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where
eðpÞ ¼ pþ 1� 2pð ÞdðpÞ

To get the thermoelastic stresses on the bound-

ary, we have from (32) that
S ¼
s##jr¼1

cqEa

¼ 1

W #ð Þ ½m pþ eðpÞf g cos p#þ bð Þ

� m2peðpÞ þ 1
� �

cos #� bð Þ�

ð46Þ
where

W #ð Þ ¼ 1þ m2p2 � 2mp cos pþ 1ð Þ#

The formulae (44)–(46) agree with the formu-

lae (VII.80)–(VII.82) for p ¼ 3 and m ¼ � 1
6
and

formulae (VII.83)–(VII.84) for p ¼ 2 and m ¼ 1
3

and formulae (VII.85) and (VII.87) for p ¼ 1,

p.537 of [4].

In Fig. 1, we have the hypotrochoidal holes of

the infinite plate at p ¼ 2; 3; 4, while in Fig. 2, we

have the relations between S and y at the same

holes of Fig. 1 for b ¼ 0. Also the relation

between the shear stress S and the angle y for

the infinite plate of the elliptic hole for different

values of b shown in Figs. 3 and 4.
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Overview

Strain gradient plasticity effects arise from the

interplay between the typical wavelength of

applied mechanical loading conditions and

microstructural length scales. Grain and particle

size effects are well known in mechanical metal-

lurgy. They can be represented in the continuum

thermomechanics of materials by means of addi-

tional contributions of the plastic strain or hard-

ening variable gradients to the free energy
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density or viscoplastic dissipation potentials of

nonlinear materials. A general micromorphic

framework is presented here that is based on the

introduction of additional degrees of freedom and

their gradient into constitutive functionals.

The theory is specialized so as to recover the

well-known Aifantis strain gradient plasticity

model which includes an extra hardening term

associated with the Laplacian of cumulative

plastic strain. The effect of the gradient of the

plastic strain tensor leads to a similar Laplacian

term in the expression of kinematical hardening.

An analytical example shows the development of

boundary layers in laminate microstructures

under shear that depend on microstructure size

and on the intrinsic length of the continuum

model. Strain gradient plasticity models can

also be used to predict strain localization bands

with finite thickness, which is required for finite

element simulations of regularized strain locali-

zation phenomena. In the particular case of single

crystal plasticity, strain gradient plasticity

models are used to account for the effect of the

dislocation density tensor on material behavior.

The temperature dependence of all material

parameters and the coupling of mechanical

dissipation with thermal effect are taken into

account in the formulation. Finally, the question

of the introduction of the temperature or entropy

gradient into the internal or free energy densities

is addressed, which may be significant in the

presence of strong temperature gradients like in

microsystems or during laser treatments.
Introduction

Gradient plasticity theories belong to the

mechanics of generalized continua that incorpo-

rate intrinsic length effects into the usual material

modeling setting. Size effects result from the

interplay between the typical wavelength of the

mechanical loading conditions and the character-

istic sizes of the underlying microstructures.

Within the context of plasticity in metals, dislo-

cations move and interact with microstructural

barriers like grain boundaries or interfaces,

which give rise to a wide range of grain or
precipitate/inclusion size effects on the plastic

yielding and hardening of metals and alloys [5].

Microstructural lengths also appear in the finite

width of strain localization bands in metals or

soils and in the damage of materials.

The introduction of the gradient of plastic

strain or of some other hardening variables into

the constitutive framework makes it possible to

incorporate a microstructural intrinsic length into

the continuum mechanical framework. The strain

gradient plasticity model [14, 23] is an extension

to the nonlinear case of Mindlin’s celebrated

second gradient model [27] which contains

a contribution of the second gradient of the

displacement field, or equivalently of the strain

gradient, in the material’s free energy density.

It can also be seen as a special case of elastovis-

coplastic micromorphic continua based on

Eringen’s generalized continuum theory [12].

The usual thermoelastic–viscoplastic constitutive

framework can be extended, while keeping the

essential structure of continuum thermodynam-

ics, especially the notion of local accompanying

state and of local action [21]. Instead of formu-

lating complex integrodifferential equations for

nonlocal interactions in microstructured solids, it

is assumed that local state functions can be for-

mulated that depend on the values at a material

point of an enlarged set of constitutive variables.

The effective notion of internal variables driven

by differential evolution equations is extended

into the concept of internal degrees of freedom

involved in generalized balance equations asso-

ciated with new additional boundary conditions.

The concept of standard generalized materials

can be extended to gradient plasticity and damage

according to the variational framework presented

in [29].

This entry presents the most general

micromorphic framework that incorporates such

plasticity-related microstructural effects and its

specialization to strain gradient plasticity models.

Isotropic and kinematic hardening is shown to be

affected by terms containing the Laplacian of

plastic strain. Analytical solutions of archetypal

examples are provided for the description of

boundary layer development in heterogeneous

hardening materials and for the modeling of
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strain localization bands with finite thickness.

Regularization of strain localization phenomena

is particularly important in the case of

geomaterials [9]. The approach deals with

viscoplasticity but is equally applicable to

continuum damage mechanics [10, 16].

The presentation is limited to the context of

small deformations for the sake of conciseness.

The reader is referred to [6] and the references

quoted therein for the corresponding formulation

of micromorphic and strain gradient finite

deformation plasticity.

The theory involves tensors of up to sixth order

so that specific notations are required in this entry.

Zeroth, first, second, third, fourth, and sixth order

tensors are denoted by a; �a; �a; ��
a; ��

a; and
��
�a,

respectively. The simple, double, and triple

contractions are written :; : and ..
.
, respectively.

In index form with respect to an orthonormal

basis, these notations correspond to

�a : �b ¼ aibi; �a : �b ¼ aijbij; ��
a ..
.
��
b ¼ aijkbijk

ð1Þ

where repeated indices are summed up. The tensor

product is denoted by �. The nabla operator with

respect to spatial coordinates is denoted by H. For
example, the Cartesian component ijk ofH�e is eij;k.
General Continuum Thermomechanical
Formulation

The micromorphic theory has been proposed

simultaneously by Eringen and Mindlin [13, 26].

It introduces a general noncompatible field of

micro-deformation, in addition to the usual mate-

rial deformation gradient, accounting for the defor-

mation of a triad of microstructural directions.

When the micro-deformation coincides with the

deformation gradient, the micromorphic model

reduces to Toupin and Mindlin’s strain gradient

theory. The micromorphic approach can, in fact,

be applied to any macroscopic quantity in order to

introduce an intrinsic length scale in the original

standard continuum model in a systematic way, as

done in [16]. The reference standard continuum
plasticity model is presented before extending it

to incorporate length scale effects. As usual, the

total infinitesimal strain tensor is split into its

elastic, thermal, and plastic parts:
�e ¼ �e
e þ �e

th þ �e
p ð2Þ

The reference state space corresponding to

a classical elastoplasticity model is
DOF0 ¼ f�ug; STATE0 ¼ f�e
e; y; ag ð3Þ

The degrees of freedom (DOF) of the material

point are the components of the displacement

vector �u. The state variables are the (infinitesi-

mal) elastic strain tensor �e
e, temperature y, and

the internal variables a, see, for example, [25].

The latter include all hardening variables for

which specific differential evolution equations

are required. A standard yield function and

a corresponding dissipation potential can be

used to compute plastic flow and the evolution

rules for the other internal variables.

In general, the set of degrees of freedom can

be enlarged by introducing additional kinematic

(micromorphic) or physical (phase field) degrees

of freedom, f. The notation f denotes a list of

scalar or tensor variables attached to each mate-

rial point. The material behavior is then assumed

to depend on the variable f and its first gradient

Hf. Accordingly, the sets of degrees of freedom
and the state space are enhanced as follows:

DOF ¼ f�u; fg
STATE ¼ f�e

e; y; a; f; Hfg
ð4Þ

The principle of virtual power is generalized

to incorporate such additional microstructural

effects. This represents a systematic use of the

method of virtual power that Germain applied to

Eringen’s micromorphic medium in [20]. The

powers of internal and contact forces for the

body O are represented by corresponding power

densities in the form:
PðiÞ ¼ �
Z
O
pðiÞ dV; PðcÞ ¼

Z
@O

pðcÞ dS ð5Þ



Gradient Thermoplasticity 2015 G

G

pðiÞ ¼ �s : �_eþ a _fþ �b :H
_f

pðcÞ ¼ �t : _�uþ ac _f
ð6Þ

in which generalized stresses a and �b have

been introduced in addition to the usual Cauchy

stress tensor �s. The traction vector �t and the gen-

eralized traction ac act on the displacement veloc-

ity and micromorphic velocity, respectively. In the

absence of volume or inertia forces for simplicity,

the sum of the virtual power of internal and contact

forces must vanish for all virtual fields �u and f.
This leads to the following local balance equations

and natural boundary conditions:

div �s ¼ 0; 8�x 2 O;

�t ¼ �s � �n; 8�x 2 O
ð7Þ

div �b� a ¼ 0; 8�x 2 O; ac ¼ �b � �n; 8�x 2 @O

ð8Þ

where �n is the unit outer normal vector at the

boundary of the body. The microstructural effects

therefore arise in the balance of energy in the form:

r_e ¼ pðiÞ � div
�
q ð9Þ

where e is the specific internal energy and �q is the

heat flux vector. The free energy density function

c is assumed to be a function of elements of the

previous set STATE. The entropy principle is

formulated in the form
�r _cþ � _T
� 	

þ pðiÞ � �
q

T
� H T 
 0 ð10Þ

where � is the entropy density function and where

the thermal contribution is included. Taking into

account the functional dependence of all state func-

tions, the Clausius–Duhem inequality is obtained as
�s � r
@c
@�e

e

� �
: _�e

e þ a� r
@c
@f

� �
_f

þ �b� r
@c
@Hf

� �
� H _fþ �s : _�e

p � X _a

� � þ r
@c
@y

� �s :
@�e

th

@y

� �
_y� �

q

y
� Hy 
 0

ð11Þ
where it was assumed that the thermal strain

depends solely on temperature and the thermody-

namic force associated with internal variables was

defined as

X ¼ r
@c
@a

ð12Þ

Thermoelasticity does not induce dissipation,

which provides two state laws:

�s ¼ r
@c
@�e

e
; � ¼ �r

@c
@y

þ �s :
@�e

th

@y
ð13Þ

The remaining state laws are then formulated

in the following way:
a ¼ r
@c
@f

þ av; �b ¼ r
@c
@Hf

ð14Þ

where a generalized viscous stress av was

introduced that is responsible for additional dissi-

pation following [22]. The residual dissipation rate

finally is
�s : �_e
p � X _aþ av _f� q

y
:Hy 
 0 ð15Þ

At this place, the existence of a viscoplastic

potential can be postulated which depends on all

generalized stress driving forces, O �s; X; av
� �

,

from which evolution rules are derived:
�_e
p ¼ @O

@�s
; _a ¼ � @O

@X
; _f ¼ @O

@av
ð16Þ

Convexity of the viscoplastic potential with

respect to the driving forces �s;�X; av then

ensures the positivity of the dissipation rate

along any thermodynamic process. This termi-

nates the general framework and more specific

constitutive assumptions must now be made.
Gradient Plasticity with Size-Dependent
Isotropic Hardening

A quadratic form is now proposed for the isother-

mal free energy density function which is
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assumed to depend on the cumulative plastic

strain p in the form
rc �e
e;p;f;Hfð Þ ¼1

2 �e
e : ��C : �e

e þ 1

2
Hp2

þ 1

2
Hf p�fð Þ2 þ 1

2
AHf �Hf

ð17Þ

The corresponding classical model describes

an elastoplastic material behavior with linear

elasticity characterized by the tensor of elastic

moduli ��
C and the linear hardening modulus H.

Isotropy has been assumed for the last term for

the sake of brevity. Two additional material

parameters are introduced in the micromorphic

extension of this classical model, namely,

the coupling modulus Hf (unit MPa) and the

micromorphic stiffness A (unit MPa.mm2). The

thermodynamic forces associated with the state

variables are given by the relations (14)
�s ¼ ��
C : �e

e; a ¼ �Hf p� fð Þ; �b ¼ AHf;

X ¼ H þ Hf
� �

p� Hff

ð18Þ

Note that when the relative plastic strain

e ¼ p� f is close to zero, the linear hardening

rule retrieves its classical form and the general-

ized stress a vanishes. Only the strain gradient Hp
remains in the enriched work of internal forces

(6). This is the situation encountered in the strain

gradient plasticity models developed in [15, 23].

When the value of Hf is high enough, it acts

as a penalty term forcing the micromorphic

variable to follow the cumulative plastic

strain as close as possible. When inserted in

the additional balance (8), the previous state

laws lead to the following partial differential

equation:
f� A

Hf
Df ¼ p ð19Þ

which is identical to the additional partial

differential equation used in the so-called
implicit gradient-enhanced elastoplasticity in

[11]. The associated Neumann condition is used

in the form:
�b � �n ¼ AHf � �n ¼ ac on @O ð20Þ

A material surface is free when ac ¼ 0.

The yield function is now chosen as
f �s;X
� �

¼ seq � sY � X ð21Þ

where seq is an equivalent stress measure and sY
the initial yield stress. Plastic flow is derived from

the normality rule:
_�e
p ¼ l

@f

@ �s
ð22Þ

which defines the cumulative plastic strain as the

result of time integration of the plastic multiplier

_p ¼ l. After substituting the balance (19) into the
hardening law, yielding takes place when

seq ¼ sY þ Hf� A 1þ H

Hf

� �
Df ð23Þ

This expression coincides with the enhanced

yield criterion originally proposed for gradient

plasticity by Aifantis [1, 2] and used for strain

localization simulations in [8], provided that

the micromorphic variable remains as close as

possible to the plastic strain, f � p:
seq ¼ sY þ Hp � cDp ð24Þ

where c ¼ A 1þ H=Hf
� �

. As a result, Aifantis’

model has been retrieved from the micromorphic

approach by choosing simple linear constitutive

equations and introducing the internal constraint

f � p stating that the micromorphic variable

coincides with the plastic strain itself. This strain

gradient plasticity model can be used with more

general nonlinear hardening rules and with the

introduction of dissipative strain gradient

mechanisms [4].
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Gradient Plasticity with Size-Dependent
Kinematic Hardening

The approach is not restricted to scalar

micromorphic variables. The additional degrees

of freedom are now taken as the components of

a symmetric second-order tensor
�
f. The general-

ized stresses are symmetric second- and third-

order tensors, respectively:
G

pðiÞ ¼ �s : _�eþ �a : _
�
fþ ��b

..

.
H _

�
f ð25Þ

The symmetry condition applies only to the

first two indices of bijk. The extended set of state

variables is
STATE ¼ �e
e; �e

p;
�
f; H

�
f

n o
ð26Þ

When the micromorphic variable is

constrained to remain as close as possible to the

plastic strain tensor, the theory of gradient of

plastic strain presented in [23] is recovered. As

an illustration, the following quadratic form for

the free energy potential is adopted:

pc �e
e; �e

p;
�
f;H

�
f

� �
¼ 1

2 �e
e : ��

C : �e
e þ 1

3
C�e

p : �e
p

þ 1

3 �e
p �

�
f

� �
:

��
C
f
: �e

p �
�
f

� �
þ 1

2
H

�
f..
.

��
�A
..
.
H

�
f

ð27Þ

from which the state laws are derived:

�s ¼
��
L : �e

e; �X ¼ 2

3
C�e

p þ 2

3 ��
C
f
: �e

p �
�
f

� 	
;

�a ¼� 2

3 ��
C
f
: �e

p �
�
f

� 	
;

��
b ¼

��
�A
..
.
H

�
f

ð28Þ

In the simplified situation for which

��
C
f
¼

��
C
f��
1,

���
A ¼ A

���
1 where

��
1 and

���
1 are the fourth

rank and sixth rank identity tensors operating

respectively on symmetric second-order tensors

and symmetric (w.r.t. the first two indices) third-

rank tensors; the combination of the additional
balance equation and state laws leads to the

following partial differential equation:
�a ¼ div
��
b ¼ AD�e

p ¼ � 2

3
Cf �e

p �
�
f

� 	
ð29Þ

�
f� 3A

2Cf
D

�
f ¼ �e

p ð30Þ

The differential operators act in the following

way w.r.t. to a Cartesian frame �e i

� �
i¼1;3

:

div
��
b ¼ bijk;k�e i � �e j

D
�
f ¼ Dfij

� 	
�e i � �e j

ð31Þ

The associated boundary conditions on the

frontier of the body are given by a set of 6

equations:
��
b � �n ¼ �a

c ð32Þ

The internal variable �a ¼ �e
p is the proper state

variable for a plasticity theory incorporating lin-

ear kinematic hardening, �X being the back-stress

tensor. The retained isotropic yield function for

extended J2–plasticity is

f �s; �Xð Þ ¼ J2 �s� �Xð Þ � sY

¼ J2 �s� 2

3
Cþ Cf
� �

�e
p þ 2

3
Cf�

f
� �

� sY

¼ J2 �s� 2

3
C

�
fþ Að1þ C

C
�
f
ÞD

�
f

 !
� sY

where J2ð�sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �s

dev : �s
dev

� �
=2

q
is the von

Mises second invariant for symmetric second-

rank tensors. The normality rule is adopted:
_�e
p ¼ _l

@f

@ �s
¼ � _l

@f

@�X
¼ _p �N ð33Þ

The intrinsic dissipation then takes its classi-

cal form:
�s : _�e
p � �X : _�e

p ¼ f _pþ sY _p 
 0 ð34Þ
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with energy storage associated with kinematic

hardening. The plastic multiplier is deduced

from the consistency condition:
Gradient Thermoplasticity, Fig. 1 Unit cell of a

periodic two-phase laminate
_f ¼ �N : _�s � �N : _
�X ¼ �N :

��
C : _�e� _p�N
� �

� �N :
2

3
ðCþ CfÞ_�e

p � 2

3
Cf

_
�
f

� �
¼ 0

ð35Þ

_p ¼
�N :

��
C : _�eþ 2

3
Cf�

_f
� 	

�N :
��
C : �N þ Cþ Cf

ð36Þ

where both _�e
p and _

�
f are controllable independent

variables at the material point. The consistency

condition must be modified in the non-isothermal

case due to the general dependence of all param-

eters on temperature, as shown in [16].

The fact that the gradient of the plastic

strain tensor mainly impacts on the kinematic

hardening of the material has been recognized in

[23, 31].
Size Effects in Strain Gradient Plasticity

Aifantis isotropic strain gradient plasticity model

is considered to investigate two distinct size-

dependent behaviors, respectively associated

with hardening and softening plasticity. The first

example is taken from [3] and the second inspired

from [19].

Boundary Layers in a Sheared Laminate

(H > 0)

Laminate microstructures are prone to size

effects especially in the case of metals for which

the interfaces act as barriers for the motion of

dislocations. The material response then strongly

depends on the layer thickness. The considered

laminate microstructure is a periodic arrange-

ment of two phases including a purely elastic

material and a plastic strain gradient layer. The

unit cell corresponding to this arrangement is

shown in Fig. 1. The thickness of the hard

elastic layer is h, whereas the thickness of the

soft plastic strain gradient layer is s. The unit

cell of Fig. 1 is subjected to a mean simple
shear �g in direction 1. The origin of the coordinate
system is the center of the soft phase.

The displacement field is of the form
u1 ¼ �gx2; u2ðx1Þ ¼ uðx1Þ; u3 ¼ 0 ð37Þ

where uðx1Þ is a periodic function which

describes the fluctuation from the homogeneous

shear �g. This fluctuation is the main unknown of

the boundary value problem. The gradient of the

displacement field and the strain tensors are

computed as
½H�u� ¼
0

u;1

0

�g

0

0

0

0

0

2
64

3
75;

½�e� ¼
0 1

2
�gþ u;1
� �

0
1
2
�gþ u;1
� �

0 0

0 0 0

2
4

3
5

ð38Þ

where u;1 denotes the derivative of the displace-
ment u with respect to x1. After Hooke’s law, the

only activated simple stress component is s12.
Due to the balance of momentum equation and

the continuity of the traction vector, this stress

component is homogeneous throughout the

laminate.

The elastic law in the elastic phase and the

elastic–plastic response of the soft phase are

then exploited to derive the partial differential

equations for plastic strain and, finally, for the

displacement fluctuation. The explicit solution

is found after considering precise interface

conditions regarding continuity of various

variables. Note that the solution is known for

conventional plasticity, that is, in the absence of
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strain gradient effect. The plastic strain is then

expected to be homogeneous in the soft phase for

any loading �g. Plastic strain therefore exhibits

the usual jump at the interface. The introduction

of higher-order interface conditions, associated

with strain gradient plasticity, will induce

a nonhomogeneous plasticity field.

Assuming plastic loading in the soft phase, the

von Mises criterion is fulfilled:
G

ffiffiffi
3

p
js12j ¼ R0 þ Hp� cp;11 ð39Þ

Since the stress component s12 is uniform, the

previous equation can be differentiated with

respect to x1, which gives
p;111 � o2p;1 ¼ 0; o2 ¼ o2 H

c
ð40Þ

The form of the plastic strain field for H > 0

therefore is
p ¼ a cosh ox1ð Þ þ b ð41Þ

where a and b are integration constants. In the

elastic zone, the stress is given by
s12 ¼ m �gþ uh;1

� 	
) uh;1 ¼ C ð42Þ

An additional integration constant C must

be determined. The exponent h has been added

to indicate the displacement fluctuation inside

the elastic phase. The arbitrary translation for

uh will be set to zero. The field us can be

determined from the elasticity law in the

soft phase:
s12 ¼ m �gþ us;1 �
ffiffiffi
3

p
p

� 	
ð43Þ

An additional constant D arises from the

integration of this equation that remains to be

determined. The four unknown integration

constants a; b;C;D will be determined from

4 conditions at the interface between both

materials at x1 ¼ �s=2:
• Continuity of simple traction
ffiffiffi
3

p
m �gþ Cð Þ ¼ R0 þ Hb ð44Þ

• Continuity of displacement u x1ð Þ at s/2
us
s

2

� 	
¼ uh

s

2

� 	
ð45Þ

uh x1ð Þ ¼ Cx1; us x1ð Þ

¼ R0

m
ffiffiffi
3

p þ H

m
ffiffiffi
3

p þ
ffiffiffi
3

p� �
b� �g

� �
x1

þ
ffiffiffi
3

p
a

o
sinh ox1ð Þ þ D

ð46Þ

• Periodicity of displacement u x1ð Þ
us � s

2

� 	
¼ uh

s

2
þ h

� 	
ð47Þ

• Continuity of plastic strain p at the interface

x1 ¼ s
2

p
s

2

� 	
¼ 0 ð48Þ

a cosh o
s

2

� 	
þ b ¼ 0 ð49Þ

The last condition is necessary to close the

system. Differentiability and hence continuity of

plastic strain p are required in strain gradient

plasticity theory. In the elastic phase, p ¼ 0 so

that p should also vanish at the interface. The

identification of the constants provides
b ¼
�g� R0

m
ffiffi
3

p
� 	

ðsþ hÞ
H

m
ffiffi
3

p ðsþ hÞ þ
ffiffiffi
3

p
s� tanh o s

2

� �
2
ffiffi
3

p

o

ð50Þ

a ¼ � b
cosh o s

2

� � ð51Þ

C ¼ R0

m
ffiffiffi
3

p � �gþ Hffiffiffi
3

p
m
b ð52Þ
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D ¼ C
s

2
� R0

m
ffiffiffi
3

p þ H

m
ffiffiffi
3

p þ
ffiffiffi
3

p� �
b� �g

� �
s

2

�
ffiffiffi
3

p
a

o
sinh o

s

2

� 	
ð53Þ

where homogeneous elasticity has been assumed

for simplicity, with m being the shear modulus of

both phases. As a result, we find that the double

traction cannot vanish on the soft side of the

interface, x1 ¼ s�=2:
b1ðx1Þ ¼ ca sinhðox1Þ;

b1
s�

2

� 	
¼ ca sinh o

s

2

� 	
6¼ 0

ð54Þ

In the elastic phase, the generalized stress

identically vanishes since no plastic strain occurs.

It follows that the generalized traction b1 exhibits

a jump across the interface.

This solution is illustrated for a special choice

of material parameters oriented towards plasticity

of metals at the micron scale:

s ¼ 0:007 mm; h ¼ 0:003 mm;

�g ¼ m ¼ 300 GPa; R0 ¼ 20 MPa;

H ¼ 10 GPa;

c ¼ 0:005 MPa �mm2
The distribution of plastic slip, displacement,

and generalized stress component b1 are shown

in Fig. 2. The plastic strain displays a typical

cosh profile with boundary layer effects close to

the interface, due to the continuity requirement. The

displacement fluctuation is clearly periodic. The

jump of the generalized traction at the interface is

also visible.

Plastic Strain Localization in a Metal Foam

(H < 0)

One of the most simple yield functions for

compressible elastoplastic materials is the elliptic

potential that depends on the first and second

invariants of the stress tensor:
f �s
� �

¼ seq � sY � R;

s2eq ¼
3

2
C�s

dev : �s
dev þ F trace �s

� �2 ð55Þ

where C and F are material parameters, possibly

depending on material porosity, and R the hard-

ening function. The tensor giving at each instant

the direction of plastic flow is
�N ¼ @f

@ �s
¼ 1

seq

3

2
C�s

dev þ F trace �s
� �

�1

� �

and _�e
p ¼ _p �N

ð56Þ
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according to the normality rule adopted here

for simplicity and valid for metallic foams.

The second-order identity tensor is �1. In the

special case of tension/compression in

direction 2, the direction of plastic flow becomes
G

½N� ¼ sign s22ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ F

p
F� C

2
0 0

0 Cþ F 0

0 0 F� C
2

2
64

3
75
ð57Þ

It can be seen that for F ¼ 0 (von Mises plas-

ticity), classical von Mises incompressible plastic-

ity is retrieved. The special case F ¼ C=2 is

associated with no lateral plastic flow in tension/

compression. This is a simplification often used for

the modeling of the deformation of aluminum

foams [19].

A softening modulus H < 0 (see (23) or (24))

is introduced to induce strain localization as

observed in aluminum foams, for instance. The

bifurcation analysis presented in [7] for general

nonassociative and compressible elastoplasticity

is applied here to the elliptic potential (55).

The objective is to determine the orientation

of possible strain localization bands that can

be deduced from Rice’s criterion of loss of

ellipticity in elastoplastic solids. Under plane

stress conditions, the orientation of the first

possible localization band is given by

n21 ¼
2

3C

C

2
� F

� �
; n22 ¼ 1� n21; n3 ¼ 0

ð58Þ

where ni is the unit vector normal to the strain

localization band. If F ¼ 0 the classical orienta-

tion of shear bands at 55� from the loading axis is

recovered. If F ¼ C=2 it can be seen that

n1 ¼ 0; n2 ¼ 1. This corresponds to a horizontal

strain localization band with an opening mode

[7]. This ideal orientation of strain localization

bands is in accordance with the quasi-horizontal

crushing bands frequently observed in aluminum

foams under compression. In contrast, more

inclined bands usually form in compressed

samples of rocks and soils.
The choice F ¼ C=2 (and also a vanishing

Poisson ratio to simplify the analytical deriva-

tion) ensures that the problem becomes actually

one dimensional so that an analytical solution of

the localization problem can be worked out for

tension/compression along direction 2:
seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ F

p
js22j; _ep22 ¼ _p

ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ F

p
ð59Þ

The tensile stress field is homogeneous due to

the balance of momentum (7). The yield condi-

tion (23) can then be differentiated with respect to

the coordinate 2, which provides the differential

equation governing f:

f;222þo2f;2 ¼ 0; with; o2 ¼� HHf

A HþHf
� �

ð60Þ

The wave number o is real when H < 0

and H þ Hf > 0. The latter condition takes into

account the fact that Hf is a penalty factor that

constrains the variable f to remain close to p and

should therefore be high enough.

If Aifantis model (24) is adopted instead,

the plastic strain is solution of the differential

equation:
p;222 þ o2p;2 ¼ 0; with o2 ¼ �H

c
ð61Þ

In both cases, due to the fact that H < 0,

a sinusoidal profile of plastic strain is expected.

The strain localization band with indeterminate

size predicted by the localization analysis of the

classical model is therefore replaced by a strain

localization zone of finite width directly related

to 1=o. The localization zone is an arc of sinus

curve for this simple model. Additional boundary

conditions are necessary to solve actually the

differential equations. They concern the continu-

ity of the displacement, f or p, and of the dual

forces �s � �n and �b � �n at the interface between the

localized deformation band and the elastically

unloading remaining part of the specimen. The

micromorphic model was implemented in a finite

element program. It can be checked that mesh
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analysis of a homogeneous metal foam block with

a central initial defect under uniaxial compression using

the micromorphic foam model: Comparison of the strain

localization band between the finite element and analyti-

cal solutions (horizontal axis, position in mm along the

sample; vertical, axial strain component)
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refinement leads to a converged deformation

zone of finite size. It has the sinusoidal

character predicted by the analytical model as

shown in Fig. 3.
Gradient Crystal Plasticity

In the crystal plasticity theory at small deforma-

tion, the gradient of the velocity field can be

decomposed into the elastic and plastic deforma-

tion rates:

_
�H ¼ _�u� H ¼ _

�H
e þ _

�H
p ð62Þ

where
_
�H

p ¼
X
a

_ga�l
a � �n

a ð63Þ

with a as the number of slip systems, _ga the slip
rate for the slip system a, �l the slip direction, and

�n the normal to the slip plane [33]. The elastic

deformation �H
e bridges the gap between the
compatible total deformation �H and the

incompatible plastic deformation �H
p. Applying

the curl operator to a compatible field gives zero

so that

curl _�H ¼ 0 ¼ curl _�H
e þ curl _

�H
p ð64Þ

The incompatibility of plastic deformation is

characterized by its curl part called dislocation

density tensor �G [31] defined here as
�G ¼ curl �H
p ¼ �curl �H

e ð65Þ

This prompts us to consider now a strain

gradient plasticity theory which includes the

curl of the plastic deformation tensor, �H
p, instead

of the full gradient with the following power

densities of internal and contact forces [6]:
pðiÞ ¼ �s : _
�H þ �s :

_
�H

p þ �M : curl _�H
p

pðcÞ ¼ �t � _�uþ �m : _
�H

p
ð66Þ

where �t, �m are, respectively, the surface simple

and double tractions. Volume forces are not

written for simplicity. For objectivity reasons,

the stress tensor �s is symmetric whereas the

micro-stress tensor �s and the double-stress tensor

�M are generally nonsymmetric. The method of

virtual power can be used to derive the field

equations governing this continuum:

div �s¼ 0; curl �Mþ�s¼ 0; ejklMik;lþ sij ¼ 0

ð67Þ

for all regular points of the domain O. Further-
more, the following boundary conditions on ∂O
can be derived:
�t ¼ �s � �n; �m ¼ �M �
��
e � �n; mij ¼ Mikekjlnl

ð68Þ

The free energy density is taken as a function

of the elastic strain, �e
e; the dislocation density

tensor, that is, curl �H
p; and a generic internal

hardening variable, a. As a result, the Clausius–

Duhem inequality becomes
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�s � r
@c
@�e

e

� �
: _�e

e þ �M � r
@c

@curl �H
p

� �
: curl _�H

p

þ �s þ �s
� �

: _
�H

p � X _a 
 0

ð69Þ

Here, the constitutive assumption is made that

the two first terms in the previous inequality are

nondissipative and therefore should vanish. Then,

�s ¼ r
@c
@�e

e
; �M ¼ r

@c
@curl �H

p ð70Þ

It follows that the residual dissipation rate is

�s þ �s
� �

: �
_H
p � X _a 
 0 ð71Þ

The existence of a dissipation potential,

namely, O �s þ �s;X
� �

�
_H
p ¼ @O

@ �s þ �s
� � ; _a ¼ � @O

@X
ð72Þ

The viscoplastic potential is a function of the

generalized Schmid criterion associated to each

slip system:
f s �s þ �s
� �

¼ �s þ �s
� �

: �l
s � �n

s
�� ��� tsc ð73Þ

where tsc is the critical resolved shear stress for

slip system s. The resolved shear stress is

ts ¼ �s : �l
s � �n

s, and it can be seen that a back-

stress can attributed to each slip system in the form:

xs ¼ ��s : �l
s � �n

s ¼ curl �M : �l
s � �n

s

¼ A curl curl �H
p : �l

s � �n
s ð74Þ

where the balance (67) has been taken into

account. A linear constitutive equation was

finally assumed relating the double-stress tensor

�M to curl �H
p. As a result, this strain gradient

plasticity theory contains a size-dependent kine-

matic hardening component for each slip system

that is related to the second spatial derivative

of plastic deformation. This theory can also be

seen as a particular case of a more general

micromorphic crystal plasticity model [6].
Temperature Gradient Effects

Strain gradient plasticity models are needed in

situations where strong strain gradients are

encountered due to strain localization or size

effects. Such situations may well be associated

with strong temperature gradients that can affect

the material’s behavior in a way different than in

usual continuum thermomechanics. In particular,

a dependence of the internal energy on the

entropy gradient or on the free energy function

on the temperature gradient can be envisaged in

strongly out of equilibrium physical situations

like material processing or assembling or laser

treatment of materials and coatings. Several the-

ories in that direction have been formulated

recently [18, 24, 28, 30]. They lead to generalized

heat equations coupled to mechanics [34].

The micromorphic approach can again be used

to encompass a large number of such theories

[17]. The presentation is now restricted to the

thermal aspects only, the coupling with mechan-

ics being a direct application of the previous

sections. A micro-entropy variable _f� is intro-

duced in addition to the usual entropy variable �:
DOF¼f�; f�g; STATE¼ �; f�; Hf�

n o
ð75Þ

Within the micromorphic approach, there

exists an additional independent power expendi-

ture due to _f� and H _f� :

pðiÞ ¼ a _f� þ�b :H
_f�; pðcÞ ¼ ac _f� ð76Þ

that leads to the additional balance (8), with the

associated boundary conditions. Assuming

the functional dependence eð�;f�;Hf�Þ for the

internal energy density, the Clausius–Duhem

inequality takes the form:
r y� @e
@�

� �
_� þ a� r

@e
@f�

 !
_f�

þ �b� r
@e

@Hf�

 !
:H _f� ��

q :Hyy 
 0

ð77Þ
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The following state equations are adopted:

y ¼ @e
@�

; a ¼ r
@e
@f�

; �b ¼ r @e
@Hf�

ð78Þ

Within a linear context, the following qua-

dratic potential is proposed:
re �;f�;Hf�

� 	
¼ r�y0 þ

r2 � � �0ð Þ2

4b

þ 1

2
Hf � � f�

� 	2
þ 1

2
AHf�:Hf� ð79Þ

The parameter Hf has been added in order to

penalize the difference between micro- and

macro-entropy. It follows that
y ¼ y0 þ
r
2b

ð� � �0Þ þ
Hf

r
ð� � f�Þ

a ¼ �Hfð� � f�Þ; �b ¼ AHf�

ð80Þ

Positivity of dissipation is still ensured by

a Fourier law of the form �q ¼ ��k � H�. The energy
balance equation leads to the usual heat equation
r� _y ¼ �div
�
q ð81Þ

After combining the (81), the relevant state

laws, and the balance (8), the following general-

ized heat equation is obtained:
ry0 _� ¼ k
r
2b

H2� � A

r
H4f�

� �
ð82Þ

An internal constraint can be enforced such

that the micro-entropy coincides with the entropy

itself. The micro-entropy theory then reduces to

an entropy gradient model. Such a condition is

almost exactly satisfied when the penalty factor

Hf becomes sufficiently high. For a strict respect

of the internal constraint, a Lagrange multiplier

must be introduced. The (82) then takes the form

of a Cahn–Hilliard equation for entropy.
Modifications of the Fourier law can also been

envisaged instead of enriching the internal energy

function, thus introducing higher-order thermal

effects in the dissipative part ofmaterial’s behavior.

A Cahn–Hilliard type of heat equation with respect

to temperature is derived in that way in [32].
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▶Green’s Function of Heat Source for Mixed

Boundary Value Problem

▶Green’s Function of Thermoelastic Mixed
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Functions
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Mechanical Mixed Boundary Value
Problem for an Elliptic Hole
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Department of Civil Engineering,

Nagoya Institute of Technology, Showa-ku,

Nagoya, Japan
Synonyms

Elliptical hole; Green’s function; Mechanical

mixed boundary value problem; Thermal mixed

boundary value problem
Overview

Green’s functions play an important role in

the solution of problems in mechanics and phys-

ics of solids. They represent kernel functions

or fundamental solutions for analytic or numeri-

cal methods, such as singular integral equation

methods, boundary element methods, eigen-

strain approach, and dislocation methods [1–3].

For thermoelastic problems, Green’s function

for a heat source has received considerable atten-

tion. Some fundamental thermoelastic problems

were treated in [4–6]. Using these thermoelastic

theories, Green’s functions of a heat source near an
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