms in problem A3z leads to the following addi-
tional contributions to the previous result (68) :

w(x,y) = Z(y) = (VaVaea(Uo)+Z (y) : (VaVabo)+Z (¥) 2 ex(Uo)+Z by (75)

As a result, the expression of the overall constitutive equations for the effective
stress (70) must be complemented by additional constitutive tensors of the form
e2(C® : e,(Up) + CWh,), that are active only in the transient regime. Similarily,
theNeXpression of the effective heat flux can be derived :

Q = <q >=-AVh+e (AD: YVl + A® : e, (Uo) + A® 6y)

~
~

4o (A (VVV00) + AP:Ve, (Uy) + A©. veo) (76)

The expressions relating the introduced effective constitutive tensors and the con-
centration tensors appearing in (73) and (74) are not given here for conciseness. The
first term shows that, at the first order, Fourier’s law is retrieved at the macroscopic
level. Taking higher order terms into account leads to a generalized Fourier law in-
volving higher order temperature gradients and transient terms. Note that the dissi-
pation inequality remains fulfilled per construction at the macroscopic level, at least
up to the considered precision in €. New coupling terms arise then in the effective
heat equation : In addition to terms in VVT and VK that are expected according

to the thermoelastic framework depicted in part 3, terms involving K VT E and

T arise necessarily. This seems to indicate that an even more general phenomeno-
logical framework that the one proposed in part 2 should be considered for which
VT and T should be introduced together. In particular the relations between the T'
term appearing then in the heat equation, and the second Cattaneo equation (see
[Miiller, Ruggieri, 1993]) remain to be investigated.
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